
A Probabilistic Model for Parametric Fairness in

Isabelle/HOL ?

Jinshuang Wang, Xingyuan Zhang, Yusen Zhang, and Huabing Yang

PLA University of Science and Technology, Nanjing 210007, China
wangjinshuang@gmail.com, xingyuanz@gmail.com, zys49 nj@126.com,

yanghuabing@gmail.com

Abstract. In paper [1], a liveness proof method suitable for inductive
protocol verification is proposed. The utility of this method has been
confirmed by several machine checked formal verifications[2–4]. One re-
maining question about [1] is the meaning of Parametric Fairness, a new
fairness notion adapted from Pnueli’s Extreme Fairness[5] to suit the set-
ting of higher-order logic. This paper tries to answer this question. As a
standard practice in establishing a fairness notion, this paper constructs
a probabilistic model for parametric fairness in Isabelle/HOL. Using this
model, it is shown that most infinite executions of a concurrent system
are parametrically fair. Therefore the definition of parametric fairness in
paper [1] is reasonable. This work gives a firmer basis for existing and
forthcoming formal verifications based on the method of paper [1].
Keywords : Liveness Proof, Inductive Protocol Verification, Probabilis-
tic Model, Parametric Fairness.

1 Introction

Paulson’s inductive approach for protocol verification[6] has been used to
verify fairly complex security protocols [7, 8]. The success gives incentives
to extend this approach to a general approach for concurrent system
verification. To achieve this goal, a method for the verification of liveness
properties is needed.

In paper [1], a liveness proof method suitable for inductive protocol verifi-
cation is proposed. In [1], proof rules for liveness properties (both response
and reactivity) are derived. The proof rules are used to reduce the proof
of liveness properties to the proof of safety properties, so that the original
inductive approach’s advantages in the proof of safety properties can be
fully exploited. The utility of this method has been confirmed by several
machine checked formal verifications[2–4].

Paper [1] uses a new notion of fairness – Parametric Fairness, which is
an adaption of Pnueli’s Extreme Fairness[5] to suit the setting of higher-
order logic. As a standard practice in establishing a fairness notion, this

? This research was funded by National Natural Science Foundation of China , under
grant 60373068 ‘Machine-assisted correctness proof of complex programs’



paper constructs a probabilistic model for Parametric Fairness. Using this
model, it is shown that most infinite executions of a concurrent system are
parametrically fair. Therefore the definition of parametric fairness given
in [1] is reasonable. The purpose of this paper is to give a firmer basis
for existing and forthcoming formal verifications based on the method of
paper [1].

As pointed out in [5], standard fairness notions like weak fairness and
strong fairness are not adequate for showing some obvious liveness prop-
erties. Consider the concurrent system in Figure 1. It is intuitively obvious
that once the system is in initial state 3, it will eventually get into the final
state 0, supposing all actions in the system are fairly treated. However,
both weak fairness and strong fairness fail to capture such an intuitive no-
tion. For example, the infinite execution (e2. e1. e4. e0)

ω is fair according
to both weak fairness and strong fairness. The problem with weak fairness

and strong fairness is that they only stress the fair treatment of actions,
without considering the state under which these actions are taken. In ex-
ecution (e2. e1. e4. e0)

ω, even all actions in the system, i.e. e0, e1, e2,

e4, are fairly treated, but it is still not strong enough to force the system
into state 0, therefore the intuitively obvious liveness property mentioned
above does not hold under this standardly fair execution.

3


e2
 e1


e4
e0


2
 1
 0
e0


Fig. 1. The diagram of a concurrent system

To solve this problem, paper [5] proposes the notion of extreme fairness
which requires all combinations of states and actions be fairly treated.
In Figure 1, this amounts to requiring all pairs in {0 , 1 , 2 , 3}×{e 0, e1,

e2, e4} be fairly treated. The above standardly fair execution (e 2. e1. e4.

e0)
ω is not extremely fair, because the pair (1 , e0) is not fairly treated. To

specify that every state-action pair be fairly treated in higher-order logic,
we have to quantify universally over the type of state predicates. This
universal quantification turned out to be problematic, because for any
infinite execution σ, we can always construct a higher-order state predi-
cate ϕσ which is not fairly treated in σ. By instantiating the universally
quantified variable to ϕσ, it can be shown that execution σ is not fair.
Therefore the universal quantification over the type of state predicates



makes the straightforward formulation of extreme fairness so restrictive
that almost no execution can satisfy it. The details of this construction
can be found in paper [1].

As a solution, paper [1] proposes Parametric Fairness as a refinement
of extreme fairness. In parametric fairness, the list of state-action pairs
which need to be fairly treated is explicitly given as a parameter to the
fairness definition. Because in any concrete liveness proof, the state-action
pairs which need to be fairly treated can always be given explicitly, the
notion of parametric fairness achieves the same proof theoretical power
as extreme fairness without being too restrictive semantically.

