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Abstract: 
Two important phases in the software development process of large systems are modeling and 
coding of the system components and their interrelations. While the modeling phase is the 
creative part and must be done manually, the coding phase should be automated. In this paper we 
describe a generator-based software development method for large systems and an experimental 
implementation of this method. Domain-specific base models are reused and customized to 
application models for many projects within the domain. The application models are then input 
to specialized, powerful code generators which produce most of the application's source code 
automatically. Furthermore, we discuss the reuse potential of using and customizing common 
base models and using domain- and component-specific code generators. 

1. Introduction 
Reuse requires the existence of well-structured and well-defined software pieces which 
can be identified and instantiated in new designs. This process can take place in differ- 
ent ways. The basic level is to reuse written code directly ('cut & paste'). Further 
structuring of the reusable code portions leads to libraries. Along with the object-ori- 
ented programming we find toolkits and frameworks [GHJ95], collections of (possibly 
abstract) classes for one or many aspects, which may be subclassed and instantiated in 
new designs. While these reuse strategies focus on code reuse, the pattern approach 
[GHJ95, Pre95] tries to support reuse of designs by identifying generic structures, so- 
called 'reusable microarchitectures' [GHJ93], in the software which can be applied to 
other software products. 
Design for reusability is an important aspect of all software engineering approaches: 
well-defined, well-structured, and well-documented components enable reuse of the 
component code. [JCJ92] describes components as the primary entities of reuse. 
[Pre95] identifies so-called hot spots in designs which encapsulate regions where nec- 
essary adaptations for potential reuse candidates must be performed. 
Our approach consists of a domain-specific software development method. Within this 
method we model major parts of the applications which make up a system with appli- 
cation-specific models. Many kinds of models we use are well known (e.g. object dia- 
grams [Boo91]), but since we restrict ourselves to certain application domains, we are 
able to define stricter semantics for these models. 
The scope of our approach is the development of large systems of interacting software 
applications. When we talk about a system, we mean a set of applications which are 
veritable software products on their own, working together in a single application 
domain. These applications consist of different components implementing different 
aspects of the functionality the application is expected to realize. One component 
could be a graphics subsystem dealing with the user interface aspect. Or it could be an 
abstract data type managing the storage of application data. 
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Component models which are valid for many applications of the system are treated as 
common models and will be customized and reused for different application projects, 
making these models our primary reuse candidates. In contrast to other component 
reuse approaches described by [JCJ92], we do not use the whole component (or frame- 
work) as a high-level-language primitive. We support a kind of white-box components 
where the primary reuse takes place at the modeling level instead of the coding level, 
reusing suitable model portions. The necessary modifications to the component code 
are performed by generators, the second kind of reuse within our approach, which use 
the interrelations between the component models. In the case that the models change, 
the generators ensure overall global consistency of the application code simply by 
regenerating all components. We do not generate all of the application's code, but only 
those components for which we can find powerful, but comprehensive, domain-spe- 
cific models. 
While the main idea behind our method is not bound to any particular domain, every 
instantiation of it, i.e. every set of notations, models, and generators, is usually bound 
to and optimized for a certain application domain. So far, we are using a prototype tool 
(MOOSE) for our method in three different domains: for the development of a large 
ECAD system ('PLAYOUT') [ASS95, SSA95], we model and extend MOOSE itself 
with MOOSE ('MOOSE'), and we develop software for building control and building 
simulation ( 'BUILDING') [RSZ97]. 
Our development method and the reuse approach are described in sections 2 and 3 
while the implementation of our method is described in section 4. Related generator- 
based approaches are addressed in section 5. 

2. A Domain-Specific Software Development Method 
Model Types 
Large systems are, due to their complexity, usually not developed as one single appli- 
cation. They often consist of many applications which interact in a certain, well- 
defined way. Because all of these applications are developed for one domain, they all 
share a set of models typical for that domain. Such a common model shared by differ- 
ent applications is a base model. We define model and base model in the following 
way: 
Definition 'Component Model' 

A component model (e.g. a finite state machine model or an entity relationship 
model) is defined in a given notation and describes one aspect (statical, behav- 
ioral, etc.) of a system or an application. 

