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Abstract. In this paper, we provide all the necessary infrastructure to
define a high level states exploration approach within the HOL theorem
prover. While related work has tackled the same problem by represent-
ing primitive BDD operations as inference rules added to the core of the
theorem prover, we have based our approach on the Multiway Decision
Graphs (MDGs). We define canonic MDGs as well-formed directed for-
mulae in HOL. Then, we formalize the basic MDG operations following
a deep embedding approach and we derive the correctness proof for each
operation. Finally, a high level reachability analysis is implemented as a
tactic that uses our MDG theory within HOL.

1 Introduction

Model checking and deductive theorem proving are the two main formal verifi-
cation approaches of digital systems. It is accepted that both approaches have
complementary strengths and weaknesses. Model checking algorithms can au-
tomatically decide if a temporal property holds for a finite-state system. They
can produce a counterexample when the property does not hold, which can be
very important for the reparation of the corresponding error in the implemen-
tation under verification or in the specification itself. However, model checking
suffers from the states explosion problem when dealing with complex systems.
In deductive reasoning, the correctness of a design is formulated as a theorem in
a mathematical logic and the proof of the theorem is checked using a general-
purpose theorem-prover. This approach can handle complex systems but requires
skilled manual guidance for verification and human insight for debugging. Un-
fortunately, if the property fails to hold, deductive methods do not give coun-
terexample.

Indeed, the combination of the two approaches, states exploration and de-
ductive reasoning promises to overcome the limitations and to enhance the ca-
pabilities of each. Our research is directed toward this goal. In this paper, we
provide all the necessary infrastructure (data structure + algorithms) to define a
high level state exploration in the HOL theorem prover. While related work has
tackled the same problem by representing primitive Binary Decision Diagrams



(BDD) operations [4] as inference rules added to the core of the theorem prover
[7], we have based our approach on the Multiway Decision Graphs (MDGs) [5].
MDG generalizes ROBDD to represent and manipulate a subset of first-order
logic formulae, which is more suitable for defining model checking inside a the-
orem prover. With MDGs, a data value is represented by a single variable of
an abstract type, and operations on data are represented in terms of uninter-
preted functions. Considering MDG instead of BDD will raise the abstraction
level of what can be verified using a state exploration within a theorem prover.
Therefore, an MDG structure in HOL allows better proof automation for larger
datapaths systems.

The paper is organized as follows: First, we define the MDG structure in-
side the HOL system in order to be able to construct and manipulate MDG as
formulae in HOL. This step implies a formal logic representation for the MDG
or what we call: The MDG Syntax. It is based on the Directed Formulae DF: an
alternative vision for the MDG in terms of logic and set theory [2]. Subsequently,
all the basic operations are built on the top of The MDG Syntax. Then, the def-
initions of the MDG operations, following a deep embedding approach in HOL,
are associated naturally with a proof of their correctness. Finally, we define an
MDG based reachability analysis in HOL as a tactic that uses the MDG theory.

2 Related Work

The closest work, in approach, to our own are those of Gordon [7,6] and later
Amjad [3]. Gordon integrated the verification system BuDDy (BDD package
implemented in C) into HOL. The aim of using BuDDy is to get near the perfor-
mance of C-based model checker, whilst remaining fully expansive, though with
a radically extended set of inference rules [6, 7].

In [8], Harrison implemented BDDs inside HOL without making use of an
external oracle. The BDD algorithms were used by a tautology-checker. However,
the performance was a thousand times slower than a BDD engine implemented in
C. Harrison mentioned that by re-implementing some of HOL’s primitive rules,
the performance could be improved by around ten times.

Amjad [3] demonstrated how BDD based symbolic model checking algo-
rithms for the propositional p — calculus (L,) can be embedded in the HOL
theorem prover. This approach allows results returned from the model checker
to be treated as theorems in HOL. The approach still leaves results reliant on the
soundness of the underlying BDD tools. Therefore, the security of the theorem
prover is compromised to the extent that the BDD engine or the BDD inference
rules may be unsound. Our work focusses more on how one can raise the level of
assurance by embedding and proving formally the correctness of those operators
in HOL.

