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Abstract

This thesis solves the problem of improving instruction-
level parallelism (ILP) in dataflow-based processor ar-
chitectures by optimizing scheduling and processing
unit (PU) allocation. In particular, it addresses the
Buffered Exposed Datapath (BED) processor SCAD
(Synchronous-Control Asynchronous-Dataflow), which
was designed to maximize parallel execution, avoiding
conventional memory bottlenecks and exposing internal
structures directly to the compiler. Based on the Aver-
est framework, the thesis designs and tests a scheduling
algorithm that transforms sequential MiniC programs
into Dataflow Process Networks (DPNs), assigns oper-
ations to Processing Units (PUs), and produces exe-
cutable move code while increasing initial PU alloca-
tions to facilitate faster execution.
The key contribution is a post-SAT scheduling algo-
rithm that leverages a previously calculated minimal
PU allocation to utilize more processing units, thereby
enhancing parallelism without introducing new data
dependencies or critical crossings. A novel mechanism,
referred to as trace juggling, is introduced to balance
task distribution and reduce execution time by inter-
leaving operations from different traces while preserv-
ing strict First-In-First-Out (FIFO) semantics.
Experimental tests on representative benchmarks, such
as MinTwoPUsNeeded and Rainbow DPNs, demon-
strate the effectiveness of the extended allocation strat-
egy. The scalability and efficiency of the approach are
further verified by results that demonstrate a signifi-
cant reduction in execution cycles - from 18 to 12 cycles
in one example - by adding just a few PUs. However,
critical failure points are also identified in generated
schedules due to the mishandling of duplication nodes
with switched outputs. These results suggest that DPN
models and scheduler implementations should be re-
fined for broader application areas.
Finally, this thesis presents a practical implementation
and a conceptual improvement of PU scheduling for ex-
posed datapath architectures. It provides the founda-
tion for further development of resource-aware schedul-
ing algorithms, efficient duplication semantics treat-
ment, and incorporation into hardware design flows for
high-performance parallel systems.
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Zusammenfassung

Diese Arbeit befasst sich mit der Verbesserung
der Instruction-Level-Parallelität (ILP) in datenfluss-
basierten Prozessorarchitekturen durch Optimierung
des Schedulings und der Zuordnung von Verarbeitung-
seinheiten (PUs). Der Fokus liegt insbesondere auf dem
Buffered Exposed Datapath (BED)-Prozessor SCAD
(Synchronous-Control Asynchronous-Dataflow), der
für maximale parallele Ausführung entwickelt wurde,
um konventionelle Speicherengpässe zu vermeiden und
interne Strukturen direkt dem Compiler zugänglich
zu machen. Basierend auf dem Averest-Framework
entwickelt und testet die Arbeit einen Scheduling-
Algorithmus, der sequentielle MiniC-Programme in
Dataflow Process Networks (DPNs) transformiert, Op-
erationen Verarbeitungseinheiten (PUs) zuweist und
ausführbaren Move-Code erzeugt. Gleichzeitig wer-
den die anfänglichen PU-Zuweisungen erhöht, um eine
schnellere Ausführung zu ermöglichen.
Der wichtigste Beitrag ist ein Post-SAT-Scheduling-
Algorithmus, der eine zuvor berechnete minimale
PU-Zuweisung verwendet, um mehr Verarbeitung-
seinheiten zu nutzen und so die Parallelität zu
verbessern, ohne neue Datenabhängigkeiten oder kritis-
che Kreuzungen einzuführen. Ein neuartiger Mechanis-
mus, das sogenannte Trace-Juggling, soll die Aufgaben-
verteilung ausbalancieren und die Ausführungszeit re-
duzieren. Dazu werden Operationen verschiedener
Traces verschachtelt, wobei die strikte First-In-First-
Out-Semantik (FIFO) gewahrt bleibt.
Experimentelle Tests mit repräsentativen Benchmarks,
wie MinTwoPUsNeeded und Rainbow DPNs, belegen
die Wirksamkeit der erweiterten Allokationsstrategie.
Die Skalierbarkeit und Effizienz des Ansatzes werden
durch Ergebnisse bestätigt, die eine signifikante Re-
duzierung der Ausführungszyklen – in einem Beispiel
von 18 auf 12 Zyklen – durch das Hinzufügen nur
weniger PUs belegen. Jedoch wurden auch kritis-
che Fehlerpunkte in generierten Schedules identifiziert,
die auf die fehlerhafte Handhabung von Duplikation-
sknoten mit getauschten Ausgängen zurückzuführen
sind. Diese Ergebnisse legen nahe, dass DPN-Modelle
und Scheduler-Implementierungen für breitere Anwen-
dungsbereiche weiterentwickelt werden sollten.
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Abschließend präsentiert diese Arbeit eine praktische
Implementierung und eine konzeptionelle Verbesserung
des PU-Scheduling für exponierte Datenpfadarchitek-
turen. Es bietet die Grundlage für die Weiterentwick-
lung ressourcenbewusster Planungsalgorithmen, eine
effiziente Behandlung der Duplizierungssemantik und
die Einbindung in Hardware-Designabläufe für leis-
tungsstarke parallele Systeme.
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1 Introduction

Processor architecture is essential to everyday life as it defines how a computer
analyzes data and executes instructions. It directly impacts computer systems’
performance, efficiency, and scalability. A well-designed processor allows for
quicker data processing, lower power consumption, and more multitasking, all
required for current applications ranging from mobile devices to supercom-
puters. Furthermore, architectural decisions influence software development
since programs must be tailored to the processor’s specific instruction sets and
features. Different architectures are tailored for specific applications, ranging
from embedded systems to high-performance computing, affecting everything
from performance to energy efficiency. Overall, processor architecture shapes
the capabilities and future of computing technologies.

A widely known metric for the evolution of processors is Moore’s Law, de-
veloped by Gordon Moore in 1965, which states that the number of transistors
on a microchip doubles roughly every two years, resulting in an exponential
rise in computer capacity [Moo65]. Nevertheless, this rule is limited because
transistors are becoming almost atomic in size while costs remain constant
[Lei+20]. These constraints necessitate advancements in processor architec-
ture that go beyond merely adding more transistors. In order to optimize task
allocation and lessen dependency on shared memory, current trends point to
a shift towards architectures that expose internal components to the compiler.
This change minimizes and, if possible, eliminates the requirement for shared
memory. It overcomes the drawbacks of memory structures that cannot keep
up with technological advancements by giving compilers control over schedul-
ing, data transfers, dependency analysis, and processing unit allocation. This
change has led to the emergence of several exposed datapath architectures, such
as RAW/Tilera [Aga99; Tay99; Tay+02; Wai+97; Wai04], TRIPS [Bur+04;
San+03; San+04], DySER [Gov+12], AMIDAR [GH05], TTA [AC97; HC94a;
Hoo97; HC92; HC94b; Jää+18; CL95; Cor99; CJA00; Cor94; KC97], and
SCAD [ABS18; Bha21; BS16; SBR22b; Ker23].

