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Motivation

The complexity of Code Generation for SCAD 
architectures is (or was) not known.

→Justify the use of heuristics



  

Motivation

Most traditional code generation problems are 
based on registers.

→ Find relationships to known problems if 
possible
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Bounded Buffers vs. Unbounded 
Buffers

Input and Output Buffers 
can either be bounded or 
unbounded



  

Bounded Buffer Implications

● Space in the processor is limited
● Spilling values to memory may be necessary

→ Optimize the amount of spill code
→ Queue operation (dup, swap) overhead will be 

 ignored
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Bounded Buffer Code Generation 
Problem

INSTANCE: Expression DAG D, positive integer 
k, positive integer n

QUESTION: Which move code M evaluates and 
stores all roots of D with the least amount of 
memory operations on k PUs in which all buffers 
are bounded by n?



  

Non-Commutative One-Register 
Optimal Code Generation

Instruction set

(1) r ← m (load)
(2) m ← r (store)
(3) r ← r + m (memop)



  

Non-Commutative One-Register 
Optimal Code Generation

INSTANCE: Expression DAG D

QUESTION: What is the shortest machine 
program M that evaluates and stores all roots of 
D?     



  

Reduction Idea

● Buffers in the SCAD machine will be bounded to 1
● 1 PU, will also act as the LSU
● Give a polynomial-time transformation from optimal 

register code to optimal SCAD code...
● … and vice-versa
● If transformations do not change the amount of memory 

operations, optimality follows



  

Register Code to SCAD Code

● For each of the register instructions equivalent SCAD code 
is needed

● SCAD code and register code have to use the same 
amount of memory operations

● Many details are omitted on these slides



  

Register Code to SCAD Code

Register code: 

r ← m

SCAD code:

load → opc

m → opr

out → opl



  

Register Code to SCAD Code

Register code: 

m ← r

SCAD code:

store → opc

m → opr



  

Register Code to SCAD Code

Register code: 

r ← r + m

SCAD code:

load→ opc

m → opr

out → opr

+ → opc

out → opl



  

SCAD Code to Register Code

● Queue overhead and moves are not important for 
optimality

● Track where data originally came from (loaded from 
memory or result of an operation)

● Generate register code when an operation is actually fired 
using the tracked information



  

SCAD Code to Register Code



  

Conclusions for Code Generation 
with Bounded Buffers

→ NP-completeness of the restricted problem for 1 PU       
     and buffers bounded by 1

→ NP-hardness for the general problem 

→ Relationship to a known register machine problem
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Reduction with Unbounded Buffers

● All values can be kept inside the processor
● Spill code not necessary, queue overhead is

→ Optimize the amount of queue overhead (dup,   
     swap)



  

Unbounded Buffer Code 
Generation Problem

INSTANCE: Program P, positive integer k

QUESTION: Is it possible to compile P without 
using dup or swap operations on k PUs?



  

Control Flow Implications

x = 1 + 2 x = 2 + 3

y = x + 2 y = 3 + x

If no queue overhead is assumed, x has to be produced on the same PU

B
1 B

2

C
left C

right



  

Reducing Graph Coloring

● Graph Coloring will be reduced

● A graph G is transformed into program P

● G is colorable with k colors iff P is is schedulable 
on k PUs without dup and swap



  

Reduction Idea

● Every vertex becomes a variable (v
1
, …, v

n
)

 
● Every edge becomes a basic block (B

1
, …, B

m
)

● PU assignment of a variable is the color of the 
vertex



  

Edge Basic Block

Vertices connected by an edge should not be 
colored with the same color  

→ 

Corresponding variables should not be produced 
by the same PU



  

Edge Basic Block

B
j
 for edge e

j 
= {v

x
, v

y
}

v
1 
= _ + _

v
2  

= _ + _
…
v

x 
= a + b

…
v

y 
= b + a

…
v

i  
= _ + _

with „a“ and „b“ being some load variable
→ can not be produced by the same PU



  

Reduction Control Flow

Edges



  

Conclusions for Code Generation 
with Unbounded Buffers

→ NP-hardness of the given problem 

→ Reduction looks similar to register allocation



  

Thank you for your attention!
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