Verification of Machine Code Implementations
of Arithmetic Functions for Cryptography

Magnus O. Myreen, Michael J. C. Gordon

Computer Laboratory, University of Cambridge, Cambridge, UK
{magnus.myreen,mike.gordon}@cl.cam.ac.uk

Abstract. This report presents a methodology and some preliminary
results for verification of machine code implementations of cryptographic
operations. Modularity and reusability of proofs is emphasised.

1 Introduction

Cryptography algorithms such as RSA, Diffie-Hellman and Elliptic Curve Cryp-
tography require efficient operations over large natural numbers (>300 bits).
Implementations of operations over large numbers are supported by processors
through special purpose instruction (sometimes even special purpose coproces-
sors). Parts of cryptographic operations are therefore often written directly in
machine code to make use of the special purpose instructions for high perfor-
mance. The fact that parts of cryptographic systems are implemented directly
in machine code easily lead to ad hoc correctness proofs.

In this report we present a methodology and provide theorems that aim to
make verification of different machine code implementations of cryptographic
operations manageable and reusable (even across different architectures). Two
case studies are presented; the first one illustrates our methodology on a straight-
forward implementation of addition, the second one presents the development of
an efficient machine code implementation of Montgomery multiplication (multi-
plication modulo a large prime number). The work presented in this report has
been carried out within the HOL4 theorem prover.

Affeldt and Marti’s paper [1] on verification of SmartMIPS implementations
of arithmetic functions (including Montgomery multiplication) motivated our
work. They propose an approach where one augments the machine language
with familiar while-loop-like constructs in order to reason about code using a
conventional Hoare logic; once the code with while loops is verified the loops are
removed through a light-weight compilation. Their approach seems impractical
as their proofs seem to be one-off proofs that are specific to SmartMIPS and
cluttered with assertion statements. In this work we attempt to improve on
their approach and use a Hoare logic developed for reasoning directly at the
level of machine code [15, 14].



2 Methodology

The methodology we propose strives towards modularity and reusability of
proofs by a three phase strategy: In order to verify or construct a correct im-
plementation of a particular algorithm one will first (i) verify a basic functional
version of the algorithm, then (ii) combine and unroll parts of the verified pro-
gram to build a correct but more realistic functional version of the algorithm;
and finally (iii) prove that a piece of machine code implements the functional
program produced in step (ii).

The benefit of this approach is that step (i) and (ii) are independent of the
target machine architecture and can hence be reused. Also in our experience it is
rather easy to prove that the functional programs from step (iii) are implemented
by the proposed optimised machine code.

The following table gives some indication that our approach may require less
effort than the approach proposed by Affeldt and Marti. The table below gives
the number of lines of proof script required for the verification of functional and
machine code implementations of the algorithms listed in the left column.

algorithm TFL | ARM | total || A&M
(script at top of file) 120 | 205 | 325 —
addition 135 68 | 203 835
subtraction 160 68 | 228 | 1473
Montgomery multiplication 945 691 | 1636 || 3881
Montgomery exponentiation || 230 487 | 717 —

TFL — number of lines of proof script required in step (i) and (ii)
ARM — number of lines of proof script required in step (iii) for ARM machine code
total — sum of TFL and ARM columns
A&M — total number for Affeldt and Marti’s SmartMIPS implementations [1]

A comparison between our numbers and those of Affeldt and Marti is only ap-
proximate, since Affeldt and Marti work in Coq rather than HOL4.

3 Case studies

The general methodology is presented first on the simple case of addition and
then on the less obvious algorithm for Montgomery multiplication.