Definition 'Base Model' 
A base model includes the general parts of all component models which are 
shared by different applications. It serves as a common model for all applica- 
tion projects within one domain. 

The relations between the common and the application-specific models are shown in 
figure 1. The base model is application independent. It describes the whole domain and 
is therefore usually not very well suited for the direct design of different applications. 
For instance, behavioral aspects have to be refined for a given application, or object 
relations need to be changed to fit it's needs. These changes are performed in a deriva- 
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Fig. 1 Base model and derived application models 

tion step. The base model ideally has to be defined only once for all applications of a 
given domain, and it is created as a result of the domain analysis; however, our experi- 
ences show that minor changes will always be necessary. These changes can easily be 
propagated to the application code by generators. It is important to notice that the dif- 
ferent component models are interrelated. We call these interrelations the glue: 
Definition 'Glue' 

The glue models the interrelations between component models. These interrela- 
tions may be given by model aggregation, by relations, by inheritance, or by 
notations like design patterns and other domain-specific notations. The purpose 
of the glue is to document what interactions exist between (or inside) compo- 
nents. For example, the user interface component uses access methods of the 
data management component to visualize results. The calls to these methods are 
generated from the glue between the components. 

The application-specific models contain parts of the base model as well as all local 
changes and additions to the base model defined in the characteristics. The changes 
and additions are necessary to achieve an optimized component functionality. Because 
the application-specific models are derived from the base model, different applications 
have many similarities. If the transformation steps are performed in a well-defined, 
formal way, it is possible to exploit the similarities, for example to support an (semi-) 
automatic data exchange between different applications, generated from their data 
models [SSA95] (see also section 4). Characteristics and application models are 
defined as follows: 
Definition 'Application Model' 

An application model includes all component models of one single application. 
It consists of model parts derived from the corresponding base model (the base 
model may be modified in the derivation step) as well as additional parts neces- 
sary only for one application which are not part of the base model. Typically, 
the component models within an application model are highly interrelated 
(--'->glue). 
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Definition 'Characteristics' 
Characteristics contain all changes of the base model which are necessary to 
achieve an individually tailored application model for one application. For 
example, object types are deleted from or added to the base model, or a com- 
pletely new component model (e.g., a library for a certain purpose) is added in 
order to get the model for one application. 

A Model-Based Software Generation Approach 
Figure 2 shows the data flow of our software development method, linked to the 'tradi- 
tional' phases of software development: analysis, design, and implementation. This is 
not a process model: the overall development process, which is not discussed here, 
requires some of the steps and phases to be performed repeatedly. 
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Fig. 2 Data flow for the model-based software generation 

