
Forschungs- und Entwicklungsprojekte

Informatik Forsch. Entw. (1998) 13: 227–234

In dieser Rubrik erscheinen in unregelmäßiger Folge Kurzdarstellungen geplanter, laufender oder abgeschlossener Projekte. Die Darstellungen
werden in der Regel von den Projektbeteiligten geliefert. Die Auswahl erfolgt durch die Herausgeber. Dabei wird die Bedeutung des Projekts
für die Fortentwicklung der Informatik das Hauptkriterium sein. Bei geplanten und laufenden Projekten ist ein wichtiges Kriterium der Wunsch,
Kontakte zu etablieren und die Zusammenarbeit zwischen verschiedenen Gruppen zu fördern. Bei abgeschlossenen Projekten geht es primär
um die Vermittlung von Erfahrungen und Ergebnissen, die sich nicht für die Ver̈offentlichung in redaktionellen Beiträgen eignen.

Entwicklung großer Systeme mit generischen Methoden
– Eine Übersicht über den Sonderforschungsbereich 501
J. Avenhaus, R. Gotzhein, T. Ḧarder, L. Litz, K. Madlener, J. Nehmer, M. Richter, N. Ritter, D. Rombach,
B. Scḧurmann, G. Zimmermann

Universiẗat Kaiserslautern, Postfach 30 49, D-67653 Kaiserslautern, Deutschland

1 Einleitung

Am 1. Januar 1995 wurde von der Deutschen Forschungsge-
meinschaft der Sonderforschungsbereich 501 an der Univer-
sität Kaiserslautern eingerichtet. Er hat sich das ThemaEnt-
wicklung großer Systeme mit generischen Methodengestellt
und greift damit ein Kernproblem der Informatik erneut auf:
die systematische Konstruktion und Fertigung von Software
nach ingenieurgem̈aßen Prinzipien.

30 Jahre nach Prägung des BegriffsSoftware Engineer-
ing durch F. L. Bauer [1] steckt die Disziplin noch immer
in den Kinderschuhen. In einer kritischen Würdigung des
Erreichten nach 25-jähriger Forschung auf diesem Gebiet
stimmen f̈uhrende Wissenschaftler und professionelle Soft-
wareentwickler weitgehend darin̈uberein, daß wesentliche
Ziele der Forschung nicht erreicht wurden (Goos [7], Denert
[5], Wendt [21], Endres [8, 9]). Der Einfluß auf die indu-
strielle Softwarefertigung war deshalb bisher gering. Soft-
wareentwicklungsprojekte sind nach wie vor mit einem ho-
hen Risiko behaftet, da weder die Qualität der produzierten
Software noch der Entwicklungsaufwand mit der notwendi-
gen Genauigkeit planbar sind [15].

Der Sonderforschungsbereich 501 ist Teil weltweiter An-
strengungen, aus den Fehlern und Rückschl̈agen 25-j̈ahriger
Forschung zu lernen und der Disziplin des Software En-
gineering eine neue Richtung zu geben. Im Zentrum die-
ser Anstrengungen stehen Methoden, die eine systematische
Wiederverwendung von Software und den zu ihrer Fertigung
benutzten Prozessen zum Gegenstand haben [10–13, 16].

Dieser Aufsatz ist wie folgt gegliedert: In Abschnitt 2
werden die Defizite der heute praktizierten Softwareent-
wicklungsmethodik herausgearbeitet. Sie bilden die Moti-
vation für den wissenschaftlichen Ansatz des SFB, der in
Abschnitt 3 dargestellt wird. Abschnitt 4 gibt einëUbersicht
über die Gliederung des SFB 501 und die gegenwärtig
geförderten Projekte. Abschnitt 5 schließt mit einem Aus-
blick auf die langfristigen Ziele.

2 Defizite heutiger Softwaretechnologie

Heutige Verfahren zur Softwareentwicklung folgen im allge-
meinen dem Top-Down-Ansatz: ausgehend von einer voll-
sẗandigen, m̈oglichst formalen Aufgabenbeschreibung wird
die Software in einem mehrere Phasen umfassenden Prozeß
bis hin zum ablauff̈ahigen Produkt entwickelt, getestet, in-
tegriert und installiert. Wasserfallmodell, Spiralmodell und
V-Modell unterscheiden sich zwar in der spezifischen Vor-
gehensweise, gründen aber einheitlich auf der Vorstellung,
daß Softwareentwicklung als Prozeß der schrittweisen Ver-
feinerung/Konkretisierung einer initial nur in vagen Um-
rissen vorhandenen Lösungsstruktur charakterisiert werden
kann. Softwareprodukte, die aus einem derartigen Prozeß
entstehen, sind naturgemäß Unikate, da an keiner Stelle ein
expliziter R̈uckgriff auf Software oder sonstige Erfahrungen
aus fr̈uheren Entwicklungsprojekten eingeplant ist (er findet
höchstens implizit in den K̈opfen der Entwickler, ohne eine
sichtbare Verankerung im Prozeßmodell, statt).

An der Effektiviẗat dieses Ansatzes bestehen erhebliche
Zweifel. Die Kritik konzentriert sich dabei auf die folgenden
zwei Argumente:

a) Bei der enormen Komplexität heutiger Softwaresysteme
ist es unrealistisch, von der Vollständigkeit einer Anfor-
derungsdefinition vor Beginn des eigentlichen Entwick-
lungsprozesses auszugehen. Stand der Praxis ist viel-
mehr, daß Anforderungsdefinitionen unvollständige Skiz-
zen einer Aufgabenbeschreibung sind, die erst im Projekt-
verlauf allm̈ahlich pr̈azisiert und vervollsẗandigt werden.
Ausdruck der Komplexiẗat sind die folgenden typischen
Eigenschaften großer Softwaresysteme:
– Sie sind nebenläufig, verteilt und heterogen in Bezug

auf die unterliegenden Hard- und Softwareplattfor-
men.

– Nichtfunktionale Eigenschaften wie Zeitbedingungen,
Zuverl̈assigkeit, Erweiterbarkeit, Skalierbarkeit, Be-
dienungsfreundlichkeit etc. stellen einen wesentlichen
Teil der Anforderungen dar.



228

– Das Gesamtsystem kann ohne Abstraktionen, Hierar-
chisierung und Modularisierung nicht mehr von einer
einzelnen Person verstanden werden.