3.1 Addition

When constructing a functional implementation of a particular algorithm, we
start by defining the elementary operations that we know how to implement in
machine code (or can expect to find in the instruction set). For addition we re-
quire an operation that performs one step of a large addition. Define single_add
to take two bit strings of length o and a boolean carry bit as input and have it



return the sum of the inputs as well as a boolean carry-out. Here w2n converts

a bit string of length o to the natural number it represents’.

single_add (x:a word) (y:aword) c =
(x + y + if c then 1w else Ow,
2 < w2n x + w2n y + if c then 1 else 0)

The functional program for addition is then a simple loop:

mw_add [1 ys ¢ = ([],¢)
mw_add (x::xs) (y::ys) c =
let (z,cl) = single_add x y ¢ in
let (zs,c2) = mw_add xs ys cl in
(z::2s,c2))

In order to state the specification for the functional implementations, we
define n2mw i n to be a list (of length 7) of bits strings (of length «) such that
the concatenation of these bit strings represent the i x a least-significant bits of
the binary representation of the natural number n.

n2mw O n =[]
n2mw (i+1) n = n2w n :: n2mw i (n DIV dimword (:c))

The specification for mw_add is the following. Let b2n ¢ = if ¢ then 1 else 0
and add_carryout i m n ¢ = 2% < m MOD 2'*® + n MOD 2" + b2n c.

Vipmn c.
mv_add (n2mw i m) (n2mw (i + p) n) c =
(n2mw i (m + n + b2n c), add_carry_out i m n c)

The functional program mw_add can be implemented in ARM machine code
using a single loop that tests for the end of the sequence using the teq instruction
(an instruction that leaves the carry status bit untouched).

add t, a, t ; initilse t

L: 1ldr x, [a]l, #4 ; load value at a into x, then increment a
ldr y, [bl, #4 ; load value at b into y, then increment b
adcs x, X, ¥ ; add x and y using carry from status bits
str x, [c], #4 ; store x into location ¢, then increment c
teq a, t ; testa=1t
bne L ; jumptol,ifa#t

One can prove that the above code implements mw_add by induction on the
length of the first argument to mw_add together with the rules of the Hoare logic
presented in Myreen and Gordon [15]. The specification which states that the
ARM code implements mw_add is shown in Appendix A.

The specification is made legible if we introduce the following definition. Let
bignum a i n state that register a holds an aligned address which points at

! Anthony Fox’s HOL4 theory of bit strings, called wordsTheory, is used to represent
bit strings of a length given as part of the type. The theory is based on a formalisation
of finite Cartesian products, which is originally due to John Harrison [9].



some location where the sequence n2mw i n is stored. Let bignum’ a i n be
the same except that the address points at the location immediately following
the sequence n2mw i n.

bignum a i n = Jx. R30 a x * ms x (n2mw i n)
bignum’ a i n = Jx. R30 a (x + n2w i) * ms x (n2mw i n)

Using bignum the above ARM code has the following Hoare-triple specification.

{ bignum a i m * bignum b i n * bignum c i _ *
Rx_*Ry_*Rt (n2w (4 X i)) * carry status ¢ * (i # 0) }
--- code as above ---

{ bignum’ a i m * bignum’ b i n * bignum’ ¢ i (m + n + b2n c) *
Rx _*Ry_*Rt _* carry status (add_carry_out i mn c)) }

3.2 Montgomery multiplication

Montgomery multiplication is an algorithm that is commonly used in implemen-
tations that require multiplication modulo a large prime. Given n, r and r’ such
that n < 7, ged(n,r) = 1 and (r X r') mod n = 1, Montgomery multiplication
monprod calculates the product of a, b and ' modulo n:

monprod(a,b,n) = (a x b x ') mod n, for a < n and b < n.

Let a denote (a x r) mod n. Montgomery multiplication calculates the product
of values represented as a and b.

monprod(a,b,n) = (a x b x r’') mod n
(axrxbxrxr') modn

=(axrxbx1) modn
(

axbxr)modn

The conversion from a into a mod n can be done using monprod.

monprod(a,1,n) = (@ x 1 x ') mod n
=(axrx7") modn

=a mod n

The conversion from a into @ requires an implementation of modulus.

