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Abstract. We show how LCF-style interactive theorem provers might
use BDD engines and SAT solvers to perform normalization, simplifi-
cation of terms and theorems, and assist with interactive proof. The
treatment builds on recent work integrating SAT solvers as non-trusted
decision procedures for LCF-style theorem provers. We limit ourselves
to propositional logic, but briefly note that the results may be lifted to
more expressive logics.

1 Introduction

Interactive theorem provers like PVS [21], HOL4 [10] or Isabelle [22] traditionally
support rich specification logics. Automation for these logics is however difficult,
and proving a non-trivial theorem usually requires manual guidance by an expert
user. Automatic proof procedures on the other hand, while often designed for
simpler logics, have become increasingly powerful over the past few years. New
algorithms, improved heuristics and faster hardware allow interesting theorems
to be proved with little or no human interaction, sometimes within seconds.

By integrating automated provers with interactive systems, we can preserve
the richness of our specification logic and at the same time increase the degree
of automation [24]. However, to ensure that a potential bug in the integration
with the external proof procedure does not render the whole system unsound,
theorems in LCF-style [8] provers can be derived only through a small fixed
kernel of inference rules. Therefore it is not sufficient for the automated prover
to return whether a formula is provable, but it must also generate the actual
proof, expressed (or expressible) in terms of the interactive system’s inference
rules. HOL4, Isabelle and HOL Light are well known LCF-style provers. PVS,
on the other hand, is not implemented in an LCF-style manner, except at a very
high level. The Coq interactive theorem prover [13] is not technically LCF-style,
but follows the “de Bruijn criterion” of verifying proofs using a proof checker
that in spirit is much like an LCF-style kernel.

Formal verification is an important application area of interactive theorem
proving. Problems in verification can often be reduced to Boolean satisfiability
(SAT) and so the performance of an interactive prover on propositional problems
may be of significant practical importance. Binary decision diagrams (BDDs) [2]
and SAT solvers [5,19] are powerful proof methods for propositional logic and
it is natural to use them as proof engines within interactive provers.



Recent work [6,29] showed how LCF-style interactive provers could use SAT
solvers as non-trusted decision procedures for propositional logic. We now build
on this work to show how, for propositional logic, LCF-style interactive theo-
rem provers might use BDD engines and SAT solvers to perform normalisation,
simplification of terms and theorems, and assist with interactive proof, with-
out having to trust the external procedures. The treatment is tool independent,
and assumes only that the interactive prover is expressive enough to suppose
quantification over pure Boolean formulas.

The next section gives a brief account of the relevant aspects of normal forms,
BDDs and SAT solvers, to keep the paper self-contained. In §3 and §4, we look
at normalisation and simplification respectively. We end with a look at previous
related work and some concluding remarks.

2 Preliminaries

We use - t to denote that ¢ is a theorem in the object logic, i.e, the logic
of the interactive prover. We reserve the words “iff” and “implies” for logical
equivalence and implication in our proofs, and use < and = to denote their
respective counterparts in the object logic. Quantification binds weaker than <,
which binds weaker than =-. Propositional truth is denoted by T and falsity
by 1. We use = to denote syntactic equivalence in the object logic. All other
notation is standard.

A literal is either an atomic proposition or its negation. A clause is a disjunc-
tion of literals. A monomial is a conjunction of literals. Since both conjunction
and disjunction are associate-commutative (AC), clauses and monomials can
also be interpreted as sets of literals. If a literal occurs in a set, then we abuse
notation and assume its underlying proposition also occurs in the set.

2.1 Normal Forms

A term is in disjunctive normal form (DNF) if it is a disjunction of monomials,
and in conjunctive normal form (CNF) if it is a conjunction of clauses. Any
propositional term t can be transformed into a logically equivalent term in DNF
or CNF, denoted by DN F(t) and CN F(t) respectively. Again, by AC, DN F(t)
and CNF(t) can also be interpreted as sets of sets of literals, and we overload
the notation accordingly. We will switch back and forth between the term and
set interpretations, as convenience dictates.

