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The complexity of Code Generation for SCAD
architectures is (or was) not known.

— Justify the use of heuristics



Most traditional code generation problems are
based on registers.

— Find relationships to known problems if
possible
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Bounded Buffers vs. Unbounded

Buffers

Input and Output Buffers
can either be bounded or
unbounded




Bounded Buffer Implications

e Space in the processor is limited
* Spilling values to memory may be necessary



Bounded Buffer Implications

e Space in the processor is limited
* Spilling values to memory may be necessary

— Optimize the amount of spill code
— Queue operation (dup, swap) overhead will be
ignored



Bounded Buffer Code Generation

Problem

INSTANCE: Expression DAG D, positive integer
K, positive integer n

QUESTION: Which move code M evaluates and
stores all roots of D with the least amount of
memory operations on k PUs in which all buffers
are bounded by n?



Non-Commutative One-Reqister

Optimal Code Generation

Instruction set

(1) r < m (load)
(2) m « r (store)
(3) r < r+ m (memop)



Non-Commutative One-Reqister

Optimal Code Generation

INSTANCE: Expression DAG D

QUESTION: What is the shortest machine
program M that evaluates and stores all roots of

D?



Reduction Idea

e Buffers in the SCAD machine will be bounded to 1
1 PU, will also act as the LSU

* Give a polynomial-time transformation from optimal
register code to optimal SCAD code...

e ... and vice-versa

* |f transformations do not change the amount of memory
operations, optimality follows



Register Code to SCAD Code

* For each of the register instructions equivalent SCAD code
IS needed

 SCAD code and register code have to use the same
amount of memory operations

* Many details are omitted on these slides



Register Code to SCAD Code

Regqister code:
ro— m

SCAD code:
load - opc

m - opr
out - opl

PU / LSU

opl [ val

opr [ adr

\V 4

out




Register Code to SCAD Code

Reqister code:
m—r

SCAD code:
store - opc

m - opr



Register Code to SCAD Code

Reqister code:
r « r +m

SCAD code:
load- opc

m - opr
out - opr
+ - opcC

out - opl



SCAD Code to Register Code

* Queue overhead and moves are not important for
optimality

* Track where data originally came from (loaded from
memory or result of an operation)

* Generate register code when an operation is actually fired
using the tracked information



VVVVV

PU / LSU
opl [ val opr [ adr
out
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Conclusions for Code Generation

with Bounded Buffers

- NP-completeness of the restricted problem for 1 PU
and buffers bounded by 1

- NP-hardness for the general problem
— Relationship to a known register machine problem
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Reduction with Unbounded Buffers

* All values can be kept inside the processor
* Spill code not necessary, queue overhead is

— Optimize the amount of queue overhead (dup,
swap)



Unbounded Buffer Code

Generation Problem

INSTANCE: Program P, positive integer k

QUESTION: Is it possible to compile P without
using dup or swap operations on k PUs?



Control Flow Implications

B, x=1+2 x=2+3 B

Cleft y=X+2 y=3+X Cright

If no queue overhead is assumed, x has to be produced on the same PU



Reducing Graph Coloring

* Graph Coloring will be reduced

* A graph G is transformed into program P

e G is colorable with k colors iff P is is schedulable
on k PUs without dup and swap



Reduction Idea

- Every vertex becomes a variable (v, ..., v,)

n

« Every edge becomes a basic block (B, ..., B )

* PU assignment of a variable is the color of the
vertex



Edge Basic Block

Vertices connected by an edge should not be
colored with the same color

—

Corresponding variables should not be produced
by the same PU



Edge Basic Block

B, for edge e = {v, vy}

V.= _t _
vV, =_t _
v=at+b

with ,a“ and ,b“ being some load variable
" — can not be produced by the same PU
W=b+a



Reduction Control Flow




Conclusions for Code Generation

with Unbounded Buffers

— NP-hardness of the given problem

-~ Reduction looks similar to register allocation



Thank you for your attention!
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