Acyclicity and Finite Linear Extendability:
a Formal and Constructive Equivalence

Stéphane Le Roux*

LIP, Ecole normale supérieure de Lyon, France
stephane.le.roux@ens-lyon.fr

Abstract. Linear extension of partial orders was addressed in the late
1920’s. Its computer-oriented version, i.e., topological sorting of finite
partial orders, arose in the late 1950’s. However, those issues have not
yet been considered from a viewpoint both formal and constructive; this
paper discusses a few related claims formally proved with the construc-
tive proof assistant Coq. For example it states that a given decidable
binary relation is acyclic and equality is decidable on its domain iff an
irreflexive linear extension can be computed uniformly for any of its finite
restriction.

Keywords: Binary relation, finite restriction, linear extension, (non-)uniform
computability, topological sorting, constructivism, induction, proof assistant.

1 Introduction

This paper is a shortened version of the research report [8]. The report is readable
by a mathematician unfamiliar with constructive and computability issues and
Coq formalism; this paper assumes basic knowledge in those fields.

1.1 Transitive Closure, Linear Extension, and Topological Sorting

The calculus of binary relations was developed by De Morgan around 1860. The
notion of transitive closure of a binary relation (smallest transitive binary re-
lation including a given binary relation) was defined in different manners by
different people about 1890. See Pratt [9] for a historical account. In 1930, Szpil-
rajn [10] proved that, assuming the axiom of choice, any partial order has a
linear extension, 4.e., is included in some total order. The proof invokes a notion
close to transitive closure. Szpilrajn acknowledged that Banach, Kuratowsky,
and Tarski had found unpublished proofs of the same result. In the late 1950’s,
The US Navy [2] designed PERT (Program Evaluation Research Task or Project
Evaluation Review Techniques) for management and scheduling purpose. This
tool partly consists in splitting a big project into small jobs on a chart and ex-
pressing with arrows when one job has to be done before another one can start

* This research was partly supported by College Doctoral Franco-Japonais

up. In order to study the resulting directed graph, Jarnagin [4] introduced a finite
and algorithmic version of Szpilrajn’s result. This gave birth to the widely stud-
ied topological sorting issue, which spread to the industry early 1960’s (see [7]
and [5]). Some technical details and computer-oriented examples can be found
in Knuth’s book [6].

1.2 Contribution

This paper revisits a few folklore results involving transitive closure, excluded
middle, computability, linear extension, and topological sorting. Most of the
properties are logical equivalences instead of one-way implications, which sug-
gests maximal generality. Claims have been fully formalized (and proved) in Coq
and then slightly modified in order to fit in the Cog-related CoLoR library [3].

In this paper, a binary relation over an arbitrary set is said to be middle-
excluding if for any two elements in the set, either they are related or they are
not. The intermediate result of this paper implies that in an arbitrary set with
decidable (resp. middle-excluding) equality, a binary relation is decidable (resp.
middle-excluding) iff the transitive closures of its finite restrictions are uniformly
decidable (resp. middle-excluding). The main result splits into two parts, one on
excluded middle and one on computability: First, consider a middle-excluding
relation. It is acyclic and equality on its domain is middle-excluding iff its restric-
tion to any finite set has a middle-excluding irreflexive linear extension. Second,
consider R a decidable binary relation over A. The following three propositions
are equivalent. Note that computability of linear extensions is non-uniform in
the second proposition but uniform in the third one.

— Equality on A is decidable and R is acyclic.

— Equality on A is decidable and every finite restriction of R has a decidable
linear extension.

— There exists a computable function that waits for finite restrictions of R and
returns (decidable) linear extensions of them.

This paper follows the structure of the underlying Coq development but
some straightforward results are omitted. Proofs are written in plain English.
The main result in this paper relies on an intermediate one, and is itself invoked
in a game theoretic proof (in Coq) not published yet.

1.3 Contents

Some basic objects from the Coq Library [1] are not defined in this paper.
Section 2 talks about excluded middle and decidability and section 3 about
lists. Section 4 discusses the notion of transitive closure, irreflexivity, and finite
restrictions of a binary relation. Section 5 defines paths with respect to a binary
relation and proves their correspondence with transitive closure. It also defines
bounded paths that are proved to preserve decidability and middle-exclusion
properties of the original relation. Since bounded paths and paths are by some

means equivalent on finite sets, subsection 5.4 states the intermediate result.
Subsection 6.1 defines relation totality over finite sets. Subsections 6.2 to 6.5
define an acyclicity-preserving conditional single-arc addition (to a relation), and
an acyclicity-preserving multi-stage arc addition over finite sets, which consists
in repeating in turn single-arc addition and transitive closure. This procedure
helps state equivalences for linear extension in 6.6 and topological sorting in 6.7.

