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Abstract. Adaptation is important in dependable embedded systems
to cope with changing environmental conditions. However, adaptation
significantly complicates system design and poses new challenges to sys-
tem correctness. We propose an integrated model-based development ap-
proach facilitating intuitive modelling as well as formal verification of
dynamic adaptation behaviour. Our modelling concepts ease the specifi-
cation of adaptation behaviour and improve the design of adaptive em-
bedded systems by hiding the increased complexity from the developer.
Based on a formal framework for representing adaptation behaviour, our
approach allows to employ theorem proving, model checking as well as
specialised verification techniques to prove properties characteristic for
adaptive systems such as stability.

1 Introduction

Many embedded systems autonomously adapt at runtime to changing environ-
mental conditions by up- and downgrading their functionality according to the
current situation. Adaptation is particularly important in safety-critical areas
such as the automotive domain to meet the high demands on dependability and
fault-tolerance. For this reason, adaptation has become state-of-the-art in an-
tilock braking, vehicle stability control and adaptive cruise control systems. For
example, if the sensor measuring the yaw rate of a car fails, the vehicle stability
control system may adapt to a configuration, where the yaw rate is approxi-
mated by steering angle and vehicle speed. In this way, it can be guaranteed
that the system is still operational even if some of the components fail in or-
der to provide a maximum degree of safety and reliability. However, adaptation
significantly complicates the development of embedded systems. One reason for
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this is that in the worst case the number of configurations a system can adapt
to is exponential in the number of its modules. Moreover, for ensuring system
correctness it is not sufficient to consider each configuration separately but the
adaptation process as a whole has to be checked.
A promising approach to deal with the increased complexity posed by adapta-
tion is model-based design. As a major advantage, model-based design allows
to focus on the needs of each phase in the design process and to model the re-
quired concepts as close as possible to the intuition by capturing them in an
accurate and understable manner. Regarding the development of adaptive sys-
tems, model-based design supports the validation and verification of adaptation
behaviour before the actual funtionality is implemented. The integration of for-
mal verification into the development process is important to rigorously prove
that the adaptation behaviour meets critical requirements such as stability.

In this paper, we propose an integrated framework for model-based design and
formal verification of adaptive embedded systems. The modelling concepts of our
approach hide the complexity at system level by fostering modular design and
independent specification of functionality and adaptation behaviour. In this way,
the designer can concentrate on the adaptation behaviour during early phases
of the design process without having to consider implementation specific details.
The design can then be refined successively by adding the intended functionality.

In order to formally reason about adaptive embedded systems, we propose
a framework that captures the semantics of the modelling concepts at a high
level of abstraction. Using this framework, the models as well as the desired
properties can be formulated in a semantically exact manner. This is particularly
important regarding the application of different verification techniques: Firstly,
it is possible to embed the models into a representation suitable for a theorem
prover and to verify the specified properties directly, e.g. by means of induction.
Secondly, properties frequently occurring in the verification of adaptive system
can be checked by automatic techniques such as symbolic model checking.

However, many systems encountered in practice are not directly amenable to
formal verification by model checking due to their huge state space. To solve
this problem, our formal framework allows to perform transformations on the
models in order to reduce verification complexity. For example, data abstraction
techniques may be employed to reduce the state space. The separation between
functionality and adaptation behaviour is thereby maintained, which allows to
consider purely functional, purely adapative and combined aspects. As the mod-
els in our framework have a clear semantics, it can be guaranteed by means of a
theorem prover that the applied transformations are property preserving.

For certain properties, it is often advantageous to apply specialised verification
methods, as standard model checking procedures are not always as efficient as
possible. This is the case for stability of the adaptation process, one of the most
important properties in adaptive systems, as adaptations in one component may
trigger further adaptations in other components, which may lead to unstable
configurations. However, in embedded systems, which are usually subject to
certain real-time constraints, it must be guaranteed that a system stabilises after
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a bounded number of adaptation steps. To this end, we propose an approach that
allows to verify stability of adaptive systems more efficiently than using standard
model checking procedures.

To illustrate our approach, we use a building automation system as running
example. The system consists of four modules: an occupancy detection, a light
control, a lamp and an alarm system. The functionality is as follows: The light
in a room is controlled according to the room occupancy. If the room is unoccu-
pied, the lamp is switched off. Otherwise, the lamp is adjusted according to the
current illuminance of the room. Additionally, an alarm is raised if the room is
occupied without authorisation. Each module has a number of configurations for
maintaining its functionality in case of failures. For instance, the module Occu-
pancyDetection uses data from a camera, a motion detector, and transponders
to determine occupancy of the room. When the camera is defect, the module
adapts from camera-based to motion-based occupancy detection.

The rest of this paper is structured as follows: In Section 2, we introduce the
concepts for modelling adaptive embedded systems and present the underlying
formal framework. In Section 3, we address some aspects of adaptive system ver-
ification with a focus on stability. In Section 4, we describe the implementation
of our approach. Finally, we discuss related work (Section 5) and conclude with
an outlook to future work (Section 6).