In fact, while BDDs are widely used in state-exploration methods, they can
only represent Boolean formulae. Our work deals with the embedding of MDGs
rather than BDDs. The work of Mhamdi and Tahar [10] builds on the MDG-
HOL [9] project, but uses a tightly integrated system with the MDG primitives



written in ML rather than two tools communicating as in MDG-HOL system.
The syntax is partially embedded and the conditions for well-formedness must
be respected by the user. By contrast, we provide a complete embedding of the
MDG syntax and the conditions could be checked automatically in HOL.

Another major difference between the above work and ours is that it im-
plements the related inference rules for BDD operators in the core of HOL as
un-trusted code, whereas we implement the MDG operations as trusted code in
HOL.

Verification of BDD algorithms has been a subject of active research and
many papers offer studies conducted using different proof assistants such as HOL,
PVS, Coq and ACL2. These papers tries to extend the prover with a verified
BDD package to enhance the BDD performance, while still inside a formal proof
system. For example, in [13] the correctness of BDD algorithms using Coq has
been proved. The goal is to extract a verified algorithms manipulating BDDs in
Caml (the implementation language of Coq).

Our work follows the verification of the Boolean manipulating package, but
using MDG instead. The correctness of the model checker is then, defined as a
tactic, can be achieved after the proof of these algorithms.

3 Multiway Decision Graphs

MDGs subsume the class of Bryant’s (ROBDD) [4] while accommodating ab-
stract data and uninterpreted function symbols. It can be seen as a Directed
Acyclic Graph (DAG) with one root, whose leaves are labeled by formulae of
the logic True (T)[5]. The internal nodes are labeled by terms, and the edges is-
suing from an internal nodes v are labeled by terms of the same sort as the label
of v. Terms are made out of sorts, constants, variables, and function symbols.
Two kinds of sorts are distinguished: concrete and abstract:

— Concrete sort: is equipped with finite enumerations, lists of individual con-
stants. Concrete sorts is used to represent control signals.

— Abstract sort: has no enumeration available. It uses first order terms to
represent data signals.

Figure 1 shows two MDG examples GO and G1. In GO, X is a variable of the
concrete sort [0, 2, 3], while in G1, X is a variable of abstract sort; a, 8 and f(9)
are abstract terms.

MDGs are canonical representation, which means that an MDG structure
has: a fixed node order, no duplicate edges, no redundant nodes, no isomor-
phic subgraphs, terms concretely reduced that have no concrete subterms other
than individual constants, disjoint primary (nodes label) and secondary variables
(edges label).

Different approaches have been used to formalize decision diagrams either as
terms and formulae or as DAGs. The first is a formal logic representation using
data type definitions [7,3], while the later is a graphical representation using
trees and graphs [12,13].
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Fig. 1. Example of Multiway Decision Graphs Structure

The choice between the two approaches depends on the formalization objec-
tives. If we want to reason about the correctness of the implementation itself,
then we need to define decision diagrams as graphs and do sharing of common
sub-trees. Clearly this makes the development and the proofs complex. On the
other hand, if we are only interested in a high-level view, for the use of induc-
tion, then a logical representation is preferred. This is why, we choose the logical
representation in terms of Directed Formulae (DF) to model the MDG syntax
in HOL.

3.1 Directed Formulae (DF)

Let F be a set of function symbol and V a set of variables. We denote the set
of terms freely generated from F and V by 7 (F,V). The syntax of a Directed
Formula is given by the grammar below. The underline is used to differentiate
between the concrete and abstract variables.
Sort S = |
Abstract Sort S = |
Concrete Sort S |
Generic Constant C |
Concrete Constant C  :: |
Variable X |
Abstract Variable V \ z
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The vocabulary consists of generic constants, concrete constants (individ-
ual), abstract variables, concrete variables and function symbols. DF are always
disjunction of conjunctions of equations or T (truth) or L (false). The conjunc-
tion Conj is defined to be an equation only Fgq or a conjunction of at least two
equations. Atomic formulae are the equations, generated by the clause Eq. The
equation can be the equality of concrete term and an individual constant, the



equality of a concrete variable and an individual constant, or the equality of an
abstract variable and an abstract term.