One remaining question about parametric fairness is whether the notion is
liberal enough to accommodate most infinite executions of the underlying
concurrent system. This paper answers the question by showing that if the
nondeterminacy in concurrent executions is resolved by random choice,
a probability space can be constructed with the execution set as basis,
and that the set of parametrically fair executions is measurable and has
probability 1. The result means that almost all concurrent executions are
parametrically fair.

Similar works have already been done for extreme fairness and other
notions of fairness[5, 9, 10], but none is in the setting of higher-order logic.
Our contribution is to show that the formulation of parametric fairness in
higher-order logic still has the desired property. Additionally, our work is
more reliable because all preceding works are pencil and paper ones done
outside object logic, while ours is inside the object logic Isabelle/HOL,
machine-checked and coexisting with concrete verifications. Parametric
fairness has the same motivation as extreme fairness, i.e. to reflect the
probabilistic nature of concurrent executions. This paper shows that the
goal is indeed achieved. Therefore the liveness proof method proposed in
[1] is now on a firmer basis.

The rest of this paper is organized as follows: Section 2 introduces the
notion of parametric fairness. Section 3 introduces the notion of prob-
abilistic execution and constructs a probability space on sets of infinite
executions. Section 4 assigns a probabilistic meaning to parametric fair-
ness by showing that the probability of the set of fair executions equals
to 1. Section 5 summarizes related works. Section 6 concludes.



2 The notion of parametric fairness

2.1 Concurrent systems

In inductive approach, system states are identified with finite executions,
which are represented as lists of events. These events are arranged in re-
verse order of happening, the decision of which event to happen next is
decided according to current system state. Formal definitions for concur-
rent system is given in Fig. 2, where the type of events is a polymorphic
type ′a, and the type of system states is ′a list. We identify system states
with finite execution traces. The terms system state and finite execution

are used interchangeably. Both of them are written as τ , τ ′, τ1, τ2, etc.

constdefs i-th :: (nat ⇒ ′a) ⇒ nat ⇒ ′a (-- [64, 64] 1000)
σi ≡ σ i

consts prefix :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list ([[-]]- [64, 64] 1000)
primrec [[σ]]0 = []

[[σ]](Suc i) = σi # [[σ]]i

constdefs may-happen ::
′a list ⇒ ( ′a list × ′a) set ⇒ ′a ⇒ bool (- [-> - [64, 64, 64] 50)
τ [cs> e ≡ (τ , e) ∈ cs

consts vt :: ( ′a list × ′a) set ⇒ ′a list set
inductive vt cs
intros

vt-nil [intro] : [] ∈ vt cs
vt-cons [intro] : [[τ ∈ vt cs; τ [cs> e]] =⇒ (e # τ ) ∈ vt cs

consts derivable :: ′a ⇒ ′b ⇒ bool (- ` - [64, 64] 50)
defs (overloaded)
fnt-valid-def: cs ` τ ≡ τ ∈ vt cs
inf-valid-def: cs ` σ ≡ ∀ i. [[σ]]i [cs> σi

Fig. 2. The definitions of concurrent system

The type of infinite executions is nat ⇒ ′a, which is often abbreviated as
′a seq. For an infinite execution σ, the event happens at the i−th step is
σ i, which is also written as σi. The first i events of an infinite execution
σ can be packed into a list, which exactly forms a finite execution. Such
a packing is written as [[σ]]i, which is also called a prefix of σ.

A concurrent system is often written as cs, and its type is ( ′a list × ′a)
set. The expression (τ , e) ∈ cs means that the event e is legitimate to
happen under state τ according to cs. The notation (τ , e) ∈ cs is also
written as τ [cs> e. The set of valid finite executions of cs is written as
vt cs. The expression τ ∈ vt cs is also written as cs ` τ . The operator `
is overloaded, so that σ is a valid infinite execution of cs can be written
as cs ` σ. An infinite execution σ is valid under cs iff all of its prefixes
are valid.



2.2 Embedding LTL

LTL (Linear Temporal Logic) is widely used for the specification and
verification of concurrent systems. A shallow embedding of LTL is given
in Fig.3. In this paper, LTL is used to express various temporal properties
of infinite executions, including liveness properties.

types ′a tlf = (nat ⇒ ′a) ⇒ nat ⇒ bool

consts valid-under :: ′a ⇒ ′b ⇒ bool (- |= - [64, 64] 50)
defs (overloaded) pr |= ϕ ≡ let (σ, i) = pr in ϕ σ i
defs (overloaded) σ |= ϕ ≡ (σ::nat ⇒ ′a, (0::nat)) |= ϕ

constdefs always :: ′a tlf ⇒ ′a tlf (�- [64] 65)
�ϕ ≡ λ σ i. ∀ j. i ≤ j −→ (σ, j) |= ϕ

constdefs eventually :: ′a tlf ⇒ ′a tlf (♦- [64] 65)
♦ϕ ≡ λ σ i. ∃ j. i ≤ j ∧ (σ, j) |= ϕ

Fig. 3. A shallow embedding of LTL

The type of LTL formulae is defined as ′a tlf. The expression (σ, i) |= ϕ

means that LTL formula ϕ is valid at the i−th step of σ. The operators
always � and eventual ♦ are defined literally.