Figure 2 looks pretty domain independent; nevertheless, every instantiation of the 
method is domain-dependent: the notations are influenced by the domain, e.g. for 
'BUILDING' we extended the entity relationship modeling with relation types defin- 
ing topology or materials. The base model depends completely on the application 
domain. And the generators interpret the models in a domain-specific way and are 
optimized for one domain. 
Before we may start with the development of individual applications, we have to set up 
the base model for the domain as shown in the large grey box in figure 2. This domain 
analysis phase is not discussed in this paper. So far, we did not use any standard analy- 
sis methods, but we followed our own procedures. In principle, any method suitable 
for the application domain can be used, but it must be ensured that it also yields 
domain-specific notations and semantics for the models, or these must be found in a 
separate process. The base model is then gained manually from domain knowledge, 
which is a creative step. To assure a broad applicability, the base model should be 
defined to be independent of application-specific details. Adding the application-spe- 
cific details is performed in the design phase of each application project. 
Afterwards, we may start to analyze the application's problem description. Starting 
point is the base model. The application's requirements are specified as 'deltas' 
between the base model and the application's needs. These 'deltas', the characteristics, 
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are manually derived from the problem description. They describe which parts o f  the 
base model need to be changed or extended. Typical contents of the characteristics are: 
addition or deletion of base model elements, addition or deletion of relations between 
base model elements, addition of models, and implementation hints. The creation of 
the characteristics is a very important step because it reuses the information of the base 
model while defining necessary changes. 
During the design phase, a model transformation step takes the base model and the 
characteristics as input and creates the application model. This application model will 
fit the needs of the application with respect to the modeled elements, performance 
requirements, possibly non-functional requirements, and so on. It now contains all 
information needed for the generation of the components of the application under 
development. 
In the subsequent implementation phase, the implementation code of the application's 
component is generated from the application model (see for example [ASS95]). This 
generation step requires code primitives corresponding to the elements of the model 
notation and the architecture model of the component as additional input. Because we 
restrict our approach to one domain at a time, we can select very powerful, domain- 
optimized primitives, for example response time optimized primitives for the domain 
of real-time control systems. The result is component code for the application which 
is, in contrast to traditional frameworks, trimmed to exactly meet the application's 
needs. 

Cross-Component Modeling 
Many components of an application cannot be considered independently of each other. 
For example, a graphical user interface is strongly coupled with the data management 
component. Within our approach we make these interrelations, the glue, explicit by 
defining them at the modeling level. This results in a clear understanding of the depen- 
dencies between different models, but more important, we can exploit this information 
in the generation phase: we can, for example, instantiate exactly those parts of a model 
which are referred by another model. The most powerful use of these interrelations is 
achieved by specialized generators (see following section) which consider more than 
one model at a time including the glue between the models and produce thereby very 
efficient and well customized implementations. 

3. The Reuse Approach 
Section 2 described our software development method; in this section we present the 
main idea of our reuse approach, and we describe the advantages of reusing base mod- 
els. We characterize different generators considering their foci, and we emphasize the 
profit exploiting the application model by using powerful generators. 

Reuse Strategies 
Within our approach, it is the main goal to find generic, domain-specific structures and 
to describe these structures with a domain-specific base model. The component models 
within this base model can be reused for different application projects. The reuse of 
these well-established components is known as compositional reuse [Pri93]. The over- 
all advantage of this compositional reuse at modeling level is that all fundamental 
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operations of the reuse efforts described in [BiR89], i.e. finding, understanding, modi- 
fying, and composing components, are addressed at an abstract level. This allows an 
easier handling of these tasks than at coding level. [BiR89] describes the advantages of 
a reuse of design versus a reuse of code in detail. 
To support an adequate reuse at modeling level, management of the different domain- 
specific models is necessary. Within our software prototype system MOOSE [ASS95] 
(see also section 4), this task is supported by a configuration and version management. 
The code generation using characteristics of the application model distinguishes our 
approach from systems like Idea which find designs within a model library using a 
given software specification [Lub91]. Considering our modeling and reuse method, we 
notice that our approach develops it's abilities to the full if the target system is not only 
large and complex, but if it also consist of different partitions which can profit from 
customizing common models. 
Besides this reuse of common models we perform a generative reuse [1:'693]. Here, the 
generic (reused) information is encoded within our software generators (e.g. as code 
templates). Using structures at modeling level and the additional information of the 
application characteristics, software generators implement the given application model 
as customized application code. 
The domain-specific base models allow writing powerful software generators which 
are tuned to these domain-specific tasks. The use of software generators in addition to 
the application models based on the common models and the characteristics allows a 
powerful customization within the final implementation step. Therefore, our genera- 
rive reuse based on common models guarantees a high reuse potential with a large flex- 
ibility. 