– Die Entwicklung der Software erfolgt durch ein größe-
res Team von Spezialisten, wobei jedes Teammitglied
an einer abgegrenzten,überschaubaren Teilaufgabe
arbeitet, die keine Einsicht in die Arbeitsweise des
gesamten Systems gewährt.

b) Wiederverwendung wird als methodisches Element in
heutigen Softwareentwicklungsprozessen praktisch igno-
riert. Hierzu geḧoren
– die Formalisierung und Speicherung der Konzept-,

Struktur- und Vorgehensbeschreibungen,
– das Auffinden dieser Sachverhalte (und ihrer Abhän-

gigkeiten), deren Wiederverwendung angestrebt wird,
wie z.B. Software, Entwicklungsschritte und sonstige
Erfahrungen aus früheren Projekten,

– die Übernahme beẅahrter Konzepte und Vorgehens-
weisen und ihre Anpassung an aktuelle Anforderun-
gen.

Ohne wiederverwendungsgerechte Aufbereitung der Soft-
ware sowie der zu ihrer Herstellung benutzten Prozesse
bleibt der Wiederverwendungsgrad naturgemäß gering.

Insgesamt hat man den Eindruck, daß die gegenwärtige
Softwareentwicklungspraxis eher für die Entwicklungüber-
schaubarer, vorzugsweise sequentieller Programme durch
einzelne Entwickler geeignet ist und damit dem erreichten
Komplexiẗatsgrad heutiger Softwaresysteme nicht gerecht
wird. Durch Konzepte wie Prozeßmodellierung [17], Objekt-
orientierung [4], Frameworks [11], Design Patterns [6] und
Komponentenorientierung [20] wurden Entwicklungen ein-
geleitet, die eine wiederverwendungsgerechte Aufbereitung
von Software zum Ziel haben. Die Einbettung dieser Kon-
zepte in Prozeßmodelle ist aber noch weitgehend ungelöst.

3 Der wissenschaftliche Ansatz des SFB 501

Der im SFB 501 verfolgte wissenschaftliche Ansatz zielt
auf die Formalisierung von Wiederverwendungskonzepten
ab und basiert darauf, Softwareentwicklung als eine Labor-
disziplin zu begreifen, bei der durch entwicklungsbeglei-
tendes Erfassen, Messen und Bewerten verschiedener Fak-
ten Vorkenntnisse aus früheren Entwicklungsprojekten für
zukünftige Entwicklungsprojekte bereitgestellt werden. Soft-
wareentwicklungsprojekte sind damit kontrollierte Experi-
mente [16]. Diesem Grundgedanken trägt die in Abb. 1 dar-
gestellte Rahmenarchitektur einer Softwareentwicklungsum-
gebung Rechnung. Sie geht auf Basili zurück und wird als
Software Experience Factory bezeichnet [3]. Wir unterschei-
den grunds̈atzlich zwischen dem Softwareentwicklungs-
Kernsystem (kurz SE-Kern) und der projektspezifischen Soft-
ware-Entwicklungsumgebung für die Durchf̈uhrung jeweils
eines Entwicklungsprojektes.

Der SE-Kern stellt eine Sammlung von Entwicklungs-
werkzeugen sowie ein dom̈anenspezifisches Repository, das
aus Mangel an präziseren Begriffen alsErfahrungsdaten-
bank(kurz Erfahrungs-DB) bezeichnet wird, bereit [14]. Die
Erfahrungs-DB entḧalt in einer strukturierten Form nützliche
Information aus fr̈uheren Projekten, die für die Wieder-
verwendung besonders aufbereitet wurde. Die formalisierte

Abb. 1. Rahmenarchitektur einer domänenspezifischen Softwareentwick-
lungsumgebung

Darstellung dieser Information für Zwecke der automati-
schen Wiederverwendung in Generatoren ist ein besonderes
Anliegen des SFB. Beispiele für Inhalte der Erfahrungs-DB
sind Entwurfsmustersammlungen, Komponenten, Architek-
turbeschreibungen, dokumentierte Entwurfsentscheidungen,
Prozeßmodelle sowie Erfahrungen mit Werkzeugen und son-
stigen wiederverwendbaren Artefakten.

Die dom̈anenspezifische Auslegungdes SE-Kerns wird
als essentiell angesehen. Nur durch die Spezialisierung auf
eine bestimmte Anwendungsdomäne k̈onnen Besonderheiten
dieser Dom̈ane in der Erfahrungs-DB gezielt berücksichtigt
werden. Architekturzentrierte Prozeßmodelle, bei denen der
Entwicklungsprozeß durch Vorkenntnisseüber geeignete Ar-
chitekturen einer Anwendungsdomäne gesteuert wird, er-
scheinen besonders aussichtsreich und stehen gegenwärtig
im Vordergrund der Untersuchungen im SFB [2, 19]. Die
Produkte aus verschiedenen Entwicklungsprojekten einer
Anwendungsdom̈ane k̈onnen als Varianten einer System-
familie aufgefaßt werden, die derselben Systemarchitektur
gen̈ugen. Einekomponentenbasierte Systementwicklunger-
leichtert dabei die Konfiguration und Erweiterbarkeit solcher
Produkte. Es besteht die berechtigte Hoffnung, daß sich die
in einer Anwendungsdom̈ane beẅahrten Prinzipien f̈ur den
Aufbau des SE-Kerns verallgemeinern und auf andere An-
wendungsdom̈anenübertragen lassen.

Wird ein neues Entwicklungsprojekt gestartet, so muß
vom SE-Kern eineprojektspezifische Softwareentwicklungs-
umgebungbereitgestellt werden. Sie beinhaltet die Aus-
wahl und Einstellung der benötigten Werkzeuge und Kon-
texte, die Erstellung eines Projektplanes inkl. Instrumen-
tierung sowie die eigentliche Ausführungsbeschreibung des
Projekts. Im Verlaufe der Projektdurchführung fallen auf-
grund der begleitenden Messungen vielfältige Projektdaten
an. Sie werden nach vorgegebenen Methoden analysiert und
dienen der inkrementellen Verbesserung/Ergänzung der in
der Erfahrungs-DB gespeicherten Pläne und Beschreibungen
sowie der Werkzeugsammlung. Jedes Entwicklungsprojekt
ist somit als ein r̈uckgekoppeltes Experiment angelegt: neue
Erkenntnisse aus der aktuellen Projektdurchführung fließen
unmittelbar in dieVerbesserung der Entwicklungsmethodik
und des Produktesselbst zur̈uck.