We will refrain from describing the details of Montgomery multiplication here
for that is described well elsewhere: Montgomery describes the basic algorithm
elegantly in [13], Dussé et al. [7] and Certin Kaya Koc et al. [10] describe optimi-
sations; Instead we will just note that the following implementation of monprod
called mw_monprod,



mw_mul [J y ¢ = ([1,¢c)
mw_mul (x::xs) y ¢ =
let (z,cl) = single_mul x y ¢ in
let (2zs,c2) = mw_mul xs y cl in
(z::2s8,c2)

mw_add_mul x ys zs =
FST (mw_add zs (FST (mw_mul ys x Ow)) F)

mw_monmult [] ys ns m zs = zs
mw_monmult (x::xs) ys ns m zs =
let u= (x * HD ys + HD zs) * m in
let zs = mw_add_mul x ys (zs ++ [Ow]) in
let zs = mw_add_mul u ns zs in
mw_monmult xs ys ns m (TL zs)

mw_monprod XS yS ns m zs =
let zs = mw_monmult xs ys ns m zs in
let (zs’,c) = mw_sub zs ns T in
(if c then zs’ else zs)

satisfies the specification given below. Let montgomery vars n n’ r ' sum up
that r is even, n < r and ged(n,r) = 1 with witnesses n’ and 7.

montgomery_vars n n’ rr’ = (r X r’ -n x n’ =1) An<r AEVENr

Vabnn’ r’ i.
montgomery_vars n n’ (22**) r’ Aa<nAb<n=
(mw_monprod (n2mw i a) (n2mw (i+2) b) (n2mw (i+2) n) (n2w n’)
(n2mw (i+1) 0) =
n2mw (i+1) ((a X b X r’) MOD n))

Optimisation 1. The first version of Montgomery multiplication mw_monprod
was reasonably easy to prove (2400 lines of proof script), but the implementation
is unsatisfactory in many ways. In what follows we will successively improve the
functional implementation towards functional implementations that calculate
the value in a less wasteful manner.

The first and obvious improvement is to combine the two occurrences of
mw_add_mul into one function. A function mw_add mul _mul was constructed which
calculates the same value as two applications of mw_add_mul. An unrolling of the
new function is now the body for function mw_monmult2.

mw_monmult2 [] ys ns m zs = zs

mw_monmult2 (x::xs) (y::ys) (n::ns) m (z::zs) =
letu=(x*y+2z) *min
let (wil,cl,bl) double_mul_add y n x u Ow Ow z in
let (ws,c2,b2) mw_add_mul_mul ys ns zs x u cl bl in
let (w3,c3,b3) = double_mul_add Ow Ow x u c2 b2 (LAST zs) in
let (w4,c4,bd) double_mul_add Ow Ow x u c3 b3 Ow in



let zs = ws ++ [w3; w4] in
mw_monmult2 xs (y::ys) (n::ns) m zs

The new definition of mw_monprod satisfies the same specification as the original
except that now both occurrences of +2 are removed.

Optimisation 2. For the second optimisation we note that the result is one
word too long, the result is returned as a list of i+1 words while the result fits into
i words. By looking at the implementation one observes that the last element of
the list zs is always handled separately from the rest of zs. This suggests that it
may be beneficial to keep the last element separate throughout the computation
(in the machine code implementation we would like to keep the last element in
a register). The new implementation simply splits the last element off zs:

mw_monmult3 [] ys ns m (zs,z’) = (zs,2’)

mw_monmult3 (x::xs) (y::ys) (n::ns) m (z::zs,2’) =
letu=(x*y+2z) *min
let (wil,cl,bl) double_mul_add y n x u Ow Ow z in
let (ws,c2,b2) mw_add_mul_mult ys ns zs x u cl bl in
let (w3,c3,b3) = double_mul_add Ow Ow x u c2 b2 z’ in
let (wd,cd,bd) double_mul_add Ow Ow x u c3 b3 Ow in
let (zs,z’) = (ws ++ [w3],wd) in

mw_monmult3 xs (y::ys) (n::ns) m (zs,z’)

mw_monprod3 xs ys ns m (zs,z) =
let (zs,z) = mw_monmult3 xs ys ns m (zs,z) in
let (zs’,c) = mw_sub zs ns in
let ¢ = SND (single_sub z Ow c) in
(if ¢ then zs’ else zs)

The specification of mw_monprod3 is the same as the one for mw_monprod2 ex-
cept that the result is now of length i and (n2mw (i+1) 0) is replaced by
(n2mw i 0,0w).