2 Modelling Adaptive Embedded Systems

2.1 Concepts for Modelling Adaptation Behaviour

The objective of our modelling concepts called MARS (Methodologies and
Architectures for Runtime Adaptive Systems) is the explicit modelling of adapta-
tion behaviour, which is a prerequisite for its validation and verification. These
concepts have been successfully applied in industry and academia for several
years and provide a seamlessly integrated approach for the development of adap-
tive systems [21]. The major difficulty in modelling adaptation behaviour are
complex interdependencies between the modules of a system. To solve this prob-
lem, we employ the concept ‘separation of concerns’ by separating functional
from adaptation behaviour and the concept ‘divide and conquer’ by defining the
adaptation behaviour modularly within the modules. Based on these concepts,
it is possible to hide the complexity at system level from the developer.

A system consists of a set of modules that communicate with each other by
passing signals via ports. This is a common notion found in various modelling
languages and complies with the definition of architecture description languages
by Taylor et al. [10]. In contrast to non-adaptive modules, our modules have
several functional behaviours in order to support different degradation levels.

Quality Descriptions. A modular definition of adaptation behaviour is indispen-
sible for handling the enormous complexity of most systems. For this reason, we
establish a quality flow in the system making such modular definitions possible.
Besides the actual data, each signal has an additional quality description. To
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this end, signals are typed by datives (extended data type for adaptive systems)
that do not only describe which data values a signal may take, but also how the
quality of this data can be described. Hence, a dative consists of a data type and
a quality type. The former describes the type of data values like integers or real
numbers. The quality type provides type-specific quality information, because a
general purpose quality information like the relative error is not reasonable in
many cases, e.g. for Boolean signals. Since the quality is part of the type defini-
tion, module designers are able to define the adaptation behaviour solely on the
basis of quality descriptions available at a module’s local interface. Additionally,
they define how the current quality of the provided signals is determined.

In order to define the quality of a functional value of a signal, it is necessary
to know which behavioural variant has been used to determine a value. In the
first place, a quality type is defined by a set of possible modes. A developer using
a signal knows the deficiencies associated with a certain mode and decides how
a module must adapt in order to compensate for these deficiencies. Additionally,
mode attributes can be used to describe the signal quality more precisely using
mode-specific characteristics. Consequently, a mode is described by the mode
itself and a set of mode attributes.

As an example, Figure 1 shows the definition of the dative occupancy. Its
quality type contains five modes: The mode camera refers to a camera-based
occupancy detection and mode motion indicates that the occupancy is derived
from the detected motions. A deficiency associated with mode motion is that only
movements are detected instead of actual persons in the room. As the quality of
motion-based occupancy detection strongly depends on the reaction point of the
motion sensor, the mode attribute reactionpoint is attached to the mode motion.
In the example, reactionpoint represents the sensitivity of the motion sensor.

Modules. Based on datives, developers can modularly define the adaptation be-
haviour of single modules using two extensions made to conventional modules.

Fig. 1. Example for the definition of a dative
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First, the behaviour specification is not directly assigned. Several configurations
can be assigned to a module, each of them representing one behaviour variant.
Second, in addition to the input/output interface, we define a required/provided
interface. This distinction is used for describing the direction of the quality flow.
This is not always identical to the direction of the data flow between two con-
nected module ports. Although the connection is typed by one dative, the data
part of the dative flows from an output port of one module to an input port
of another module, while the quality flows from a provided port to a required
port. This can for instance be the case for an actuator where a data value is
propagated to the actuator while the actuator’s status is conveyed to the func-
tional unit via the signal’s quality. The interface of a module is defined by a set
of input signals, a set of output signals, a set of required signals and a set of
provided signals.

Configurations. A module can be in one of several configurations, each of them
representing one behavioural variant. A module is thus defined by its interface
and a set of configurations. In our running example, the module OccupancyDe-
tection can be in one of five configurations, depending on how occupancy of a
room is determined. For instance, CameraDetection is the configuration, where
the occupancy is derived from a camera image. A configuration is defined by the
following elements: (1) a specification of the associated behavioural variant, (2)
a guard defining under which conditions the configuration can be activated, (3)
a priority and (4) an influence defining how the quality of the provided signals
is determined.

A guard is a Boolean expression. If the guard evaluates to true at run time,
the configuration can be activated. Operands of guards are quality descriptions
of required signals. A guard defines which signals are required in which mode
and which values the mode attributes may have. For instance, the guard of the
configuration MotionDetection in module OccupancyDetection defines that the
required quality of the signal detected motion has to be in mode ‘available’. Ad-
ditionally, it could be enforced that the mode attribute reactionpoint is in a
certain range. Often, guards of several configurations are satisfied at the same
time. Therefore, an unambiguous priority is assigned to each configuration. At
run time, the configuration with the highest priority is activated and the as-
sociated behaviour is executed. Influence rules describe how the quality of the
provided signals is determined. Each influence rule consists of an influence guard
and an influence function. The influence guard refines the configuration guard
and defines a condition under which the respective influence function is applied.
The influence function assigns the appropriate mode to each provided signal and
calculates the mode attributes. For instance, configuration MotionDetection has
only one influence rule whose influence function assigns the quality of signal
occupancy to mode motion.