229

Abb. 2. Organisationsstruktur des SFB 501

Eine Schl̈usselrolle zur wiederverwendungsgerechten Ge-
staltung von Software sowie der Entwicklungsprozesse im
SFB 501 spielt das Konzept derGeneriziẗat. Wir verste-
hen darunter die Trennung einer gegebenen Struktur in
variante und invariante Teile sowie die Parametrisierung
der varianten Teile, die nach einem vorgegebenen Gene-
rierungsschema die varianten Teile erzeugen. Die generi-
sche Auslegung einer Komponentenbibliothek im Rahmen
einer dom̈anenspezifischen Systemarchitektur ist ein Beispiel
dafür [18]. Mit dem Konzept der Generizität wird in ver-
schiedenen Teilprojekten des SFB intensiv experimentiert,
wobei als erste Anwendungsdomäne die ,,Geb̈audetechnik“
ausgeẅahlt wurde.

4 Die Organisation des SFB 501

Der SFB ist in die folgenden Projektbereiche gegliedert:

A: Softwareentwicklungslabor
B: Generische Modelle und Methoden der Systementwick-

lung
C: Beschreibungstechniken
D: Prototypanwendungen

Projektbereich A

Im Projektbereich A wird ein Softwareentwicklungslabor be-
trieben, das die in Abb. 2 gezeigte Rahmenarchitektur rea-
lisiert. Alle methodischen Ergebnisse des SFB, die Werk-
zeugreife erreicht haben, fließen im SE-Kern zusammen. Die
Projekte dieses Projektbereichs stellen einerseits die für die
Durchführung von Experimenten notwendige Infrastruktur
bereit und unterstützen zudem gezielt Entwicklungsprojekte
in ausgeẅahlten Anwendungsdom̈anen. Gegenẅartig wer-
den die folgenden Teilprojekte gefördert:

Teilprojekt A1: SE-Labor

Softwareentwicklungsansätze (Techniken, Methoden und
Werkzeuge) m̈ussen experimentell erprobt werden. Experi-
mente sind nicht nur für die Validierung wissenschaftlicher

Hypothesen, sondern auch für die Gewinnung von Erfah-
rungswerten bez̈uglich des sp̈ateren Einsatzes unter realisti-
schen Projektbedingungen unersetzlich. Ziele des Teilprojek-
tes sind die Bereitstellung einer geeigneten Softwareentwick-
lungsumgebung für die experimentelle Erprobung der in den
übrigen Teilprojekten entwickelten Ansätze sowie die Un-
tersẗutzung der Teilprojekte bei Planung und Durchführung
von Experimenten, bei Analyse und Aufbereitung der experi-
mentell gewonnenen Daten sowie bei Ablage der Ergebnisse
in einer Erfahrungs-DB. Die initial aus industriell käuflichen
Komponenten aufgebaute Softwareentwicklungsumgebung
wird gegenẅartig zur komfortableren Unterstützung von Ex-
perimenten um Funktionen für Instrumentierung, umfas-
sendes Konfigurationsmanagement, objekt-relationale Da-
tenbankverwaltung (siehe Teilprojekt A3) sowie Prozeßma-
nagement (siehe Teilprojekt A2) ergänzt.

Bislang wurden mehrere Experimente – teils in Form
kontrollierter Experimente mit einzelnen Entwicklungsansät-
zen, teils in Form von Fallstudien in Entwicklungsprojek-
ten – untersẗutzt. Erste Fallstudien in durchgängigen Soft-
wareentwicklungen haben zu quantitativen Baselinesüber
Zeit, Aufwand und Fehler geführt. Diese Baselines wer-
den allen zuk̈unftigen Fallstudien als Referenz für Verbes-
serung dienen. Mehrere Experimente mit alternativen Ent-
wicklungsans̈atzen wurden bereits durchgeführt. Erfolgsver-
sprechende Resultate wurden dabei insbesondere mit neuen
Spezifikations- und Inspektionsansätzen erzielt. Alle Ergeb-
nisse sind aufbereitet und in der Erfahrungs-DB verfügbar.

In Zukunft sollen versẗarkt Variationen von Fallstudien
mit dem Ziel durchgef̈uhrt werden, das in kontrollierten Ex-
perimenten entdeckte Potential neuer Entwicklungsansätze
in realistischeren Projektkontexten nachzuprüfen. Dabei wird
neben den von Mitarbeitern durchgeführten Fallstudien so-
wie den von Studenten im Rahmen von Praktika durch-
geführten kontrollierten Experimenten zukünftig versẗarkt
auf industrielle Fallstudien gesetzt. Damit soll eine kontrol-
lierte, durchg̈angige Erfahrungsgewinnung – ausgehend von
kontrollierten Experimenten,̈uber Fallstudien im Labor, bis
hin zu Fallstudien in industriellen Pilotprojekten –, wie sie
in anderen Ingenieurdisziplinen durchausüblich ist, auch f̈ur
Software Engineering realisiert werden.

Teilprojekt A2: Entwicklung einer flexiblen Modellierungs-
und Ausf̈uhrungsumgebung
für Softwareentwicklungsprozesse

In jedem Softwareentwicklungsprozeß werden viele Ent-
scheidungen von Entwicklern getroffen, die nicht vorab ge-
plant werden k̈onnen, sondern auf den Ergebnissen vor-
angegangener Schritte basieren. Diese Entscheidungen sind
durch komplexe Wechselwirkungen miteinander verknüpft.
Systematische Unterstützung bei der Durchführung von Soft-
wareentwicklungsprojekten erfordert daher sowohl die inte-
grierte Untersẗutzung technischer Prozesse als auch des glo-
balen Managements vieler Einzelprozesse und deren Wech-
selbeziehungen. Dazu wird in diesem Teilprojekt ein Werk-
zeug entwickelt und experimentell erprobt.

Die Untersẗutzung kreativer T̈atigkeiten erfordert Me-
chanismen zur Veränderung des Projektzustandes und des
Projektplanes ẅahrend der Abwicklung. Dabei entsteht zum



230

einen das Problem, die Repräsentation des Projektplans zu
modifizieren. Zum anderen m̈ussen die Auswirkungen dieser
Umplanung auf den real ablaufenden Entwicklungsprozeß
kontrolliert werden. Das bedeutet, daß die Projektkoordina-
tion systemseitig durch das Verschicken von Benachrichti-
gungen nacḧAnderungen und die Verwaltung von Arbeits-
listen untersẗutzt werden muß. Dies erlaubt es, die von einer
Änderung (z.B. einer Anforderungsänderung) betroffenen
Mitarbeiter zu informieren, so daß diese ihre alten Entschei-
dungen im Licht der neuen Eingaben nochmalsüberdenken
können. Inhaltlich erzwingt dies, daß das Werkzeug kausale
Abhängigkeiten erfaßt und verwaltet, dadurch Verfolgbarkeit
herstellt und damit eine Basis für das automatische Benach-
richtigen von betroffenen Mitarbeitern erhält.