Computing normal forms is important in automated reasoning for many rea-
sons, most to do with term rewriting theory. For our purposes, they are also
important as many proof procedures accept input terms only in some normal
form, e.g., resolution based provers use CNF, or have to compute normal forms
internally, e.g., some quantifier elimination methods use DNF.

SAT solvers require their input term to be in CNF. Any term can be trans-
formed to CNF, but the result can be exponentially larger than the original



term. To avoid this, definitional CNF [26] introduces extra propositions as place-
holders for subterms of the original problem. We use dCNF(t) to denote the
definitional CNF of ¢, and note that it can also be interpreted as a set. We will
use dCNF extensively in what follows, so we give a short description here.
The best way to understand the basic idea is by example. Consider the term
t given by
~(((p=9) =p)=0p)

The first preprocessing step is to rewrite away the = operators, using the identity
F p = g < —pVq, and the second preprocessing step is to then push all negations
inwards. Having done this, we obtain

(pA=q)Vp)A-p

Now we proceed bottom up, introducing abbreviations for each subterm in the
form of fresh propositions vg, v1 etc. We set vy < p A =g and obtain

(vo & pA=g) A(vo Vp)A—p
and then introduce v to get
(voepA-Q A< vVp) Avi A-p

at which point it is easy to see that the term can be made into CNF by apply-
ing a standard CNF conversion to each abbreviation. We can now see that the
negations were moved inwards to avoid needlessly introducing definitional vari-
ables. There are other possible optimizations but we will stick with this simple
procedure for now.

The term dCNF(t) is not logically equivalent to ¢, since there are valuations
for the definitional variables v; that can disrupt an otherwise satisfying assign-
ment to the variables of t. However, it is equisatisfiable. This fact is expressed
by the theorem

Ft < 3 € V.ACNF(t) (1)

where V' is the set of all the definitional variables and v indicates that the quan-
tification is over all v € V. The definitional CNF procedure can be augmented to
produce this theorem automatically. Henceforth, we reserve the identifier prefix
v to refer to the definitional variables only. The equivalence that introduces the
abbreviation for each v; will be referred to as the definition of v;, and the right-
hand side of the definition, i.e., the term v; is abbreviating, will be denoted by
V;.

2.2 BDDs

Binary decision diagrams (BDDs) are data structures for representing Boolean
formulas and Boolean operations on them. For instance, the BDD of the term
p = q is given in Figure 1. Dotted arcs indicate a valuation of 1 and solid arcs a
valuation of T to the parent node. A path from the root to the 1 node indicates



of

Fig. 2. Reduced Ordered Version

an assignment that makes the formula true, and a path to the 0 node, a falsifying
assignment.

The representation can be made canonical by establishing an ordering on
the variables, and can be made efficient by removing redundant arcs and nodes.
The reduced ordered BDD corresponding to that of Figure 1 is given in Figure
2. When we say BDD, we mean the ordered and reduced version.

BDDs are canonical up to variable ordering, and have efficient counterparts
for all Boolean operations, including quantification. In theory, the problem is NP-
complete. In practice, BDDs can often achieve very compact representations. We
need not say any more about them. The interested reader may consult [1].

It turns out that representing BDDs efficiently in an LCF style prover causes
too high a performance penalty (see §5 for details). Therefore, we assume that
the results of BDD operations by themselves cannot produce theorems in the
object logic.

2.3 SAT Solvers

SAT solvers are efficient algorithms for testing Boolean satisfiability. A SAT
solver will accept a Boolean term in CNF and return a satisfying assignment to
its variables. If the term is unsatisfiable, the SAT solver will return a resolution
refutation proof from the clauses of the input CNF term. Not all SAT solvers can
produce this proof, but some can [31], and have been integrated with interactive
theorem provers with (mostly) a reasonable slowdown [6,29]. We assume we



have access to such an integration. Thus, the result of a SAT solver can be
represented as a theorem in the object logic. This short description is sufficient
for our purposes. A tutorial introduction to resolution based SAT solvers is
available [18].

