
Application of a Generator-Based Software Development
Method Supporting Model Reuse

Joachim Altmeyer, Jan Peter Riegel, Bemd Schuermann, Martin Schuetze, Gerhard Zimmermann
Computer Science Department

University of Kaiserslautem, Germany
Abstract:
Two important phases in the software development process of large systems are modeling and
coding of the system components and their interrelations. While the modeling phase is the
creative part and must be done manually, the coding phase should be automated. In this paper we
describe a generator-based software development method for large systems and an experimental
implementation of this method. Domain-specific base models are reused and customized to
application models for many projects within the domain. The application models are then input
to specialized, powerful code generators which produce most of the application's source code
automatically. Furthermore, we discuss the reuse potential of using and customizing common
base models and using domain- and component-specific code generators.

1. Introduction
Reuse requires the existence of well-structured and well-defined software pieces which
can be identified and instantiated in new designs. This process can take place in differ-
ent ways. The basic level is to reuse written code directly ('cut & paste'). Further
structuring of the reusable code portions leads to libraries. Along with the object-ori-
ented programming we find toolkits and frameworks [GHJ95], collections of (possibly
abstract) classes for one or many aspects, which may be subclassed and instantiated in
new designs. While these reuse strategies focus on code reuse, the pattern approach
[GHJ95, Pre95] tries to support reuse of designs by identifying generic structures, so-
called 'reusable microarchitectures' [GHJ93], in the software which can be applied to
other software products.
Design for reusability is an important aspect of all software engineering approaches:
well-defined, well-structured, and well-documented components enable reuse of the
component code. [JCJ92] describes components as the primary entities of reuse.
[Pre95] identifies so-called hot spots in designs which encapsulate regions where nec-
essary adaptations for potential reuse candidates must be performed.
Our approach consists of a domain-specific software development method. Within this
method we model major parts of the applications which make up a system with appli-
cation-specific models. Many kinds of models we use are well known (e.g. object dia-
grams [Boo91]), but since we restrict ourselves to certain application domains, we are
able to define stricter semantics for these models.
The scope of our approach is the development of large systems of interacting software
applications. When we talk about a system, we mean a set of applications which are
veritable software products on their own, working together in a single application
domain. These applications consist of different components implementing different
aspects of the functionality the application is expected to realize. One component
could be a graphics subsystem dealing with the user interface aspect. Or it could be an
abstract data type managing the storage of application data.

160

Component models which are valid for many applications of the system are treated as
common models and will be customized and reused for different application projects,
making these models our primary reuse candidates. In contrast to other component
reuse approaches described by [JCJ92], we do not use the whole component (or frame-
work) as a high-level-language primitive. We support a kind of white-box components
where the primary reuse takes place at the modeling level instead of the coding level,
reusing suitable model portions. The necessary modifications to the component code
are performed by generators, the second kind of reuse within our approach, which use
the interrelations between the component models. In the case that the models change,
the generators ensure overall global consistency of the application code simply by
regenerating all components. We do not generate all of the application's code, but only
those components for which we can find powerful, but comprehensive, domain-spe-
cific models.
While the main idea behind our method is not bound to any particular domain, every
instantiation of it, i.e. every set of notations, models, and generators, is usually bound
to and optimized for a certain application domain. So far, we are using a prototype tool
(MOOSE) for our method in three different domains: for the development of a large
ECAD system ('PLAYOUT') [ASS95, SSA95], we model and extend MOOSE itself
with MOOSE ('MOOSE'), and we develop software for building control and building
simulation ('BUILDING') [RSZ97].
Our development method and the reuse approach are described in sections 2 and 3
while the implementation of our method is described in section 4. Related generator-
based approaches are addressed in section 5.

2. A Domain-Specific Software Development Method
Model Types
Large systems are, due to their complexity, usually not developed as one single appli-
cation. They often consist of many applications which interact in a certain, well-
defined way. Because all of these applications are developed for one domain, they all
share a set of models typical for that domain. Such a common model shared by differ-
ent applications is a base model. We define model and base model in the following
way:
Definition 'Component Model'

A component model (e.g. a finite state machine model or an entity relationship
model) is defined in a given notation and describes one aspect (statical, behav-
ioral, etc.) of a system or an application.

Definition 'Base Model'
A base model includes the general parts of all component models which are
shared by different applications. It serves as a common model for all applica-
tion projects within one domain.