Optimisation 3. It would be unfortunate if the final implementation requires
the array implementing zs to be initialised to zero, since that is likely to require
a separate loop, which writes zero into each element of an array before calling
the algorithm. The requirement of a zeroed input can be removed by unrolling
the main loop once in order to break out the part of the program which can
assume that zs is zero, and hence can be implemented more efficiently (fewer
load instructions). The new implementation unrolls mw_monmult3 once.

mw_moninit ys ns x m =
mw_monmult3_step ys ns (MAP (Ax.0w) ys, Ow) x m

mw_monprod4 (x::xs) ys ns m =
let (zs,z) = mw_moninit ys ns x m in
let (zs,z) mw_monmult3 xs ys ns m (zs,z) in



let (zs’,c) = mw_sub zs ns T in
let ¢’ = SND (single_sub z Ow c) in
(if ¢’ then zs’ else zs)

The new implementation satisfies the following specification.

Vabnn’r’ i.
montgomery_vars n n’ (2'*) r’ Aa<nAb<n=
(mw_monprod4 (n2mw i a) (n2mw i b) (n2mw i n) (n2w n’) =
n2mw i ((@a X b X r’) MOD n))

ARM implementation. An ARM implementation of mw_monprod4 has been
verified using the technique used for addition. The only difference is that the
proof is slightly longer since the function for Montgomery multiplication is
longer. The parts of the proof that correspond to the unrolled parts of loops
are often repetitions of the verification of the loop body with slight modifi-
cations. These proofs are easily constructed: one copies the proof of the code
corresponding to the body of the function and makes minor alterations, where
the code differs (the proof becomes long but the effort is minimal).

The resulting specification for Montgomery multiplication is given below. It
uses bignum as defined earlier and states the following: given that register a holds
the address of an array of length i storing the natural number p (modulo the ca-
pacity of the array), register b holds an address of the stored number q, register ¢
holds an address of number n, and d points at some array of length i; registers v1-
v10 have some values and the stack holds n2w n’ and n2w (4 * 1i); if all of the
above holds, then the program will execute so as to store (p X q X r’) MOD n
in the array pointed to by b, without using or altering any resources out side
of the scope of the specification. The verified code is given in Appendix B. The
difference between pre- and postcondition is highlighted using .

montgomery_vars n n’ (22***) r’ Ap<nAg<nAl<i=

{ bignum a i p * bignum b i [:] *
bignum ¢ i n * bignum d i _ *
Rvli_*Rv2_*Rv3_*xRv4d _*xRvb _*xRv6 _ xR vl _x*
Rv8 _ * Rv9 _ * R v10 _ * stack sp [n2w n’; n2w (4 * i)] 1 * S _ }
--- code as given in appendix B --—-

{ bignum a i p * bignum b i ’((p X g X r’) MOD n) | *
bignum ¢ i n * bignum d i _ *
Rvli_*xRv2_*xRv3_*xRvad _*xRvb_*xRvE _*x RV’ _ %
Rv8 _ *x Rv9 _ * R v10 _ * stack sp [n2w n’; n2w (4 * i)] 1 * S _ }

The specification reveals that the implementation does indeed perform mul-
tiplication modulo n, if we instantiate p and q to (p X r) MOD n and (q X r)
MOD n, respectively:

montgomery_vars nn’ r r’ A (r = 2%) A1 <i =



{ bignum a i ((p X r) MOD n) * bignum b i ((@Xr) MOD n) *
bignum ¢ i n * bignum d i _ *
Rvli_*Rv2_*Rv3_*xRv4d _*xRvb _*xRv6 _ xR vl _x
Rv8 _ *x Rv9 _ * R v10 _ * stack sp [n2w n’; n2w (4 * i)] 1 * S _ }
--- code as given in appendix B ---

{ bignum a i ((p X r) MOD n) * bignum b i ((><r) MOD n) *
bignum ¢ i n * bignum d i _ *
Rvli_*Rv2_*Rv3_*Rv4d _*xRvb _*xRv6 _*x RV’ _ *