2.2 Formal Representation of Modelling Concepts

In this subsection, we show how the modelling concepts of MARS can be for-
mally represented by Synchronous Adaptive Systems (SAS), which constitute the
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Fig. 2. Separation of functional and adaptation behaviour in an SAS module

basis for formal verification of adaptive embedded systems [16]. SAS capture the
semantics of adaptation behaviour at a high level of abstraction bridging the gap
between the modelling concepts and their formal representation. The modularity
provided by MARS is represented by composing synchronous adaptive systems
from a set of modules. Each module comprises a set of predetermined behavioural
configurations it may adapt to. SAS maintain the separation of adaptive and
functional behaviour. This is accomplished by defining an adaptation aspect on
top of the different functional configurations. The active configuration is deter-
mined by the adaptation aspect. SAS are assumed to be open systems with input
provided by the environment. Furthermore, they are modelled synchronously as
their simultaneously invoked actions are executed in true concurrency. Figure 2
depicts the intuitive notion of a module.

For the definition of SAS syntax, we assume a set of distinct variable names
Var and a set of values Val that can be assigned to these variables. The formal
definition of modules is based on state transition systems.

Definition 1 (Module and Adaptation). An SAS module m is a tuple
m = (in, out, loc, init, confs, adaptation) with

– in ⊆ Var, the set of input variables, out ⊆ Var, the set of output variables,
loc ⊆ Var, the set of local variables and init : loc → Val their initial values

– confs = {(guardj , next statej , next outj) | j = 1, ..., n} the configurations
of the module, where

• guardj: the Boolean closure of constraints on {adapt in, adapt loc} de-
termining when configuration j is enabled with adapt in and adapt loc
as defined below

• next statej: (in ∪ loc → Val) → (loc → Val) the next state function for
configuration j

• next outj: (in ∪ loc → Val) → (out → Val) the output function for
configuration j

The adaptation aspect is defined as a tuple adaptation = (adapt in, adapt out,
adapt loc, adapt init, adapt next state, adapt next out), where

– adapt in ⊆ Var is the set of adaptation in-variables, adapt out ⊆ Var the
set of adaptation out-variables, adapt loc ⊆ Var the set of adaptation local
state variables and adapt init : adapt loc → Val their initial values
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– adapt next state : (adapt in ∪ adapt loc → Val) → (adapt loc → Val) the
adaptation next state function

– adapt next out : (adapt in ∪ adapt loc → Val) → (adapt out → Val) the
adaptation output function

The module concept of MARS is represented by SAS modules where module
ports are mapped to input and output variables. The dative associated with a
port is modelled by a set of variables: one functional variable for the functional
data, an adaptive variable for each mode and additional adaptive variables for
mode attributes. In the running example, the module OccupancyDetection is
represented by an SAS module. The input signal motion detected is split into
two variables, a functional variable motion detected and an adaptive variable
motion detected quality carrying the mode of the signal. A configuration in a
module is represented by an SAS configuration, where the configuration guard
is mapped to an SAS configuration guard and the priority to the configuration
index. The configuration behaviour is expressed by the next output function of
the configuration. So, the configuration MotionDetection in module Occupancy-
Detection is represented by an SAS configuration with a guard expressing that
the adaptive variable motion detected quality must have the value ‘available’.
The influence function of a configuration is represented using the adapt next out
function of the SAS module’s adaptation aspect. In our example the adaptive
output variable occupancy quality corresponding to the quality part of the signal
occupancy is assigned to the mode motion by the adapt next out function if the
configuration MotionDetection is used. Since MARS concepts currently do not
use state variables, the respective parts of SAS remain unused.

An SAS is composed from a set of modules that are interconnected via their
own and the system’s input and output variables. For technical reasons, we
assume that all system variable names and all module variable names are disjoint.
Whereas for module ports in MARS it is defined whether a quality is required or
provided, quality and data flow in SAS are completely decoupled using separate
adaptive connections. Hence, provided ports are mapped to adaptation output
variables and required ports are mapped to adaptation input variables. A module
can trigger adaptations in other modules via adaptive connections.

Definition 2 (SAS). A synchronous adaptive system S is a tuple

S = (M, inputa, inputd, outputa, outputd, conna, connd),

where

– M = {m1, . . . , mn} is a set of SAS modules with mi = (ini, outi, loci, initi,
confsi, adaptationi)

– inputa ⊆ Var are adaptation inputs and inputd ⊆ Var functional inputs to
the system

– outputa ⊆ Var are adaptation outputs and outputd ⊆ Var functional outputs
from the system
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– conna is a function connecting adaptation outputs to adaptation inputs, sys-
tem adaptation inputs to module adaptation inputs and module adaptation
outputs to system adaptation outputs, i.e. conna :

⋃
j,k=1,...,n(adapt outj ∪

inputa) → (adapt ink ∪ outputa), where conna(inputa) ⊆ adapt ink

– connd is a function connecting outputs of modules to inputs, system inputs to
module inputs and module outputs to system outputs, i.e. connd :

⋃
j,k=1,...,n

(outj ∪ inputd) → (ink ∪ outputd), where connd(inputd) ⊆ ink.

The semantics of SAS is defined in a two-layered approach. We start by defining
the local semantics of single modules similar to standard state-transition sys-
tems. From this, we define global system semantics. A local state of a module
is defined by a valuation of the module’s variables, i.e. input, output and local
variables and their adaptive counterparts. A local state is initial if its functional
and adaptation variables are set to their initial values and input and output
variables are undefined. A local transition between two local states evolves in
two stages: First, the adaptation aspect computes the new adaptation local state
and the new adaptation output from the current adaptation input and the pre-
vious adaptation state. The adaptation aspect further selects the configuration
with the smallest index that has a valid guard with respect to the current input
and the previous functional and adaptation state. The system designer should
ensure that the system has a built-in default configuration ‘off’ which becomes
applicable when no other configuration is. The selected configuration is used to
compute the new local state and the new output from the current functional
input and the previous functional state.