The relations between the common and the application-specific models are shown in
figure 1. The base model is application independent. It describes the whole domain and
is therefore usually not very well suited for the direct design of different applications.
For instance, behavioral aspects have to be refined for a given application, or object
relations need to be changed to fit it's needs. These changes are performed in a deriva-

161

.glue

c h a r a c t e r - i - ,~ i~,,._ ~ J .
(~istics 1 ~, ~ ~ ~ \ -',-)] .cn.aracter:....,.

Fig. 1 Base model and derived application models

tion step. The base model ideally has to be defined only once for all applications of a
given domain, and it is created as a result of the domain analysis; however, our experi-
ences show that minor changes will always be necessary. These changes can easily be
propagated to the application code by generators. It is important to notice that the dif-
ferent component models are interrelated. We call these interrelations the glue:
Definition 'Glue'

The glue models the interrelations between component models. These interrela-
tions may be given by model aggregation, by relations, by inheritance, or by
notations like design patterns and other domain-specific notations. The purpose
of the glue is to document what interactions exist between (or inside) compo-
nents. For example, the user interface component uses access methods of the
data management component to visualize results. The calls to these methods are
generated from the glue between the components.

The application-specific models contain parts of the base model as well as all local
changes and additions to the base model defined in the characteristics. The changes
and additions are necessary to achieve an optimized component functionality. Because
the application-specific models are derived from the base model, different applications
have many similarities. If the transformation steps are performed in a well-defined,
formal way, it is possible to exploit the similarities, for example to support an (semi-)
automatic data exchange between different applications, generated from their data
models [SSA95] (see also section 4). Characteristics and application models are
defined as follows:
Definition 'Application Model'

An application model includes all component models of one single application.
It consists of model parts derived from the corresponding base model (the base
model may be modified in the derivation step) as well as additional parts neces-
sary only for one application which are not part of the base model. Typically,
the component models within an application model are highly interrelated
(--'->glue).

162

Definition 'Characteristics'
Characteristics contain all changes of the base model which are necessary to
achieve an individually tailored application model for one application. For
example, object types are deleted from or added to the base model, or a com-
pletely new component model (e.g., a library for a certain purpose) is added in
order to get the model for one application.

A Model-Based Software Generation Approach
Figure 2 shows the data flow of our software development method, linked to the 'tradi-
tional' phases of software development: analysis, design, and implementation. This is
not a process model: the overall development process, which is not discussed here,
requires some of the steps and phases to be performed repeatedly.

problem software software
description i , ,; ~ ,~,, ~i~lrequirementst~.~: ~.~:~:~,~1 desian t~.~.~:-:~:~,~ cede

appl.
domain

appl.
project

domain analysis

.application : ' :
model

transfor-
mation

pdmi~ves
[~ a r c h i t e c t u r e model

application 9 component
cede

ganera~on I ~

1
Fig. 2 Data flow for the model-based software generation

Figure 2 looks pretty domain independent; nevertheless, every instantiation of the
method is domain-dependent: the notations are influenced by the domain, e.g. for
'BUILDING' we extended the entity relationship modeling with relation types defin-
ing topology or materials. The base model depends completely on the application
domain. And the generators interpret the models in a domain-specific way and are
optimized for one domain.
Before we may start with the development of individual applications, we have to set up
the base model for the domain as shown in the large grey box in figure 2. This domain
analysis phase is not discussed in this paper. So far, we did not use any standard analy-
sis methods, but we followed our own procedures. In principle, any method suitable
for the application domain can be used, but it must be ensured that it also yields
domain-specific notations and semantics for the models, or these must be found in a
separate process. The base model is then gained manually from domain knowledge,
which is a creative step. To assure a broad applicability, the base model should be
defined to be independent of application-specific details. Adding the application-spe-
cific details is performed in the design phase of each application project.
Afterwards, we may start to analyze the application's problem description. Starting
point is the base model. The application's requirements are specified as 'deltas'
between the base model and the application's needs. These 'deltas', the characteristics,