The Synchronous Control and Asynchronous Dataflow (SCAD) processor, as
aforementioned, is an exposed datapath processor developed by the Rheinland-
Pfälzische Technische Universität Kaiserslautern-Landau. The SCAD proces-
sor improves processing efficiency by asynchronous data transfer, allowing
many processes to run concurrently without waiting for one to finish before
the next [SBR22b]. Using FIFO (First In, First Out) buffers optimizes asyn-
chronous execution even further. These buffers serve as temporary storage
locations for data and instructions, ensuring that activities are executed in the
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Chapter 1: Introduction

order they were received. The FIFO structure is necessary because it main-
tains the integrity and order of execution operations, preventing data from
being processed out of sequence [SBR22b]. As a consequence, the SCAD pro-
cessor not only improves processing performance by handling many processes
concurrently, but it also maintains a systematic approach to memory access.

This thesis introduces a scheduling algorithm that utilizes instruction layer
parallelism as efficiently as possible while extending existing allocations. This
algorithm is specifically designed to generate schedules for the SCAD proces-
sor. A detailed description of the SCAD processor is provided in Chapter 2.3.

1.1 General Problem Setting

BED processors are a subset of exposed datapath architectures that reveal
their internal structure to compilers, allowing compilers to see the hardware
capabilities and layout of the processor directly and optimize the code more
efficiently when compiling. The available resources and internal structure must
be considered when generating code for a BED architecture. It is essential to
identify which processing unit should carry out which specific action, which
data moves through the processor, and how local memory should be utilized.
Therefore, scheduling algorithms play a crucial role in optimizing the alloca-
tion of resources and managing tasks. These algorithms determine the order
in which jobs are executed, ensuring efficient processing while minimizing de-
lays and maximizing resource utilization. From real-time systems that require
immediate task execution to batch processing, where tasks can be handled at
predetermined times, scheduling algorithms vary widely in their implementa-
tion and objectives. By effectively organizing tasks, scheduling algorithms en-
hance overall system performance, ensuring that resources are used efficiently
and objectives are met. Most scheduling algorithms, including the one imple-
mented and described in Chapter 4 and the scheduling algorithms presented
in 3, aim to achieve the fastest computational time possible with the given
resources. This is achieved through the parallel execution of nodes on differ-
ent processing units, if possible. Otherwise, a sequential execution should be
considered. When their input data is available, these processing units execute
and can therefore operate independently.

The starting point of this thesis will be a predefined program provided in
the MiniC language, a language developed for teaching processor architectures
[BSS14]. Afterward, a method for translating structured, sequential programs
into equivalent dataflow process networks (DPNs) using a designated set of
nodes for token control, control flow, memory access, and data operations is
applied to visualize the problem and as an intermediate representation for the
compilation of the DPN [Sch21]. A more detailed review of DPNs will be pro-
vided in Chapter 2.2.
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1.2 New Contributions

1.2 New Contributions

This thesis contributes a scheduling algorithm based on a generated dataflow
process network and a minimal allocation of processing units resulting from
a MiniC program. This scheduling algorithm utilizes instruction layer paral-
lelism for the fastest possible program execution. The Averest framework is
utilized for this translation. Averest includes a collection of tools designed for
specifying, verifying, and implementing reactive systems [SS05]. The schedul-
ing algorithm allocates the given SCAD processor with a predefined number
of PU and automatically generates the needed SCAD code to run the pro-
gram. Additionally, the provided scheduling algorithm should translate any
MiniC program into an equivalent SCAD program, utilizing resources opti-
mally. However, as shown in chapter 5.4, critical failure points are also identi-
fied in generated schedules due to the mishandling of duplication nodes with
switched outputs. Therefore, further refinement is needed to consider this
aspect.

1.3 Outline of the Thesis

In Chapter 2 establishes the background by introducing key concepts. It
presents MiniC, a low-level programming language for writing programs that
are to be converted to Dataflow Process Networks (DPNs). The concept and
structure of DPNs are described, and the conversion of sequential MiniC pro-
grams into this intermediate form is described. The architecture of the SCAD
processor is described below, together with its asynchronous data flow, FIFO
buffer mechanics, and components (processing units, load/store units, and con-
trol logic). Instruction-level parallelism is then introduced in the context of
buffered exposed datapath (BED) architectures. This is followed by a map-
ping of dataflow graphs to DPN architectures with SAT-based constraints for
processing unit allocation and scheduling consistency. The chapter ends with
a formal definition of the logical constraints that lead to FIFO behavior and
avoid critical scheduling conflicts.
Chapter 3 describes describes various scheduling methods, ranging from the
simple ASAP (As Soon As Possible) to the ALAP (As Late As Possible) al-
gorithm. It then investigates trace scheduling, a more advanced technique for
optimizing instruction execution over control flow traces. Vertex-disjoint paths
are proposed as a method to maximize ILP by dividing task chains into in-
dependent processors.Efficiency metrics for evaluating scheduling algorithms,
how well they optimize runtime, resource use, and parallelism, with less empha-
sis on scheduling time in static systems, are discussed. The chapter concludes
with an examination of the optimal schedule for implementing DPNs on SCAD
processors under unconstrained resource scenarios, followed by the consider-
ation of limited constraints. A technique named Trace Juggling is proposed
to enable the execution of operations across traces, thereby maximizing the
utilization of available resources and avoiding execution bottlenecks.
Chapter 4 presents the implementation of the proposed scheduling algorithm
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Chapter 1: Introduction

based on the Averest framework. It describes how current minimal allocations
are extended under some constraints and presents the system architecture for
storing experimental data and results. The chapter describes the steps involved
in parsing MiniC code, translating it into DPNs, obtaining SAT-based alloca-
tion constraints, and preparing the graphs for scheduling. It also describes
the implementation of the scheduling algorithm, visualization of results and
optimization of runtime efficiency.
In Chapter 5, the scheduling algorithm is experimentally tested. It outlines
the experimental setup and provides a detailed analysis of one specific case,
followed by broader tests across various benchmarks. In Section 5.4 the fail-
ures of the algorithm is also discussed, primarily due to incorrect scheduling
resulting from mishandling of duplicated nodes with swapped outputs.
It is concluded that its contributions were mainly the design and implemen-
tation of an extended PU allocation and scheduling algorithm that enhances
ILP for SCAD processors. It focuses on the practical benefits illustrated by
performance gains in the limited benchmark tests.
Finally, the thesis discusses potential directions for future work. These in-
clude reworking the handling of duplication semantics , scheduling robustness,
and integrating with hardware design flows for use cases in high-performance
parallel computing.
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2 Fundamentals