2.3 Introduction of parametric fairness

In paper [1], two liveness proof rules are derived. The one for response
properties is:

[[RESP cs F E N P Q ; cs ` σ; PF cs {|F , E , N |} σ]] =⇒ σ |= �〈ψ〉↪→♦〈ϕ〉

and the one for reactivity properties is:

[[REACT cs F E N P Q ; cs ` σ; PF cs {|F , E , N |} σ]] =⇒ σ |= �♦〈ψ〉↪→�♦〈ϕ〉

To prove a liveness result, an execution path must be found, which goes
from the starting state characterized by ψ to the ending state character-
ized by ϕ. Such a path is represented by a list of (state predicate, event
function)-pairs, which needs to be fairly treated, so that the execution of
the concurrent system will eventually go along the path. The path is ab-
stract in the sense that instead of concrete (state, event)-pairs, it consists
of (state predicate, event function)-pairs, where the state predicate spec-
ifies the condition under which the event yielded by the event function is
to happen. The functions F and E are given by verification staff to gen-
erate the state predicates and event functions respectively. The N is the
length of the path. The expression {|F , E , N |} represents the generated
(state predicate, event function)-pair list. The pair list should be prop-
erly designed to form a chain leading from ψ to ϕ. Such a requirement is
expressed in the definitions of both RESP and REACT [1].



The purpose of this paper is to give a probabilistic meaning to the re-
maining PF cs {|F , E , N |} σ, which requires that the infinite execution
σ is parametrically fair with respect to the parameter {|F , E , N |}. The
formal definition of PF is given in Fig. 4.

EFα :: ( ′a list × ′a) set ⇒ ( ′a list ⇒ bool) ⇒ ( ′a list ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ bool
EFα cs P E σ ≡
σ |= �♦(λ σ i. P [[σ]]i ∧ [[σ]]i [cs> E [[σ]]i) −→ σ |= �♦(λ σ i. P [[σ]]i ∧ σi = E [[σ]]i)

EF :: ( ′a list × ′a) set ⇒ (nat ⇒ ′a) ⇒ bool
EF cs σ ≡ ∀ P E. EFα cs P E σ

types ′a pe = ( ′a list ⇒ bool) × ( ′a list ⇒ ′a)

PF :: ( ′a list × ′a) set ⇒ ′a pe list ⇒ (nat ⇒ ′a) ⇒ bool
PF cs pel σ ≡ list-all (λ (P, E). EFα cs P E σ) pel

Fig. 4. Different notions of fairness

In Fig. 4, expression EF α cs P E σ specifies that state predicate P and
event function E are fairly treated in execution σ, expression EF cs σ

is the literal translation of extreme fairness, which requires every state
predicate and event function being fairly treated. This definition is shown
in [1] to be too restrictive. The definition of PF cs pel σ represents our
remedy, which only requires the (state predicate, event function)-pairs
appearing in parameter pel being fairly treated. In the following, we are
going to construct a measure space over the power set of all infinite execu-
tions, and show that almost all infinite executions satisfy the requirement
of PF. However, since our approach works at meta level, the premise PF

cs {|F , E , N |} σ can not be removed from the final results. It is there
to provide people with information that the liveness result is achieved
through the enabling execution path {|F , E , N |}.

When a complex concurrent system is verified, people usually need to
derive many liveness results, each with its own enabling path. The result
in this paper also means that the requirement of PF cs pel σ, using the
conjunction of all these enabling paths as the parameter pel, can still be
satisfied by almost all infinite executions.

3 Probability space construction

3.1 Formalizing probabilistic execution

To model random choice, we introduce a function R, where R(τ , e) is
the probability of event e being chosen to happen under system state τ .
Therefore, R(τ , e) = 0 means event e is not eligible to happen under



state τ , while R(τ , e) > 0 means e is eligible to happen with R(τ , e) as
the happening probability. Every R represents an execution strategy of a
concurrent system. The underlying concurrent system can be defined in
terms of R as CS ≡ {(τ , e). 0 < R (τ , e)}. The set of events eligible to
happen under state τ is given as N τ ≡ {e. 0 < R (τ , e)}.

It is natural to assert the following axioms:

1. 0 ≤ R (τ , e) ∧ R (τ , e) ≤ 1, which is a routine requirement of
probability theory.

2. CS ` τ −→ (
∑

e∈N τ . R (τ , e)) = 1. The purpose of this axiom is to
fulfill the standard probability theory requirement that the summa-
tion of all possible outcomes must equal to 1. This axiom also entails
that every valid finite execution can always be extended by at least
one event. By introducing a Tick event, which represents the ticks
of a system wide clock, this requirement can be satisfied easily, since
nothing can prevent time from advancing. This axiom also entails fi-

nite (N τ), which means that the underlying concurrent system CS

is finitely branching.