1.4 Convention

Let A be a Set. Throughout this paper z, ¥y, z, and ¢ implicitly refer to objects of
type A. In the same way R, R’, and R” refer to binary relations over 4; [, I’, and
[” to lists over A, and n to natural numbers. For the sake of readability, types
will sometimes be omitted according to the above convention, even in formal
statements where Coq could not infer them. The notation =P stands for P —
False, £y for x=y — False, and Az, P for (3x, P) — False.

2 On Excluded Middle and Decidability

The following two definitions respectively say that equality on A is middle-
excluding and that a given binary relation over A is middle-excluding.

Definition eqg-midex :=V z y, z=y V xF#y.
Definition rel_midex R:=Vx y, Rz yV R z v.

The next two definitions respectively say that equality on A is decidable and
that a given binary relation over A is decidable.

Definition eq_dec :=V z y, {z=y}+{z#y}.
Definition rel_dec R :=V z y, {R =z y}+{-R = y}.

The following two lemmas justify the representation of decidability used in
this paper.

Lemma rel_dec_bool : ¥V R,
rel_dec R — {f: A— A — bool |Vzy:A if fzythen Rz vy else R z y}.

Lemma bool_rel_dec : V R,
{f:A— A—bool |Nzy:A if fzythen Rz y else R z y} — rel_dec R.

“Decidability implies excluded middle”, as shown below.

Lemma eq-dec_-midex : eq_dec — eq-midex.
Lemma rel_dec_midex : rel_dec — rel_midezx.

3 On Lists

If equality is middle-excluding on A and if an element occurs in a list built over
A, then the list can be decomposed into three parts: a list, one occurrence of the
element, and a second list where the element does not occur.

Lemma In_elim_right : eq-midex — ¥V x [,
Inzl—30, 30, =U++(x:0”) A —~In z 7.

Proof By induction on [. For the inductive case, case split on z occurring in
the head or the tail of /. O

The predicate repeat_free says that no element occurs more than once in a
given list. It is defined by recursion on its sole argument.

Fixpoint repeat_free [: Prop :=
match 1 with

— nil = True
— " = —In x I’ A repeat_free I’
end.

If equality is middle-excluding on A then a repeat_free list included in another
list is not longer than the other list. This is proved by induction on the repeat._free
list. For the inductive step, invoke In_elim_right to decompose the other list
along the head of the repeat_free list.

Lemma repeat_free_incl_length : eq_midexr — ¥V [I,
repeat_free | — incl I I’ — length [<length I’.

4 On Relations

4.1 Transitive Closure in the Coq Standard Library

Traditionally, the transitive closure of a binary relation is the smallest transitive
binary relation including the original relation. The notion of transitive closure
can be formally defined by induction, like in the Coq Standard Library. The
following function clos_trans waits for a relation over A and yields its transitive
closure, which is also a relation over A.

Inductive clos_trans R : A — A — Prop :=
— t_step :Vxy Rxy— clos_trans R z y
— t_trans :
Vxuyz clos-trans R x y — clos-trans R y z — clos_trans R z z.

Intuitively, two elements are related by the transitive closure of a binary
relation if one can start at the first element and reach the second one in finitely
many steps of the original relation. Therefore replacing clos_trans R © y —
clos_trans Ry z — clos_trans R x z by R y — clos_trans R y z — clos_trans
R z z or clos_trans R z y — R y z — clos_trans R = z in the definition
of clos_trans would yield two relations coinciding with clos_trans. Those three
relations are yet different in intension: only clos_trans captures the meaning of
the terminology “transitive closure”.

In addition, this paper needs the notion of subrelation.

Definition sub_rel R R’ : Prop ==V xy, Rz y— R’z y.

The next lemma asserts that a transitive relation contains its own transitive
closure (they actually coincide).

Lemma transitive_sub_rel_clos_trans : V R,
transitive R — sub_rel (clos_trans R) R.

Proof Let R be a transitive relation over A. Prove the subrelation property
by the induction principle of clos_trans. The base case is trivial and the inductive
case follows from the transitivity of R. O

4.2 Irreflexivity

A relation is irreflexive if no element is related to itself. Therefore irreflexivity
of a relation implies irreflexivity of any subrelation.

Definition irreflexive R : Prop :=V z, =R x .

Lemma irreflezive_preserved : ¥ R R’
sub_rel R R’ — irreflevive R’ — irreflexive R.