Die in Teilprojekt B2 entwickelten Techniken und Me-
thoden zur flexiblen Planung und Abwicklung von Software-
prozessen dienen dabei als methodische Grundlage. Die zu
realisierende Prozeßunterstützungsumgebung soll ferner das
zielorientierte Messen und Bewerten von Prozessen und Pro-
dukten eines Projekts gestatten.

Teilprojekt A3: Objekt-relationale Datenbanktechnologie
zur Untersẗutzung des Softwareentwicklungsprozesses

Wiederverwendung ist in großen Softwareentwicklungspro-
jekten durch eine gemeinsame Datenbank, einem sogenann-
ten Repository, zu unterstützen. Aus der Vielfalt der Ent-
wicklungsẗatigkeiten ergeben sich weitreichende Anforde-
rungen an das Repository. So müssen sowohl große Men-
gen einfach strukturierter Daten, wie z.B. in Experimenten
gewonnene Meßdaten, als auch komplex strukturierte Ent-
wurfsobjekte, wie z.B. Softwaremodule, und komplexe Do-
kumente, die auch Bilder und Texte umfassen können, inte-
griert verwaltet und verarbeitet werden. Um die heterogenen
Anforderungen bez̈uglich Daten- und Verarbeitungsmodell
angemessen erfüllen zu k̈onnen, muß das verwendete Da-
tenbanksystem an das jeweilige Anwendungsprofil angepaßt
werden k̈onnen. Die Verwendung objekt-relationaler Daten-
banktechnologie, die auf eine Integration objektorientierter
Konzepte und relationaler Datenbanksysteme abzielt, scheint
hier vielversprechend, da durch das Konzept der Erweiter-
barkeit um benutzerdefinierte Datentypen, Funktionen und
Zugriffspfadstrukturen eine Anpassung an die Anwendungs-
domäne besonders unterstützt wird. Obwohl bereits kommer-
zielle Produkte verf̈ugbar sind, die in die Klasse der objekt-
relationalen Systeme eingeordnet werden, ist bei weitem
noch nicht gekl̈art, inwieweit sich relationale und objektori-
entierte Konzepte mit dem Ziel einer geeigneten Modellie-
rungsm̈achtigkeit, ausreichender Erweiterbarkeit, angepaßter
Schnittstellen und angemessenem Leistungsverhalten inte-
grieren lassen.

Folglich hat dieses Projekt die folgenden drei Ziele. Er-
stens soll unter Beachtung des entstehenden SQL3-Standards
auf eine geeignete Integration relationaler und objektorien-
tierter Konzepte hingearbeitet werden. Zweitens soll eine an-
gemessene Client/Server-Architektur entwickelt werden, die
die reine Serverzentrierung gegenwärtiger objekt-relationaler
Systeme ablöst, so daß ein flexibleres Verarbeitungskonzept
für Entwurfsanwendungen, wie die Softwareentwicklung,

geboten werden kann. Dies umfaßt neben der Bereitstel-
lung von DBS-Komponenten zur Verwaltung eines Client-
Caches auch die Erarbeitung von Konzepten und Mecha-
nismen zur dynamischen Bestimmung des Ausführungsorts
(Server oder Client) von Anwendungsfunktionen. Drittens
sollen konkrete, f̈ur den Softwareentwicklungsprozeß spezi-
fische Erweiterungen konzipiert und realisiert werden, die
z.B. die Versionierung von Entwurfsdaten erlauben bzw. die
Zusammenarbeit der Entwurfsdatenverwaltungskomponente
mit der Softwareentwicklungsumgebung ermöglichen.

Projektbereich B

Im Projektbereich B wird in mehreren Projekten das Poten-
tial generischer Ans̈atze erforscht. Dazu werden generische
Prozeßmodelle (Teilprojekte B1, B2) und generische Pro-
duktmodelle f̈ur Kommunikationssysteme (Teilprojekt B4),
Betriebssysteme (Teilprojekt B5) und Anwendungssysteme
(Teilprojekt B10) entwickelt und erprobt. In einigen Teilpro-
jekten erstrecken sich die Untersuchungen auch auf Gene-
rierungstechniken bis hin zur Entwicklung von Generatoren.
Gegenẅartig werden die folgenden Teilprojekte gefördert:

Teilprojekt B1: Generische Modellierung von Prozessen
und Experimenten

Softwareentwicklungsprozesse bestimmen die Qualität der
resultierenden Software. Es gibt eine Vielzahl von Prozes-
sen sowie Entwicklungsansätzen (Techniken, Methoden und
Werkzeuge), die im Rahmen dieser Prozesse eingesetzt wer-
den k̈onnen. Somit stellt sich folgende Planungsaufgabe:
Welcher Prozeß und welche Entwicklungsansätze sind geeig-
net, vorgegebene Projektziele (z.B. hohe Zuverlässigkeit) un-
ter gegebenen Randbedingungen (z.B. vorgegebene Projekt-
zeit) zu erreichen? Zur L̈osung dieser Planungsaufgabe sind
Erfahrungswerte bezgl. des Beitrags aller in Frage kommen-
den Entwicklungsansätze sowie Prozesse auf die relevanten
Projektziele unter den gegebenen Randbedingungen notwen-
dig. Ziel dieses Teilprojekts ist die Entwicklung einer Expe-
rimentiermethodik f̈ur die Gewinnung derartiger (m̈oglichst
quantitativer) Erfahrungswerte.

Bislang wurden folgende Komponenten dieser Experi-
mentiermethodik entwickelt: eine formale Sprache zur For-
mulierung von Softwareprozessen, eine Methodik zum Ent-
wurf von Experimenten, eine Methode zur zielorientierten
Ableitung und Definition von Meßpunkten, eine Menge von
Methoden zur Datenanalyse sowie ein Repository-Schema
zur Ablage experimentell gewonnener Erfahrungen. Diese
Experimentiermethodik wird gegenwärtig im SE-Labor (Teil-
projekt A1) eingesetzt. Laufende Arbeiten konzentrieren sich
auf die Formalisierung sowie generische Auslegung der Ex-
perimentiermethodik zur leichteren Instanziierung neuer Ex-
perimente f̈ur die Applikationsdom̈ane ,,Geb̈audetechnik“
sowie die verbesserte Unterstützung von Softwareentwick-
lern bei der Ausf̈uhrung instrumentierter Prozeßmodelle.
Hierbei sollen insbesondere die Datenerfassung sowie die
Synchronisation von Entwicklungsaufgaben vollständig au-
tomatisiert werden.