Rv8 _ * Rv9 _ * R v10 _ * stack sp [n2w n’; n2w (4 x 1)] 1 * 8 _ }

4 Related Work

Many have worked on verification of machine code programs. Some early work
was done by Maurer [12], Clutterbuck and Carré [6] and Bevier [3]. Boyer and
Yu [4] did impressive pioneering work on verifying machine code written for
a commercial processor: they verified programs using the bare operational se-
mantics of a model of the Motorola MC68020. Projects on proof-carrying code
(PCC) [16] and particularly foundation PCC [2] have ignited new interest in
verification of low-level code. Of work on PCC, Tan and Appel’s work [18] is
relevant to this paper: they use a Hoare logic to reason about a detailed model
of the Sparc machine language. As for most work on PCC, their aim is to ad-
dress safety properties that can be proved automatically (e.g. type safety). Ni et
al [17], Feng et al [8] and Cai et al [5] work towards verifying parts of operating
systems and runtime environments.

The the best of our knowledge Affeldt and Marti [1] are the only ones who
attempt to verify machine code implementations of cryptographic operations.
Li et al [11] have developed a proof-producing compiler that they intend to use
to generate efficient machine code implementations of cryptographic algorithms.
In the future we hope to collaborate with Li et al.

5 Further Work

Our aim is to develop machine code implementations of all the operations re-
quired for an implementation of elliptic curve cryptography. Another goal is to
investigate how these ideas can be applied to architectures other than ARM.
We believe that the Hoare logic, which was used to reason about ARM machine
code, is readily instantiated to other models of instruction set architectures.

References

1. Reynald Affeldt and Nicolas Marti. An approach to formal verification of arith-
metic functions in assembly. In 11th Annual Asian Computing Science Conference
(ASIAN 2006), Dec 2006. LNCS, Springer-Verlag.

2. Andrew W. Appel. Foundational proof-carrying code. In LICS, 2001.



10.

11.

12.

13.

14.

15.

16.
17.

18.

A

William R. Bevier. A werified operating system kernel. PhD thesis, University of
Texas at Austin, 1987.

Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166-192, 1996.

Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-modifying code.
In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’07). ACM, 2007.

D. L. Clutterbuck and B. A. Carré. The verification of low-level code. Software
Engineering Journal, 3:97-111, 1988.

Stephen R. Dussé and Jr. Burton S. Kaliski. A cryptographic library for the
Motorola DSP56000. In EUROCRYPT ’90: Proceedings of the workshop on the
theory and application of cryptographic techniques on Advances in cryptology, pages
230—244. Springer-Verlag, 1991.

Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni.
Modular verification of assembly code with stack-based control abstractions. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’06). ACM, 2006.

John Harrison. A HOL theory of Euclidean space. In Joe Hurd and Tom Melham,
editors, Theorem Proving in Higher Order Logics, 18th International Conference,
TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science, pages 114—129,
Oxford, UK, 2005. Springer-Verlag.

Cetin Kaya Koc, Tolga Acar, and Jr. Burton S. Kaliski. Analyzing and comparing
montgomery multiplication algorithms. IEEE Micro, 16(3):26-33, 1996.

Guodong Li, Scott Owens, and Konrad Slind. A proof-producing software compiler
for a subset of higher order logic. In European Symposium on Programming (ESOP
2007), LNCS, pages 205-219. Springer-Verlag, 2007.

W. D. Maurer. Proving the correctness of a flight-director program for an airborne
minicomputer. In SIGMINI ’76: Proceedings of the ACM SIGMINI/SIGPLAN
interface meeting on Programming systems in the small processor environment,
pages 103-108, New York, NY, USA, 1976. ACM Press.

Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519-521, 1985.

Magnus O. Myreen, Anthony C.J. Fox, and Michael J.C. Gordon. A Hoare logic
for ARM machine code. In To appear in IPM International Symposium on Fun-
damentals of Software Engineering (FSEN 2007), LNCS. Springer-Verlag, 2007.
Magnus O. Myreen and Michael J.C. Gordon. A Hoare logic for realistically mod-
elled machine code. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2007), LNCS, pages 568-582. Springer-Verlag, 2007.