3. ∀ τ e. 0 < R (τ , e) −→ bnd ≤ R (τ , e), where bnd is the lower bound
of all nonzero R-probabilities. It is natural to require that 0 < bnd ∧
bnd < 1.

Funcion R induces a measure function π on finite executions:

π [] = 1

π (e#τ ) = R(τ , e) ∗ π τ

For any valid system state τ , we have π τ > 0. For any valid infinite
execution σ, we have ∀ i . π [[σ]]i > 0. The base set(or sample space), on
which we are going to construct the probability space, is defined as:

Path ≡ {σ. (∀ i . π [[σ]]i > 0 )}

It can be shown that (CS ` σ) = (σ ∈ Path), i.e. Path coincides with
the set of all valid infinite executions of the concurrent system CS.

3.2 Outline of the construction

The definition of probability space is given in Fig. 5. A probability space
is defined to be a measure space (U , F , Pr), where U is the base set, F

the family of measurable sets (also called measurables), Pr the measure
function. For a probability space (U , F , Pr), the measure of the base
set must be 1. The definition of measure space uses standard notions



such as σ-algebra, positivity and countable additivity. In the definition of
countable additivity, we use Isabelle library function sums, where ‘f sums

c’ stands for
∑

∞

n=0
f(n) = c. The rest of the definitions are self-explaining.

consts algebra :: ( ′a set × ′a set set) ⇒ bool
algebra (U, F) = (F ⊆ Pow(U) ∧ {} ∈ F ∧ (∀ a∈F. (U − a) ∈ F) ∧

(∀ a b. a ∈ F ∧ b ∈ F −→ a ∪ b ∈ F))

consts sigma-algebra ::( ′a set × ′a set set) ⇒ bool
sigma-algebra(U, F) = (F ⊆ Pow(U) ∧ U ∈ F ∧ (∀ a ∈ F. U − a ∈ F) ∧

(∀ a. (∀ i::nat. a(i) ∈ F) −→ (
⋃

i. a(i)) ∈ F))

consts positive:: ( ′a set set × ( ′a set ⇒ real)) ⇒ bool
positive(F, Pr) = (Pr {} = 0 ∧ (∀A. A ∈ F −→ 0 ≤ Pr A))

consts countably-additive:: ( ′a set set × ( ′a set ⇒ real)) ⇒ bool
countably-additive(F, Pr) =
(∀ f::(nat ⇒ ′a set). range(f) ⊆ F ∧

(∀m n. m 6= n −→ f(m) ∩ f(n) = {}) ∧
(
⋃

i. f(i)) ∈ F
−→ (λn. Pr(f(n))) sums Pr (

⋃
i. f(i)))

consts measure-space:: ( ′a set × ′a set set × ( ′a set ⇒ real)) ⇒ bool
measure-space (U, F, Pr) =

(sigma-algebra (U, F) ∧ positive (F, Pr) ∧ countably-additive (F, Pr))

consts prob-space:: ( ′a set × ′a set set × ( ′a set ⇒ real)) ⇒ bool
prob-space (U, F, Pr) = (measure-space (U, F, Pr) ∧ Pr U = 1)

Fig. 5. Definition of probability space

The notion of σ-algebra is a generalization of algebra. As shown in Fig.
5, the only difference is that algebra is closed under finite union, while
σ-algebra is closed under countable union. A standard way to obtain σ-
algebra is to construct an algebra (U , F ) first, then use operator sigma

to generate a σ-algebra (U , sigma(U ,F )). The definition of sigma is:

consts sigma :: ( ′a set × ′a set set) ⇒ ′a set set

inductive sigma M intros

basic: (let (U , A) = M in (a ∈ A)) =⇒ a ∈ sigma M

empty : {} ∈ sigma M

complement : a ∈ sigma M =⇒ (let (U , A) = M in U − a) ∈ sigma M

union: (
∧

i ::nat . a i ∈ sigma M ) =⇒ (
⋃

i . a i) ∈ sigma M

According to Carathéodory’s extension theorem[11, 12], a measure Pr on
F can be generalized naturally to a measure Pr ′ on sigma(U ,F ), so that
(U , sigma(U ,F ), Pr ′) forms a measure space. The presentation of this
extension theorem in Isabelle/HOL is as follows:

[[algebra (U , F ); positive (F , Pr); countably-additive (F , Pr)]]
=⇒ ∃P . (∀A. A ∈ F −→ P A = Pr A) ∧ measure-space (U , sigma (U , F ), P)

This theorem suggests the way we are going to construct the probability
space for infinite executions. The base set is Path, on top of which an alge-



bra PA will be defined. A measure µ on PA will be given with µ(Path)=1.
Using extension theorem, we can then get the desirable probability space.