2.1 MiniC

MiniC is a programming language devoloped by the Rheinland-Pfälzische Tech-
nische Universität Kaiserslautern-Landau for minimal multi-threaded applica-
tions. Its development focuses on a compact set of data types, which include
booleans, unsigned/signed integers, arrays and tuples [BSS14]. Booleans rep-
resent true and false values, enabling logical operations and condition checks
within the program. Unsigned integers, represented as ’nat’ (natural numbers)
and signed integers, represented as ’int’, allowing for both positive and negative
values. Arrays enable the use of collections of elements that can be accessed
via indices. Tuples allow groups of data types to be bundled together, enabling
more complex data representations.

A typical MiniC program is structured into three sections organizing the
code. The sections are defined as follows:

• global/shared variables, dedicated to variables accessible from any
function or thread within the program. The design necessitates careful
management of these variables, as they must conform to a weak memory
model [BSS14].

• Function Declarations are callable from any active thread or function
within the program, but these functions can not be recursive to avoid
runtime stacks [BSS14].

• Threads are each statically allocated to a core, which means that threads
are treated as independent main programs capable of executing concur-
rently on different cores. The synchronization of these threads is crucial,
as it allows for cooperative multitasking within the program, optimizing
performance by effectively leveraging multi-core architectures [BSS14].

For further reference, see MiniC reference card1 provided by the Embedded
Systems Group of the University of Kaiserslautern. This resource includes
essential commands and syntax rules aiding in the utilization of the MiniC
programming environment.

1MiniC reference card: https://es.cs.rptu.de/tools/teaching/MiniCRef.pdf
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Chapter 2: Fundamentals

2.2 Dataflow Process Networks

2.2.1 The concept of Dataflow Process Networks

According to the determinations in [Sch21], the following discussion explores
Dataflow Process Networks (DPN), a computational model used to represent
the data flow in a system. It consists of various process nodes and directed
edges combined into a directed graph where each edge represents a communi-
cation channel. In this structure, nodes are responsible for processing data. A
node can execute its operation, also called the node can fire, only when certain
conditions are met, more precisely if a sufficient number of tokens arrive in
its input buffers. The incoming edges of the corresponding node define the
number of tokens needed to fire. When these criteria are satisfied, the node
extracts the necessary input values from the front of its input buffers and ex-
ecutes its designated calculation or processing operation. The node generates
output values after it has completed its operation. The results are placed at
the end of its output buffers, ready for use by other connected nodes in the
graph.

Because of the nature of dataflow networks, processing can occur in a highly
parallel form. As long as the required data is available, several nodes can fire
simultaneously. Dataflow graphs are convenient for modeling complex data
processing tasks, where the order of operations is dictated by data availability
rather than a pre-established command sequence. An exemplary DPN visual-
ization is provided in Figure 2.2 for further illustration of this concept.

2.2.2 From Sequential Programs to Dataflow Process Networks

The translation from Sequential Programs to Dataflow Process Networks is de-
fined recursively across the statements and will generate a DPN corresponding
to the statement. The following nodes, as shown in Figure 2.1, can be used to
transform the program into a DPN. Nodes take in and generate values, known
as tokens; tokens used are read from the front of the input buffers and then
removed, while new tokens are added to the end of the output buffers. This
is realized with directed edges between the Nodes. Each node has a specified
number of tokens needed for its input buffers, though each buffer may have dif-
ferent requirements. When the necessary tokens are present, the node can fire,
meaning it will consume the tokens, perform its computations, and generate
the resulting tokens.

2.2.3 Graphical representation of Dataflow Process Networks

In the graphical representation, various edge styles, which will be explained
shortly, serve to illustrate the connections between outputs and inputs that
the buffer manages. These distinct styles visually convey the nature of these
relationships. This information is effectively represented in the DPN shown
in Figure 2.2, which visually translates the example program called DAXPY.
DAXPY (Double-precision A · X Plus Y) is a basic linear algebra operation
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2.2 Dataflow Process Networks

C is a copy node with one input and one output buffer. It
consumes the head of its input and outputs it to the output
buffer, useful for leveling in a DPN.

D is a duplication node with one input and two output
buffers, creating multiple instances of a input when it fires

S is a swap node with two input and two output buffers; it
swaps the heads of its input buffers and sends them to the
opposite output buffers.
J is a join node with two input and one output buffer; it
consumes one token from each input buffer and produces one
token in its output, regardless of the values.

Kill is a kill node that destroys the head of its input buffer
when it fires.

SEL (select) has three input buffers and forwards a value
from either x1 or x0 to output y depending on the boolean
in buffer c.

SWT (switch) takes two input buffers and two output buffers;
it can forward a value from x to either y1 or y0 based on the
boolean value in c.

LDa (load memory a) consumes tokens to read from memory
at a specified address and outputs the loaded value.

STa (store memory a) takes inputs to store a value in memory
at a specified address, enabling future memory access.

Const(c) always fires, outputting a constant value c.

MonOp(f, x) performs unary or binary operations on value
from the input buffers.

BinOp(
⊙

, x0, x1) performs binary operations on values from
their input buffers.

x is a value that is recevied from the Data Memory

y is a value that is pushed to the Data Memory

Figure 2.1: DPN nodes used in the translation, derived from [Sch21] and visualized
using the Averest framework [SS05]
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Chapter 2: Fundamentals

Figure 2.2: A visualisation of the a DPN used to calculate DAXPY (Double pre-
cision A · X⃗ Plus Y⃗ ), using the Averest framework [SS05]
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2.3 Synchronous-Control Asynchronous-Dataflow

that computes the result a · X + Y, where a is a scalar and X and Y are
vectors. The figure not only highlights the structural layout but also aids in
comprehending how the components interact within the program’s flow.

Once we have addressed the specific cases for the inputs, which include a
condition input (SEL and SWT) marked in red and token inputs for LD and
ST displayed in green, we can proceed to handle the remaining inputs with a
standard approach. The token inputs represent the variables the program needs
to execute. The output tokens resemble the results the program calculates
while executing.

In this context, we represent the first (left) input with a solid black arrow.
This visual cue helps to easily distinguish it from the second (right) input,
which is denoted by a blue dashed arrow, following the established syntax for
the node.