231

Wesentliche Forschungsaspekte betreffen:

– die generische Auslegung von Projektplänen und deren
Instrumentierung

– die experimenẗubergreifende Querschnittsanalyse zur
Identifikation wiederverwendbarer Erfahrungen

– die Spezifikation eines DB-Schemas für die Erfahrungs-
datenbank

– die Entwicklung von Verfahren zur effizienten Wieder-
verwendung von Erfahrungen.

Die Forschungsergebnisse dieses Teilprojekts gehen in
die im SE-Labor bereitgestellte Experimentierumgebung
(siehe Teilprojekt A1) ein. Weiterhin wird das in Teilpro-
jekt A2 entwickelte Werkzeug zur integrierten Unterstützung
von management- und technikorientierten Prozessen in Soft-
wareentwicklungsprojekten maßgeblich durch diese For-
schungsergebnisse gespeist.

Teilprojekt B2: Flexible Planung und Steuerung
von Softwareentwicklungsprozessen

Ziel des Teilprojektes B2 ist die Entwicklung von Tech-
niken und Methoden zur flexiblen Planung und Steuerung
komplexer Softwareentwicklungsprojekte. Dazu wurden in
der ersten F̈orderperiode Basistechniken zur Modellierung
und Operationalisierung von Projektplänen sowie der ver-
zahnten Planung und Ausführung entwickelt. Unter der ver-
zahnten Planung und Ausführung verstehen wir dabei die
Möglichkeit, den initialen, nicht vollständig spezifizierten
Plan ẅahrend der Projektabwicklung sukzessive zu ergänzen
und dabei aus vorangegangenen Aktivitäten hervorgegan-
gene oder nur kurzfristig erhältliche Information f̈ur die Pla-
nung zu nutzen.

Große, zum Teil̈uber Jahre laufende Softwareentwick-
lungsprojekte unterliegen darüber hinaus sichändernden
Rahmenbedingungen und Korrekturanforderungen, die eine
Anpassung des Plans noch während der Projektlaufzeit er-
forderlich machen.

Mechanismen, die eine Umplanung während der Projek-
tabwicklung (,,on the fly“) erm̈oglichen, m̈ussen daher in-
tegraler Bestandteil vom prozeßsensitiven Softwareentwick-
lungsumgebungen sein. Aufbauend auf den bisher entwickel-
ten Basistechniken werden daher Techniken und Metho-
den entwickelt, um Plan̈anderungen ,,on the fly“ zu un-
tersẗutzen. Zum einen gehören dazu Techniken zur Ummo-
dellierung der Projektpläne. Zum anderen m̈ussen die Aus-
wirkungen vonÄnderungen in abḧangigen Teilen des Pro-
jektplans auf den Projektzustand berechnet und behandelt
werden k̈onnen. Dazu werden Techniken entwickelt, das
Projekt nach einer̈Anderung automatisch in einen konsi-
stenten Zustand zurückzuf̈uhren. F̈ur Situationen, in denen
eine automatische Reaktion aufÄnderungen nicht m̈oglich
ist, wird ein Benachrichtigungsmechanismus entwickelt, der
betroffene Mitarbeiter̈uber Ursache und Art der̈Anderung
informiert. Voraussetzung dafür ist die Kenntnis kausaler
Abhängigkeiten zwischen den Prozessen, Entscheidungen
sowie den im Projektverlauf erstellten Produkten. Um eine
möglichst gezielte und genaue Benachrichtigung der Mitar-
beiter zu erm̈oglichen, wird dabei Wissen̈uber die Dom̈ane

des Projektes ausgenutzt. Teil der Forschungsaufgabe ist da-
her die Entwicklung von Methoden und Techniken zur auto-
matischen Ableitung von̈Anderungsabḧangigkeiten aus dem
Projektplan sowie die Entwicklung einer Sprache zur For-
mulierung von dom̈anenspezifischen Abhängigkeitsmustern.
Weiterhin werden Techniken zur Abbildung der modellierten
Abhängigkeitsmuster in konkretëAnderungsabḧangigkeiten
ben̈otigt.

Die Forschungsergebnisse dieses Projektes gehen in die
Entwicklung eines Werkzeugs zur integrierten Unterstützung
von management- und technikorientierten Prozessen in Soft-
wareentwicklungsprojekten (siehe Teilprojekt A2) ein.

Teilprojekt B4: Generische Kommunikationssysteme

Langfristiges Ziel des Teilprojekts ist die Bereitstellung von
Verfahren und Techniken zur Entwicklung anwendungsan-
gepaßter, maßgeschneiderter Kommunikationssysteme un-
ter besonderer Berücksichtigung von Echtzeitanforderun-
gen. Die hierzu erforderliche generische Auslegung von
Produkten wird durch musterbasierte Ansätze zur Steige-
rung der Wiederverwendung von Lösungskomponenten und
Entwicklungs-Know-how erreicht.

Grundlagen sind ein allgemeiner, durchgängiger Ent-
wicklungsprozeß, der zur Steigerung des Wiederverwen-
dungspotentials verfeinert worden ist, sowie mehrere Mu-
stersammlungen. In der Anforderungsphase kommen Re-
quirement Patterns zur Anwendung, die aus einer Muster-
sammlung selektiert, an die spezielle Problemstellung ad-
aptiert und schließlich durch einen Kompositionsschritt in-
tegriert werden. Im Rahmen des Systementwurfs erfolgt
anschließend die Festlegung einer Systemarchitektur und
die Zuordnung bzw. Verfeinerung von Anforderungen zu
Architekturkomponenten. Ein Teilergebnis ist die Defini-
tion von Kommunikationsdiensten, die den Ausgangspunkt
für die musterbasierte Entwicklung von Kommunikations-
protokollen bilden. Unterstützt wird diese Entwicklung durch
eine umfangreiche Protokollmustersammlung, die sich in
mehreren Fallstudien (u.a. ST2+, IPv6, RTP) bewährt hat.
Zur Formulierung von Protocol Patterns bzw. zu deren In-
stanziierung wird SDL (Specification and Description Lan-
guage), eine international genormte, objektorientierte, gra-
phische FDT (Formal Description Technique), verwendet.
Für SDL existieren kommerzielle, rechnergestützte Werk-
zeugumgebungen, die u. a. die graphische Erstellung von
Spezifikationen, deren Analyse und Simulation sowie die au-
tomatische Code-Erzeugung abdecken und im SFB 501 ein-
gesetzt werden. Protocol Design Patterns und Entwicklungs-
Know-how werden in der Erfahrungsdatenbank gesammelt
und sind damit auch in Folgeprojekten nutzbar.

Zukünftige Arbeiten dienen u. a. dem Ausbau des SDL-
spezifischen Teils der Erfahrungsdatenbank sowie der konti-
nuierlichen, systematischen Verbesserung des Entwicklungs-
prozesses und der Mustersammlungen unter Einsatz des
Quality Improvement Paradigms (QIP) und des Goal/Ques-
tion/Metric-Modells (GQM).