Definition 3 (Local States and Transitions). A local state s of an SAS
module m is a variable assignment:

s : in ∪ out ∪ loc ∪ adapt in ∪ adapt out ∪ adapt loc → Val

A local state s is called initial iff s|loc = init, s|adapt loc = adapt init and
s|V = undef for V = in ∪ out ∪ adapt in ∪ adapt out.1 An SAS module per-
forms a local transition between two local states s and s′, written s� s′, iff the
following conditions hold:

s′|adapt loc = adapt next state(s′|adapt in ∪ s|adapt loc)
s′|adapt out = adapt next out(s′|adapt in ∪ s|adapt loc)

∀ 0 < j < i . s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc �|= guardj

s′|in ∪ s|loc ∪ s′|adapt in ∪ s|adapt loc |= guardi

s′|loc = next statei(s′|in ∪ s|loc) and s′|out = next outi(s′|in ∪ s|loc)

The state of an SAS is the union of the local states of the contained modules
together with an evaluation of the system inputs and outputs. A system state
is initial if all states of the contained modules are initial and the system input
and output is undefined. A transition between two global states is performed in
1 For a function f and a set M , f |M = {(x, f(x)) | x ∈ M} is the restriction of f to

the domain M .



84 R. Adler et al.

three stages. Firstly, each module reads its input either from another module’s
output of the previous cycle or from the system inputs in the current cycle.
Secondly, each module synchronously performs a local transition. Thirdly, the
modules directly connected to system outputs write their results to the output
variables.

Definition 4 (Global States and Transitions). A global state σ of an SAS
consists of the local states {s1, . . . , sn} of the contained modules, where si is the
state of mi ∈ M , and an evaluation of the functional and adaptive inputs and
outputs, i.e. σ = s1 ∪ . . . ∪ sn ∪ ((inputa ∪ inputd ∪ outputa ∪ outputd) → Val).
A global state σ is called initial iff all local states si for i = 1, . . . , n are initial
and the system inputs and outputs are undefined. Two states σ and σ′ perform
a global transition, written σ →glob σ′, iff

– for all x, y ∈ Var \ (inputd ∪ inputa) with connd(x) = y or conna(x) = y it
holds that σ′(y) = σ(x), for all x ∈ inputa and y ∈ Var with conna(x) = y it
holds that σ′(y) = σ′(x) and for all x ∈ inputd and y ∈ Var with connd(x) =
y it holds that σ′(y) = σ′(x)

– for all sj ∈ σ and for all s′j ∈ σ′ it holds that sj � s′j
– for all x ∈ Var and y ∈ outputd with connd(x) = y it holds that σ′(y) =

σ′(x) and for all x ∈ Var and y ∈ outputa with conna(x) = y it holds that
σ′(y) = σ′(x)

A sequence of global states σ0σ1σ2 . . . of an SAS is a path if σ0 is an initial
global state and for all i ≥ 0 we have σi →glob σi+1. The set Paths(SAS) =
{σ0σ1σ2 . . . | σ0σ1σ2 . . . is a path} constitutes the SAS semantics.

3 Verification

The properties to be verified for adaptive embedded systems can be classified
according to whether they refer to adaptive, functional or both aspects. More-
over, one can distinguish between generic properties that are largely independent
of the application and application specific properties. In the following, we will
concentrate on generic properties of the adaptation behaviour.

As specification languages, we use the temporal logics CTL (computation
tree logic) and LTL (linear time temporal logic) [6,18]. In both CTL and LTL,
temporal operators are used to specify properties along a given computation
path. For example, the formula Fϕ states that ϕ eventually holds and Gψ states
that ψ invariantly holds. In CTL, every temporal operator must be immediately
preceeded by one of the path quantifiers A (for all paths) and E (at least one
path). Thus, AGϕ and EFψ are CTL formulae stating that ϕ invariantly holds on
all paths and ψ eventually holds on at least one path, respectively. LTL formulae
always have the form Aϕ, where ϕ does not contain any path quantifiers. None of
these two logics is superior to the other, i.e., there are specifications that can be
expressed in LTL, but not in CTL, and vice versa. However, both are subsumed
by the temporal logic CTL* [6,18].



From Model-Based Design to Formal Verification 85

SAS models can be verified directly by embedding them into a semantic rep-
resentation of an interactive theorem prover such as Isabelle/HOL [12]. As a
major advantage, interactive theorem provers do not suffer from the state explo-
sion problem, as many properties can be verified without having to enumerate
all possible states. On the other hand, it is often more convenient to employ
automatic verification methods such as model checking, since using a theorem
prover can be rather tedious. In the remainder of this section, we will therefore
focus on the application of standard and specialised model checking procedures
for the verification of SAS models.

3.1 System Transformations

As mentioned in the introduction, SAS models are usually not directly amenable
to model checking due to their complexity. Sources of complexity are for instance
unbounded data domains, the size of arithmetic constants or the mere size of
the model. In order to reduce the runtime of the verification procedures, we per-
form a number of transformations on SAS models transparent to the user [2].
These transformations are formally verified to be property preserving using Is-
abelle/HOL.