Similarly, for the outputs, we apply a consistent visual strategy. Token
outputs are indicated by an arrowhead shaped like a diamond, clearly distin-
guishing them from other types of outputs. For non-token outputs, we use
filled arrowheads to signify the first (left) output, while an empty arrowhead is
used for the second (right) output. This layered visual representation assists in
clarifying the flow and relationships of inputs and outputs within the system.

2.3 Synchronous-Control Asynchronous-Dataflow

The Synchronous-Control Asynchronous-Dataflow (SCAD) processor, devel-
oped by the Embedded Systems Group at the Rheinland-Pfälzische Technis-
che Universität Kaiserslautern-Landau, is a Buffered Exposed Datapath (BED)
processor. BED processors are a subcategory of exposed datapath architectures
that make their internal structure accessible to the compiler. Therefore, com-
pilers can directly see the processor’s hardware capabilities and layout. This
exposure allows for better optimization during compilation, enabling compilers
to produce more efficient code.

The term synchronous control denotes the processor’s capability to control
operations in order, guaranteeing the correctness of the program’s execution.
Meanwhile, Asynchronous-Dataflow refers to the separate data processing from
control signals, enabling higher and independent throughput.

In the BED architecture, the input and output ports of the processing units
utilize First-in, First-out (FIFO) buffers. Its programming uses move instruc-
tions, which transfer values from the head of output buffers to the tail of input
buffers.

Figure 2.3 shows a general template of a BED Architecture wich consists of
Processing Cores, Load/Store Unit, Control Unit, Programm memory, Data
Memory and a Interconnection Network.

2.3.1 Processing Core/ Processing Unit

A Processing Unit (PU) executes instructions received in the input buffers.
Figure 2.4 shows that each PU has three input and two output buffers. The
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Chapter 2: Fundamentals

Figure 2.3: "General Template of a BED Architecture"[SBR22b]

Figure 2.4: "Processing Unit in a BED Architecture with Virtual FIFO
Buffers"[SBR22b]

instruction buffer highlighted in blue is optional and only required if the PU
is capable of executing multiple instructions [Ker23]. Pairs of entries of the
format (adr, val) are stored in Buffers inL, inR, outL, and outR. When referring
to an input buffer, ’adr’ denotes the address of the output buffer that is part of
the PU that has produced or will produce the value ’val’. An ’⊥’ in val means
the required value is unavailable and will be supplied later from the output
buffer linked to ’adr’. Likewise, ’adr’ in an output buffer denotes the address
of the PU’s input buffer configured to receive the value [BS17].

2.3.2 Load/Store Unit and Data Memory

The load/store unit (LSU) is responsible for reading from or writing to the
data memory and has exclusive access to the data memory. As a result, it must
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2.4 Instruction-Level Parallelism

obtain an opcode to decide whether to load or store data. LSU needs two input
buffers for storing, one for the memory addresses and another for the values to
be stored at the corresponding addresses for saving data. Data loading needs
just one input buffer for the addresses, and an output buffer value loaded from
memory [BS17]. Utilizing a single LSU prevents weak memory from occurring
[Ker23].

2.3.3 Control Unit and Programm memory

The control unit (CU) retrieves the subsequent move instruction (src, tgt),
depending on the program counter, from the instruction memory and transmits
it via the move-instruction bus (MIB), which is part of the Interconnection
Network to all PUs. The input buffer at address tgt will append the entry
(src, ⊥) to its end, and the output buffer at address src will append the entry
(tgt, ⊥). A feedback signal indicating a full buffer will be sent to the control
unit if a buffer fills up. Additionally, the other buffer will not save the entry,
and the control unit will momentarily stop the subsequent cycle and repeat
the move instruction. A move instruction’s (src, tgt) related data transfer will
be delayed. As a result, the control flow runs in tandem with the data flow,
which happens asynchronously [BS17].

2.3.4 Interconnection Network

The interconnection network of the SCAD processor comprises two primary
components: the move-instruction bus (MIB) and the data transport network
(DTN). The move-instruction bus is used for the synchronous transmission of
values from the control unit, while the data transport network enables asyn-
chronous communication of values among components as they become available
[BS17].

2.4 Instruction-Level Parallelism

The capacity of a processor to carry out many instructions simultaneously is
known as Instruction-Level Parallelism (ILP). This technique improves through-
put and performance using the inherent parallelism in instruction execution.
Static scheduling, first created for lengthy instruction words, and dynamic
scheduling for processors with out-of-order execution are two traditional ap-
proaches to using ILP in processor designs [BS17].

However, buffered exposed datapath designs may also be able to use the
maximum ILP [BS17]. Future processor designs for high-performance comput-
ing must maximize ILP in exposed datapath architectures.

2.5 Mapping Dataflow Graphs to DPN architectures

According to the article "Consistency Constraints for Mapping Dataflow Graphs
to Hybrid Dataflow/von Neumann Architectures" [SB23], allocating a Dataflow
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Graph (DFG) to the BED architecture can be accomplished as described in
the following.
Following the initial stage of converting a sequential program into a DFG, the
DFG must be allocated to the BED architecture to generate the move code.
Dataflow graphs are computational models where nodes represent operations
and edges represent data paths, implemented as FIFO (First-In-First-Out)
buffers.

A Dataflow Graph, or a DFG (P, B), comprises a set of nodes P intercon-
nected by edges B. The nodes i ∈ P realize one of the operations listed in
Figure 2.1.
A DPN architecture refers to a DPN (U , C) comprising nodes U = {CU, IC,
PU[0], ... , PU[n - 1]} and edges C, which are also known as channels. CU,
known as the control unit, transmits instructions to all other nodes. The inter-
connection network IC is responsible for transporting data between the PUs,
and n PUs execute instructions.
In a given dataflow graph (P, B) and a DPN architecture (U , C), the synthesis
problem involves the following tasks while adhering to the FIFO behavior of
the buffers:

• Define a PU allocation α: P → U that assigns the nodes P of the dataflow
graph to the processing units (PUs) within the DPN architecture.

• Establish a strict and total ordering ≺ of the nodes P, outlining a sched-
ule for executing the nodes on the PUs of U .

• Create a strict and total ordering ⊏ of the edges B, which specifies the
data transfers needed to move values from the output buffers to the input
buffers of the PUs in U via the interconnection network IC.

The mapping must respect FIFO behavior, ensuring that data is consumed
in the same order it was produced. In [SB23], they define consistency rules to
avoid conflicts when different data elements are assigned to the same source or
target buffers.