163

are manually derived from the problem description. They describe which parts o f the
base model need to be changed or extended. Typical contents of the characteristics are:
addition or deletion of base model elements, addition or deletion of relations between
base model elements, addition of models, and implementation hints. The creation of
the characteristics is a very important step because it reuses the information of the base
model while defining necessary changes.
During the design phase, a model transformation step takes the base model and the
characteristics as input and creates the application model. This application model will
fit the needs of the application with respect to the modeled elements, performance
requirements, possibly non-functional requirements, and so on. It now contains all
information needed for the generation of the components of the application under
development.
In the subsequent implementation phase, the implementation code of the application's
component is generated from the application model (see for example [ASS95]). This
generation step requires code primitives corresponding to the elements of the model
notation and the architecture model of the component as additional input. Because we
restrict our approach to one domain at a time, we can select very powerful, domain-
optimized primitives, for example response time optimized primitives for the domain
of real-time control systems. The result is component code for the application which
is, in contrast to traditional frameworks, trimmed to exactly meet the application's
needs.

Cross-Component Modeling
Many components of an application cannot be considered independently of each other.
For example, a graphical user interface is strongly coupled with the data management
component. Within our approach we make these interrelations, the glue, explicit by
defining them at the modeling level. This results in a clear understanding of the depen-
dencies between different models, but more important, we can exploit this information
in the generation phase: we can, for example, instantiate exactly those parts of a model
which are referred by another model. The most powerful use of these interrelations is
achieved by specialized generators (see following section) which consider more than
one model at a time including the glue between the models and produce thereby very
efficient and well customized implementations.

3. The Reuse Approach
Section 2 described our software development method; in this section we present the
main idea of our reuse approach, and we describe the advantages of reusing base mod-
els. We characterize different generators considering their foci, and we emphasize the
profit exploiting the application model by using powerful generators.

Reuse Strategies
Within our approach, it is the main goal to find generic, domain-specific structures and
to describe these structures with a domain-specific base model. The component models
within this base model can be reused for different application projects. The reuse of
these well-established components is known as compositional reuse [Pri93]. The over-
all advantage of this compositional reuse at modeling level is that all fundamental

164

operations of the reuse efforts described in [BiR89], i.e. finding, understanding, modi-
fying, and composing components, are addressed at an abstract level. This allows an
easier handling of these tasks than at coding level. [BiR89] describes the advantages of
a reuse of design versus a reuse of code in detail.
To support an adequate reuse at modeling level, management of the different domain-
specific models is necessary. Within our software prototype system MOOSE [ASS95]
(see also section 4), this task is supported by a configuration and version management.
The code generation using characteristics of the application model distinguishes our
approach from systems like Idea which find designs within a model library using a
given software specification [Lub91]. Considering our modeling and reuse method, we
notice that our approach develops it's abilities to the full if the target system is not only
large and complex, but if it also consist of different partitions which can profit from
customizing common models.
Besides this reuse of common models we perform a generative reuse [1:'693]. Here, the
generic (reused) information is encoded within our software generators (e.g. as code
templates). Using structures at modeling level and the additional information of the
application characteristics, software generators implement the given application model
as customized application code.
The domain-specific base models allow writing powerful software generators which
are tuned to these domain-specific tasks. The use of software generators in addition to
the application models based on the common models and the characteristics allows a
powerful customization within the final implementation step. Therefore, our genera-
rive reuse based on common models guarantees a high reuse potential with a large flex-
ibility.

Specialization of Generators
We distinguish two extreme types of generators: universal generators and component
generators. Universal generators are widely independent of domains and of domain-
specific tasks, respectively. Examples of universal generators are C++-code generators
as they are delivered with many commercial CASE tools. On the other hand, compo-
nent generators support specific components and depend on specific requirements.
Examples are code generators delivered with specialized systems like Statemate and
SDT. Because specific requirements appear in specific domains and requirements may
be shared by different domains (e.g. real-time is demanded in the domain of embedded
systems and in some simulation domains), component generators and their models are
not necessarily restricted to one domain. Due to this specialization the code created by
component generators is more powerful than the code created by universal generators.
However, the border between universal generators and component generators is flow-
ing.

Benefits of Cross-Components Generators
The focus of a component generator may be local to one component model or it may
stretch over the entire application model. We call component generators which do not
look deeper into the remaining parts of the application model single-component gener-
ators.