To deal with unbounded data domains or large constants, we apply the con-
cept of data domain abstraction [5]. Data values from a large or infinite domain
are thereby mapped to a smaller finite domain using a homomorphic abstraction
function, provided that the domain abstraction is compatible with the opera-
tions of the system. Alternatively, one may apply abstract interpretation based
techniques [7] that overapproximate the effect of certain operations in the ab-
stracted system and yield a conservative abstraction of the system behaviour.
Hence, properties to be verified are abstracted such that an abstracted property
implies the original property. As an example, consider a system input ranging
over the integers. The integer domain may be reduced to the abstract domain
{low, high} such that an integer value v is mapped to low iff v < 50 and to high iff
v ≥ 50. A constraint on the input like input ≥ 50 is subsequently transformed to
input = high without loosing precision due to the suitably chosen abstraction.

Moreover, we restrict the model to those parts that are relevant for verifying
the property under consideration. This means that we first remove all variables
that are declared but never used in the model. Furthermore, we perform an
analysis which variables of the system model and which associated parts influence
the considered property. Unnecessary parts of the model can safely be removed.
This technique is known as cone of influence reduction [6] in model checking of
Boolean circuits.

SAS models also support reasoning about purely adaptive, purely functional
or combined aspects of system models by separating functional from adaptive be-
haviour. Since model checking tools do in general not have any means to distin-
guish between functionality and adaptation, the generation of different verification
problems from SAS models alleviates verification complexity. For purely adaptive
properties, we generate verification output containing only the adaptive part of
the models, i.e. adaptive variables and the associated transition functions.
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Together with a system transformation, we provide a formal proof that the
transformation is property preserving. This means that for a given SAS and
a given property, the transformed system satisfies the transformed property if
the original property is true in the original system. Our approach is based on
translation validation techniques previously applied in compilers. We use a cor-
rectness criterion based on property preservation by simulation for the universal
fragment of CTL*. We prove in the interactive theorem prover Isabelle/HOL [12]
that for each transformation the transformed system simulates the original sys-
tem and that the transformed property can be concretised to imply the original
one. Then, validity of the transformation is established (cf. [2]).

3.2 Verification of Generic Properties by Model Checking

Most of the generic properties can be expressed in CTL, which allows us to em-
ploy standard model checking techniques. To verify such properties, we translate
the reduced SAS model to the input description of the model checker. First of all,
we want to verify that no module gets stuck in the default configuration ‘off’. This
can be expressed by the CTL formula AG(c = off → EF c �= off), where c stores
the current configuration. The next specification is even stronger and asserts that
every module can reach all configurations at all times: AG(

∧n
i=1 EF c = configi).

If this specification holds, the system is deadlock-free and no configuration is
redundant. Moreover, a module must always be in one of the predefined config-
urations such that no inconsistent states can be reached: AG(

∨n
i=1 c = configi).

Many application specific properties can also be verified using standard model
checking techniques. On the one hand, these properties are concerned with the
adaptation behaviour resulting from the concrete combination of different mod-
ules. As an example, one may verify that adaptation in one module leads to a
particular configuration in another module after a certain number of cycles. If,
for instance, the camera in the building automation system fails, the module
OccupancyDetection will switch to configuration MotionDetection in the next
cycle. On the other hand, application specific properties address the function-
ality of a system. For example, in the building automation scenario, one may
verify that the occupancy of the room is determined correctly indepedent of the
used configurations and the order of their activation.

3.3 Verification of Stability

As mentioned in the introduction, one of the most important properties of adap-
tation is stability [15]. Since adaptation in the considered class of systems is not
controlled by a central authority, adaptation in one module may trigger further
adaptations in other modules. While finite sequences of adaptations are usually
intended, cyclic dependencies between the modules may lead to an infinite num-
ber of adaptations, which results in an unstable system. For this reason, it is
important to verify that the configurations of a module eventually stabilise if
the inputs do not change.

As stability can be expressed in LTL (but not in CTL), it can be verified
using standard model checking procedures for LTL. However, model checking
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procedures for temporal logic formulae are not always as efficient as specialised
verification procedures for certain properties. In particular, there are more effi-
cient ways to check stability, as we will show in this section. Before we go into
detail, we briefly describe the μ-calculus, which we will use as the basis of our
approach. More detailed information on the μ-calculus can be found in [6,18].

In order to define the syntax and semantics of the μ-calculus, we need the
notion of Kripke structures. In our implementation (see Section 4), SAS models
are first translated to synchronous programs, which can then be compiled to
symbolic descriptions of Kripke structures.

Definition 5 (Kripke structures). Given a set of variables V, a Kripke struc-
ture K is a labelled transition system (S, I, R, L), where S is the set of states,
I ⊆ S is the set of initial states, R ⊆ S × S is the transition relation, and
L : S → P(V) is the labelling function that maps each state to a set of variables.