Given two disjoint sets of variables U and V', a Directed Formulae of type
U — V is a formula in Disjunctive Normal Form (DNF). Just as ROBDD must
be reduced and ordered, DF's must obey a set of well-formedness conditions given
in [5] such that:

1. Each disjunct is a conjunction of equations of the form:
A = a, where A is a term of concrete sort a containing no variables other
than elements of U, and a is an individual constant in the enumeration of
a, or
u = a, where v € (U UV) is a variable of concrete sort o and a is an
individual constant in the enumeration of «, or
v = A, where v € V is a variable of abstract sort @ and A is a term of type
« containing no variables other than elements of U;
. In each disjunct, the LHSs of the equations are pairwise distinct; and
3. Every abstract variable v € V' appears as the LHS of an equation v = A in
each of the disjuncts. (Note that there need not be an equation v = a for
every concrete variable v € V).

[\

DFs are used for two purposes: to represent sets (viz. sets of states as well
as sets of input vectors and output vectors) and to represent relations (viz. the
transition and output relations).

For example, suppose that U = {ul,u2} and V = {vl,v2}, where ul and
v1l are variables of concrete sort bool with enumeration {0,1} while u2 and v2
are variables of an abstract sort wordn. Also, suppose that f is an abstract
function symbol of type wordn — wordn and g is a cross-operator of type
wordn — bool. Then, Figure 1 shows the MDG representing this example as
well as its corresponding DF formula.

3.2 MDG Operations

We give the definitions of MDG basic operations in terms of DF’s [5].

Conjunction Operation: The conjunction operation takes as inputs two
DFs P;, 1 <i <2, of types U; — V;, and produce a DF R = Conj ({P;}1<i<2)
of type (Uj<i<2 Ui)\(Ui<i<2 Vi) = (U<;<2 Vi) such that:

ERe( N\ P) (1)

1<i<2

Note that for 1 <14 < j <2, V; and V; must not have any abstract variables in
common, otherwise the conjunction cannot be computed.

Relational Product Operation: The relational product performs conjunc-
tion and existential quantifying for a two DF's. It is used for image computation.
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Fig. 2. MDG and its Corresponding DF

Disjunction Operation: The disjunction operation performs disjunction
for two DF's having the same set of abstract primary variables.

Pruning By Subsumption: The pruning by subsumption takes as inputs
two DFs P and @ of types U — V; and U — V5 respectively, where U contains
only abstract variables that do not participate in the symbol ordering, and pro-
duces a DF R = PbyS (P, Q) of type U — V; derivable from P by pruning (i.e.
by removing some of disjoints) such that:

=RV (3E)Q & PV (3E)Q (2)

The disjuncts that are removed from P are subsumed by @, hence the name of
the algorithm.

Since R is derivable from P by pruning, after the formulae represented by
R and P have been converted to DN F, the disjuncts in the DNF of R are a
subset of those in the DNF of P. Hence = R = P. And, from (2), it follows
tautologically that = P A =(3E)Q = R. Thus we have

E(PA-(ZE)Q=R)AN(R=P)

We can then view R as approximating the logical difference of P and (3E)Q.

4 The MDG Syntax

4.1 DF in HOL

We use HOL recursive datatype to define the MDG syntax. an MDG sort is either
concrete or abstract. This is embedded using two constructors called Abst_Sort



and Conc_Sort. The Abst_Sort takes as argument an abstract sort name of type
alpha and the Conc_Sort takes a concrete sort name and its enumeration of type
string as an input argument. This is declared in HOL as follows:

Sort ::= Abst_Sort of ‘alpha | Conc_Sort of string — string list

To determine whether the sort is concrete or abstract, we define predicates over
the constructor called Is_Abst_Sort and Is_Conc_Sort.

In the same way, constants and variables are either of concrete or abstract
sort. Individual constant can have multiple sorts depending on the enumeration
of the sort, while abstract generic constant is identified by its name and its
abstract sort. A variable (abstract or concrete) is identified by its name and
sort. For example, abstract variable is realized by defining a new HOL type as
shown below:

Abst_Var ::= Abst_Var of string — 'alpha Sort

Functions can be either abstract or cross-operators. Cross-functions are those
that have at least one abstract argument:

Cross_Fun ::= Cross_Fun of string — /alpha Var list — /alpha Sort

We have defined a datatype D_F. The DF can be True or False or a disjunction
of conjunction of equations. Then we define the type definition of a directed
formula:

D_F ::= DF1 of 'alpha DF | TRUE | FALSE
DF ::= DISJ of ’'alpha MDG_Conj — DF | CONJ1 of ‘alpha MDG_Conj
MDG_Conj ::= Eqn of ‘alpha Eqn | CONJ of ‘alpha Eqn — MDG_Conj