232

Teilprojekt B5: GeneSys – Generische Systemsoftware

Betriebssysteme bilden eine unabdingbare Grundlage für fast
jede Art von Softwarel̈osung. Das Ziel des Teilprojektes
B5 besteht darin, maßgeschneiderte Laufzeitplattformen für
eingebettete Systeme zur Verfügung zu stellen, die optimal
an die Gegebenheiten der jeweiligen Anwendung angepaßt
sind. Der verwendete Ansatz basiert auf dem Konzept gene-
rischer Softwarekomponenten und dem Einsatz von Gene-
ratortechniken.

Generische Komponenten sind Softwaremodule, die es
erlauben, ihre Eigenschaften in gewissem Rahmen zu modi-
fizieren, ohne notwendigerweise manuelle Code-Änderungen
vornehmen zu m̈ussen. Die Anpassung kann dabei sowohl
funktionale als auch nichtfunktionale Aspekte wie Skalier-
barkeit, Fehlertoleranz, Zeit- und Speicherkomplexität be-
treffen. Der Variationsspielraum generischer Komponenten
wird durch sogenannte generische Parameter beschrieben,
,,Platzhalter“ f̈ur spezifische, variabel gelassene Eigenschaf-
ten der Komponente. Sie stellen auch Ansatzpunkte für Ge-
neratoren dar, die es erlauben, Komponenten-Code aus einer
abstrakteren Beschreibung zu erzeugen. Aus solchen gene-
rischen Komponenten kann durch einen komplexen Prozeß,
der die wiederholte Anwendung der Teilschritte Auswahl,
Konfiguration und Kombination von Komponenten umfaßt,
eine auf eine spezifische Anwendung zugeschnittene Lauf-
zeitplattform konstruiert werden.

Die gegenẅartigen Forschungsarbeiten im Teilprojekt B5
konzentrieren sich zum einen darauf, die einzelnen Pro-
zesse f̈ur Softwareentwicklung auf Basis generischer Kom-
ponenten detailliert zu untersuchen und zu beschreiben so-
wie geeignete Unterstützungswerkzeuge zur Verfügung zu
stellen. Zum anderen bilden Architekturaspekte bei kompo-
nentenbasierter Softwareentwicklung, beispielsweise archi-
tekturelle Kompatibiliẗat als Voraussetzung für Komposition,
einen weiteren Forschungsschwerpunkt im Teilprojekt B5.

Teilprojekt B10: Anwendungsentwicklung
mit vorkonfektionierten Softwaresystemen

Das Teilprojekt B10 verfolgt einen architekturbasierten An-
satz zur Softwareentwicklung, der in hohem Maße auf die
Wiederverwendung von Artefakten ausgerichtet ist, die in
früheren Projekten erstellt wurden. Es wird dabei angestrebt,
bei der Realisierung von Softwareprojekten aus einem be-
stimmten Anwendungsfeld die Architektur – d.h. die Struk-
tur bzw. Strukturen – erprobter Systeme wiederzuverwen-
den. Diese wiederverwendete Architektur stellt dann einen
Rahmen dar, in dem die weiteren Entwicklungstätigkeiten
ablaufen, beispielsweise die Zerlegung des Systems in seine
Modulstruktur. Durch Wiederverwendung einer vollständi-
gen Systemarchitektur anstelle einzelner Subsysteme oder
Komponenten k̈onnen architekturelle Fehlentscheidungen
vermieden werden, die ansonsten gravierende Auswirkun-
gen auf das Gesamtsystem und den gesamten Entwicklungs-
prozeß haben k̈onnten.

Charakteristisch f̈ur einen Laboransatz zur Softwareent-
wicklung, wie ihn der SFB verfolgt, ist die aufeinander-
folgende Realisierung von Softwareprojekten mit sich nur

gering unterscheidenden Anforderungen aus demselben An-
wendungsfeld, also eine sogenannte Produktfamilie. Die
Wiederverwendung von Architektur, wie sie in diesem Pro-
jekt untersucht wird, stellt eine geeignete Grundlage für sol-
che Entwicklungsprozesse dar. Neben der Wiederverwen-
dung auf struktureller Ebene werden dadurch auch günstige
Voraussetzungen für die systematische Wiederverwendung
auf der Ebene von Softwareprodukten geschaffen. Dies wird
mit Hilfe von White-Box Frameworks umgesetzt, die in ei-
nem offenen Rahmen zum einen vorgefertigte Softwareele-
mente enthalten, zum anderen aber an definierten Stellen
Lücken lassen, die in einem Entwicklungsprojekt auf an-
wendungsspezifische Weise zu füllen sind.

Die intensive Wiederverwendung in allen Phasen des
Entwicklungsprozesses hat Konsequenzen für die Gestal-
tung praktisch aller Entwicklungsschritte. So kommen bei-
spielsweise bereits bei der Anforderungsbeschreibung an-
wendungsfeldspezifische Kriterien und bekannte Strukturen
zum Einsatz. Diese Ausrichtung der einzelnen Aktivitäten im
Entwicklungsprozeß auf Architekturaspekte und auf Wieder-
verwendung stellt einen der wichtigsten Forschungsschwer-
punkte in B10 dar.

Projektbereich C

Im Projektbereich C werden die Anforderungen an Beschrei-
bungstechniken, die sich aus dem Projektbereich B sowie
SFB-̈ubergreifenden Experimenten ergeben, erfaßt und ge-
eignete L̈osungen durch Erweiterung/Modifikation existie-
render Beschreibungstechniken entwickelt. Die eingesetzten
Techniken m̈ussen insbesondere Durchgängigkeit und Ver-
folgbarkeit von Entwicklungsprozessen garantieren, die sich
über mehrere Beschreibungsebenen erstrecken. Der Projekt-
bereich leistet auch Hilfestellung bei der Formalisierung von
Schl̈usselkonzepten wie Generizität und Komposition, die in
verschiedener Ausprägung im Projektbereich B benutzt wer-
den. Gegenẅartig wird ein Teilprojekt im Projektbereich C
gefördert:

Teilprojekt C1: Formale Beschreibungstechniken

Das Teilprojekt C1 untersucht formale Beschreibungstechni-
ken im Kontext der Anwendungsdomäne und unterstützt die
übrigen Teilprojekte bei der Verwendung derartiger Techni-
ken. Formale Beschreibungstechniken werden sowohl zur
Beschreibung einzelner (Teil-)Produkte als auch des Ent-
wicklungsprozesses eingesetzt. Die Untersuchungen befas-
sen sich vor allem mit der methodischen Verwendung dieser
Techniken.