3.3 An algebra of infinite execution sets with measure µ

The set of infinite executions with finite execution τ as prefix is defined
as follows:

palg-embed τ ≡ {σ ∈ Path. [[σ]]|τ | = τ}

The |τ | in this definition is the length of τ .

A set of infinite executions is said to be supported by a list of finite
executions [τ0, τ1, τ2, . . ., τn], if every infinite execution in the set is
prefixed by some τ i among τ0, τ1, τ2, . . ., τn. It is easy to see that the
set supported by [τ0, τ1, τ2, . . ., τn] is

⋃n
i=0

(palg-embed τ i). But we
write the supported set in a slightly different way as palgebra-embed([τ 0,

τ1, τ2, . . ., τn]), which is defined as the following:

consts palgebra-embed :: ′a list list ⇒ ′a seq set

primrec

palgebra-embed [] = {}
palgebra-embed (τ#l) = (palg-embed τ ) ∪ palgebra-embed l

The subset family PA mentioned earlier is defined as:

PA ≡ {S . ∃ l . palgebra-embed l = S ∧ S ⊆ Path}

The set family PA can be understood as consisting of only those sets
of valid infinite executions which are supported by some list of finite
executions.

We intend to base the measure of a set S ∈ PA on the measures of its
supporting lists. For this purpose, the measure µ0 is defined as:

µ0 l ≡ (
∑

τ ∈ set l . π τ )

However, a set S may be supported by many different lists with different
µ0-values. It is natural to define the measure of S to be the lower limit of
these µ0-values. The following measure µ1 is a refinement of µ0 to serve
this intention:

µ1 l ≡ inf (λr . ∃ l ′. palgebra-embed l = palgebra-embed l ′ ∧ µ0 l ′ = r)

Measure µ1 will always return the measure of S properly, no matter which
l among the supporting lists of S is used as argument.

Due to the restriction of Isabelle/HOL, we can not give a measure on PA

explicitly. To solve this problem, the following measure µ is defined on
the type of all infinite execution sets, not just those in PA:



constdefs µ:: ′a seq set ⇒ real

µ S ≡ sup (λr . ∃ b. µ1 b = r ∧ (palgebra-embed b) ⊆ S )

It can be shown that [[S ∈ PA; S = palgebra-embed(l)]] =⇒ µ(S ) = µ1(l),
which means the formal definition of µ is in accordance with our informal
intentions discussed above. The definitions of µ and µ1 are copied from
[11].

We proved that algebra (Path, PA), positive (PA, µ) and countably-additive

(PA, µ). These are precisely the conditions required by Carathéodory’s

extension theorem. By applying the extension theorem, we get the proba-
bility space (Path, sigma(Path, PA), P), on which we are going to prove
that the set of parametrically fair executions is measurable and has prob-
ability 1.
The proof of algebra (Path, PA) is straightforward and skipped. The
proof of countably-additive (PA, µ) is based on the fact that:

[[range f ⊆ PA;
∧

m n. m 6= n =⇒ f m ∩ f n = {}; (
⋃

n f n) ∈ PA]]
=⇒ ∃N . ∀ n. N ≤ n −→ f n = {}

The proof of this lemma is done using an argument similar to the proof of
König’s Lemma[12]. This lemma means that for any family f of subsets
with (

⋃
i . f i) ∈ PA, there are only finite many f (i)s that are nonempty.

Therefore, countable additivity is reduced to finite additivity, which is
proved easily by induction.

Some routine properties of probability space are listed as below:

– Monotonicity: If A and B are measurable and A ⊆ B, then P(A)≤P(B).
– Subadditivity: If family Ai is measurable, then P (

⋃
∞

i=0
Ai) ≤

∑
∞

i=0
P (Ai).

– Lower-Continuity: If A0 ⊆ A1 ⊆ . . . ⊆ An . . . is a chain of measur-
ables, then limi→∞ P (Ai) = P (

⋃
∞

i=0
Ai).

– If ∀ i . P(f (i)) = 1, and n 6= 0, then P(
⋂

i ∈ {0 ..<n}. f (i)) = 1.

4 The probabilistic meaning of parametric fairness

The purpose of this section is to show that:

set pel 6= {} =⇒ P {σ ∈ Path. PF CS pel σ} = 1 (1)

which means the probability of the set of valid parametrically fair execu-
tions is 1. This result gives a probabilistic meaning to parametric fairness
by showing that almost all valid probabilistic executions are parametri-
cally fair. All the sets, which appear as arguments to P in this section,
have been proved to be measurable in the probability space constructed
in Section 3.