4.3 Restrictions

Throughout this paper, finite “subsets” of A are represented by lists over A. For
that specific use of lists, the number and the order of occurrences of elements
in a list are irrelevant. Let R be a binary relation over A and [be a list over
A. The binary relation restriction R [relates elements that are both occurring
in [and related by R. The predicate is_restricted says that “the support of the
given binary relation R is included in the list {”. And the next lemma shows
that transitive closure preserves restriction to a given finite set.

Definition restriction Rl xz y: Prop:=Inz I ANInyl ARz y.
Definition is_restricted Rl : Prop :=Vzy Rxy—Inx I NInyl

Lemma restricted_clos_trans : ¥V R I,
is_restricted R 1 — is_restricted (clos_trans R) L

Proof Assume that R is restricted to [. Let z and y in A be such that
clos_trans R x y, and prove by induction on that last hypothesis that z and y
are in [. The base case, where “clos_trans R x y comes from R z y”, follows
by definition of restriction. For the inductive case, where “clos_trans R x y
comes from clos_trans R = z and clos_trans R z y for some z in A”, induction
hypotheses are In x | A In z [and In z | A In y I, which allows to conclude. [J

If the support of a relation involves only two (possibly equal) elements, and
if those two elements are related by the transitive closure, then they are also
related by the original relation. By the induction principle for clos_trans and
lemma restricted_clos_trans.

Lemma clos_trans_restricted_pair : ¥ R x v,
is_restricted R (x:y:nil) — clos_trans Rz y — R x 4.

5 On Paths and Transitive Closure

5.1 Paths

The notion of path relates to one interpretation of transitive closure. Informally,
a path is a list recording consecutive steps of a given relation. The following
predicate says that a given list is a path between two given elements with respect
to a given relation.

Fixpoint is_path R x y 1 {struct 1} : Prop :=
match | with

—nil=Rzy
—z:l’ = Rz z Nis_path R z y I’
end.

The following two lemmas show the correspondence between paths and tran-
sitive closure. The first is proved by the induction principle of clos_trans and an
appending property on paths proved by induction on lists. For the second, let y
be in A and prove V [z, is_path R = y | — clos_trans R x y by induction on [
Note that the two lemmas imply V z y, clos_trans R x y < 3, is_path R z y L.

Lemma clos_trans_path : ¥ x vy, clos-trans R v y — 3 I, is_path R x y L
Lemma path_clos_trans : ¥V y | z, is_path R y | — clos_trans R x y.

Assume that equality is middle-excluding on A and consider a path between
two points. Between those two points there is a repeat_free path avoiding them
and (point-wise) included in the first path. The inclusion is also arc-wise by
construction, but this paper does not need it.

Lemma path_repeat_free_length : eq-midex — ¥V y [x,
is-path Rz y |l —

30U, -Inxz I’ AN—=Inyl’ A repeat_free I’ A

length I'< length I A incl I’ I A is_path R z y I’

Proof Assume that equality is middle-excluding on A, let y be in A, and
perform an induction on [. For the inductive step, call a the head of I. If a equals
y then the empty list is a witness for the existential quantifier. Now assume
that a and y are distinct. Use the induction hypothesis with a and get a list I”.
Case split on z occurring in !”. If 2 occurs in [’ then invoke lemma In_elim_right
and decompose [’ along z, and get two lists. In order to prove that the second
list, where z does not occur, is a witness for the existential quantifier, notice
that splitting a path yields two paths (a priori between different elements) and
that appending reflects the repeat_free predicate (if the appending of two lists is
repeat_free then the original lists also are). Next, assume that = does not occur
in I’. If z equals a then [’ is a witness for the existential quantifier. If z and «a
are distinct then a::l” is a witness. g

5.2 Bounded Paths

Given a relation and a natural number, the function bounded_path returns a
relation saying that there exists a path of length at most the given natural
number between two given elements.

Inductive bounded_path R n : A — A — Prop :=
— bp_intro : ¥V x y I, length I< n — is_path R x y | — bounded_path R n z y.

Below, two lemmas relate bounded_path and clos_trans. The first one follows
from path_clos_trans; the second one from clos_trans_path, path_repeat_free_length,
repeat_free_incl_length, and a path of a restricted relation being included in the
support of the relation. Especially, the second lemma says that in order to know
whether two elements are related by the transitive closure of a restricted rela-
tion, it suffices to check whether there is, between those two elements, a path of
length at most the “cardinal” of the support of the relation.

Lemma bounded_path_clos_trans : ¥V R n,
sub_rel (bounded_path R n) (clos_trans R).

Lemma clos_trans_bounded_path : eq-midex — V R I,
is_restricted R | — sub_rel (clos_trans R) (bounded_path R (length 1)) .