The predecessors and successors of a set of states are used to define the semantics
of the μ-calculus:

Definition 6 (Predecessors and Successors). Given a Kripke structure K =
(S, I, R, L), the predecessors and successors of a set of states Q ⊆ S are defined
as follows:

– preR∃ (Q) := {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ R ∧ s′ ∈ Q}
– preR∀ (Q) := {s ∈ S | ∀s′ ∈ S.(s, s′) ∈ R → s′ ∈ Q}
– sucR∃ (Q) := {s′ ∈ S | ∃s ∈ S.(s, s′) ∈ R ∧ s ∈ Q}
– sucR∀ (Q) := {s′ ∈ S | ∀s ∈ S.(s, s′) ∈ R → s ∈ Q}

Definition 7 (Syntax of the μ–Calculus). Given a set of variables V, the set
of μ–calculus formulae Formμ is defined as follows with x ∈ V and ϕ, ψ ∈ Formμ:

Formμ := x | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | �ϕ | ←−♦ϕ | ←−�ϕ | μx.ϕ | νx.ϕ

Intuitively, a modal formula ♦ϕ holds in a state iff ϕ holds in at least one
successor state, and �ϕ holds iff ϕ holds in all successor states. The operators←−♦ and

←−� refer to the past (predecessors) instead of to the future (successors).
Finally, the operators μ and ν denote least and greatest fixpoints, respectively.
In order to define the semantics of the μ-calculus, we denote the subset of states
satisfying a formula ϕ ∈ Formμ by �ϕ�K.

Definition 8 (Semantics of the μ–Calculus). Given a Kripke structure K =
(S, I, R, L), the semantics of the μ–calculus is defined as follows, where KQ

x is
the Kripke structure obtained from K by changing the states s ∈ S such that
x ∈ L(s) holds iff s ∈ Q holds:

�x�K := {s ∈ S | x ∈ L(s)} for all x ∈ V
�ϕ ∧ ψ�K := �ϕ�K ∩ �ψ�K �ϕ ∨ ψ�K := �ϕ�K ∪ �ψ�K
�♦ϕ�K := preR∃ (�ϕ�K) ��ϕ�K := preR∀ (�ϕ�K)
�
←−♦ϕ�K := sucR∃ (�ϕ�K) �

←−�ϕ�K := sucR∀ (�ϕ�K)
�μx.ϕ�K :=

⋂
{Q ⊆ S | �ϕ�KQ

x
⊆ Q} �νx.ϕ�K :=

⋃
{Q ⊆ S | Q ⊆ �ϕ�KQ

x
}
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The satisfying states of fixpoint formulae can be computed by fixpoint iteration:
The states �μx.ϕ�K satisfying a least fixpoint formula μx.ϕ are obtained by the
iteration Qi+1 := �ϕ�KQi

x
starting with Q0 := ∅. For greatest fixpoint formulae,

the iteration starts with Q0 := S. In both cases, the sequence Qi is monotonic
(increasing for least fixpoints and decreasing for greatest ones).

An important characteristic of a μ-calculus formula is its alternation-depth,
which is roughly speaking the number of interdependent fixpoints. For example,
the formula μy.�(νx.((y ∨ ϕ) ∧�x)) has alternation-depth two, since the inner
fixpoint depends on the outer one. A formula that does not contain interde-
pendent fixpoints is alternation-free.2 The importance of the alternation-depth
stems from the fact that the complexities of all known model checking algorithms
for the μ-calculus are exponential in it [18]. Regarding the above formula, this
means that for each iteration of the outer fixpoint formula, the inner one has to
be reevaluated.

Let us now return to the problem of stability checking. Suppose that ϕin holds
iff the inputs of an SAS are stable for one unit of time. Moreover, let ϕso hold
iff the state variables and the outputs are stable for one time unit. Then, the
SAS is stable iff the LTL formula Φ :≡ AG(Gϕin → FGϕso) holds. However,
simply checking Φ by means of standard model checking procedures for LTL is
not optimal, since the resulting μ-calculus formula is not alternation-free. The
proof is based on the fact that Φ is equivalent to A(FGϕin → FGϕso). Given
that ϕin holds on all states, we obtain the formula AFGϕso. This formula can be
translated to the μ-calculus formula μy.�(νx.((y∨ϕso)∧�x)) [13,18], which has
has alternation-depth two (see above). In the following, we propose a solution
that does not require the computation of interdependent fixpoints and turns out
to be more efficient in practice. For that purpose, we need the notion of paths
of a Kripke structure:

Definition 9 (Paths). A path π : N → S of a Kripke structure K = (S, I, R, L)
is an infinite sequence of states such that (π(i), π(i+1)) ∈ R holds for all i ∈ N.
The set of all paths originating in a state s ∈ S is denoted by PathsK(s).

We assume that the set of variables V consists of a set of input variables Vin and
a set of state and output variables Vso such that Vin ∩ Vso = ∅ holds. Moreover,
we say that a path is steady w.r.t. a set of variables iff none of the variables
changes its value after some point of time.

Definition 10 (Steadiness). Given a Kripke structure K = (S, I, R, L), a
path π : N → S is steady from time k ∈ N w.r.t. a set of variables V ⊆ V iff the
following holds:

steadyK(π, k, V ) :⇔ ∀i ≥ k.L(π(i)) ∩ V = L(π(i + 1)) ∩ V

2 As every CTL formula can be translated to an alternation-free μ-calculus formula
[6,18], there is no need for specialised verification procedures in order to check the
generic properties described in Subsection 3.2.
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L(si): a b ab a ab

s0 s1 s2 s3 s4

Fig. 3. Example for a Kripke structure

As an example, consider the Kripke structure shown in Figure 3 (dashed lines
represent transitions of the restricted transition relation R′ defined below). Since
b holds on states s1 and s2, the path s0, s1, s2, s2, . . . is steady w.r.t. the set {b}
from time one. In contrast, the path s3, s4, s3, . . . is not steady w.r.t. {b}, as b
holds on state s4, but not on state s3.
Having defined the notion of steadiness, stability of a state and a Kripke structure
can now be rephrased as follows:

Definition 11 (Stability). Given a Kripke structure K = (S, I, R, L), a state
s ∈ S is stable iff we have:

stableK(s) :⇔ ∀π ∈ PathsK(s).steadyK(π, 0, Vin) → ∃i ∈ N.steadyK(π, i, Vso)

Moreover, K is stable iff every reachable state of K is stable.