Specialization of Generators 
We distinguish two extreme types of generators: universal generators and component 
generators. Universal generators are widely independent of domains and of domain- 
specific tasks, respectively. Examples of universal generators are C++-code generators 
as they are delivered with many commercial CASE tools. On the other hand, compo- 
nent generators support specific components and depend on specific requirements. 
Examples are code generators delivered with specialized systems like Statemate and 
SDT. Because specific requirements appear in specific domains and requirements may 
be shared by different domains (e.g. real-time is demanded in the domain of embedded 
systems and in some simulation domains), component generators and their models are 
not necessarily restricted to one domain. Due to this specialization the code created by 
component generators is more powerful than the code created by universal generators. 
However, the border between universal generators and component generators is flow- 
ing. 

Benefits of Cross-Components Generators 
The focus of a component generator may be local to one component model or it may 
stretch over the entire application model. We call component generators which do not 
look deeper into the remaining parts of the application model single-component gener- 
ators. 
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If the focus of the generator is the entire application model, the generator makes use of 
the glue and of modeling structures within the remaining component models. We call 
generators which look at the entire application model cross-component generators. 
Modeling structures are - in terms of a graph-based representation - generic subgraphs 
which can be identified within the model. Examples are relation types, e.g the aggrega- 
tion relation (part-of, consist-of, etc.) or design patterns [GHJ95, Pre95]. These model- 
ing structures are interpreted and translated by the software generator into suitable 
implementation structures considering the task of the component to be implemented 
(see figure 3). 
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In section 4 examples of single- and cross-component generators are presented in more 
detail. The main advantage of cross-component generators over single-component 
generators is the automatic consideration of modeling structures within several parts of 
the application model (see for example [QAS94]). Without these generators the pro- 
grammer has to consider these structures at implementation level. 

4. Implementation of the Method 
The concepts from the previous sections are implemented within the experimental 
software engineering environment MOOSE (Model-based Object-Oriented Software 
Generation Environment). MOOSE acts as an engineering framework for the different 
model editors and code generators. The framework in itself is domain independent, 
while every set of editors and generators may very well depend on a specific applica- 
tion domain. In this section, we give a short overview about the MOOSE framework, 
and we examine three of its generators in more detail. 

MOOSE Framework 
The overall structure of MOOSE is depicted in figure 4. We provide one (in most cases 
graphical) editor for every supported type of component model. At the moment, these 
are editors for extended entity relationship diagrams (EER, comparable to object type 
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Fig. 4 MOOSE overview (not all editors and generators are shown) 

diagrams), finite state machines (FSM), graphical interactive user interfaces (see 
[QAS94]), design pattern-based models for object interaction, data model mapping 
definitions, and basic data type definitions. Once the models are entered, they are 
stored in an internal database. The database allows versioning of models and manages 
different alternatives of models. This mechanism is the basis for the management of 
the base model and the derivation of application models, i.e. for the consideration of 
the application characteristics. It technically supports the reuse of models, which basi- 
cally is a mental task. Currently, an external database is under development allowing 
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more elaborate base model manipulations like split and merge operations on (sub-) 
models. 
All generators have access to the internal database. Therefore, every generator has a 
global view of all models. This global view is used by cross-component generators, 
while single-component generators ignore the additional information from other mod- 
els. Currently, we support numerous code generators for different languages like C, 
C++, and VisualWorks. 
The glue between the component models is currently provided by inter-schema rela- 
tions and by design patterns (see below). Of course, MOOSE was created by MOOSE 
in a bootstrapping step. The model of the internal database is in fact a MOOSE EER- 
type model and can easily be extended to accommodate new component model types. 
As stated in the introduction, we already used MOOSE for about 20 applications in 
different domains and with different generators and model types. The following table 
~ives a short overview: 

Features: Systems:: 
PLAYOUT MOOSE BUILDING 

H 
Domain Electronic CAD CASE Real-Time Control 

Systems 

Supported 
Model 
Notations 

Base Model 
I Size 

Glue Type 

Generators 

Domain 
Analysis 

Number of 
Applications 

EER, 
Graphics Library, 
Object Mapping Table 

20 schemata with 
118 object types 

iER-Relations, 
ilnheritance, 
'Schema Aggregation 

C, C++, Visual Works, 
Graphics, Remote Access, 
Versant (OODBMS) 

Iterative refinement of 
models, based on design 
theory for ECAD. 