165

If the focus of the generator is the entire application model, the generator makes use of
the glue and of modeling structures within the remaining component models. We call
generators which look at the entire application model cross-component generators.
Modeling structures are - in terms of a graph-based representation - generic subgraphs
which can be identified within the model. Examples are relation types, e.g the aggrega-
tion relation (part-of, consist-of, etc.) or design patterns [GHJ95, Pre95]. These model-
ing structures are interpreted and translated by the software generator into suitable
implementation structures considering the task of the component to be implemented
(see figure 3).

application model
j ---~ponent model

Fig. 3

. I . ! modeing eve/ , , , . , . I I

f coding,eve,
v application code

ponent code

a) single-component generator b) cross-component generator

Single-component generator versus cross-component generator

generator
focus

In section 4 examples of single- and cross-component generators are presented in more
detail. The main advantage of cross-component generators over single-component
generators is the automatic consideration of modeling structures within several parts of
the application model (see for example [QAS94]). Without these generators the pro-
grammer has to consider these structures at implementation level.

4. Implementation of the Method
The concepts from the previous sections are implemented within the experimental
software engineering environment MOOSE (Model-based Object-Oriented Software
Generation Environment). MOOSE acts as an engineering framework for the different
model editors and code generators. The framework in itself is domain independent,
while every set of editors and generators may very well depend on a specific applica-
tion domain. In this section, we give a short overview about the MOOSE framework,
and we examine three of its generators in more detail.

MOOSE Framework
The overall structure of MOOSE is depicted in figure 4. We provide one (in most cases
graphical) editor for every supported type of component model. At the moment, these
are editors for extended entity relationship diagrams (EER, comparable to object type

166

model of the other models
user interface e.g. pattern models

D r h ' , l m l ~ w ~

 P222111iZ2P=/
model of the model of the

graphics management

characteristic of
the application

editors

internal database

I;'1 ~ (~- 'Y t i l : l

~ 0 ~ ' ~ " ~='~
~l ~ ==" ~ I~

.,!y,,
Fig. 4 MOOSE overview (not all editors and generators are shown)

diagrams), finite state machines (FSM), graphical interactive user interfaces (see
[QAS94]), design pattern-based models for object interaction, data model mapping
definitions, and basic data type definitions. Once the models are entered, they are
stored in an internal database. The database allows versioning of models and manages
different alternatives of models. This mechanism is the basis for the management of
the base model and the derivation of application models, i.e. for the consideration of
the application characteristics. It technically supports the reuse of models, which basi-
cally is a mental task. Currently, an external database is under development allowing

167

more elaborate base model manipulations like split and merge operations on (sub-)
models.
All generators have access to the internal database. Therefore, every generator has a
global view of all models. This global view is used by cross-component generators,
while single-component generators ignore the additional information from other mod-
els. Currently, we support numerous code generators for different languages like C,
C++, and VisualWorks.
The glue between the component models is currently provided by inter-schema rela-
tions and by design patterns (see below). Of course, MOOSE was created by MOOSE
in a bootstrapping step. The model of the internal database is in fact a MOOSE EER-
type model and can easily be extended to accommodate new component model types.
As stated in the introduction, we already used MOOSE for about 20 applications in
different domains and with different generators and model types. The following table
~ives a short overview:

Features: Systems::
PLAYOUT MOOSE BUILDING

H
Domain Electronic CAD CASE Real-Time Control

Systems

Supported
Model
Notations

Base Model
I Size

Glue Type

Generators

Domain
Analysis

Number of
Applications

EER,
Graphics Library,
Object Mapping Table

20 schemata with
118 object types

iER-Relations,
ilnheritance,
'Schema Aggregation

C, C++, Visual Works,
Graphics, Remote Access,
Versant (OODBMS)

Iterative refinement of
models, based on design
theory for ECAD.

EER,
Graphics Library

30 schemata with
244 object types (16
in graphics lib.),
user interface tem-
plates

ER-Relations,
Inheritance,
Schema Aggregation

C++, Visual Works,
UIMX as foreign tool

EER,
Object Instances,
Graphics Library,
Simulation Kernel Lib.,
Simulation Patterns,
(FSM in progress)

7 schemata with
88 object types (20 in
graphics lib, 6 in kernel
lib),
17 Simulation Patterns

ER-Relations,
Inheritance,
Schema Aggregation,
Simulation Patterns

C++, Visual Works, PSi-
Gene (Pattern-Based for
Visual Works), FSM in
progress

Dictionary-based search
for domain objects and
their relations, semi-auto-
matic transformation into
EER-Base-Models. Identi-
fication of domain-specific
notations.

t68

One model type is common to all systems/domains: in the center we always have an
object type model (EER), which serves as the basis and the integration platform for all
other models. While we focus on the generation of abstract data types for ECAD tools
in PLAYOUT and on abstract data types and graphical user interfaces in MOOSE, we
try to support dynamic and functional models as well for BUILDING. The base model
sizes show that these are no toy projects, typical application sizes are in the range of
some ten thousand lines of code. The BUILDING system is the first to use a notation
of Simulation Patterns to model the glue.