Consider again the Kripke structure of Figure 3 and assume that Vin = {a} and
Vso = {b} holds. Then, the states s0, s1, and s2 are stable as all paths originating
in these states are either not steady w.r.t. Vin or steady w.r.t. Vso. Since the path
s3, s4, s3, . . . is steady w.r.t. Vin but not w.r.t. Vso, s3 and s4 are not stable.

In order to formulate stability as a μ-calculus formula without interdependent
fixpoints, we first restrict the transition relation to those paths that are steady
w.r.t. Vin and do not contain any self-loops, i.e., we construct a Kripke structure
K′ = (S, I, R′, L) with

R′ := {(s, s′) | (s, s′) ∈ R ∧ s �= s′ ∧ L(s) ∩ Vin = L(s′) ∩ Vin}.

Then, it remains to check whether the paths of K′ are steady w.r.t. Vso. As R′

does not contain any self-loops, a path π is steady from time k iff π(k) has no
successors. Thus, a state s ∈ S is stable iff all paths originating in s are finite. In
the μ-calculus, this can be expressed by the formula νx.♦x, which holds in a state
s ∈ S iff there exists at least one infinite path originating in s. Consequently, a
Kripke structure K is stable iff �νx.♦x�K′ does not contain any reachable states.
The latter are exactly the set �μx.χI ∨ ←−♦x�K, where χI is the characteristic
function of I, i.e., �χI�K = I. This leads to the following theorem:

Theorem 1. A Kripke structure K = (S, I, R, L) is stable iff �μx.χI ∨←−♦x�K ∩
�νx.♦x�K′ = ∅ holds.

As both fixpoint formulae are independent of each other, they can be evaluated
separately, which significantly reduces the total number of fixpoint iterations.
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In fact, if a Kripke structure is not stable, we do not even have to compute all
reachable states. Given that the formula νx.♦x has already been evaluated, the
fixpoint iteration for the least fixpoint formula can be aborted when a state is
encountered that belongs to �νx.♦x�K′ .

For the Kripke structure of Figure 3, we obtain �μx.χI ∨ ←−♦x�K = {s0, s1, s2}
with I = {s0} and �νx.♦x�K′ = {s3, s4}. Hence, the Kripke structure is stable.

4 Implementation and Experimental Results

4.1 Modelling Environment and Formal Representation

We integrated the MARS modelling concepts into the Generic Modelling Envi-
ronment GME3 [9], a tool for computer-aided software engineering, and devel-
oped a GME meta model for representing the MARS modelling concepts. Based
on this meta model, concrete examples like our running example (see Figure 4)
can be instantiated. GME automatically produces a model representation in
XML format which is used as input for validation and verification as well as for
code generation.

Besides formal verification of adaptation behaviour, MARS currently offers
two further analyses for its validation. First, we support the simulation of adap-
tation behaviour and the visualisation of reconfiguration sequences using adap-
tation sequence charts ASC [21]. Second, it is possible to perform a probabilistic
analysis of the adaptation behaviour [1]. For this purpose, the adaptation be-
haviour model is transformed into an equivalent hybrid component fault tree.
The probability that a configuration of a module is activated can then be derived
from the failure rates of sensors and actuators.

After the adaptation behaviour of a model has been successfully validated
and verified, the functional behaviour can be integrated into the model. When
the behaviour of the whole system is completely specified, code generation is
possible. For simulation and code generation, we use MATLAB-Simulink,4 the
de facto standard in industrial development of embedded systems.

Moreover, we implemented a tool called AMOR (Abstract and MOdular
verifieR) that reads XML output generated by GME and translates it to a for-
mal representation based on SAS. SAS models are internally represented as
immutable terms using Katja [11]. Additionally, we implemented the transfor-
mations described in Subsection 3.1 in order to make the models amenable to
formal verification using model checking. The correctness of the transformations
is established by automatically generating proof scripts for Isabelle/HOL [12].
AMOR also supports the translation of SAS models into a semantical representa-
tion of Isabelle/HOL, so that SAS models can be directly verified using theorem
proving techniques. Alternatively, AMOR is able to generate code for symbolic
model checkers. The generated code may contain only adaptive behaviour (for
the verification of purely adaptive properties) or both adaptive and functional
behaviour (for the verification of combined properties).
3 http://www.isis.vanderbilt.edu/projects/gme/
4 http://www.mathworks.com
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Fig. 4. Top level view of building automation example in GME

4.2 Verification

As model checking back-end, we use the Averest5 framework, a set of tools for
the specification, implementation and verification of reactive systems [19]. In
Averest, a system is given in the synchronous programming language Quartz,
which is well-suited for describing adaptive systems obtained from SAS models.
In particular, as both are based on a synchronous semantics, SAS modules can be
easily mapped to threads in Quartz. Moreover, causality analysis of synchronous
programs can be used to detect cyclic dependencies that may occur if the quality
flow generated by an output is an input of the same module. Specifications can
be given in temporal logics as well as in the μ–calculus. To check stability, we
implemented the method described in Subsection 3.3 in Averest.