EQUAL1 of ‘alpha Conc_Vari — ’‘alpha Ind_Cons
EQUAL2 of ’alpha Abst_Var — ’alpha Abst_Fun
EQUAL3 of /alpha Cross_Fun — ('alpha Abst_Var) list —
"alpha Ind_Cons
o a. a st_Var — a. a st_Var
EQUAL4 of ’'alpha Abst_V 'alpha Abst_V
o a. a st_Var — a. a Gen_Cons
EQUAL5 of ’alpha Abst_V 'alpha Gen_C

Egqn

DF1, DISJ, CONJ1, Eqn, CONJ are distinct constructors and the constructors
EQUAL1, EQUAL2, EQUAL3, EQUAL4, EQUALS are used to define an atomic equa-
tion. The type definition package returns a theorem which characterizes the type
D_F and allows reasoning about this type. Note that the type is polymorphic in
a sense that the variable could be represented by a string or an integer number
or any user defined type; in our case we have used the string type.

4.2 Well-formedness Conditions

Since the DF is represented as a list of equations. The embedding of the well-
formedness conditions can be defined straightforward by:



— The first condition is satisfied by construction following the Eqn type defini-
tion.
— The second condition is embedded as:

Faef  (Condition2 [1 = T) A
(Condition2 (hd::tl) = ALL_DISTINCT hd A Condition2 t1)

— The embedding of the third condition requires more work and needs an
auxiliary function as shown below:

Faef (Condition3 (hdl::t11) [1 = T) A
(Condition3 [] (hd2::t12) = T) A
(Condition3 (hdl::tl1) (hd2::t12) =
Condition_3 hdl (hd2::t12) A Condition3 tl1 (hd2::t12))
Faef (Condition_3 hdl [1=T) A
(Condition_3 hdl (hd2::t12)=IS_EL hdl hd2 A Condition_3 hdl t12)

Finally, the predicate Is_Well Formed DF is defined as:

Faef Vdf. Is_Well_Formed DF df =
Condition2 (STRIP_DF df) A
Condition3 (FLAT(STRIP_ABS_DF df)) (STRIP_DF df))

where STRIP_ABS DF function extracts the abstract variables of a DF and STRIP DF
extracts the LHS variables of each disjuncts of a DF. We have implemented a
HOL tactic to automatize the checking of well-formedness conditions [11]. The
motivation for the well-formedness conditions is very important since the inputs
for the operations must be well-formed as well as the result.

5 Embedding of the MDG Operations

In fact, HOL provides predefined logical operations that perform conjunction
and disjunction of formulae. However, if the inputs of these operations are well-
formed DF, outputs will not be necessary well-formed DF. Also, as the DF
represent a canonical graph, the variables order must be preserved to satisfy
the well-formedness conditions, which is not satisfied when applying HOL op-
erations. Our embedding, is built to answer specifically these concerns. In this
Section, we provide a formal embedding of MDG basic operations as well as the
proof of their correctness.

However, the proof strategy consists of feeding the same inputs to the logi-
cal HOL predefined operations and to the embedded MDG operations. As the
output of the embedded MDG operation is well-formed DF, it needs a refine-
ment step to obtain formulae. These formulae will be compared with the output
formulae of logical HOL operation. We check the equivalence of both and prove
it as a theorem using structural induction and rewriting rules. We describe the



conjunction and PbyS operations in detail. The PbyS operation is different and
represents the core of the reachability analysis algorithm. The disjunction and
RelP operations are similar to the conjunction [1]. The complete source code for
the embedding is available in [11].

5.1 The Conjunction Operation

The method for computing the conjunction of two DF's is applicable when the
sets of primary variables of the two DFs are disjoint. The conjunction operator
accepts two sets of DFs (df] and df2) and the order list L of the node label. The
detailed algorithm is given in Algorithm 1.