3 Normalization

Our first contribution is to term normalization. Normalization means reducing
a term to its normal form. This is traditionally done by rewriting with a set
of identities. When computing normal forms in LCF-style theorem provers, we
further require that the normalization is done by proof, in effect requiring a
theorem that the term is logically equivalent to, or in the case of definitional
CNF, equisatisfiable with, the obtained normal form. The requirement of proof
generation causes a slowdown. Moreover, if we are not careful, a rewrite based
transform can generate large normal forms.

We can instead exploit the compact term representation and speed of BDDs
and SAT solvers. The solution is straightforward. To generate the DNF of a
term ¢, we build the BDD of ¢, and then just read off the set of all satisfying
assignments. Each assignment is a monomial and the disjunction ¢ of all the
assignments is thus in DNF. Further, it is satisfiable iff ¢ is. The required theorem
can be obtained by using the SAT solver to check that —(¢ < t’) is unsatisfiable,
giving -t < t'.

Similarly, the CNF of a term can be obtained by reading off all falsifying
assignments. The DNF term ¢’ thus obtained is logically equivalent to —¢. Then
applying negation to ¢’ and driving all negations inwards to the atoms, we obtain
a term that is in CNF, and equivalent to ¢. Once again, the SAT solver can be
used to obtain the required theorem.

For CNF terms generated in this manner, the redundancy removal algorithm
in BDDs guarantees that the clauses are subsumption free, i.e., no clause im-
plies another. Similarly, for DNF terms, no satisfying assignment is a subset of
another. This contributes towards keeping the normalised terms small.

This might give the impression that any transform on propositional formulas
can be implemented by computing the desired result using an efficient external
engine and then confirming the result with a SAT solver. While possible in theory,
it may not always work in practice. Many such transforms have sub-exponential
worst-case or average-case behaviour, and converting the problem to SAT may
not help. Also, this approach has a high overhead of external procedure calls,
where the interface is often via disk files. If the transform is done several times
on small formulas, the overhead may dominate the benefit.

We compared our method of generating normal forms for CNF generation,
with the built-in CNF conversion present in the HOL4 theorem prover, on ran-
domly generated propositional terms of various sizes. The results were inconclu-
sive. On even small terms (say, 15 variables and 300 connectives), both methods
ran out of memory. This is expected since CNF terms can become exponentially
large and interactive theorem provers are not engineered for efficient storage of



large clausal terms. In particular, our procedure ran out of memory during the
reading off of the CNF from the BDD. On smaller terms, our method was faster
in general, but not by much. However there were certain cases where it was much
slower. We put this down to an unfortunate variable ordering for the BDD, since
as yet we make no effort to find a good one, and to the fact that the SAT solver
we use [19] is not tuned for random problems.

BDDs do not scale up as well as SAT solvers, in the sense that as the num-
ber of variables increases, the space requirements for storing BDDs can become
infeasible. In typical interactive proof, users are unlikely to be using such large
terms. Our aim however is to support better automation, and automatic methods
may well operate on large terms. It is worthwhile looking for a way to perform
normalization using SAT solvers only.

The idea (already well known) is to use the SAT solver to generate all satisfy-
ing assignments for a given term ¢. A simple way of doing this is by the addition
of blocking clauses. The method works as follows:

Let S be the set of known satisfying assignments; set S = ()

Send ¢ to the SAT solver

If the SAT solver returns unsatisfiable, return S

Otherwise we have a satisfying assignment o.

Set S to SU{c}

Form the conjunction of = with the previous input to the solver and send
that to the SAT solver

7. Go to step 3

S otk W=

Note that ¢ is a monomial and so —¢ is a clause, so that ¢ A —¢ is valid in-
put to the solver. By adding —o to the term, we ensure that the SAT solver
cannot return satisfying assignments already in S. Indeed, the solver will not
return assignments that are supersets of any known assignments. Subsets may
be returned, but the set S can be kept irredundant by adapting well known
techniques [4, 30].

This is easily seen to terminate. By the end, we have all satisfying assign-
ments, and can derive the DNF of ¢ by forming \/ S. It is not too hard to change
the steps above so that we can derive CNF instead. This is of course a very
expensive way to do normalization, and really is only useful for large terms, i.e.,
thousands of variables. A rough estimate of the work required can be arrived at
by using a stochastic DNF solution counting method (see Chapter 28 of [27]).