In a dataflow graph (P, B), when mapped to a DPN architecture (U , C)
with a given processing unit allocation α, a node execution order ≺, and an
edge (or buffer) ordering ⊏, we can examine the interaction between two edges.
Consider two edges x1 : p1 → q1 and x2 : p2 → q2, where p1 ≺ p2 and q2 ≺ q1.
Under these conditions, assuming p1 and p2 write to a buffer and q1 and q2
read from a buffer

• Node p1 must write to a buffer before node p2, due to p1 ≺ p2.

• Node q2 must read data before node q1, due to q2 ≺ q1.

Now considering these edges, based on the PU allocation α and buffer as-
signments and generated move instructions src → tgt. The source address src
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is an output buffer PU[i].outL or PU[i].outR and the destination address tgt,
is one of the buffers PU[i].inL or PU[i].inR with i ∈ α, this generates move
instructions in the form of src1 → tgt1 and src2 → tgt2, and four possible
cases arise.

1. src1 ̸= src2, and tgt1 ̸= tgt2, this indicates that src1 → tgt1 and src2 →
tgt2 every order of the move instructions is possible.

2. src1 = src2, and tgt1 ̸= tgt2, it is critical that src1 → tgt1 occurs before
src2 → tgt2, due to p1 ≺ p2.

3. src1 ̸= src2, and tgt1 = tgt2, the requirement is that src2 → tgt2 must
be executed before src1 → tgt1, due to q2 ≺ q1.

4. src1 = src2, and tgt1 = tgt2, the requirement is that src1 → tgt1 must
occure before src2 → tgt2, due to p1 ≺ p2, but on the other hand, due to
q2 ≺ q1, src2 → tgt2 must be executed before src1 → tgt1. This indicates
that there is no correct move code sequence.

Case four represents a critical crossing where two data tokens sharing the
same buffer cannot be scheduled without violating FIFO behavior due to con-
flicting production and consumption orders, with a more detailed proof can be
found in [SBR22a] . It represents a scheduling deadlock that must be resolved
through architectural or compilation strategies. Identifying and eliminating
critical crossings is essential to ensure correct, efficient, and parallel execution
in dataflow-based systems like the SCAD processor.

A central challenge in this mapping is enforcing consistency constraints, en-
suring that data tokens maintain FIFO behavior and that no critical crossings
occur. To systematically capture and verify these constraints, we can translate
the mapping problem into a Boolean satisfiability (SAT) problem. In particu-
lar, many consistency requirements, such as the relative ordering of node firings
and token movements, can be expressed using simple binary (two-variable) log-
ical clauses, making them suitable for encoding as a 2-SAT problem. A 2-SAT
formulation allows us to:

• Represent orderings and PU assignments as binary decision variables

• Enforce FIFO-consistent execution using implications (e.g., "if node A
precedes node B, then edge x must precede edge y")

• Efficiently determine whether a conflict-free, valid schedule exists using
a known polynomial-time algorithm for 2-SAT

Thus, the complex task of scheduling and resource assignment in dataflow
architectures can be reduced to solving a logically structured problem, en-
abling automated tools to explore the feasibility of the mapping and generate
consistent schedules with minimal computational overhead.
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2.6 Constraints for Dataflow Graphs

For any dataflow graph consisting of nodes P and buffers B , along with any
DPN architecture featuring ϱ PUs, Klaus Schneider et al. established in their
paper [SBR22a] constraints through propositional variables αp,k, which indi-
cate that node p is allocated to PU k. Additionally, they utilize a binary
relation ≺ among the nodes that represents their scheduling, and a binary re-
lation ⊏ concerning the buffers that indicates the scheduling of data transfers.
To achieve this, they start by defining the following predicates for nodes p1,
p2, and buffers b1, b2, the functions inBf(b) and outBf(b) specify which input
or output port of a PU is utilized by buffer b. This now holds the following:

• samePU(pi, pj) :⇔
∨ϱ

k=1 αpi,k ∧ αpj ,k

• srcEQ(bi, bj) :⇔ outBf(bi)=outBf(bj) ∧ samePU(pi, pj)

• tgtEQ(bi, bj) :⇔ inBf(bi)=inBf(bj) ∧ samePU(qi, qj)

With these variables, relations, and predicates, they now define the following
constraints to encode the synthesis problem for ϱ PUs:

• ≺ is a strict order on all nodes:

– irreflexivity: ¬(p ≺ p) must hold for all nodes p ∈ P
– transitivity: for all nodes p1, p2, p3 ∈ P, they demand

p1 ≺ p2 ∧ p2 ≺ p3 → p1 ≺ p3

– totality: for all nodes p1, p2 ∈ P with p1 ̸= p2, they demand
p1 ≺ p2 ∨ p2 ≺ p1

• ⊏ is a order on all buffers:

– irreflexivity: ¬(b ⊏ b) must hold for all buffers b ∈ B
– transitivity: for all buffers b1, b2, b3 ∈ B, they demand the constraint

b1 ⊏ b2 ∧ b2 ⊏ b3 → b1 ⊏ b3

– totality: for all buffers b1, b2 ∈ B with b1 ̸= b2, they demand
b1 ⊏ b2 ∨ b2 ⊏ b1

• data dependencies: for every buffer b : p → q, they demand the node
ordering constraint p ≺ q

• PU allocation: every node p ∈ P is mapped to one PU∧
p∈P

ϱ∨
k=1

αp,k

 ∧
∧
p∈P

ϱ∧
k=1

αp,k →
ϱ∧

j=1̸=k

¬αp,j


• FIFO behavior constraints: for all buffers bi : pi → qi and bj : pj → qj ,

the following constraints ensure the consistency of the node ordering ≺
and the buffer ordering ⊏:

– pi ≺ pj ∧ srcEQ(bi, bj) → bi ⊏ bj

– qj ≺ qi ∧ tgtEQ(bi, bj) → bj ⊏ bi
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3 Scheduling

Scheduling is the process of controlling tasks, instructions, or processes to max-
imize use of resources and performance. This involves identifying the sequen-
tial order of operations and effectively managing program resources. Several
scheduling algorithms exist, each designed for specific environments and goals.
Many variations and hybrids are also designed to handle specific needs in real-
time, distributed, or multiprocessor systems. In the following sections, some
scheduling algorithms, especially those significant for scheduling algorithms for
the SCAD processor, will be presented and extended to create a new variation
of a scheduling algorithm to maximize the use and performance of resources
tailored to the specific constraints of the SCAD processor.