Für zu erstellende Systeme werden Beschreibungen im
Bereich von Anforderungen bis zu Entwürfen betrachtet.
Dabei werden zun̈achst funktionale und temporale Eigen-
schaften, sp̈ater auch weitere nichtfunktionale Eigenschaf-
ten ber̈ucksichtigt. Um einzelne Entwicklungsschritte formal
begr̈unden und Beschreibungen analysieren zu können, wird
Domänenwissen – z.B. in Form physikalischer Modelle –
und Entwurfswissen – z.B. Modelle generischer Architektu-
ren – formalisiert und einbezogen.



233

Für dieses breite Spektrum von Beschreibungen werden
existierende Sprachen verwendet und integriert. Diese wer-
den n̈otigenfalls in ihrer Beschreibungskraft auf die Bedürf-
nisse der Anwendungsdomäne hin erweitert oder einge-
schr̈ankt. Zentrale Aufgaben sind die Einbeziehung von
Techniken wie Parametrisierung und Objektorientierung in
die Beschreibungen sowie die Entwicklung und Untersu-
chung geeigneter architekturbedingter Kompositionsoperato-
ren, dieüber dieübliche sequentielle oder parallele Kompo-
sition von Systemen hinausgehen.

Projektbereich D

Der Projektbereich D ist den Anwendungen gewidmet. Der
SFB hat sich als erstes Anwendungsfeld die Gebäudeauto-
mation aus der Dom̈ane Steuerungs- und̈Uberwachungs-
systeme ausgeẅahlt. Die hier angesiedelten Projekte wer-
den von Experten aus der Automatisierungstechnik begleitet
und verfolgen das Ziel, Anwendungswissen mit dem spezi-
fischen Wissen im SFB 501 bei der Systementwicklung zu
koppeln. Der Projektbereich spielt bei SFB-übergreifenden
Experimenten auch die Rolle des Kunden, der Entwicklungs-
auftr̈age in Form einer Problembeschreibung vorbereitet. In
dieser Rolle kommt dem Teilprojekt auch die Aufgabe zu,
Simulations- und Testumgebungen für das bearbeitete An-
wendungsfeld bereitzustellen. Gegenwärtig werden die fol-
genden Teilprojekte gefördert:

Teilprojekt D1: Anwendungssystem Gebäude

Methoden zur Entwicklung komplexer Systeme müssen an
entsprechenden Anwendungen erprobt werden. Das Anwen-
dungsfeld des SFB ist die Gebäudeautomation als Ausschnitt
reaktiver Systeme, da dieses ein weites Spektrum von recht
einfachen bis züaußerst komplexen Steuerungen mit ver-
schiedensten funktionalen und nichtfunktionalen Eigenschaf-
ten bietet.

Das Teilprojekt D1 bearbeitet zwei Aufgaben. Als In-
frastrukturprojekt unterstützt D1 den SFB bei Fallstudien
und, ẅahrend des Softwareentwicklungsprozesses, bei Ex-
perimenten von der Anwendungsseite her. Hierzu stellt D1
Geb̈audesimulatoren und ein reales, instrumentiertes Testfeld
zur Verfügung.

Darüber hinaus untersucht D1, wie sich existierende
Techniken und Methoden domänenspezifisch anpassen las-
sen, um eine hohe Softwarequalität bei erheblich verringer-
ten Entwicklungskosten zu erreichen. Der Schwerpunkt die-
ser Forschungsarbeiten liegt in den Analyse- und Entwurfs-
phasen, die zur Validierung der erzeugten Produkte von Pro-
totyping und Simulation begleitet werden.

In der Analysephase werden vorgegebene Gebäude- und
Installationsstrukturen zunächst auf eine generische Mo-
dellarchitektur abgebildet. Das hierbei notwendige Experten-
wissen wird von D1 und D2 in die Erfahrungsdatenbank ein-
gebracht. Das Ergebnis sind ausführbare SDL-Modelle, die
mittels Generatoren direkt zum Prototyping geeignet sind.
Hierzu notwendige Geb̈audesimulatoren werden aufähnliche
Weise mit Hilfe von Design Patterns erzeugt.

In der anschließenden Entwurfsphase werden die geteste-
ten SDL-Modelle auf eine reale, verteilte Umgebung kosten-
minimal abgebildet, wobei funktionale und nichtfunktionale
Anforderungen eingehalten werden müssen. Das Ergebnis
sind erneut ausführbare Modelle f̈ur ein genaueres Prototy-
ping sowie Anforderungen an die Hardwareschnittstelle, die
unter anderem zu einer speziell zugeschnittenen Realisierung
der System- und Kommunikationssoftware durch B5 und B4
führen.

Teilprojekt D2: Modellbasierte Entwicklung
wiederverwendbarer Regelungsalgorithmen

Software zur gezielten Beeinflussung von Prozessen der rea-
len Welt verk̈orpert Regelungs- und Steuerungsalgorithmen.
Mittels Sensoren gewonnene Prozeßinformation wird zu Be-
fehlen an Aktoren verarbeitet. Je nach Größe und Kom-
plexität des betrachteten reaktiven Systems können Hun-
derte bis Tausende von Sensor- bzw. Aktorsignalen auftre-
ten. Die Forderung nach Wiederverwendbarkeit komplexer
Softwarel̈osungenübertr̈agt sich so auf die zugrundeliegen-
den Regelungs- und Steuerungsalgorithmen auf unterschied-
lichen Hierarchieebenen.

Gerade die Applikation im Bereich der Gebäudeauto-
mation zur Regelung bzw. Steuerung von Heizung, Klima
und Lüftung weist eine Vielzahl miteinander verkoppelter
Teilprozesse unterschiedlicher Eigendynamik auf, was in die
Entwicklung der Algorithmen einfließen muß. Zu betrach-
ten sind hierbei Elemente der Ẅarme- und K̈alteerzeugung
(Heizkessel mit konventionellen Brennern, Solarkollektoren,
Kälteaggregate u.a.) sowie der Verteilung (Kollektorheizung,
Fußbodenheizung, Ẅarmetauscher u.a.). Zudem kommt es
nach Architektur und bauphysikalischen Gegebenheiten zu
weiteren thermischen Verkopplungen.