5.3 Restriction, Decidability, and Transitive Closure

The following lemma says that it is decidable whether one step of a given de-
cidable relation from a given starting point to some point z in a given finite
set and one step of another given decidable relation from the same point z can
lead to another given ending point. Moreover such an intermediate point z is
computable when it exists, hence the syntax {z : A | ...}.

Lemma dec_lem : ¥ R* R” x y I, rel_dec R’ — rel_dec R” —
{z:A|InzIANR z22ANR”zy}+{Az: A, InzIANR z2zANR”zy}

The following lemma is the middle-excluding version of the previous lemma.

Lemma midex_lem : ¥ R’ R” x y I, rel-midex R’ — rel_midex R” —
Fz:A InzIANR 22ANR”zy)V(Bz: A, InzIANR z2ANR"zy).

Proof By induction on [For the inductive step, call a the head of I. Then
case split on the induction hypothesis. In the case of existence, any witness for
the induction hypothesis is also a witness for the wanted property. In the case
of non-existence, case split on R’ z ¢ and R” a y. O

By unfolding the definition rel_midez, the next result implies that given a
restricted and middle-excluding relation, a given natural number and two given
points, either there is a path of length at most that number between those points
or there is no such path. Replacing midex by dec in the lemma yields a correct
lemma about decidability.

Lemma bounded_path_midex : ¥V R | n,

is_restricted R | — rel_midex R — rel_midex (bounded_path R n).

Proof First prove three simple lemmas relating bounded_path, n, and S n.
Then let R be a middle-excluding relation restricted to [and z and y be in A.
Perform an induction on n. For the inductive step, case split on the induction
hypothesis with = and y. If bounded_path R n z y holds then it is straightforward.
If its negation holds then case split on em_lem with R, bounded_path R n,
z, y, and I In the existence case, just notice that a path of length less than
n is of length less than S n. In the non-existence case, show the negation of
bounded_path in the wanted property. O

Let equality and a restricted relation be middle-excluding over A, then the
transitive closure of the relation is also middle-excluding. The proof invokes
bounded_path_midex, bounded_path_clos_trans, and clos_trans_bounded_path. The
decidability version of it is also correct.

Lemma restricted_midex_clos_trans_midex : eq-mider — V R I,
rel_midex R — is_restricted R | — rel_midex (clos_trans R).

5.4 Intermediate Results

The following theorems state the equivalence between decidability of a rela-
tion and decidability of the transitive closures of its finite restrictions. The
first result invokes clos_trans_restricted_pair and the second implication uses
restricted_dec_clos_trans_dec. Note that decidable equality is required only for
the second implication. These results remain correct when considering excluded
middle instead of decidability.

Theorem clos_trans_restriction_dec_R_dec : ¥V R
(V I, rel_dec (clos_trans (restriction R l))) — rel_dec R.

Theorem R_dec_clos_trans_restriction_dec : eq-dec — V R
rel_dec R — ¥ I, rel_dec (clos_trans (restriction R 1)).

6 Linear Extension and Topological Sorting

Consider R a binary relation over A and [a list over A. This section presents a
way of preserving acyclicity of R while “adding arcs” to the restriction of R to [
in order to build a total and transitive relation over [. In particular, if R is acyclic,
then its image by the relation completion procedure must be a strict total order.
The basic idea is to compute the transitive closure of the restriction of R to [, add
an arc iff it can be done without creating any cycle, take the transitive closure,
add an arc if possible, etc. All those steps preserve existing arcs, and since [is
finite there are finitely many eligible arcs, therefore the process terminates. This
is not the fastest topological sort algorithm but its fairly simple expression leads
to a simple proof of correctness.

6.1 Total

R is said to be total on [if any two distinct elements in [are related either
way. Such a trichotomy property for a relation implies trichotomy for any bigger
relation.

Definition trichotomy Rz y: Prop .= Rz yV z=yV Ry z.
Definition total R 1 : Prop ==V z y, In x | — In y | — trichotomy R z y.

Lemma trichotomy_preserved : ¥ R R’ x y,
sub_rel R R’ — trichotomy R z y — trichotomy R’ x y.

6.2 Try Add Arc

If x and y are equal or related either way then define the relation try_add_arc
R = y as R, else define it as the disjoint union of R and the arc (z,y).

Inductive try_add_arc R x y: A — A — Prop :=
—keep :V2zt, Rzt — try_add_arcx y z t
— try_add : £y — R y x — try_add_arc z y x ¥.

Prove by induction on [and a few case splittings that, under some conditions,
a path with respect to an image of ¢ry_add_arc is also a path with respect to
the original relation.

Lemma path_try_add_arc_path : ¥ Rt x y [z,
—(z=zVInzl)V-(y=tVvVinyl) —
is_path R (try_add_arc Rz y) z t | — is_path R z ¢ .