EER, 
Graphics Library 

30 schemata with 
244 object types (16 
in graphics lib.), 
user interface tem- 
plates 

ER-Relations, 
Inheritance, 
Schema Aggregation 

C++, Visual Works, 
UIMX as foreign tool 

EER, 
Object Instances, 
Graphics Library, 
Simulation Kernel Lib., 
Simulation Patterns, 
(FSM in progress) 

7 schemata with 
88 object types (20 in 
graphics lib, 6 in kernel 
lib), 
17 Simulation Patterns 

ER-Relations, 
Inheritance, 
Schema Aggregation, 
Simulation Patterns 

C++, Visual Works, PSi- 
Gene (Pattern-Based for 
Visual Works), FSM in 
progress 

Dictionary-based search 
for domain objects and 
their relations, semi-auto- 
matic transformation into 
EER-Base-Models. Identi- 
fication of domain-specific 
notations. 
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One model type is common to all systems/domains: in the center we always have an 
object type model (EER), which serves as the basis and the integration platform for all 
other models. While we focus on the generation of abstract data types for ECAD tools 
in PLAYOUT and on abstract data types and graphical user interfaces in MOOSE, we 
try to support dynamic and functional models as well for BUILDING. The base model 
sizes show that these are no toy projects, typical application sizes are in the range of 
some ten thousand lines of code. The BUILDING system is the first to use a notation 
of Simulation Patterns to model the glue. 

Code Generators  
All code generators are constructed with the same general structure in mind (see 

r ~  r ~  
comp. inter- I I . . . . .  I I . . . . . .  

code ~ 1  Generator comp. cod~ templates ~ 1  optimized 

I " i N m ~ "! t ' ~ ' l  
library with model of SW I I I cross-component 
primitives architecturem _ _ J L _ J generators only 

Fig. 5 Generator structure 

figure 5). Each generator takes a model as input (e.g. an EER model), as well as a set 
of code templates (e.g. attribute access methods) and a library with primitives (e.g. 
container classes). Cross-component generators differ from single-component genera- 
tors in the way that they take more than one model (and the interrelations, i.e the glue) 
into account, and they differ in consideration of the overall application architecture. 
The model of the architecture, i.e. the way components are composed, is usually hard- 
coded within the generator. The code is generated by instantiating the code templates 
as defined by the model input. Several heuristics are incorporated into the generator to 
deal with implementation alternatives and to optimize the code, e.g. the selection of 
the 'best' data structure for object relations. 
The output of the generators is optimized code for one component of the final applica- 
tion, e.g. for the user interface and for the data management. It is customized in the 
way that only those code templates which are really needed become part of the gener- 
ated code. It includes hooks for and glue code to other components. As stated in sec- 
tion 1, we do not generate all of the application's code. Therefore, all our generators 
are aware of handwritten code, and the generated hooks can easily be used to integrate 
such code. 

C++ Code Generator  
Our C++ code generator is a typical example for a single-component generator. It 
implements an object-oriented class hierarchy from EER models in an abstract data 
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type (ADT) fashion. For each object type it generates a class and, beside others, meth- 
ods to 
Q construct and destroy objects, 
Q access and modify instance variables, 
Q compare objects, 
Q create and destroy relations, and 
Q save and restore data. 
The generated code uses container classes of the NIH class library [GOP90]. The user 
has the possibility to extend the generated structures by adding user-defined methods 
to the generated classes. These user-defined methods will not be overwritten if the 
class hierarchy is regenerated. 

class CarClass : public NamedObSectClass 
{ 

DECLARE_M~4BERS (CarClass) ; 