4.3 Evaluation of the Building Automation System

To evaluate our approach, we modelled the building automation example with
MARS, translated it to an SAS model using AMOR and generated a Quartz
program from this model. The resulting system contains 108 variables and has
approximately 1.5 × 1020 reachable states. As the first step, we checked the
generic specifications described in Subsection 3.2 for each module using Averest’s
symbolic model checker. Each of these specifications could be checked in less

5 http://www.averest.org
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than one second. For example, we verified the following CTL formulae for the
OccupancyDetection module:

AG(occupancyDetection= off → EF(occupancyDetection �= off))

AG(EF(occupancyDetection= camera) ∧ EF(occupancyDetection= transponder)∧
EF(occupancyDetection= motion) ∧ EF(occupancyDetection= entryExit)∧
EF(occupancyDetection= off))

AG(occupancyDetection= camera∨ occupancyDetection= transponder∨
occupancyDetection= motion∨ occupancyDetection= entryExit∨
occupancyDetection= off)

Additionally, we checked five application specific (functional) properties. For
instance, the following formula states that if the light is available and the desired
brightness is greater than zero then the light will be switched on (AXϕ holds iff
ϕ holds on all paths at the next point of time):

AG(lightQuality = available∧ lampBrightness> 0 → AX(light = on))

The application specific properties could also be checked in a few seconds, but
the construction of the transition relation required significantly more time com-
pared to the generic properties (92s instead of approx. 1s). This indicates that
the separation of adaptive from functional behaviour considerably accelerates
verification. As the second step, we checked stability of the system with LTL
model checking and with the approach described in Subsection 3.3. LTL model
checking requires a total number of 39 fixpoint iterations and takes 130s, whereas
our approach only performs 9 iterations in less than one second.

5 Related Work

There are various approaches that integrate model-based design and formal ver-
ification in the development of non-adaptive systems. Most of them use an in-
termediate representation that aims at closing the gap between modelling and
verification. The Rhapsody UML Verification Environment [17] supports the
verification of UML models using the VIS model checker via an intermediate
language called SMI. The authors of [22] propose an approach linking xUML,
an executable subset of UML, and the SPIN model checker. They also propose
transformations on the intermediate layer but do not prove them correct, since
the intermediate representation has no formal semantics. The IF Toolset [3] in-
tegrates modelling in UML and SDL (Specification and Description Language)
with different verification tools using the IF intermediate language. IF also sup-
ports a number of techniques to reduce the state space, e.g. elimination of ir-
relevant parts of a model, but the transformations are not explicitly verified.
Furthermore, none of these approaches considers adaptation.

With respect to adaptive system development, most approaches concentrate
either on modelling or on verification aspects. There are various approaches fo-
cussing on modelling self-managed dynamic software architectures; for a survey,
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consult [4]. However, only few of them deal with predetermined dynamic soft-
ware reconfiguration [21] and consider the overall development process of adap-
tive embedded systems. The method described in [14] addresses the modelling
of reconfiguration but omits verification aspects completely. In [24], the authors
introduce a method for constructing and verifying adaptation models using Petri
nets. However, specifying adaptation behavior using Petri nets is not an intuitive
way to design complex industry sized systems like the ESP (Electronic Stability
Program). Moreover, the notion of adaptivity is more coarse-grained than in our
work, since it is restricted to three fixed types of adaptation.

Regarding verification of adaptive systems, linear time temporal logic is
extended in [23] with an ‘adapt’ operator for specifying requirements on the sys-
tem before, during and after adaptation. An approach to ensure correctness of
component-based adaptation was presented in [8], where theorem proving tech-
niques are used to show that a program is always in a correct state in terms of
invariants. Initial work on the verification of MARS models can be found in [20].
In contrast to [20], the work presented in this paper supports the verification
of both adaptive and functional aspects. Furthermore, the formal representa-
tion introduced in this work bridges the gap between modelling and verification
techniques and integrates formal verification into the development process in a
way transparent to the user. Additionally, [20] does not discuss specialised ver-
ification procedures for properties characteristic for adaptive systems such as
stability.

6 Conclusion and Future Work

Although dynamic adaptation significantly complicates system design, it is fre-
quently used as cost-efficient solution to increase dependability in safety-critical
embedded systems. In this paper, we have presented an integrated framework for
model-based development of adaptive embedded systems that supports intuitive
modelling as well as efficient formal verification. It provides the developer with a
user-friendly modelling method for specifying the system’s adaptation behaviour
and its interface to functional behaviour. It further allows to formally represent
the semantics of the specified models close to the introduced modelling concepts.
This enables us to express crucial system properties in a semantically exact man-
ner. Based on the formal model, these properties can be verified using interactive
theorem proving, symbolic model checking and specialised verification methods
for adaptive embedded systems.

We are currently extending the modelling concepts for adaptation behaviour
by integrating a configuration transition management. Moreover, we are working
on additional techniques to reduce verification complexity for the application of
model checking such as predicate abstraction. Additionally, we plan to support
the development of distributed adaptive systems, where adaptation can be used
to compensate for the failure of whole components.
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