The next three lemmas lead to the conclusion that the function try_add_arc
does not create cycles. The first one follows from a few case splittings and the
last one highly relies on the second one but also invokes clos_trans_path.

Lemma trans_try_add_arc_sym :V R x y z t,
transitive R — try_add_arc x y z t — try_add_-arc x yt z — R z z.

Lemma trans_bounded_path_try_add_arc : eq-midex — VY R z y z n,
transitive R — bounded_path (try_add_arc x y) n z z — R z z

Proof By induction on n. The base case requires only trans_try_add_arc_sym.
For the inductive case, consider a path of length less than or equal to n+1 and
build one of length less than n+1 as follows. By path_repeat_free_length the path
may be repeat_free, i.e., without circuit. Proceed by case splitting on the con-
struction of the path: when the path is nil, it is straightforward. If the length of
the path is one then invoke sub_rel_try_add_arc trans_try_add_arc_sym else per-
form a 4-case splitting (induced by the disjunctive definition oftry_add_arc) on
the first two (¢ry_add_arc x y)-steps of the path. Two cases out of the four need
lemmas transitive_sub_rel_clos_trans, path_clos_trans, and path_try_add_arc_path.

O

Lemma try_add_arc_irrefl : eq-midex — V R x v,
transitive R — irreflexive R — irreflexive (clos_trans (try_add_arc z y)).

6.3 Try Add Arc (One to Many)

The function try_add_arc_one_to_many recursively tries to (by preserving acyclic-
ity) add all arcs starting at a given point and ending in a given list.

Fixpoint try_add_arc_one_to_many R z | {struct I} : A — A — Prop :=
match 1 with

—nil = R

— y::l” = clos_trans (try_add_arc (try_add_arc_one_to_many R xz ') x y)
end.

The following three lemmas prove preservation properties about the func-
tion try_add-arc_one_to_many: namely, arc preservation, restriction preserva-
tion, and middle-exclusion preservation. Decidability preservation is also correct,
although not formally stated here.

Lemma sub_rel_try_add_arc_one_to_many : ¥V R z |,
sub_rel R (try_add_arc_one_to_many R x).

Proof By induction on [For the inductive step, call a the head of [and
[” its tail. Use transitivity of sub_rel with try_add_arc_one_to_many x I’ and
try_add_arc (try_add_arc_one_to_many = ') = a. Also invoke clos_trans and a
similar arc preservation property for try_add_arc. O

Lemma restricted-try_add_arc_one_to-many : ¥V Rl z ', In x| — incl I’ | —
is_restricted R | — is_restricted (try_add_arc_one_to_many R x 1’) L

Proof By induction on [l’, restricted_clos_trans, and a similar restriction
preservation property for try_add_arc. O

Lemma try_add_-arc_one_to-many_midex :
eq-midex - Y Rx 1l Inx | — incl I’ l — is_restricted R | —
rel_midex R — rel_midex (try-add_arc_one_to_many R x 1’).

Proof By induction on [’ Also invoke restricted_try_add_arc_one_to_many,
restricted_midez_clos_trans_midexr with [, and a similar middle-exclusion preser-
vation property for try_add_arc. O

Next, a step towards totality.

Lemma try_add_-arc_one_to-many_trichotomy : eq-midex — V R x y | I,
Inyl’—Inzl—inc l’ 1 — is_restricted R | — rel_midex R —
trichotomy (try_add_arc_one_to_many R z ') x y.

Proof By induction on I’. For the inductive step, invoke trichotomy_preserved,
case split on y being the head of I” or y occurring in the tail of I”. Also refer to
a similar trichotomy property for try_add_arc. O

6.4 Try Add Arc (Many to Many)

The function try-add-arc-many-to_many requires a relation and two lists. Then,
using try-add- arc_one_to_many, it recursively tries to safely add all arcs starting
in first list argument and ending in the second one.

Fixpoint try_add_arc_many_to_-many R I’ | {struct I’} : A — A — Prop :=
match 17 with

—nil = R

— x:l”7 = try_add_arc_one_to_many (try_add_arc_many_to_many R 1”7 1) x|
end.

The following three results proved by induction on the list I’ state arc, restric-
tion, and decidability preservation properties of try_add_arc_many_to_many.
For the inductive case of the first lemma, call [” the tail of I’, apply the transi-
tivity of sub_rel with (¢ry_add_arc_many_to_many R 1” 1), and invoke lemma
sub_rel_try_add_arc_one_to_many. Use restricted_try_add_-arc_one_to_many for
the second lemma. For the third one invoketry_add_arc_one_to_many_dec and
restricted_try_add_arc_many_to_many. Middle-exclusion preservation is also cor-
rect, although not formally stated here.