Algorithm 1 CONJ_ALG (df1, df2, L)
1: if (dfl or df2 = terminal DF) then

2:  return result;

3: else

4:  for (each disjunct € dfl) do

5: DF_CONJUNCTION (disj1_df1,df2,L) recursively
6: for (each disjunct € df2) do

7 HD_SUBST (HD_DISJUNCT (disjt1_dfl,disjt1_df2,L)) recursively
8: end for

9: append the result of the HD_DISJUNCT;

10:  end for

11:  append the result of the DF_CONJUNCTION;

12: end if

Algorithm 1 starts with two well formed DFs and an order list L. The resulted
DF is constructed recursively and ended when a terminal DF (true or false) is
reached (lines 1 and 2). Lines 4 to 11 recursively, applies the conjunction between
dfl and df2 (DF_CONJ function). The DF_CONJUNCTION function determines the
conjunction of the first disjunct of dfl1(disjl_dfl) and df2 as shown in line 5.
More details in the embedding can be found in [1].

The HD_DISJUNCT function determines the conjunction between the first dis-
junct of both DFs (lines 6 to 8). Then, we apply the substitution to be sure
that the result is well formed DF using the HD_SUBST function. The substitu-
tion is carried out by taking the disjunct and check the LHS of each equation
(primary variable) does not appear in any equations in the RHS (secondary vari-
able) of the same disjunct. If it appears then we apply substitution by replacing
its RHS by the other RHS to respect the well formedness conditions. Line 9
recursively append the result and move to the second disjunct of dfl. In line 11,
the DF_CONJUNCTION function recursively performs the conjunction of the second
disjunct of dfl with df2 and append it to the result.

Finally, the conjunction operation is embedded in HOL as:
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Fgef Vdf1l df2 L. CONJ_ALG dfl df2 L =
(if df1 = TRUE then STRIP_DF_list df2
else if df2 = TRUE then STRIP_DF_list dfl
else if dfl = FALSE then STRIP_DF_list dfl
else if df2 = FALSE then STRIP_DF_list df2
else TAKE_HD DF_CONJ (STRIP_DF_list df1) (STRIP_DF_list df2)
(union (STRIP_Fun df1) (STRIP_Fun df2)) L)

We prove the correctness of the conjunction operation as shown in Theorem
1. The detailed proof can be found in [1].

Theorem 1. Conjunction Correctness

Let df1 and df2 be well formed DF. Let L be an order list that is equal to the
union of their order lists. Then, the MDG conjunction of df1 and df2 (CONJ_ALG),
and HOL logical conjunction of dfl and df2 (CONJ_LOGIC: mapping a list to
disjunction of conjunction of equations), are equivalent.

Conjunction Correctness - Vdfl df2. JL. Is_Well_Formed DF dfl A
Is_Well_Formed_DF df2 A (ORDER_LIST dfl df2 = L) —
(CONJ_LOGIC df1 df2 = DISJ_LIST (CONJ_ALG dfl df2 L))

Proof. The goal is to prove the equivalence of MDG conjunction and HOL logical
conjunction for these DF. The proof uses structural induction on dfl and df2
and rewriting rules. O

where the CONJ_LOGIC function represents the HOL logical conjunction of dfl
and df2 (mapping a list to disjunction of conjunction of equations).

5.2 Pruning by Subsumption (PbyS) Operation

The pruning by subsumption operation is used to approximate the difference of
sets represented by DFs. Informally, it removes all the paths of a DF P from
another DF Q. The constraints for PbyS requires as inputs two well-formed DF's
of types U — V7 and U — V5, respectively. Also, an order list L that represents
the union of the two DFs order lists (pre-conditions) is needed. The constraint
related to the execution is: the list of variables U should contain only abstract
variables that do not participate in L. The result of the algorithm must be a
well-formed DF that represents the pruning by subsumption of dfl and df2, and
of the same type as dfl U — V; (post-condition).

Algorithm 2 starts with two well formed DF's and order list L. The resulted
DF is constructed recursively and ended when a terminal DF (true or false) is
reached (lines 1 and 2). Line 3 checks the equality of both RHS abstract variables
of dfl and df2. If they are equal, then the algorithm checks if those abstract
variables are not included in the order list L using the function IS_ABS_IN_ORDER
(line 4). Otherwise, it returns an empty list (line 10). If the condition is satisfied,
then the algorithm determines the pruning by subsumption of the two DFs by
calling DF _PbyS function (line 5). Otherwise, the algorithm returns an empty list
(line 7).