Es soll zun̈achst eine umfassende Bibliothek mathe-
matischer Teilprozeßmodelle, geeignet zum Regelungsent-
wurf, inklusive eines Regelwerkes zur generischen Erzeu-
gung mathematischer Gesamtmodelle angelegt werden (Teil
A). Hierauf basierend werden dann die eigentlichen Rege-
lungsalgorithmen entworfen. Ziel ist es, eine Sammlung va-
lidierter Regelungs- und Steuerungsalgorithmen zu erhalten,
aus denen spezifisch für die jeweiligen Anwendungen ein
Gesamtregelungs- und -steuerungsalgorithmus erzeugt wer-
den kann (Teil B). Wiederverwendet werden in beiden Teilen
die Algorithmen, ihre Realisierung in Software sowie die im
Regelwerk niedergelegten Erfahrungen.

Wesentlicher Bestandteil ist daher die Entwicklung des
Regelwerkes zur Auswahl, Anpassung und Verknüpfung der
Algorithmen nach den konkreten architektonischen, bauphy-
sikalischen und automatisierungstechnischen Daten. Hier-
bei soll mit m̈oglichst wenigen Algorithmen ein m̈oglichst
großes Anwendungsspektrum abgedeckt werden. Auch ist
die Zahl der zur Anpassung benötigten Parameter zu mini-
mieren. Dies erfordert eine hohe Robustheit der Regelung
und die adaptive Anpassung an größere Änderungen der
Strecke.



234

Querschnittsprojekte

Neben diesen geförderten Teilprojekten führt der SFB auf
Eigeninitiative Querschnittsprojekte durch, an denen Mitar-
beiter aus mehreren oder allen Teilprojekten beteiligt sind.
Es handelt sich hier meist um experimentelle Entwicklungs-
projekte mit dem Ziel, spezielle Erfahrungen zu sammeln.
Diese Form der Zusammenarbeit zwischen den Teilprojek-
ten hat sich gut beẅahrt, um bei den SFB-Mitarbeitern ein
übergreifendes Verständnis der SFB-Thematik zu erzeugen.

5 Langfristige Ziele

Bei einer angenommenen Laufzeit von 12 Jahren hat sich der
SFB nach Ablauf von jeweils dreijährigen F̈orderungsperio-
den die folgenden Ziele gesetzt:

1. Periode. Bereitstellung einer initialen dom̈anenspezifi-
schen Softwareentwicklungsumgebung für das Anwendungs-
feld Geb̈audeautomation.

2. Periode.Durchführung von Fallstudien und Experimenten
im Anwendungsfeld Geb̈audeautomation mit dem prim̈aren
Ziel, eine Erfahrungs-DB aufzubauen und den Effekt ihrer
Wiederverwendung zu erproben.

3. Periode.Übertragung der Ergebnisse auf ein bis zwei wei-
tere Anwendungsfelder; verstärkte Einbeziehung der Indu-
strie.

4. Periode.Transferprojekte mit dem Ziel, die entwickelte
Technologie bei ein bis zwei industriellen Kooperationspart-
nern zu installieren.

Als wesentliches Ergebnis des SFB 501 bei erfolgrei-
chem Verlauf unserer Forschungen erhoffen wir uns das Vor-
liegen eines methodischen Rahmens inkl. darin eingebetteter
Werkzeuge, die einem Softwareunternehmen die Instanziie-
rung einer dom̈anenspezifischen Softwareentwicklungsum-
gebung erlauben. Anwendungen dienen ausschließlich der
Erprobung unserer softwaretechnologischen Methoden; sie
selbst sind nicht Gegenstand der Forschung.

Weitere Informationen stehen unter
http://www.sfb501.uni-kl.de zur Verfügung.

Literatur

1. Bauer, F.L.: Software-Engineering – wie es begann. Informatik-
Spektrum 16(5), 259–260 (1993)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice.
Reading, MA: Addison-Wesley 1998

3. Basili, V.R., Caldera, G., McGarry, F., Pajerski, R., Page, G. Wale-
gora, S.: The Software Engineering Laboratory – An Operational Soft-
ware Factory. Proc. 14th Int. Conf. on Software Engineering, 370–381
(1992)

4. Coad, P., North, D., Mayfield, M.: Object Models – Strategies, Patterns
& Applications. Englewood Cliffs, NJ: Prentice Hall 1995

5. Denert, E.: Software-Engineering in Wissenschaft und Wirtschaft: Wie
breit ist die Kluft?. Informatik-Spektrum 16(5), 295–229 (1993)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Ele-
ments of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley 1994

7. Goos, G.: Programmiertechnik zwischen Wissenschaft und industrieller
Praxis. Informatik-Spektrum 17(1), 11–20 (1994)

8. Endres, A.: Lessons Learned in an Industrial Software Lab. IEEE Soft-
ware, 58–61 (Sept. 1993)

9. Endres, A.: Software und Software-Entwicklung im Wandel: ein histo-
rischer Vergleich. Informatik-Spektrum 16(5), 261–265 (1993)

10. Frakes, W., Terry, C.: Software Reuse: Metrics and Models. ACM
Computing Surveys 28(2), 415–435 (1996)

11. Johnson, R., Foote, B.: Designing Reusable Classes. Journal on Object-
Oriented Programming 1(2), SIGS Publications, (1988)

12. Krueger, C.W.: Software Reuse. ACM Computing Surveys 24(2), 131–
183 (1992)

13. Mili, H., Mili, F., Mili, A.: Reusing Software: Issues and Research
Directions. IEEE Transactions on Software Engineering Vol. 21(6),
528–562 (1995)

14. Nagl, M.: Software-Entwicklungsumgebungen: Einordnung und zu-
künftige Entwicklungslinien. Informatik-Spektrum 16(5), 273–280
(1995)

15. Rombach, H.D.: Software-Qualität und Qualiẗatssicherung. Informatik-
Spektrum 16(5), 267–272 (1993)

16. Rombach, H.D., Basili, V.R., Selby, R.W. (eds): Experimental Soft-
ware Engineering Issues: Critical Assessment and Future Directions.
Dagstuhl Workshop, Sept. 1992, Lecture Notes in Computer Science
706, Berlin: Springer 1993

17. Rombach, H.D., Verlage, M.: Directions in Software Process Research.
In: Advances in Computers 41, Zelkowitz M.V. (ed.), Academic Press,
1–63 (1995)

18. Rossak, W., Kirova, V., Jololian, L., Lawson, H., Zemel, T.: A Generic
Model for Software Architectures. IEEE Software, 84–92 (1997)

19. Shaw, M., Garlan, D.: Software Architecture-Perspectives on an Emer-
ging Discipline. Upper Saddle River, NJ: Prentice Hall 1996

20. Szyperski, C.: Component Software – Beyond Object-Oriented Pro-
gramming, Harlow, U.K.: Addison-Wesley 1997

21. Wendt, S.: Defizite im Software Engineering. Informatik-Spektrum
16(1), 34–38 (1993)