Using blocking clauses as above is not the best approach because it forces
the solver to redo the search from scratch. Many SAT solvers have incremental
search capability, where the information learnt from previous searches is retained
and is applicable so long as the new problem term is an extended version of the
previous one. In fact, specialised algorithms for enumerating all solutions do even
better [11]. At the moment we are not aware of any integration of these with
interactive provers.

If anything, the lesson from this work is that, for the generation of large
normal forms in interactive provers, space complexity is a far more serious prob-



lem than time complexity. The sizes that can be handled are enough for most
interactive proof however, so the work in §4.3 for instance, is of practical use.

4 Simplification

If we restrict ourselves to the propositional structure of a term, simplification
usually means reducing the size, or the depth, or both, of the term. Normal-
ization, for instance, eliminates depth altogether (modulo AC), and may often
result in a smaller term as well. The downside to normalization as a vehicle
for simplification is that, by definition, it destroys the structure of the term in
question, and with it, any intuition that the human using the theorem prover
may have had about the term. Therefore, simplification by rewriting is typically
preferred during interactive proof.

Our second contribution is to show how useful simplification can sometimes
be accomplished using BDDs and SAT solvers. An important consideration is to
do this simplification without the kind of mangling that normalization produces.
There are several applicable scenarios, which we now consider.

4.1 Theorems

Suppose we have a propositional term ¢, and we wish to check whether or not
it is a tautology. This can be done by computing dCNF(—t) and asking a SAT
solver if that term is unsatisfiable. If so, let V' be the set of definitional variables
appearing in dCNF(—t), as in §2.1, and we have

F dCNF(—t) =1 from the SAT solver supplied refutation
iff FVoeV.dACNF(-t) =1
iff F(3ve€ V.ACNF(—t) =L
ifft + (3 € V.dCNF(—t) &L
iff F-t<lby (1)

and we can conclude - ¢.

It is rarely the case that every single clause of dCNF(—t) is used in the SAT
solver’s refutation proof. The subset of clauses that does get used is called the
unsatisfiable core. There are algorithms that attempt to find smaller cores [7]
given a refutation proof. We can use smaller cores to deduce - s rather than F ¢,
where - s < ¢ but s is simpler than ¢t. We now show how to construct s.

Suppose we have obtained a core D, so b D =_1. Now D C dCNF(—t) by
definition (of a core). If D = dCNF'(—t) then there is no simplification, so s = t.

Otherwise, we impose an ordering relation < on V', such that v < v’ iff v
occurs in ¢/, i.e., in the right-hand side of the definition of v’. Let <* be the
transitive closure of <. Let <=< U = and let <7 be the transitive closure of <.
Then s is constructed as follows:



L Let V! ={v e VNUupdV' € VNUsepdv=tv =>v=0"}

2. Let V' ={veV|T e V'v=<t}

3. Let D' = DU {c € dCNF(—t)|Fv € (V' UV")w € ¢}. Since v D =1, we
have - D' =1 .

4. Let D" = D'[ojv € V"][T/v € V'], so = D” =1 also. In D” we also
explicitly reverse the CNF expansions of the definitions of the v’ € V.

5. Simplify away the v € V in D” to obtain D and set s = —D"’. At this
point - —s =1.

To elaborate a little, V' is the set of the maximal (w.r.t. <) v € V that
occur in D. For each such v, D’ contains all the clauses of dCNF(—t) containing a
variable that was <T v. V" is the set of v € V that are strictly below any v’ € V'.
The implicit strategy is to in effect collect together the clauses comprising the
definitions of each v € V' UV and reverse the per-abbreviation CNF conversion
applied during the definitional CNF computation outlined in §2.1, though we
do not explicitly do this reversal except for the v € V'. First, we replace each
occurrence in D’ of v € V" by its definition. Next, each maximal v’ € V', is
replaced by T. These replacements give us D”. Now since each v” € V" has been
substituted into its own definition, the clauses corresponding to its definition can
be simplified away. Also, since each maximal v’ € V’ occurs only on the left-hand
side of its defining equivalence which has been explicitly reconstructed, replacing
it by T and simplifying converts that equivalence into v except that it has been
expanded out fully. This gives us D"/, which is a conjunction of single literals
and the fully expanded right-hand sides of the definitions of the maximal v € V.
Effectively, D"’ is the term after —t was negated and preprocessed but before
definitional CNF was applied, less some top-level structure of ¢. Then we get s
by negating D"".