Lemma sub_rel_try_add_arc_many_to_-many : ¥ R [1,
sub_rel R (try_add_arc_many_to_many R 1’).

Lemma restricted_try_add_arc_many_to-many : ¥ R 1 ', incl I’ | —
is_restricted R | — is_restricted (try_add_arc_many_to_many R 1’ 1) L.

Lemma try_add_arc_many_to_many_dec : — ¥ R 1 l’, incl I’ | —
is_restricted R 1 — rel_dec R — rel_dec (try_add_arc_many_to_many R 1’ 1).

The next two results state a trichotomy property and that the function
try_add_arc_many_to_many does not create any cycle.

Lemma try_add_arc_many_to_many_trichotomy : eq-midex — V¥V Rl x y I,
ncl V'l — Inyl— Inzl’” — restricted Rl — rel-midex R —
trichotomy (try-add_arc_many_to_many R 1’ 1) x y.

Proof By induction on [’ Start the inductive step by case splitting on z
being the head of I’ or occurring in its tail [”. Conclude the first case by
try_add_arc_one_to_many-trichotomy, try_add-arc_many-to_many-midex, and
restricted_try_add_arc_many_to_many. Use trichotomy_preserved, the induction
hypothesis, and sub_rel_try_add_arc_one_to_many for the second case. O

Lemma try_add_arc_many_to_many_irrefl : eq-midex — ¥V R 1 [,
incl I’ | — is_restricted R | — transitive A R —
irreflezive R — irreflexive (try-add_arc_many_to_many R I’ 1).

Proof By induction on [’ For the inductive step, first prove a similar ir-
reflexivity property for try_add_arc_one_to_many by induction on lists and
try_add_arc_irrefl. Then invoke restricted_try_add_arc_many_to_many. Both this
proof and the one for try_add_arc_one_to_many also require transitivity of the
transitive closure and an additional case splitting on [’ being nil or not. (I

6.5 Linear Extension/Topological Sort Function

Consider the restriction of a given relation to a given list. The following function
tries to add all arcs both starting and ending in that list to that restriction while
preserving acyclicity.

Definition LETS R1: A — A — Prop :=

try_add_arc_many_to_many (clos_trans (restriction R 1)) 1 I

The next three lemmas are proved by sub_rel_try_add_-arc_many_to_many,
transitiveclos_trans, and restricted_try_add_arc_many-to_-many respectively.

Lemma LETS_sub_rel :V R I,
sub_rel (clos_trans (restriction R 1)) (LETS R).

Lemma LETS_transitive : ¥ R I, transitive (LETS R).
Lemma LETS_restricted : ¥ R I, is_restricted (LETS R 1) L

Under middle-excluding equality, the finite restriction of R to [has no cycle iff
LETS R isirreflexive. Prove left to right by try_add-arc-many_to_many_irrefi,
and right to left by irreflexive_preserved and LETS_sub_rel.

Lemma LETS irrefl : eq-midexr — V R [,
(irreflexive (clos_trans (restriction R 1)) < irreflezive (LETS R 1)).

If R and equality on A are middle-excluding then LETS R [is total on
. By R_midex_clos_trans_restriction-midexr (from the first main result) and
try_add_arc_many_to_many_trichotomy.

Lemma LETS_total : eq-midex — ¥V R I, rel_midex R — total (LETS R 1) L

The next two lemmas show that if R and equality on A are middle-excluding
(resp. decidable) then so is LETS R I: by try_add_arc_many_to_many_midex
(resp. try_add_arc_many_to_many_dec) and R_midezx_clos_trans_restriction_midex
(resp. R_dec_clos_trans_restriction_dec).

Lemma LETS_midez : eq-midex — V R |,
rel_midex R — rel_midex (LETS R).

Lemma LETS_dec : eq-dec — ¥V R, rel_dec R — V I, rel_dec (LETS R).

6.6 Linear Extension

Traditionally, a linear extension of a partial order is a total order including the
partial order. Below, a linear extension (over a list) of a binary relation is a strict
total order (over the list) that is bigger than the original relation (restricted to
the list).

Definition linear_extension R | R’ := is_restricted R’ | A
sub_rel (restriction R 1) R’ A transitive A R’ A irreflerive R’ A total R’ I

The next two lemmas say that a relation “locally” contained in some acyclic
relation is “globally” acyclic and that if for any list over A there is a middle-
excluding total order over that list, then equality is middle-excluding on A.

Lemma local_global_acyclic : V R,
(V I, 3 R’, sub_rel (restriction R 1) R’ A transitive R’ A irreflexive R’) —
irreflexive (clos_trans R).