George C. Necula. Proof-carrying code. In POPL, pages 106-119, 1997.
Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify realistic
system code: Machine context management. In Theorem Proving in Higher Order
Logics, 20th International Conference, TPHOLs 2007, Lecture Notes in Computer
Science. Springer-Verlag, 2007. To Appear.

Gang Tan and Andrew W. Appel. A compositional logic for control flow. In
E. Allen Emerson and Kedar S. Namjoshi, editors, Proceedings of Verification,
Model Checking and Abstract Interpretation (VMCAI), volume 3855 of Lecture
Notes in Computer Science. Springer, 2006.

Specification of Addition

{R30iix*msixxs*



R30 j jx * ms jx ys *
R30 k kx * ms kx zs *

R a_

* R b _ *x R30 t (ix + wLENGTH xs) *

carry_statuc ¢ * cond (xs # []) *

cond (LENGTH xs = LENGTH zs) * cond (LENGTH

[ 1ldr
1ldr
adcs
str
teq
bne

a,
b,
a,
a,
i,
-20

[i], #4
[31, #4
a, b
[k], #4
t

{ R30 i (ix + wLENGTH xs) * ms ix xs *
R30 j (jx + wLENGTH xs) * ms jx ys *

R30 k (kx + wLENGTH xs) * ms kx (FST (mw_add

Ra_*Rb_*R30t (ix + wLENGTH xs) *
carry_status (SND (mw_add xs ys c¢)) }

zs < LENGTH ys) }

XS ys c)) *

B ARM Implementation of Montgomery Multiplication

1ldr
1ldr
add
add
add
1ldr

v4, [sp,#4]
v2, [a]
vb,b,v4
vl,a,vd
a,a,#4

v8, [sp]

ldr v6, [b],#4
1dr v7,[c],#4
unull v4,v9,v6,
mov v10,#0

mul v3,v9,v8
umlal v10,v9,v7
adds v10,v10,v4
mov v4,#0

adcs v9,v4,#0
ldr v6, [b] ,#4
1dr v7,[c],#4
umull v4,v8,v6,
mov v6,#0
umlal v6,v8,v7,
adds v8,v8,v10
str v8, [d],#4
adcs v9,v4,v9
mov v4,#0

v2

,v3

v2

v3

adcs v7,v4,#0
adds v10,v6,v9
adcs v9,v7,#0
teq b,v5

bne -52

1ldr v2, [sp,#4]
str v10, [d],#4
str v9, [sp,#-4]
sub b,b,v2

sub c,c,v2

sub d,d,v2

1ldr v2,[a],#4
1ldr v8, [sp]
1dr v9,[d],#4
1dr v6, [b] ,#4
ldr v7, [c],#4
mov v4,#0

umlal v4,v9,v6,v2

mov v10,#0
mul v3,v9,v8

umlal v10,v9,v7,v3

adds v10,v10,v4
mov v4,#0
adcs v9,v4,#0

1ldr v8, [d],#4
1dr v6, [b]l,#4
1dr v7,[c]l,#4

umlal v4,v8,v6,v2

mov v6,#0

umlal v6,v8,v7,v3

adds v8,v8,v10
str v8, [d,#-8]
adcs v9,v4,v9
mov v4,#0

adcs v7,v4,#0
adds v10,v6,v9
adcs v9,v7,#0
teq b,vb

bne -56

ldr v8, [sp,#-4]
ldr v2, [sp,#4]
adds v8,v8,v10
str v8, [d,#-4]
adc v10,v9,#0
sub b,b,v2

sub c,c,v2

sub d,d,v2

str v10, [sp,#-4]

teq
bne
sub
1ldr
add
1ldr

a,vl

-152
vb,vb,b
v4, [sp,#-4]
vl,d,vb
v8, [d],#4
1ldr v7,[c],#4
sub a,a,vb
subs v8,v8,v7
str v8, [b],#4
1dr v6,[d],#4
ldr v7,[c],#4
sbcs v6,v6,v7
str v6, [b],#4
teq d,vl

bne -20

sub b,b,v5
sub c,c,vb
sub d,d,vb
sbcs v4,v4,#0
movcc vi,d
movcc d,b
movcc b,vl