For this purpose, the following lemma is proved:



set pel 6= {} =⇒ {σ ∈ Path. PF CS pel σ} = (
⋂

ι∈set pel Fairι ι CS lf )

to reduce the calculation of P {σ ∈ Path. PF CS pel σ} to the calculation
of P(

⋂
ι∈set pel Fair ι ι CS lf ). The Fair ι represents a generalized way

to present fairness[10], where fairness is defined relative to labels. The
definition of Fair ι is given in Fig. 6.

enabled ι cs γ τ ≡ ∃ e. (ι ∈ γ (τ , e) ∧ (τ , e) ∈ cs)

taken ι cs γ τ ≡ ι ∈ γ (tl(τ ), hd(τ ))

fairι ι cs γ σ ≡
σ |= �♦(λσ i. enabled ι cs γ [[σ]]i) −→ σ |= �♦(λσ i. taken ι cs γ [[σ]]Suc(i))

fair L cs γ σ ≡ (∀ ι ∈ L. fairι ι cs γ σ)

Fairι ι cs γ ≡ {σ. cs ` σ ∧ fairι ι cs γ σ}

lf (τ , e) = {(Q, E). Q τ ∧ e = (E τ )}

Fig. 6. A general fairness notion

The definition of Fair ι uses fair ι, where fair ι ι cs γ σ means the particular
execution σ is fair to label ι. An infinite execution is said to be fair to
a label ι if ι is taken infinite many times whenever it is enabled infinite
many times in σ. The parameter γ in both Fair ι ι cs γ and fair ι ι cs γ

σ is used to assign label sets to events so that the notions enabled and
taken can be made precise. For any event e, expression γ(τ ,e) represents
the set of labels assigned to e under system state τ . A label ι is said to
be enabled in state τ (written as enabled ι cs γ τ) if there exists some
event e eligible to happen under state τ and ι belongs to γ(τ ,e). A label
ι is said to be taken in state τ if ι is assigned to the last execution step
of τ . The last step of τ is denoted by hd(τ) and the state before the last
step is denoted by tl(τ).

The expression Fair ι ι cs γ yields the set of infinite executions of concur-
rent system cs, which are fair to label ι. The expression

⋂
ι∈set pel Fair ι ι

CS lf represents executions of CS which are fair to every label ι in the set
set(pel). In the latter expression, labels are the (Q , E )-pairs contained
in the list pel. A (Q , E )-pair is said to be assigned to (τ ,e) if Q(τ) ∧
e=E (τ) holds. This notion is reflected in the function lf, which is used as
the parameter γ.

The next step is to show that P(
⋂

ι∈set pel Fair ι ι CS lf ) = 1. Since we
have ∀ i . P (f i) = 1 ∧ n 6= 0 =⇒ P (

⋂
i ∈ {0 ..<n}. f i) = 1 for any

set family f, it suffices to show P (Fair ι ι CS lf ) = 1 for any one label ι.
Equivalently, it is to show that P (Path−(Fair ι ι CS lf )) = 0.



The next lemma we have proved is:

Path−(Fairι ι CS lf ) =(
⋃

τ∈{xs. CS ` xs} Γ ι CS lf τ)

Now, we only need to show:

P(
⋃

τ∈{xs. CS ` xs} Γ ι CS lf τ ) = 0

According to the subadditivity of probability measure mentioned in Sec-
tion 3.3, it is sufficient to show that P (Γ ι CS lf τ) = 0 for each finite
execution τ . The definition of Γ is:

Γ ι cs γ τ ≡
{σ ∈ palg-embed τ .

(∀ i . ∃ j . i ≤ j ∧ enabled ι cs γ [[σ]]j + (|τ |)) ∧

(∀ j≥|τ |. ¬ taken ι cs γ [[σ]]Suc j)}

An infinite execution σ is said to be unfair to ι and indexed by τ if τ is
a prefix of σ and starting from the end of τ , ι is not taken on σ while
being enabled infinitely often at the same time. The expression Γ ι cs γ

τ represents the set of such infinite executions. Suppose σ is in Γ ι cs γ

τ , if we count the number of times ι is enabled after τ , this number will
eventually transcend any natural number i. If UF ι cs γ τ i is the set of
infinite executions (the definition is given in Fig.7), in which the number
of times ι is enabled after τ is no less than i+1, then we have:

Γ ι CS γ τ ⊆ UF ι CS γ τ i

from this, we have P(Γ ι CS lf τ)≤P(UF ι CS lf τ i). If we can futher
prove that limi→∞P (UF ι CS lf τ i) = 0, then we can have P (Γ ι CS

lf τ)=0.