Intuitively, each v € V represents a subterm of ¢t. Any such v remaining in
the core are clearly pertinent to the truth value of . Any v’ <* v also cannot
be ignored since each v is dependent on their definition. Roughly speaking, we
collect together all these variables and back-substitute their definitions into the
core, in an attempt to resurrect the structure of ¢ which is implicitly encoded
in the definitions. We need to do a little more to better recover the structure,
but before we introduce those complications let us first establish the soundness
of the basic idea.

Proposition 1. Fs &t

Proof The theorem F D’ =1 at the end of step 3 above is easily seen to be
correct. Note that the occurrence of any v € V in D’ is implicitly universally
quantified, so the substitutions in step 4 are just instantiations, preserving equiv-
alence. Thus step 5 correctly concludes that - —s =_1. Now, we have - D =1
from the SAT solver’s refutation proof. Then F —s < D, using Vit =1 &
(t &1). Now D C dCNF(—t), so - dCNF(~t) = D. But - D =1, so we have
F dCNF(—t) < —s by transitivity of <. Finally, - -t < 35 € V.dCNF (—t) by
the definitional CNF construction, so we get - -t < 3v € V.i-s. Nov € V
occurs in s since V' UV C V is the set of definitional variables occurring in D



but these are all substituted away in step 4. So we conclude - -t < —s and the
required result follows. [

Syntactically, s does not quite follow the structure of ¢ yet, mainly because
we have ignored the preprocessing steps of definitional CNF such as rewriting
away = operators and moving negations inwards. These preserve equivalence
however, and can be reversed by storing suitable information for each subterm.
Therefore these operations too can be reversed without affecting Proposition
1. The details are uninteresting. We now present an example, before making
some concluding remarks. The example is rather contrived, but we want a small
example that provokes the “right” behaviour.

Ezample Let t be then term (((p = ¢) = p) = p) V¢’ where ¢/ =1 but ¢/
is complicated enough that it is beyond the ability of the interactive prover’s
simplifier to prove that. We further assume that the prover’s native simplifier
cannot prove - ((p = q) = p) = p either.! We use the work already done in
§2.1 and obtain

FACNF(-t) & (vo & pA—q) A (v < (voVp)Avy A—pAdCNF(—t")

We are not interested in what happens to t’, and apply per-abbreviation CNF
to get
FACNF(—t) ©(vo V-V q) A (mvg V—g) A (—ve Vp)A

(mv1 Vug Vp) A (v1V —wo) A (v1 V —p)

A vy A =p A dCNF(=t")
At this point, V' = {vp,v1}, ignoring the definitional variables occurring in
dCNF(—t"). All we need to know about the latter is that they are incomparable
with any in V w.r.t. <.

Now dCNF'(—t') is satisfiable, so the SAT solver is forced to use the rest of
dCNF (—t) to show unsatisfiability. The reader may confirm that if D = {-wg V
p,—w1 V vg V p,v1,—p} under the set interpretation, then D =1 (recall D is a
CNF term). Then V' = {v1} and V" = {vg}. Collecting together the needed
clauses, we see that

DI = {UO V-pVg,~ v Vg, Vp,
—v1 VU Vp,v1V g, v1 VD,
v1, —p}
and of course = D’ =1 . We explicitly reverse the CNF expansion of the definition
of vy, to obtain
DI = {’UO\/‘!p\/CL‘!U()\/‘!q,‘VUO vV p,
V1 < Vo VD,
v1, —p}

L If it can, we just replace with a more complex term. It is certainly beyond the HOL4
simplifier, which is our behind-the-scenes test bed.