3.1 ALAP and ASAP Sheduling

Two simple scheduling techniques were described in the "Introduction to the
Scheduling Problem" by Robert A. Walker and Samit Chaudhuri [WC95]. Ac-
cording to their description, the following two simple scheduling algorithms
can be described as follows.
ASAP (As Soon As Possible) and ALAP (As Late As Possible) scheduling are
the two basic algorithms utilized to solve the unconstrained scheduling (UCS)
problem. The UCS problem describes assigning operations while respect-
ing all data dependencies and assuming unlimited computational resources.
ASAP scheduling places each operation into the earliest control step available,
scheduling them one at a time. A control step represents a discrete unit of
time during which specific operations or instructions are executed. One con-
trol step can include multiple instructions that can be executed in parallel.
ALAP scheduling operates similarly but allocates each operation to the latest
possible control step. Adding resource constraints (RCS) and time constraints
(TCS) also extends the UCS to consider limited hardware resources and a fixed
number of time steps, respectively.

To illustrate the concepts of ASAP and ALAP scheduling more concretely,
let’s consider a simple example involving a set of additions that must be
planned while respecting their dependencies. Imagine we have the following
calculation y = (a+b) + (c+d) + (e+f), which is based on the example in
[WC95] and illustrated as a DPN in Figure 3.1. ASAP scheduling algorithm
will schedule the addition (a+b), (c+d), and (e+f) in control step 1 as depicted
in Figure 3.2. In contrast, the ALAP scheduling algorithm will only schedule
the addition (a+b) and (c+d) in control step 1 and push (e+f) to control step
2, as shown in Figure 3.3.

While ASAP and ALAP are greedy algorithms and provide quick resolu-
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Figure 3.1: A simple addition y = (a+b) + (c+d) + (e+f), based on the example
presented in [WC95]

Figure 3.2: ASAP schedule for 3.1 Figure 3.3: ALAP schedule for 3.1

tions to the UCS problem, they have limitations. They are insufficient for
finding satisfactory solutions to the RCS and TCS problems, which require
more advanced algorithms. [WC95]

3.2 Trace Sheduling

Joseph A. Fisher’s 1981 paper, "Trace Scheduling: A Technique for Global
Microcode Compaction" [Fis81], introduces an innovative compiler optimiza-
tion technique to improve instruction-level parallelism, particularly for Very
Long Instruction Word (VLIW) architectures. VLIW architectures are a type
of computer processor design that seeks to exploit instruction-level parallelism
by executing multiple operations simultaneously. Instead of having the pro-
cessor figure out which instructions can run in parallel, a VLIW compiler does
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this work ahead of time. In a VLIW system, the compiler bundles several
independent instructions into one long word. Each part of this word corre-
sponds to a different functional unit in the processor (like an adder, multiplier,
etc.). When the VLIW processor reads this long word, it executes all the in-
cluded operations simultaneously, assuming they don’t depend on each other.
The technique, known as trace scheduling, reorganizes instructions across mul-
tiple basic blocks, allowing compilers to optimize code beyond local (basic
block-level) scheduling limitations. A basic block is a sequence of consecutive
instructions in a computer program with a single entry point and a single exit
point. This means that execution flows through the entire block without any
possibility of branching (like conditional jumps) except at the end. The begin-
ning of a basic block is marked by an instruction that is the target of a jump
or branch, while the end is marked by a jump, branch, or a return statement.
Basic blocks are important in compiler design because they allow for local opti-
mizations and analyses, as the control flow is straightforward within each block.

The process begins with selecting a "trace", a linear sequence of basic blocks
representing a frequently executed path through the program’s control flow
graph. This selection is typically informed by profiling or static analysis. Once
a trace is identified, its instructions are rescheduled to exploit parallel exe-
cution opportunities while respecting hardware resource limits and data de-
pendencies. To ensure that the optimized code remains correct even when
execution diverges from the chosen trace, an additional "compensation code"
is inserted at the entry and exit points of the trace.

However, the method is not free of limitations. The total code size might
be increased by adding compensation code, and the performance advantages
might differ depending on the real runtime behavior that does not closely match
the predicted trace path. Despite these difficulties, trace scheduling remains a
landmark work of compiler design and high-performance computing.

Applying this to the SCAD architecture allocation with the example of Fig-
ure 3.4, which depicts y = x + x + x, a problem arises. The figure represents
a trace without a copy node and will be scheduled to one processing unit. For
further consideration of this case, the following definitions will be used:

• n1 → D will produce the values x1 in PU.outL and x2 in PU.outR while
consuming x in PU.inR.

• n2 → D will produce the values x3 in PU.outL and x4 in PU.inR while
consuming x1 in PU.inL.

• n3 → AddN will produce the value x5 in PU.outL while consuming x3
in PU.inL x4 in PU.inR.

Considering these definitions and a visualization of a Processing Unit Figure
3.6 and also defining mv as a move instruction that moves tokens from the
output buffer to the corresponding input buffer, the following arises in the PU
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Figure 3.4: Depiction of y = x+x+
x as a DPN with labeled
nodes

Figure 3.5: Depiction of y = x+x+
x as a DPN with a copy
node and labeled nodes

Figure 3.7. Marked as red violates the strict FIFO behavior, representing a
critical crossing; thus, this trace cannot be scheduled without adding a copy
node. On the other hand, by adding a copy node as depicted in Figure 3.5 and
defining the node as follows:

• n5 → C will produce the value x6 in PU.outL while consuming x2 in
PU.inR.

The visualization of this DPN executed on one Processing Unit with the addi-
tion of a copy node, as depicted in Figure 3.8, shows no violation of the strict
FIFO behavior. Thus, this trace can be scheduled on one Processing Unit but
only with the addition of another node, C, which will increase the execution
time.

3.3 Vertex-Disjoint Paths

In scheduling, vertex-disjoint paths are a powerful abstraction for defining
independent sequences of tasks that can be performed in parallel without con-
flicts. In a directed acyclic graph (DAG) G=(V,E), which is commonly used
to model task dependencies in scheduling theory, each vertex v ∈ V denotes
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Figure 3.6: Exemplary visualiza-
tion of a Processing
Unit

Figure 3.7: Exemplary execution of
the DPN 3.4 on one
Processing Unit, show-
ing a wrong buffer or-
der, marked as red

Figure 3.8: Exemplary execution of
the DPN 3.5 on one
Processing Unit, with
a correct buffer order,
due to the added copy
node
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a computational task, and each directed edge (u,v) ∈ E signifies a precedence
constraint, meaning that task u must complete before task v begins. A set of
vertex-disjoint paths in such a graph consists of paths which have no interme-
diate vertices; only the beginning and ending vertices may overlap if allowed.
This guarantees that every task appears in the same path and can thus be
mapped to a specific processing resource or execution slot.