Since all UF -sets are in sigma(Path,PA), and are not supported by finite
sets of finite executions. This makes UF -sets difficult to deal with. The
set function BUF is defined in Fig. 7 to solve this problem, where the
definition limits the value of k to the parameter up, so that every BUF ι

CS lf τ up i is supported by a corresponding finite set SUF ι CS lf τ up

i which consists of finite executions. Therefore, we have

P (BUF ι CS lf τ up i) = (
∑

τ ∈ SUF ι CS lf τ up i . π(τ )) (2)

Every finite execution in SUF ι CS lf τ up (i+1 ) is extended from some
τ1∈SUF ι CS lf τ up i by avoiding all the events to which ι is assigned.
Due to the avoidance of these events and (2), we managed to prove that:

P (BUF ι CS lf τ up (i + 1 )) ≤ (1 − bnd) ∗ P (BUF ι CS lf τ up i) (3)



e-at ι cs γ σ j k ≡ (if enabled ι cs γ [[σ]]j+k then 1 else 0)

t-at ι cs γ σ j k ≡ (if taken ι cs γ [[σ]]Suc(j+k) then 1 else 0)

cnt-e ι cs γ σ j 0 = e-at ι cs γ σ j 0
cnt-e ι cs γ σ j (Suc i) = e-at ι cs γ σ j (Suc i) + cnt-e ι cs γ σ j i

cnt-t ι cs γ σ j 0 = t-at ι cs γ σ j 0
cnt-t ι cs γ σ j (Suc i) = t-at ι cs γ σ j (Suc i) + cnt-t ι cs γ σ j i

UF ι cs γ τ i ≡ {σ ∈ palg-embed τ . ∃k. enabled ι cs γ [[σ]](( |τ | )+ k) ∧

cnt-e ι cs γ σ ( |τ | ) k = Suc i ∧ cnt-t ι cs γ σ ( |τ | ) k = 0}

BUF ι cs γ τ up i ≡ {σ ∈ palg-embed τ . ∃k<up. enabled ι cs γ [[σ]](( |τ | )+ k) ∧

cnt-e ι cs γ σ ( |τ | ) k = Suc i ∧ cnt-t ι cs γ σ ( |τ | ) k = 0}

SUF ι cs γ τ up i ≡ {[[σ]](( |τ | ) + Suc k) |σ k. σ ∈ palg-embed τ ∧ k < up ∧

enabled ι cs γ [[σ]](( |τ | )+ k) ∧

cnt-e ι cs γ σ ( |τ | ) k = Suc i ∧ cnt-t ι cs γ σ ( |τ | ) k = 0}

Fig. 7. Definitions of sets of unfair executions

This together with the lemma limup→∞P (BUF ι cs γ τ up i) = P (UF

ι cs γ τ i) finally leads to the proof of

P (UF ι CS lf τ (i + 1 )) ≤ (1 − bnd) ∗ P (UF ι CS lf τ i),

which entails that limi→∞P(UF ι CS lf τ i) = 0.

Packing all the above up, the final result in equation (1) is obtained.

5 Related works

Paulson’s inductive approach for protocol verification[13] has been used
to verify fairly complex security protocols [7, 8]. We have proposed an
extension[1] to the inductive approach, which has been applied to several
applications[2–4]. This paper aims for providing a probabilistic basis for
our extension.

Probability space constructions for I/O automata can be found in[12, 14].
However, the execution sequence for I/O automata is an alternation of
states and events, which is different from the pure event sequence used
in our approach. This difference makes such works unsuitable for our
purpose.

The probability space construction in this paper is heavily inspired by
Hurd’s construction of probability space over sets of 0-1 sequences[11],
but our construction is more general in the following senses:



– Our execution sequence contains events, the type of which could be
very rich, while Hurd’s sequence contains only 0 and 1. Because of this
difference, the canonical form inductive principle in [11] does not hold
anymore, this makes the proofs of canonical properties significantly
more complicated.

– In our construction, the probability of the event e happening under
system state τ is given by R(τ , e), which is varying from state to
state. Because of this, the measure on finite execution τ 1@τ2 is no
longer distributive, i.e. π(τ 1@τ2)=π(τ1)×π(τ2) no longer holds. We
have to find new proofs for lemmas which depend on this distributive
property and these new proofs tend to be more complicated.

Generally, to deal with these differences, we have to use different tech-
niques. Although many lemmas look very similar, their proofs are actually
very different and much more complicated in our work. Another difference
is that we define measure space as a triple (U , F , Pr), where the U is the
explicitly given base set. We do not follow Hurd’s treatment to represent
U as the UNIV -set of the execution sequence type, because in our set-
ting the base set contains only valid infinite executions, therefore, we need
the additional U to make this clear. Additionally, our treatment seems
more standard than Hurd’s, because standard mathematics treatment of
probability theory is typeless.

Stefan Richter [15] ported some of Hurd’s work to Isablle/HOL for the
purpose of probabilistic algorithm verification. The definition of sigma

and ten of our lemmas are copy-and-modified from Richter’s work, the
modification is due to the above mentioned difference in the definition of
measure space. This overlapped part consists only of a very small part
of our formalization. Additionally, we have given a full Isabelle proof of
the Carathéodory’s extension theorem, which is absent in Stefan Richter’s
work.