Code Generators
All code generators are constructed with the same general structure in mind (see

r ~ r ~
comp. inter- I I I I

code ~ 1 Generator comp. cod~ templates ~ 1 optimized

I " i N m ~ "! t ' ~ ' l
library with model of SW I I I cross-component
primitives architecturem _ _ J L _ J generators only

Fig. 5 Generator structure

figure 5). Each generator takes a model as input (e.g. an EER model), as well as a set
of code templates (e.g. attribute access methods) and a library with primitives (e.g.
container classes). Cross-component generators differ from single-component genera-
tors in the way that they take more than one model (and the interrelations, i.e the glue)
into account, and they differ in consideration of the overall application architecture.
The model of the architecture, i.e. the way components are composed, is usually hard-
coded within the generator. The code is generated by instantiating the code templates
as defined by the model input. Several heuristics are incorporated into the generator to
deal with implementation alternatives and to optimize the code, e.g. the selection of
the 'best' data structure for object relations.
The output of the generators is optimized code for one component of the final applica-
tion, e.g. for the user interface and for the data management. It is customized in the
way that only those code templates which are really needed become part of the gener-
ated code. It includes hooks for and glue code to other components. As stated in sec-
tion 1, we do not generate all of the application's code. Therefore, all our generators
are aware of handwritten code, and the generated hooks can easily be used to integrate
such code.

C++ Code Generator
Our C++ code generator is a typical example for a single-component generator. It
implements an object-oriented class hierarchy from EER models in an abstract data

169

type (ADT) fashion. For each object type it generates a class and, beside others, meth-
ods to
Q construct and destroy objects,
Q access and modify instance variables,
Q compare objects,
Q create and destroy relations, and
Q save and restore data.
The generated code uses container classes of the NIH class library [GOP90]. The user
has the possibility to extend the generated structures by adding user-defined methods
to the generated classes. These user-defined methods will not be overwritten if the
class hierarchy is regenerated.

class CarClass : public NamedObSectClass
{

DECLARE_M~4BERS (CarClass) ;

// NIH Class Lib specific

private:

static Set* _allInstances;
public:
static void initAUl~lass () ;

static Set* allInstances () ;
public:
CarClass () ;
CarClass (const CarClass&) ;

virtual -CarClass () ;

// set- and get-methods

Set* Drivers() (return (_Drivers);)
EngineClass* Engine () { return (_Engine) ; }

// connect- and disconnect methods
void cop/Drivers

(DriversClass* __Drivers) ;

void dcoDrivers
(DriversClass* __Drivers) ;

void conEngine(EngineClass* ___Engine) ;

void dcoEngine(EngineClass* __Engine) ;

Fig. 6 Generated C++ code

// Instance variables
protected:

Set* _Drivers;
EngineClass* _Engine;

// operators ==, !=, = of Class

public:
bool operator==(const CarClass&) const;
bool operator: = (const CarClass& a) const

{ return ! (*this==a) ; }
void operator=(const CarClass&) ;

Method example:

void CarClass : : cc~Engine

(DriverClass* ___~gine)
{

if (_Engine)
_Engine->dcoInternParts (this) ;

this->conInternObjectType (___Engine) ;

if (___~gine)
___~gine->conInternParts (this) ;

}

Beside these declarations, the C++ generator also creates the implementation code.

Figure 6 shows a short code fragment that gives an impression of a generated class
description. At this point, it is important to notice that not only the declarations but
also the whole implementation code of the methods are generated. This is one of the
most important differences between our C++ code generator which is optimized for
internal data structures of applications and general purpose code generators as they are
delivered with many CASE tools. More detailed descriptions of MOOSE and the C++
generator can be found in [ASS95].