In static scheduling of parallel programs, particularly on architectures with
exposed datapaths or distributed execution units, vertex-disjoint paths enables
the compiler or scheduler to assign entire chains of dependent tasks to dedicated
processing elements. This method minimizes contention, avoids synchroniza-
tion delays, and improves instruction-level parallelism (ILP). This approach
is especially important for architectures such as SCAD (Synchronous Control
Asynchronous Dataflow) and BED (Buffered Exposed Datapath), where static
path allocation corresponds to queue-based scheduling. In [25b] Klaus Schnei-
der point out that such path-based scheduling enables mapping DAG nodes
to processing units with guaranteed ordering and no interference, thereby in-
creasing throughput and hardware utilization.

The theoretical basis for using disjoint paths in graph decomposition comes
from Menger’s Theorem [Dit17]: the number of vertex-disjoint paths between
nodes is less than the minimum vertex cut separating them. Although Menger’s
theorem offers a connectivity view, it is computationally exploited in schedul-
ing, where the task graph is broken down into maximal sets of vertex-disjoint
paths. In Leung’s Handbook of scheduling [Leu04], he describes how path
partitioning strategies make Scheduling easier and efficient mappings can be
derived from task graphs to processor architectures.

Vertex-disjoint paths for scheduling have practical advantages: it enables
local path selection, simplifies queue layout in FIFO-based dataflow machines,
and enables scalable compilation. These aspects are especially critical in ex-
posed datapath architectures where the communication and execution schedule
is generated statically by the compiler, instead of dynamically at runtime.

3.4 Efficency of a Sheduling algorithm

A scheduling algorithm is usually evaluated for efficiency by analyzing how well
it optimizes key performance metrics in a given computational environment.
A metric presented in "Metrics and benchmarking for parallel job scheduling"
[FR98] is the distribution of parallelism and runtime. Additionally, resource
utilization measures the temporary allocation of the system’s computational
resources. Another key parameter should be the scheduling time, which rep-
resents the time and computational effort required by the algorithm to make
scheduling decisions. However, this is not so important in statically scheduled
processors since the schedule is calculated ahead of time, unlike in dynamically
scheduled processors.

By analyzing how well the algorithm balances these factors, a conclusion can
be made about the efficiency of a scheduling algorithm. Through examination
of these aspects via simulation or empirical testing, assessments can be made

20



3.5 Best possible Schedule for a DPN on a SCAD processor

of how effectively a scheduling algorithm performs in practice.

3.5 Best possible Schedule for a DPN on a SCAD
processor

The following section will explore developing the optimal schedule for a SCAD
processor based on a DPN. This process will involve a systematic approach
where we progressively impose restrictions on the available resources. By care-
fully analyzing these limitations, we will assess how they impact the efficiency
of the generated schedule. Employing previously established metrics to evalu-
ate the schedule’s performance, ensuring that our assessment is thorough and
encompasses the proposed planning framework’s effectiveness and feasibility.
Through this detailed examination, we aim to identify the best scheduling
options and understand the trade-offs that come with resource constraints.

3.5.1 Ignoring limited recources and efficency

When ignoring limited resources and efficiency, finding a schedule for a given
DPN architecture (U , C) comprising nodes U = {CU, IC, PU[0], ... , PU[n -
1]} and edges C and a Dataflow Graph (P, B), with nodes P interconnected by
edges B is rather easy. Assuming the number of PUs, from now on referred to
as #PU is greater or equal to the number of nodes in P, then every node can
be mapped to one PU. This results in an execution of the Dataflow Graph of
the given DPN architecture without any possibility of critical crossings, since
based on this PU allocation, the generated move instructions src → tgt either
fall in the in chapter 2.5 established case 1 or 2.

This will result in PUs executing their node or instruction once the required
data is transmitted over the IC. This approach is not feasible for real scheduling
algorithms since the number of nodes scales with more complex computations.
Even with the example of Figure 3.4, four PUs are used to calculate the result.
However, with this approach, the best possible execution time of a program
can be determined.

3.5.2 Considering restricting recources

When restricting resources, finding a schedule for a given DPN architecture
(U , C) and a Dataflow Graph (P, B) is also moderately easy.

Assuming #PU less or equal to the number of nodes in P, every trace can be
mapped to one PU as long as no critical crossings are formed. This results in an
execution of the dataflow graph of the given DPN architecture with, generally
speaking, fewer Processing Units than in Section 3.5.1. The classification into
traces is defined by each node P of the Dataflow Graph connected to two
different nodes in P, connected by the edges in B, which are defined as two
different traces, thus guaranteeing that no critical crossings are formed.
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To illustrate the theoretical concepts outlined in the previous paragraph, let
us consider a practical example demonstrating scheduling application within a
DPN architecture. Specifically, we will examine a scenario involving a simple
dataflow graph consisting of four independent traces as shown in Figure 3.9.
This will result in PUs executing their traces sequentially while transmitting
the resulting tokens over the IC to themselves.

Figure 3.9: A DPN consisting of four independent traces

To illustrate another more realistic example, let us consider an intertwined
DPN with Traces that are not independent. Specifically, we will examine
a scenario involving a dataflow graph consisting of four traces, as shown in
Figure 3.10. Here, trace 3 depends on traces 1 and 4, trace 1 depends on
trace 3, trace 2 depends on trace 4, and trace 4 depends on trace 2. Trace
4 will execute when trace 2 produces the required token. Trace 3 will start
executing when trace 1 produces the required token and hold until trace 4
produces the required token to keep executing the trace. Trace 1 will start
executing directly and hold until trace 3 produces the required token to keep
executing the trace. Trace 2 will start executing directly and hold until trace
4 produces the required token to keep executing the trace.

This approach is more feasible for real scheduling algorithms since the num-
ber of Processing Units scales with the number of traces instead of the number
of nodes. Considering the example of Figure 3.4, the DPN depicted there can
be divided into two traces as seen in Figure 3.11. Therefore, only 2 PUs will
be used to calculate the result. However, with this approach, the best possible
execution time of a program can still be determined, but the scheduling algo-
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Figure 3.10: A DPN consisting of 4 in-
tertwined traces

Figure 3.11: Figure 3.4 divided
into traces

rithm needs to find all traces of the DPN, which makes the algorithm more
complex.

