

Complexity Analysis of Code
Generation for the SCAD Machine

Hi, I am Markus Anders.

Complexity Analysis of Code
Generation for the SCAD Machine

1. Motivation
2. Reduction for Bounded Buffers
3. Reduction for Unbounded Buffers

Motivation

The complexity of Code Generation for SCAD
architectures is (or was) not known.

→Justify the use of heuristics

Motivation

Most traditional code generation problems are
based on registers.

→ Find relationships to known problems if
possible

Complexity Analysis of Code
Generation for the SCAD Machine

1. Motivation
2. Reduction for Bounded Buffers
3. Reduction for Unbounded Buffers

Bounded Buffers vs. Unbounded
Buffers

Input and Output Buffers
can either be bounded or
unbounded

Bounded Buffer Implications

● Space in the processor is limited
● Spilling values to memory may be necessary

→ Optimize the amount of spill code
→ Queue operation (dup, swap) overhead will be

 ignored

Bounded Buffer Implications

● Space in the processor is limited
● Spilling values to memory may be necessary

→ Optimize the amount of spill code
→ Queue operation (dup, swap) overhead will be

 ignored

Bounded Buffer Code Generation
Problem

INSTANCE: Expression DAG D, positive integer
k, positive integer n

QUESTION: Which move code M evaluates and
stores all roots of D with the least amount of
memory operations on k PUs in which all buffers
are bounded by n?

Non-Commutative One-Register
Optimal Code Generation

Instruction set

(1) r ← m (load)
(2) m ← r (store)
(3) r ← r + m (memop)

Non-Commutative One-Register
Optimal Code Generation

INSTANCE: Expression DAG D

QUESTION: What is the shortest machine
program M that evaluates and stores all roots of
D?

Reduction Idea

● Buffers in the SCAD machine will be bounded to 1
● 1 PU, will also act as the LSU
● Give a polynomial-time transformation from optimal

register code to optimal SCAD code...
● … and vice-versa
● If transformations do not change the amount of memory

operations, optimality follows

Register Code to SCAD Code

● For each of the register instructions equivalent SCAD code
is needed

● SCAD code and register code have to use the same
amount of memory operations

● Many details are omitted on these slides

Register Code to SCAD Code

Register code:

r ← m

SCAD code:

load → opc

m → opr

out → opl

Register Code to SCAD Code

Register code:

m ← r

SCAD code:

store → opc

m → opr

Register Code to SCAD Code

Register code:

r ← r + m

SCAD code:

load→ opc

m → opr

out → opr

+ → opc

out → opl

SCAD Code to Register Code

● Queue overhead and moves are not important for
optimality

● Track where data originally came from (loaded from
memory or result of an operation)

● Generate register code when an operation is actually fired
using the tracked information

SCAD Code to Register Code

Conclusions for Code Generation
with Bounded Buffers

→ NP-completeness of the restricted problem for 1 PU
 and buffers bounded by 1

→ NP-hardness for the general problem

→ Relationship to a known register machine problem

Complexity Analysis of Code
Generation for the SCAD Machine

1. Motivation
2. Reduction for Bounded Buffers
3. Reduction for Unbounded Buffers

Reduction with Unbounded Buffers

● All values can be kept inside the processor
● Spill code not necessary, queue overhead is

→ Optimize the amount of queue overhead (dup,
 swap)

Unbounded Buffer Code
Generation Problem

INSTANCE: Program P, positive integer k

QUESTION: Is it possible to compile P without
using dup or swap operations on k PUs?

Control Flow Implications

x = 1 + 2 x = 2 + 3

y = x + 2 y = 3 + x

If no queue overhead is assumed, x has to be produced on the same PU

B
1 B

2

C
left C

right

Reducing Graph Coloring

● Graph Coloring will be reduced

● A graph G is transformed into program P

● G is colorable with k colors iff P is is schedulable
on k PUs without dup and swap

Reduction Idea

● Every vertex becomes a variable (v
1
, …, v

n
)

● Every edge becomes a basic block (B

1
, …, B

m
)

● PU assignment of a variable is the color of the
vertex

Edge Basic Block

Vertices connected by an edge should not be
colored with the same color

→

Corresponding variables should not be produced
by the same PU

Edge Basic Block

B
j
 for edge e

j
= {v

x
, v

y
}

v
1
= _ + _

v
2

= _ + _
…
v

x
= a + b

…
v

y
= b + a

…
v

i
= _ + _

with „a“ and „b“ being some load variable
→ can not be produced by the same PU

Reduction Control Flow

Edges

Conclusions for Code Generation
with Unbounded Buffers

→ NP-hardness of the given problem

→ Reduction looks similar to register allocation

Thank you for your attention!

Sources

[1] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and Y. Etsion,
“Hybrid dataflow/von-Neumann architectures,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, pp. 1489–1509, June
2014.
[2] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “WaveScalar,” in
Microarchitecture (MICRO), (San Diego, California, USA), pp. 291–302,
IEEE Computer Society, 2003.
[3] R. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic
units,” IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–
33, 1967.anpur, India), pp. 143–152, IEEE Computer
Society, 2016..
[4] A. Bhagyanath and K. Schneider, “Exploring the potential of
instruction-level parallelism of exposed datapath architectures with
buffered processing units,” in Application of Concurrency to System
Design (ACSD) (A. Legay and K. Schneider, eds.), (Zaragoza, Spain),
pp. 106–115, IEEE Computer Society, 2017.
[5] A. Bhagyanath and K. Schneider, “Exploring different execution
paradigms in exposed datapath architectures with buffered processing
units,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), (Samos, Greece),
IEEE Computer Society, 2017.
[6] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.
[7] A. Aho, S. Johnson, and J. Ullman, “Code generation with common
subexpressions,” Journal of the ACM (JACM), vol. 24, no. 1, pp. 146–
160, 1977.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