Remote Access Generator
The remote access generator is a good example for a domain-specific cross-component
generator. It is used in conjunction with the C++ generator and adds remote access
capabilities to a database via a local network. It is domain-specific in the sense that it

170

was created to support the development of large CAx frameworks (e.g. CAD, CASE).
In this domain, we often find a number of tools grouped around a central design data-
base or repository. The database acts as an archive workspace for all design data, while
the tools reside on top of a private workspace holding exactly that amount of data
needed by the tool at a given time. Thus, the private workspace acts as a kind of cache
for the design data. The remote access generator creates methods for the management
of this cache, e.g. functions to dynamically reload portions of the design data.
Tool and database models are derived from a common base model. Therefore, the data
models of the tools are usually very similar to, but never identical with the data model
of the design database, and a mapping between the models is necessary. The generator
is a cross-component generator in the way that it interprets the EER models of two
applications (tool and database), as well as a declarative mapping table, and creates all
necessary code to map the data on-the-fly while loading the private workspace. More
details about this generator can be found in [SSA95].

PSiGene
PSiGene (Pattern Based Simulator Generator) is also a highly domain-specific cross-
component generator. The application domain is real-time building simulation
[RSZ97]. The aim was to create a generator which is able to produce a large family of
highly specialized building simulators which are always optimized for one purpose.
For this restricted domain and for a limited number of physical effects (which we pro-
vide as code templates) we reach 100% code generation. This is only possible because
the generator considers the dynamic as well as the static aspects of building simulation
in a cross-component fashion. It combines the simulation objects class model with the
model of several libraries, for example, standard simulation functions, a real-time sim-
ulation kernel, user interface libraries, finite state machine models, and a model of the
building. The glue between these models is provided by simulation patterns, which are
influenced by (but not identical to!) design patterns as described in [GHJ95, Pre95].
These patterns define how the different models are interrelated, and they contain code
fragments (for object interaction and for simulation functions) from which the 'glue'-
code is generated. Within PSiGene, the different types of patterns are implemented as
VisualWorks classes. They are the objects that form the generator, and they are capable
of generating code for their different instantiations. Every type of pattern may be seen
as a partial generator for one specific purpose. The generated code can be optimized
and linked in several different ways, the optimization is performed by the generator
methods implemented within each pattern. PSiGene is tightly coupled with the
VisualWorks ADT generator (see figure 4). It uses the classes and access methods cre-
ated by the VisualWorks generator. PSiGene is very flexible: new patterns can easily
be added which accommodate new model types, e.g. differential equations for the sim-
ulation of continuous effects.

5. Related Work
The main idea behind our reuse approach has already been outlined in section 3. Reuse
of design is also a major concern of the DSSA initiative (Domain Specific Software
Architecture project by DARPA, see [DSS95]). DSSA's focus is on the definition of a
reference software architecture which can be used for many applications of a given

171

domain, and on the reuse of components (megaprogramming) within this architecture.
In contrast to that, our focus is on the adaptation of successful base models and on the
reuse of design artifacts by generating customized components. However, many ideas
and techniques like the restriction to some well-supported domains and the use of code
generators are the same.
Our approach shares with application generators (e.g. UI builders, simulation systems)
that it is always optimized for one domain. However, we rely on object-oriented mod-
eling and the cross-component approach, and we believe that our method in itself is
usable in many domains, only concrete manifestations of the method are domain
dependent,
The code generation by generators like PSiGene is a one-step approach. There is
another approach to code generation, based on program transformation (see for exam-
ple GenVoca [BST94] or CIP [GoH85]). There, an abstract program is transformed to
implemented code by a sequence of refinement steps. The input for these types of gen-
erators is usually more abstract than our models. However, the goals of this approach
(in terms of productivity gains, reuse potential, scalability, and optimizations) are the
same. Although GenVoca has a different focus, we share its basic principles (see
[BST94]): generation from subsystem building blocks, standardized interfaces, and
parameterization.
One might argue that the same results could be obtained with libraries or application
frameworks. But both approaches tend to be relatively inflexible, of large size, and
complex. Our approach ensures that a kind of 'customized application framework' is
generated individually for each application, implementing exactly the needed func-
tionality without additional overhead or unneeded complexity.