Now substituting vy by its definition and v; by T, and simplifying just enough
to remove the v;, we get = D"/ =1 which looks like

F(((pA—q)Vp)A—p) =L

and finally reversing the preprocessing step (which also adds back the top-level
negation that was added when ¢ was negated prior to applying definitional CNF)
we get - =5 =L which looks like

F-((p=q9)=p) =p =1L
We can now follow the reasoning in the proof above to conclude that

Fte (((p=q =p)=Dp)

O

It is clear that this method did simplify - ¢, and that this kind of simplifica-
tion is likely beyond the reach of the rewriting-based simplifiers currently in use
in interactive theorem provers. But by now it should also be suspected that such
clean simplification cannot always be achieved. For instance, the current method
is crude in the sense that any subterm that is top-level conjunctive (in a general
sense) cannot be simplified in this manner, because the SAT solver would then
have to prove unsatisfiability of a disjunctive term and so will likely use clauses
from both top-level subterms of that subterm. This is not so bad since disjunc-
tions and implications are not affected, and equivalences and conjunctions can
be split on their conjunctive structure and proved separately, but it does impose
a limit on usability.

We currently make no effort to simplify away unused definitions (i.e., def-
initions whose definitional variables did not occur in the core) that fall below
(w.r.t. <) a maximal used definition. The intuition suggests this may not be
possible, at least not without considering the SAT solver proof directly.

Finally, whenever the set V' is disconnected in the sense that the subterms
corresponding to the definitional variables in V' are not connected by some
operator in the original term, some of the top-level structure of ¢ is necessarily
lost and replaced by a flat conjunctive structure, deteriorating to more or less
CNF in the worst case. We plan to address these shortcomings.

4.2 Terms

We have shown how the derivation of small unsatisfiable cores can help simplify
theorems. As it stands, the method cannot be used to simplify terms that are
not theorems, i.e., given a term ¢, prove - t < s where s is in some sense a
simpler term. However, with a minor adaptation, almost the same process can
sometimes succeed in doing so.

This time we convert ¢ to definitional CNF without negating it first. This
results in a theorem F ¢t < 3v € V.dCNF (t). Now we build the BDD of dCNF(t)
and read off the CNF structure of the BDD as outlined in §3, obtaining a CNF



term which we shall call D. At this point, we use a SAT solver to confirm that
F dCNF(t) & D.

Intuitively, our hope is that the redundancy removal in the BDD will have
the same effect as finding a smaller unsatisfiable core in the previous section.
However, since t is not a theorem, the results we can achieve are slightly different.

Using the two theorems we have, we calculate as follows

Ft < Jv € V.D by transitivity of <
iff F(3veV.D)=>t
iff FYoeV.D=>t

and then instantiate the v € V' (which do not occur in t) and reverse construct
the resulting term as in the previous section, to obtain a term s. It follows that
Fs=t.

Now we check using a SAT solver whether ¢ = s. If so, we have - t < s
and we have successfully simplified ¢. If not, we have failed in the simplification
attempt, but the resulting scenario has an application described in the next
section.

We note in passing that this method can dispense with BDDs altogether by
using the SAT solver based solution enumeration method described towards the
end of §3. As then, this alternative should be considered for large terms only.

4.3 Goal-directed Proof

If the simplification attempt in the previous section fails, we have a term s such
that F s = t and - —(t = s). In other words s is a stronger proposition. In
theory, finding a stronger proposition is trivial: L is the strongest proposition.
In practice, finding a stronger proposition that retains some of the structure of
the original term finds an obvious application in interactive proof.

In most interactive theorem provers, a proof begins by setting up as a goal the
term that we hope to show is a theorem. Proof then proceeds in a “backwards”
manner, by reducing the goal to simpler subgoals which we hope eventually to
reduce to axioms (or ground rules) of the object logic. The state of a proof is
represented by the outstanding subgoals, each of which can be represented as a
two-sided sequent I" | ¢, where t is the subgoal and I is the set of assumptions to
that subgoal. This is known as goal-directed proof. Describing this in any detail
will take us too far afield. The interested reader may consult [10] which contains
several examples of this style, or for that matter any tutorial introduction to a
higher-order interactive prover.