Proof Let R be arelation over A. Assume that any finite restriction of R is in-
cluded in some strict partial order. Let z be in A such that clos_trans R x z. Then
derive False as follows. Invoke clos_trans_path and get a path. It is still a path for
the restriction of R to the path itself (the path is a list seen as a subset of A).
Use path-clos_trans, then the main assumption, transitive_sub_rel_clos_trans,
and the monotonicity of clos_trans with respect to sub_rel. (Il

Lemma total_order_eq_midex :
(V I, 3 R, transitive R A irreflexive R A total R I A rel_midex R) — eq_midex.

Proof Assume the left conjunct, let z and y be in A, use the assumption with
x:y:nil, get a relation, and double case split on z and y being related either
way. ([

Consider a middle-excluding relation on A. It is acyclic and equality is middle-
excluding on A iff for any list over A there exists, on the given list, a decidable
strict total order containing the original relation.

Theorem linearly-extendable : ¥V R, rel_midexr R —
(eq-midex A irreflexive (clos_trans R) <
YV I, 3 R, linear_extension R 1 R’ A rel_midex R’).

Proof Left to right: by the relevant lemmas of subsection 6.5, (LETS R 1) is
a witness for the existential quantifier. Right to left by local_global_acyclic and
total_order_eq_midexz. O

6.7 Topological Sorting

In this subsection, excluded-middle results of subsection 6.6 are translated into
decidability results and augmented: as there is only one concept of linear exten-
sion in subsection 6.6, this section presents three slightly different concepts of
topological sort. Instead of the equivalence of theorem linearly_extendable, those
three definitions yield a quadruple equivalence.

From now on a decidable relation may be represented by a function to
booleans instead of a function to Prop satisfying the definition rel_dec. How-
ever, those two representations are “equivalent” thanks to lemmas rel_dec_bool
and bool_rel_dec in subsection 2.

In this article, a given relation over A is said to be non-uniformly (topologi-
cally) sortable if the restriction of the relation to any list has a decidable linear
extension.

Definition non_uni_topo_sortable R :=
VL3R :A— A — bool, linear_extension R Il (fun z y = R’ x y=true).

In the definition above, R’ represents a decidable binary relation that intends
to be a linear extension of R over the list I. But R’ has type A — A — bool so it
cannot be used with the predicate linear_extension R [that waits for an object
of type A — A — Prop, which is the usual type for representing binary relations
in Coq. The function fun z y = (R’ z y)=true above is the translation of R’
in the suitable type/representation. It waits for two elements z and y in A and
returns the proposition R’ x y=true, in Prop.

In this article, a given relation over A is said to be uniformly sortable if there
exists a computable function waiting for a list over A and producing, over the
list argument, a (decidable) linear extension of the original relation.

Definition uni_topo_sortable R := {F : list A — A — A — bool |
V 1, linear_extension Rl (fun z y = (F | x y)=true)}.

The third definition of topological sort requires the concept of asymmetry,
which is now informally introduced; from an algorithmic viewpoint: given a way
of representing binary relations, different objects may represent the same binary
relation; from a logical viewpoint: two binary relations different in intension,
i.e. their definitions intend different things, may still coincide, .e. may be logi-
cally equivalent. In an arbitrary topological sort algorithm, the returned linear
extension may depend on which object has been chosen to represent the orig-
inal binary relation. For example, given a two-element set, a topological sort
algorithm that is input the empty relation on the given set may produce the
two possible linear extensions depending on the order in which the two elements
constituting the set are given. This remark leads to the following definition.

Definition asym R G :=V z y : A,
z#y — "Rz y— -Ryz— (G (zuynil) z y A G (yuzund) z y).

Next comes the definition of asymmetry for a topological sort of a binary
relation. The syntax let variable:= formula in formula’ avoids writing formula
several times in formula’.

Definition asym_topo_sortable R := {F : list A — A — A — bool |
let G:= (funlzy= F |z y=true) in
asym R G AV I linear_extension R 1 (G 1)}.

Given a binary relation R over A, the remainder of this subsection proves
that the four following assertions are equivalent:

1. Equality on A is decidable, and R is decidable and acyclic.

2. R is middle-excluding and asymmetrically sortable.

3. R is decidable and uniformly sortable.

4. Equality on A is decidable, and R is decidable and non-uniformly sortable.

The following lemma says that if there exists a computable function waiting
for a list over A and producing a (decidable) strict total order over A, then equal-
ity on A is decidable. The proof is similar to the one for total-order_eq_midez.

Lemma total_order_eq_dec :
{F:list A—> A— A — bool —V1Ilet G:=funzy= FIlzy=true in
transitive A G A irreflezive G A total G 1} — eq_dec A.