// NIH Class Lib specific 

private: 

static Set* _allInstances; 
public: 
static void initAUl~lass ( ) ; 

static Set* allInstances () ; 
public: 
CarClass ( ) ; 
CarClass (const CarClass&) ; 

virtual -CarClass () ; 

// set- and get-methods 

Set* Drivers() ( return (_Drivers);) 
EngineClass* Engine ( ) { return (_Engine) ; } 

// connect- and disconnect methods 
void cop/Drivers 

(DriversClass* __Drivers) ; 

void dcoDrivers 
(DriversClass* __Drivers) ; 

void conEngine(EngineClass* ___Engine) ; 

void dcoEngine(EngineClass* __Engine) ; 

Fig. 6 Generated C++ code 

// Instance variables 
protected: 

Set* _Drivers; 
EngineClass* _Engine; 

// operators ==, !=, = of Class 

public: 
bool operator==(const CarClass&) const; 
bool operator: = (const CarClass& a) const 

{ return ! (*this==a) ; } 
void operator=(const CarClass&) ; 

Method example: 

void CarClass : : cc~Engine 

(DriverClass* ___~gine ) 
{ 

if (_Engine) 
_Engine->dcoInternParts (this) ; 

this->conInternObjectType (___Engine) ; 

if (___~gine) 
___~gine->conInternParts (this) ; 

} 

Beside these declarations, the C++ generator also creates the implementation code. 

Figure 6 shows a short code fragment that gives an impression of a generated class 
description. At this point, it is important to notice that not only the declarations but 
also the whole implementation code of the methods are generated. This is one of the 
most important differences between our C++ code generator which is optimized for 
internal data structures of applications and general purpose code generators as they are 
delivered with many CASE tools. More detailed descriptions of MOOSE and the C++ 
generator can be found in [ASS95]. 

Remote Access Generator 
The remote access generator is a good example for a domain-specific cross-component 
generator. It is used in conjunction with the C++ generator and adds remote access 
capabilities to a database via a local network. It is domain-specific in the sense that it 
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was created to support the development of large CAx frameworks (e.g. CAD, CASE). 
In this domain, we often find a number of tools grouped around a central design data- 
base or repository. The database acts as an archive workspace for all design data, while 
the tools reside on top of a private workspace holding exactly that amount of data 
needed by the tool at a given time. Thus, the private workspace acts as a kind of cache 
for the design data. The remote access generator creates methods for the management 
of this cache, e.g. functions to dynamically reload portions of the design data. 
Tool and database models are derived from a common base model. Therefore, the data 
models of the tools are usually very similar to, but never identical with the data model 
of the design database, and a mapping between the models is necessary. The generator 
is a cross-component generator in the way that it interprets the EER models of two 
applications (tool and database), as well as a declarative mapping table, and creates all 
necessary code to map the data on-the-fly while loading the private workspace. More 
details about this generator can be found in [SSA95]. 

PSiGene 
PSiGene (Pattern Based Simulator Generator) is also a highly domain-specific cross- 
component generator. The application domain is real-time building simulation 
[RSZ97]. The aim was to create a generator which is able to produce a large family of 
highly specialized building simulators which are always optimized for one purpose. 
For this restricted domain and for a limited number of physical effects (which we pro- 
vide as code templates) we reach 100% code generation. This is only possible because 
the generator considers the dynamic as well as the static aspects of building simulation 
in a cross-component fashion. It combines the simulation objects class model with the 
model of several libraries, for example, standard simulation functions, a real-time sim- 
ulation kernel, user interface libraries, finite state machine models, and a model of the 
building. The glue between these models is provided by simulation patterns, which are 
influenced by (but not identical to!) design patterns as described in [GHJ95, Pre95]. 
These patterns define how the different models are interrelated, and they contain code 
fragments (for object interaction and for simulation functions) from which the 'glue'- 
code is generated. Within PSiGene, the different types of patterns are implemented as 
VisualWorks classes. They are the objects that form the generator, and they are capable 
of generating code for their different instantiations. Every type of pattern may be seen 
as a partial generator for one specific purpose. The generated code can be optimized 
and linked in several different ways, the optimization is performed by the generator 
methods implemented within each pattern. PSiGene is tightly coupled with the 
VisualWorks ADT generator (see figure 4). It uses the classes and access methods cre- 
ated by the VisualWorks generator. PSiGene is very flexible: new patterns can easily 
be added which accommodate new model types, e.g. differential equations for the sim- 
ulation of continuous effects. 