Finally, the pruning by subsumption operation is:
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Algorithm 2 PbyS_ALG (dfl, df2, L)

1: if (dfl or df2 = terminal DF) then
2:  return result;

3: else if (STRIP_ABS_RHS_DF dfl = STRIP_ABS_RHS DF df2) then
4: if (STRIP_ABS_RHS DF dfl ¢ L) then

5: call DF_PbyS(df1, df2);

6: else

7 return empty list;

8  end if

9: else

10:  return empty list;

11: end if

Faer Vdfl df2 L. PbyS_ALG dfl df2 L =
if (df1 = TRUE) then [[["FALSE"]]]
else if (df2 = TRUE) then [[["FALSE"1]1]

else if (dfl = FALSE) then [[["FALSE"]1]
else if (df2 = FALSE) then (STRIP_DF_list df1)
else if (IS_ABS_IN_ORDER(FLAT(STRIP_ABS_RHS_DF df2))L=[]) then
if (IS_ABS_IN_ORDER(FLAT(STRIP_ABS_RHS_DF df1))L=[]) then
DF_PbyS (STRIP_DF_list df1) (STRIP_DF_list df2)
(union (STRIP_Fun df1) (STRIP_Fun df2))
(HD_1_abs(STRIP_DF_1_abs_list df1))
(HD_1_abs(STRIP_DF_1_abs_list df2)) L
else []
else []

We show here the correctness proof of PbyS operation in Theorem 2.

Theorem 2. Pruning by Subsumption Correctness

Let df1 and df2 be well formed DF. Let L be an order list that is equal to the union
of their order lists. Then, the MDG disjunction of PbyS-ALG(df1,df2,L) and ((EX-
IST_-QUANT U) df2), is equivalent to the HOL disjunction of df1 and ((EXISTS_LIST

U) df2):

Pruning by Subsumption Correctness R Vdfi df2. JL1. JL2.
Is_Well_Formed _DF df1l A
Is_Well_Formed_DF df2 A (ORDER_LIST dfl df2 = L1) —
((DISJ_LIST (STRIP_DF_list df1) V
DISJ_LIST(EXISTS_LIST(STRIP_DF_list df2) L2)) =
(DISJ_LIST (PbyS_ALG df1 df2 L1) V
DISJ_LIST(EXIST_QUANT(STRIP_DF_list df2) L2)))

Proof. The proof uses structural induction on dfl and df2 and rewriting rules. O

This algorithm is used to check whether a set of states is a subset of another
set of states. Let dfl, df2 be two DFs of type U — V, then we say that dfl and
df2 are equivalent DF's if PbyS(df1,df2,L) = PbyS(df2,df1,L):
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Equivalence + Vdfl df2. JL. Is_Well_Formed DF dfl A
Is_Well_Formed_DF df2 A (URDER_LIST df1 df2 = L) A
(DISJ_LIST(PbyS_ALG df1 df2 L) = DISJ_LIST(PbyS_ALG df2 df1 L))

—  (df1 = df2)

In fact, the conjunction operation has consumed most of the proof prepara-
tion effort. Most of the definitions and proofs are reused by the other operations,
especially the relational product operation. The embedding of MDG syntax and
the verification of MDG operations sums up to 14000 lines of HOL codes. The
complexity of the proof is related mainly to the MDG structure, and the recursive
definitions of MDG operations.

6 The Reachability Analysis

We show here, the steps to compute the reachability analysis [5] of an abstract
state machine using our MDG operations. The important difference is that we
are using our embedded DF operators in a high level. At this stage, the proof
expert reasons directly in terms of DF, the internal list representation that we
have used in the proof of operations is completely encapsulated.

The non-termination problem Due to the abstract representation and the
uninterpreted function symbols, the reachability analysis algorithm may not ter-
minate [5]. Several practical solutions have been proposed to solve the non ter-
mination problem. The authors in [2] related the problem to the nature of the
analyzed circuit. Furthermore, they have characterized some mathematical cri-
teria that leads explicitly to the non termination of particular classes of circuits.
Thus, we follow a practical consideration for the MDG reachability. Instead of
embedding the theory and the algorithms in general, we rather embed the reach-
ability computation of a particular circuit (DF). Our tactic can be applied to
any circuit, but cannot prove the general MDG reachability correctness. We
illustrate our technique using the MIN-MAX example.