Next lemma shows that LETS yields asymmetric topological sort.
Lemma LETS_asym : ¥ R, asym R (LETS R).

Proof Assume all possible premises, especially let z and y be in A. As a
preliminary: the hypotheses involve one relation image of restriction and four
relations images of try_add_arc. Prove that all of them are restricted to z::y::nil.
Then perform a few cases splittings and apply clos_trans_restricted_pair seven
times. O

The quadruple equivalence claimed above follows from rel_dec_midex and
the six theorems below. The proofs are rather similar to the middle-excluding
case in subsection 6.6. The first theorem proves 1 — 2 by the relevant lemmas of
subsection 6.5 and LETS producing a witness for the computational existence.
The second (straightforward) and the third show 2 — 3. The fourth (straightfor-
ward) and the fifth, proved by total_order_eq_dec, yield 3 — 4. The last shows
4 — 1 by invoking local_global_acyclic.

Theorem possible_asym_topo_sorting : V R,
eq_dec A — rel_dec R — irreflexzive (clos_trans A R) — asym_topo_sortable R.

Theorem asym_topo_sortable_uni_topo_sortable : ¥V R,
asym_topo_sortable R — uni_topo_sortable R.

Theorem asym_topo_sortable_rel_dec : V R,
rel_midex R — asym_topo_sortable R — rel_dec R.

Proof First notice that R is acyclic by local_global_acyclic and that equality
on A is decidable by total_order_eq_dec. Then let z and y by in A. By decidable
equality, case split on z and y being equal. If they are equal then they are
not related by acyclicity. Now consider that they are distinct. Thanks to the
assumption, get T'S an asymmetric topological sort of R. Case split on z and y
being related by TS (z::y::nil). If they are not then they cannot be related by
R by subrelation property. If they are related then case split again on z and y
being related by TS (y::z::nil). If they are not then they cannot be related by R
by subrelation property. If they are then they also are by R by the asymmetry
property. (Il

Theorem uni_topo_sortable_non_uni_topo_sortable : V R,
uni-topo_sortable R — non_uni_topo_sortable R.

Theorem rel_dec_uni_topo_sortable_eq_dec : V R,
rel-dec R — uni_topo_sortable R — eq_dec A.

Theorem rel_dec_non_uni_topo_sortable_acyclic : ¥V R,
rel_dec R — non_uni_topo_sortable R — irreflezive (clos_trans A R).

7

Conclusion

This paper has given a detailed account on a few facts related to linear extensions
of acyclic binary relations. The discussion is based on a formal proof developed
with the proof assistant Coq. The three main results are stated again below.
First, a binary relation over a set with decidable/middle-excluding equality is
decidable/middle-excluding iff transitive closures of its finite restrictions are
also decidable/middle-excluding. That theorem is involved in the proof of the
second and third main results. Second, consider a middle-excluding relation over
an arbitrary domain. It is acyclic and equality on its domain is middle-excluding
iff any of its finite restriction has a middle-excluding linear extension. Third,
consider R a decidable binary relation over A. The following three propositions
are equivalent:

— Equality on A is decidable and R is acyclic.
— Equality on A is decidable and R is non-uniformly sortable.
— R is uniformly sortable.

8

Acknowledgement

I thank Pierre Lescanne for his careful reading and helpful comments, as well as
Guillaume Melquiond and Victor Poupet for discussions.

References
1. The Coq proof assistant, version 8.1, http://coq.inria.fr/.
2. Anonymous. Program evaluation research task. Summary report Phase 1 and 2,

10.

U.S. Government Printing Office, Washington, D.C., 1958.

F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Koprowski. CoLoR,
a Coq Library on rewriting and termination. In Workshop on Termination, 2006.
http://color.loria.fr/.

M.P. Jarnagin. Automatic machine methods of testing pert networks for con-
sistency. Technical Memorandum K-24/60, U. S. Naval Weapons Laboratory,
Dahlgren, Va, 1960.

A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558-562,
1962.

Donald E. Knuth. The Art of Computer Programming, volume 1, second edition.
Addison Wesley, 1973.

Daniel J. Lasser. Topological ordering of a list of randomly-numbered elements of
a network. Commun. ACM, 4(4):167-168, 1961.

Stéphane Le Roux. Acyclicity and finite linear extendability: a formal and con-
structive equivalence. Research report RR2007-14, LIP, Ecole normale supérieure
de Lyon, 2007.

. Vaughan Pratt. Origins of the calculus of binary relations. In Logic in Computer

Science, 1992.
Edward Szpilrajn. Sur 'extension de ’ordre partiel. Fund. Math, 1930.