5. Related Work 
The main idea behind our reuse approach has already been outlined in section 3. Reuse 
of design is also a major concern of the DSSA initiative (Domain Specific Software 
Architecture project by DARPA, see [DSS95]). DSSA's focus is on the definition of a 
reference software architecture which can be used for many applications of a given 
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domain, and on the reuse of components (megaprogramming) within this architecture. 
In contrast to that, our focus is on the adaptation of successful base models and on the 
reuse of design artifacts by generating customized components. However, many ideas 
and techniques like the restriction to some well-supported domains and the use of code 
generators are the same. 
Our approach shares with application generators (e.g. UI builders, simulation systems) 
that it is always optimized for one domain. However, we rely on object-oriented mod- 
eling and the cross-component approach, and we believe that our method in itself is 
usable in many domains, only concrete manifestations of the method are domain 
dependent, 
The code generation by generators like PSiGene is a one-step approach. There is 
another approach to code generation, based on program transformation (see for exam- 
ple GenVoca [BST94] or CIP [GoH85]). There, an abstract program is transformed to 
implemented code by a sequence of refinement steps. The input for these types of gen- 
erators is usually more abstract than our models. However, the goals of this approach 
(in terms of productivity gains, reuse potential, scalability, and optimizations) are the 
same. Although GenVoca has a different focus, we share its basic principles (see 
[BST94]): generation from subsystem building blocks, standardized interfaces, and 
parameterization. 
One might argue that the same results could be obtained with libraries or application 
frameworks. But both approaches tend to be relatively inflexible, of large size, and 
complex. Our approach ensures that a kind of 'customized application framework' is 
generated individually for each application, implementing exactly the needed func- 
tionality without additional overhead or unneeded complexity. 

6. Conclusions 
In this paper we introduced our method to model and generate components of large 
software systems and to reuse domain-specific common models. The method is sup- 
ported by a prototype implementation, MOOSE, which is primarily a framework for 
different domain-specific notations, models, and generators. Up to now, it is not possi- 
ble to generate 100% of code for all applications, but the integration of handwritten 
code is easy. Our method is compatible with traditional OOA/OOD methods and can 
be combined with these wherever it is not possible or feasible to use generators. 
Our reuse approach is an alternative to traditional reuse forms where completely devel- 
oped components are integrated into new designs. The main difference is that the reuse 
candidates (model parts) are identified and instantiated at the modeling (i.e. design) 
level rather than at the coding level, and that all work necessary to integrate the cus- 
tomized component code into the application is done automatically by generators. 
One disadvantage of our method is that it takes significant time to implement new 
model editors and generators. In contrast to that, the creation of these seems to be rela- 
tively straight forward taking our experience with the existing tools into account. And 
the disadvantage of spending time for the development of the tools is, based on our 
experience, by far outweighed by the productivity gains, reduced error rates, and 
increased consistency delivered by our method. Furthermore, our method still lacks a 
properly defined development process, and up to now we did not define a general 



172 

domain analysis method. In the future, we will try to deal with these problems, as well 
as we will emphasize the component aspect of our method. 
The experiences we collected during the implementation of large systems, like 
MOOSE itself, a large ECAD system, and a building automation project are very 
promising. Productivity increases significantly, tedious implementations of component 
code are left up to the generators, and, in addition to the generator input, the models 
serve as the primary entity for reuse and as a comprehensive documentation of the 
implemented components. 
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