The MIN-MAX Illustrative Example

We consider the MIN-MAX circuit described in [5]. The MIN-MAX state ma-
chine shown in Figure 3 has two input variables X = {r;z} and three state
variables Y = {¢;m; M}, where r and ¢ are of the Boolean sort B, a concrete
sort with enumeration {0;1}, and x, m, and M are of an abstract sort s. The
outputs coincide with the state variables, i.e. all the state variables are observ-
able and there are no additional output variables. The machine stores in m and
M, respectively, the smallest and the greatest values presented at the input x
since the last reset (r = 1). The min and max symbols are uninterpreted generic
constants of sort s. The DF's of the individual transition relations, for a particular
custom symbol order, are shown below:
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r=1, {m'=max, M"=min}

. il et ~
=1, % i \
=0,
=max =] =i ) )
1{\.,1?:"1;‘:‘}\’ ‘ f . © fmr=if leg Funix.m) then x else m,
— M — M=if leq_Funix,M) then M else x}
_— -

=0, {m’=x, M'=x}

Fig. 3. MIN-MAX State Machine

Tre =[(r=0)A(nc=0)V((r=1)A(nc=1))]

Trom = [((r =0) A (c=0) A (nom = m) A (leg_Fun(z,m) =0)) \/
((r=0)A(c=0)A(n.m =) A (leg-Fun(z,m) = 1)) \/
(r=0)A(c=1)AMmm=2)V({(r=1)A(nm=maz))]

Tr-M = [(r=0)A(c=0)A(n-M = z) A (leq_Fun(z, M) = 0))\/
((r=0)A(c=0)A(n-M = M)A (leg_-Fun(z, M) =1))\/
(r=0)A(c=1)AnM=2z))\/((r=1)A (n-M = min))]

The DF of the system transition relation 7Tr is the conjunction of these
individual transition relations. Firstly, we illustrate how the well-formedness
conditions are checked. We give partially the definitions for the corresponding
MDG syntax:

Fdef bool = Conc_Sort "bool" ["0";"1"]

Fdef wordn = Abst_Sort "wordn"

Faef oone = Ind_Cons "1" bool

Faef eq2 = EQUAL1 “r ~“oone

Faef mdgl = CONJ ~“eq2 (CONJ ~eq4 (CONJ ~eqll (Eqn "eql6)))

Then, the directed formula Tr is defined as:

Faes Tr = DF1 (DISJ “mdgl (DISJ "mdg2 (DISJ “mdg3
(DISJ “mdg4 (DISJ “mdg5 (CONJ1 “mdg6))))))

Applying the predicate Is Well Formed DF (conversion tactic) on the above di-
rected formula will result true; in the form of theorem.

F  Is_Well_Formed_DF Tr

Secondly, we define one reachability computational step: Reach_Step. It takes
as inputs: the set of input variables I, the set of initial states Q, the transition
relation Tr, the state variables to be renamed Ren and the order list L.

Reach_Step computes the next reachable state by applying successively
Union_Step which calls Next_State and Frontier Step. The Next_State com-
putes the set of next states reached from a set of given states with respect to
the transition relation of the MIN-MAX. The result is obtained using the em-
bedded DF relational product operator RelP. The Frontier Step is used to
check if all the states reachable by the machine are already visited. Then, the
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Union_Step merges the output of Frontier Step with the set of states reached
previously using the PbyS embedded in Section 5.2 and disjunction operators [1],
respectively.

The function RAn n representing the set of states reachable in n or fewer
steps is then defined recursively by

Fasf (RAn (0) TIFQQF Tr Tr_F Tr_.AERen LRR.FR.A=R) A
(RAn (SUCn) I I.FQQFTr Tr_.F Tr_.AERen L RR.FRA=
(Reach_Step I I_F
(Frontier_Step IIFQQFTr Tr_F Tr_A E Ren L
(RAnn I IFQQFTr Tr_F Tr_.A ERen L R R_F R_A) R_F R_A)
Q_F Tr Tr_F Tr_A E Ren L
(RAnnIIFQQFTr Tr_.F Tr AERen L RR.FR.A) RFRA)

the variables (v=I I_F Q QF Tr Tr_F Tr A In Ren L R R_F R_A) are extracted
from the initialization step. Then, to compute the set of reachable states we need
to compute RAn 0 v, RAn 1 v, RAn 2 v etc. Note that the computation of
RAn (n+1) v needs the computation of RAn n v.