6. Conclusions
In this paper we introduced our method to model and generate components of large
software systems and to reuse domain-specific common models. The method is sup-
ported by a prototype implementation, MOOSE, which is primarily a framework for
different domain-specific notations, models, and generators. Up to now, it is not possi-
ble to generate 100% of code for all applications, but the integration of handwritten
code is easy. Our method is compatible with traditional OOA/OOD methods and can
be combined with these wherever it is not possible or feasible to use generators.
Our reuse approach is an alternative to traditional reuse forms where completely devel-
oped components are integrated into new designs. The main difference is that the reuse
candidates (model parts) are identified and instantiated at the modeling (i.e. design)
level rather than at the coding level, and that all work necessary to integrate the cus-
tomized component code into the application is done automatically by generators.
One disadvantage of our method is that it takes significant time to implement new
model editors and generators. In contrast to that, the creation of these seems to be rela-
tively straight forward taking our experience with the existing tools into account. And
the disadvantage of spending time for the development of the tools is, based on our
experience, by far outweighed by the productivity gains, reduced error rates, and
increased consistency delivered by our method. Furthermore, our method still lacks a
properly defined development process, and up to now we did not define a general

172

domain analysis method. In the future, we will try to deal with these problems, as well
as we will emphasize the component aspect of our method.
The experiences we collected during the implementation of large systems, like
MOOSE itself, a large ECAD system, and a building automation project are very
promising. Productivity increases significantly, tedious implementations of component
code are left up to the generators, and, in addition to the generator input, the models
serve as the primary entity for reuse and as a comprehensive documentation of the
implemented components.

References

[ASS95] J. Altmeyer, B. SchUrmann, M. Schiitze, "Generating ECAD Framework Code from
Abstract Models", Proceedings of the Design Automation Conference '95, San
Francisco, California, 1995

[BiP89] T.J. Biggerstaff, A.J. Perlis, "Software Reusability; Volume I; Concepts and Mod-
els", ACM Press, Addison-Wesley, New York, 1989

[BiR89] T.J. Biggerstaff, C. Richter, "Reusability Framework, Assessment, and Directions",
in [BiP89]

[Boo91] G. Booch, "Object-Oriented Design with Applications", The Benjamin/Cummings
Publishing Company, 1991

[BST94] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, M. Sirkin: ,,The GenVoca
Model of Software-System Generators", IEEE Software, September 94, 1994

[DSS95] Online-Document, "What is DSSA?", http://www.lfs-owego.com/dssa/what-is-
dssa.html, August 1995

[GHJ93] E. Gamma, R. Helm, R. Johnson, J. Vlissides: "Design Patterns: Abstractions and
Reuse of Object-Oriented Design", Proc. ECOOP '93, 1993

[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns", Addison-Wesley,
1995

[GoH85] G. Goos, J. Hartmanis, eds.: "The Munich Project CIP", Vol. I, Springer Verlag,
1985

[GOP90] K.E. Gorlen, S. M. Orlow, P. S. Plexico, "Data Abstraction and Object-Oriented
Programming in C++", John Wiley & Sons, 1990

[JCJ92] I. Jacobson, M. Christerson, P. Jonsson, G. (3vergaard, "Object-Oriented Software
Engineering", ACM Press, Addison-Wesley, 1992

[Lub91] M. Lubars, "Domain Analysis and Domain Engineering in Idea", in "Domain Anal-
ysis and Software Systems Modeling", R. Prieto-Diaz, G. Arango (eds.), IEEE CS
Press, Los Alamitos, California, 1991

[Pre95] Wolfgang Pree, "Design Patterns for Object-Oriented Software Development",
ACM Press, Addison-Wesley, 1995

[Pri93] R. Prieto-Diaz, "Status Report: Software Reusability", IEEE Software, May 1993
[QAS94] S. Queins, J. Altmeyer, B. Schtirmann, "Model-Based Reuse of Object-Oriented

Graphic Components for CAD Systems", Proceedings of the 39th International Sci-
entific Colloquium, Ilmenau, Germany, 1994

[RSZ97] J.P. Riegel, M. SchiJtze, G. Zimmermann, "Pattern-Based Generation of Custom-
ized, Flexible Building Simulators", CAAD Futures 97, Munich, Germany, 1997, to
be published

[SSA95] M. Schtitze, B. Schtirmann, J. Altmeyer, "Generating Abstract Datatypes with
Remote Access Capabilities", in "Electronic Design Automation Frameworks; Vol-
ume 4", E J. Rammig, E R. Wagner (eds.), Chapman & Hall, 1995