As discussed in [16], there are many fairness notions with weak fairness

and strong fairness as the standard ones. Nonstandard fairness notions,
such as extreme fairness[5] and α-fairness[9], are introduced to reflect
more adequately the underlying probabilistic execution, so that liveness
proofs can be simplified. Baier proposed a general notion of fairness[10]
which subsumes all existing fairness notions. This paper shows that para-
metric fairness is just another instance of this general fairness notion.

While standard fairness notions can be expressed directly using LTL,
extreme fairness and α-fairness and our parametric fairness can not.
Therefore, existing formulation of both extreme fairness and α-fairness
are extra-LTL, at meta level, not mechanized. In this paper, LTL is em-



bedded in Isabelle/HOL, therefore HOL serves as a mechanized meta
language, in which nonstandard fairness notions can be expressed as well
as its probabilistic model. We work under the belief that a mechanized
meta theory may yield more reliability, maintainability and flexibility, as
argued in Müller’s thesis[17].

Compared with [17], embeddings of temporal logic are very similar. How-
ever, our method uses a much simpler system model, and we believe this
simpler model is adequate and more convenient to use in practice, as
shown in the works[13, 7, 8, 2–4]. Work [17] deals with standard fairness
notions, while this paper deals with nonstandard fairness. Therefore, the
liveness proof method is inherently different.

6 Conclusion

Inductive protocol verification is a method worth further extending. This
paper together with [1–4] makes such an extension sound and practi-
cal. Liveness results usually are obtained using model-checking techniques
[18]. Compared with the usual model-checking approach, our liveness veri-
fication method is based on theorem proving. It has the drawback of being
less automatic, but it also has the advantage of not suffering from state
explosion. Theorem proving based methods can verify systems of arbi-
trary large size, whereas model-checking based methods usually can only
verify systems up to a limited size. By further automating, our method for
liveness proof could become a promising alternative to model-checking.

In this paper, a probability space is established on the set of valid infi-
nite executions of a concurrent system. It is then proved that the set of
parametrically fair executions has probability 1 in this probability space.
This result assigns a meaning to the conception of Parametric Fairness

we proposed in [1], i.e. almost all valid infinite executions are Parametri-

cally Fair. Therefore, Parametric Fairness is a reasonable fairness notion
which captures the non-deterministic nature of concurrent execution.

Acknowledgments: We have benefited greatly from many E-mail discus-
sions with Joe Hurd and Stefan Richter.

References

1. Zhang, X., Yang, H., Wang, Y.: Liveness reasoning for inductive protocol verifica-
tion. In: The ‘Emerging Trend’ of TPHOLs 2005. Oxford University Computing
Lab. PRG-RR-05-02 (2005) 221–235



2. Yang, H., Zhang, X., Wang, Y.: Liveness proof of an elevator control system.
In: The ‘Emerging Trend’ of TPHOLs 2005. Oxford University Computing Lab.
PRG-RR-05-02 (2005) 190–204

3. Yang, H., Zhang, X., Wang, Y.: A correctness proof of the srp protocol. In:
SSN2006: The 2nd international workshop on security in systems and networks.
(2006)

4. Yang, H., Zhang, X., Wang, Y.: A correctness proof of the dsr protocol. In Cao, J.,
Stojmenovic, I., Jia, X., Das, S.K., eds.: The Second International Conference on
Mobile Ad-hoc and Sensor Networks (MSN2006). Number 4325 in LNCS, Berlin
Heidelberg, Springer (2006) 72–83

5. Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: STOC
’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing,
New York, NY, USA, ACM Press (1983) 278–290

6. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Computer Security 6 (1998) 85–128

7. Paulson, L.C.: Verifying the set protocol: Overview. In: FASec. (2002) 4–14
8. Paulson, L.C.: Inductive analysis of the internet protocol tls. ACM Transactions

on Computer and System Security 2(3) (1999) 332–351
9. Pnueli, A., Zuck, L.D.: Probabilistic verification. Information and Computation

103(1) (1993) 1–29
10. Baier, C., Kwiatkowska, M.Z.: On the verification of qualitative properties of

probabilistic processes under fairness constraints. Inf. Process. Lett. 66(2) (1998)
71–79

11. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, Univ. of
Cambridge (2002)

12. Wu, S.H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic
I/O automata. In: Fifth International Conference on Concurrence Theory. Volume
836 of LNCS. (1994)

13. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1-2) (1998) 85–128

14. Segala, R.: Modeling and verification of randomized distributed real-time systems.
PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science (1995)
Also appears as technical report MIT/LCS/TR-676.

15. Richter, S.: Formalizing integration theory with an application to probabilistic
algorithms. In Slind, K., Bunker, A., Gepalakrishnan, G., eds.: Proceedings of
TPHOLs 2004. Number 3223 in LNCS, Pack City, Springer (2004) 271–286

16. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer-
Verlag (1986)

17. Müller, O.: A verification environment for I/O automata based on formalized
meta-Theory. PhD thesis, Technische Universität München (1998)

18. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5) (1994) 1512–1542