One very useful rule of inference that is found in practically every logic is
modus ponens, i.e.,

I'kp Abp=q
IF'uAtg

in the propositional two-sided incarnation. The backwards equivalent of this rule
is effectively that if the goal is I' F ¢ and we have a theorem A F p = ¢ such
that A C I', then the goal can be reduced to I" - p.




We can think of our theorem - s = t as () - s = t. Hence, given a propo-
sitional goal ¢, one way of simplifying it is to find a stronger but simpler term
s. Note that if we had succeeded in our simplification attempt in the previous
section, - t < s can also be used to reduce t. The point here is that even in
the event of failure, the result that we do have is still of some use. In fact, the
structure of s fits nicely into the scheme since it is just a conjunction of subterms
of ¢, and so can be naturally split into subgoals.

5 Related Work

There is a large body of work on the use of BDDs in interactive provers. One of
the earliest results combined higher-order logic with BDDs for symbolic trajec-
tory evaluation [14]. A little later, temporal symbolic model checking was done
in PVS [23]. These integrations trusted the underlying BDD engines. Around
the same time, a serious attempt at using BDDs in an LCF-style manner [12]
reported an approximate 100x slowdown. Later, a larger project added BDDs
to the Coq theorem prover [28] and reported similar slowdowns, except that the
faster programs were themselves extracted by reflection from the Coq represen-
tation, and could thus said to have higher assurance. The penalty for checking
BDD proofs has thus more or less ensured that BDDs are not used internally by
LCF-style theorem provers, in a non-trusted manner. There have of course been
trusted integrations of BDDs with LCF-style provers [9], as well as verifications
of aspects of BDD algorithms in such provers [17,20].

This does not rule out the use of BDDs in interactive provers in general.
BDDs are used in the ACL2 prover [16] to help with conditional rewriting (a
BDD can be thought of as a nested conditional) and for deciding equality on
bit vectors (see ACL2 System Documentation). The PVS theorem prover uses
BDDs for propositional simplification [3]. This was in fact the inspiration for our
work. Roughly speaking, when invoked on a goal with propositional structure,
it uses BDDs to obtain the CNF of the goal, which is then used to split the
goal into subgoals. Similar functionality can now easily be added to LCF-style
provers using the method of §3, since the propositional structure of interactive
goals is typically manageable by a BDD.

Integrations of SAT solvers with interactive provers has a shorter history.
The integration is trivial for the case where the solver returns a satisfying as-
signment: we simply substitute the assignments into the input term and check
that the resulting ground term evaluates to T. This can be done efficiently. LCF-
style integration of the unsatisfiability case had to wait for the arrival of proof
producing SAT solvers [31]. The first such integrations were reported relatively
recently [6,29]. All LCF-style integrations that we know of so far, use the SAT
solvers as one-shot decision procedures. Trusted integrations go further, such
as the integration of PVS with the Yices Satisfiability-module-theories (SMT)
solver. Work on LCF-style integrations with SMT solvers is underway [6].



6 Conclusions

We have shown how BDDs and SAT solvers can be used for fast normalisation,
simplification of terms and theorems, and assistance with interactive proof. Even
though we have restricted ourselves to propositional logic, the results can be
applied to the propositional structure of more expressive logics via Skolemization,
as is done in PVS. The results can also be extended directly to use SMT solvers
[25] rather than SAT solvers, using the alternative solutions that avoid BDDs,
and should allow us to do simplification in combinations of decidable theories.

Using BDDs to generate normal forms and checking the result is an obvious
next step once a non-trusted proof producing SAT solver is available. To the best
of our knowledge however, exploiting the non-occurrence of definitional variables
in the results of BDDs and SAT solvers for the purposes of simplification, has
not been done before. Perhaps because of this, the treatment has an ad hoc feel
to it, and many opportunities for optimization exist.

We plan to use SAT solvers and BDDs in a more fine grained manner, perhaps
in conjunction with the rewriting system of the theorem prover, as is done in
ACL2. We expect to customize SAT solvers and unsatisfiable core finders, for
instance to give special treatment to definitional variables. We also hope to
generate proofs directly from BDDs, possibly using some of the techniques of
[15]. These plans will form the initial steps for future research.
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