Then, we define the MDG reachability analysis Re_An by calling RA_n:

Fif (Re_Ann I Q Tr ERen L =
RA_n n (STRIP_DF_list I) (STRIP_Fun I
STRIP_DF_list Q) (STRIP_Fun Q)
STRIP_DF_list Tr)
STRIP_Fun Tr) (HD_l_abS(STRIP_DF_l_abS_liSt Tr)) E Ren L
rep_list(STRIP_DF_list Q))
STRIP_Fun Q) (HD_l_abS(STRIP_DF_I_abS_liSt Q) )

e e e e

Re_An terminates if we reach a fixpoint characterized by an empty frontier
set. That for some particular n, say n=n0, eventually:

RAnnIIVFQQFTr Tr_F Tr_A In Ren L R R_F R_A =
RA_n (n+1) IIFQQFTr Tr_F Tr_A In Ren L R R_F R_A

This condition is tested at each stage and raise an exception (fixpoint not
yet reached) or return a success (the set of reachable states).
The set of initial states is described by the DF QO0:

Q0 =[((c=1) A (m =max) A (M = min))]

Also the initial reachable states is R0 = Q0. Then, for the first Reach _Step
the reachable states are:

Rl=[(c=0)A(m=zl) AN(M =21))\V((c=1) A (m =max) A (M = min))]

we achieve a fixpoint after three Reach_Step calls and the reachable states
at the third iteration (for this example)R2:
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R2=[((c=0)A(m=2z1) A(M = 22)) A (leq_-Fun(z1,22) = 0) \/
A(m=a2) A(M = z1)) A (leg_Fun(z2,z1) = 1) \/
A (m =mazx) A (M = min))]

Finally, we prove the following fixpoint theorem by instantiating the param-
eters of MIN-MAX:

Fixpoint + 3n0. Vn. (n>n0) =
(Re_An (SUC n) "I "QO0 "Tr "E “Ren "L "Q0 =
Re_An n "I "Q0 "Tr "E "Ren "L ~QO0)

The Generalized Tactic The previous reachability analysis can be generalized
as a tactic in order to be applied on other circuits. What will change is only the
DF and the set of initial states, if we consider the order list is given. Then
our tactic (conversion) in its generalized form can be applied to any DF of a
circuit. However, the proof of the reachability fixpoint depends on the structure
of the circuit and cannot be considered a general solution to the non-termination
problem. The tactic encapsulates the following steps:

Formalize the circuit in terms of DF.
Check for WF conditions.

Formalize Reach_Step.

Formalize RA_n.

Prove fixpoint of Re_An.

Sl b=

The advantage is that we compute the reachable states for only one iteration
and then relying on the induction power in HOL we prove reaching a fixpoint.
However, this fixpoint may not exist for some particular circuits. Furthermore,
finding the induction scheme is not always a trivial step. If the execution path of
the circuit is explicitly inductive like for example a circuit that implements the
factorial. Then, the inductive variables are identified easily. For most cases, some
knowledge of the circuit is needed as the induction is not explicitly identified as
shown in the MIN-MAX example.

7 Conclusion and Future Work

MDGs have been proposed to extend BDD in the representation of the relations
as well as sets of states, in terms of abstract sorts to denote data values and
uninterpreted function symbols to denote data operations. We have MDG as
formulae in high order logic using the Directed Formula notations. The formal-
ization of the basic MDG operations is built on the top of our MDG syntax.
Internally, we have used a list representation for the DF that is more efficient
for the embedding and for the correctness proof. The reachability analysis is
performed using our platform: we have shown how a fixpoint computation can
be used to prove the existence of such a fixpoint, depending on the DF circuit
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structure. Here, the proof is planned over the DF as formulae instead of list
representation which raises the abstraction during the proof of reachability.

This work is an important step, to define a state exploration algorithm inside
an inductive theorem prover; forward to tackle higher level of abstraction. The
work can be extended to implement a complete high level model checking in HOL
based on our infrastructure. Including the definition of each Ly/pe [14] related
algorithm; as a tactic. Another, future work is to conduct a complete system level
case study to measure the capabilities of this approach and to ensure that our
approach does not create an unacceptable penalty in terms of the performance
of the model checker; due to the additional theorem proving overhead.
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