3.5.3 Considering limited recources

As previously established in section 3.5.1 and section 3.5.3, the number of Pro-
cessing Units needed for mapping a DPN to a DPN architecture was reduced
from the number of nodes in a given DPN to the number of traces. However,
now, considering mapping a DPN to a DPN architecture where #PU is less
than the number of traces, which means that at least one processing unit needs
to execute multiple traces. This is not always possible, as described in section
3.2 with the exemplary DPN shown in figure 3.4. The following paragraphs
will ignore the impossible cases and only focus on cases that can be mapped
to a DPN architecture where #PU is less than the number of taces. Never-
theless, while ignoring impossible cases, many possible cases, starting with the
simplest and working up to the most difficult, still need to be addressed.

All traces are independent and of the same length

Since all traces are independent, they can be executed sequentially on any
number of processing units, but since the best possible schedule for a DPN on
a SCAD processor needs to be determined two simple cases arise that can be
scheduled optimally as described in the following:
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#PUs = 1 This is the easiest case; since only one processing unit is available,
all traces need to be mapped onto this processing unit. The processing unit
needs to execute the whole trace before executing another trace. The order
of the traces does not matter. This will compromise an optimal schedule for
mapping a DPN onto a SCAD processor, using only one processing unit.

#PUs mod #traces = 0 This is also relatively easy to schedule. Here, each
processing unit is scheduled to execute the same number of traces; as explained
before, all traces must be entirely executed before starting the execution of
another trace. The order of the traces also does not matter. This will also
compromise an optimal schedule since each processing unit bears the same
load and can execute each trace in sequence.

All traces are independent but not of the same length

Since all traces are independent, they can be executed sequentially on any num-
ber of processing units. However, finding the best possible schedule for a DPN
of this type on a SCAD processor is harder. Thus, only one straightforward
case arises.

#PUs = 1 This case can be scheduled the same way as in the paragraph
where traces have the same length. All traces need to be mapped to one
processing unit; the execution of the whole trace needs to be ensured before
starting the execution of another trace. This results in an optimal schedule for
the DPN on one processing unit.

All other cases

Finding an optimal schedule for all the other cases is harder and cannot be
described easily without establishing a new concept of scheduling these traces.
The new concept that needs to be established will be called trace juggling and
will be described in the following Section 3.5.4.

3.5.4 Trace Juggling

Before introducing the concept of Trace Juggling, let us consider a simple DPN
consisting of four independent traces already beforehand, but now marked with
labels n0...n15 for easier reference in Figure 3.12. This DPN must be scheduled
onto an SCAD processor using three processing units. Applying the concepts
of the previous section 3.5.3, we can assign each processing unit to execute one
trace, which leaves one trace unassigned. If the unassigned trace is scheduled
sequentially, two processing units will idle while one executes the whole trace.
Splitting the nodes of the remaining trace to the different processing units will
also not result in a faster execution since each node of the trace needs to be
executed in sequence, meaning that in each step of the execution still, two
processing units will idle.
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Figure 3.12: Figure 3.9 with added labels for better referencing

Now, consider the execution time of this schedule on a processing unit in
clock cycles, which refers to a single tick of the processor’s clock. For simplic-
ity, every node will be executed in one clock cycle. The time it will take to
transport the produced tokens to the subsequent buffers will be ignored. This
will result in an execution time of 8 cycles since each trace takes 4 cycles, and
one processing unit has to execute 2 traces in sequence.

However, what happens when not every trace is executed sequentially but
is juggled between the processing units? Considering the following mapping
of nodes onto the processing units and execution of the node based on the
position in the following list:

• PU 0: {n0, n3, n6, n9, n12, n15}

• PU 1: {n1, n4, n7, n10, n13}

• PU 2: {n2, n5, n8, n11, n14}

Meanwhile, the nodes produce tokens in the form of nli and nri. The i will
represent the number of the node producing the token, l will represent if the
node produces a token in the left output buffer, and r will represent the right
output buffer. Nodes n12, n13, n14, and n15 will produce the corresponding
outputs as depicted in Figure 3.12.

Considering the established mapping of nodes onto the processing units will
result in the execution of nodes in the following cycles as visualized in 3.13:

• cycle 1: {n0, n1, n2}
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• cycle 2: {n3, n4, n5}

• cycle 3: {n6, n7, n8}

• cycle 4: {n9, n10, n11}

• cycle 5: {n12, n13, n14}

• cycle 6: {n15}

Revisiting the previously established case of all traces being independent
and of the same length and (PUs mod traces = 0), we can determine if trace
juggling increases the execution time. As previously established, the optimal
execution time can be achieved if each processing unit is scheduled to execute
the same number of traces sequentially. Applying this to the DPN shown in
Figure 3.12 with two processing units will result in an execution time of 8
cycles since each trace takes 4 cycles, and each processing unit will execute
two traces.

However, when trace juggling, the mapping of nodes onto the processing
units and execution of the node based on the position in the following list can
be generated:

• PU 0: {n0, n2, n4, n6, n8, n10, n12, n14}

• PU 1: {n1, n3, n5, n7, n9, n11, n13, n15}

Considering the established mapping of nodes onto the processing units will
result in the execution of nodes in the following cycles:

• cycle 1: {n0, n1}

• cycle 2: {n2, n3}

• cycle 3: {n4, n5}

• cycle 4: {n6, n7}

• cycle 5: {n8, n9}

• cycle 6: {n10, n11}

• cycle 7: {n12, n13}

• cycle 8: {n14, n15}

Using trace juggling will not create critical crossings for this case since each
processing unit alternately executes nodes of two different traces while con-
suming the generated tokens and freeing up the buffer adhering to the strict
FIFO structure. The execution of this schedule will take 8 cycles, thus not
increasing the theoretical execution time.

For more complex DPN, including multiple intertwined traces, the evalua-
tion is not easily shown and will be looked at in Section 5, while conducting
experiments.
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3.5.5 Summarizing Trace Juggling

To define Trace Juggling, a level must first be assigned to each node. This can
be accomplished using the ALAP Scheduling algorithm. The contained nodes
are assigned the level of the current control step number for each node. When
assigning nodes to the Processing Units, the following must be considered. If
another trace contains a node with a lower level that is not currently scheduled,
and assigning it to this processing unit does not result in critical crossings, then
it can be scheduled to this processing unit. In this case, the node with the
smaller needs to be scheduled in the next step; otherwise, the next node in the
trace can be assigned. A more detailed description of the application of this
concept will be provided in Section 4.6.
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Figure 3.13: The visualization of the DPN depicted in figure 3.12, while using trace
juggling
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4 Implementation

4.1 Averest

Averest offers a wide variety of tools intended for the specification, verification,
and implementation of reactive systems [SS05] and is available as a NuGet
package1. The implemented Scheduling algorithm will use the Averest Ver-
sion 3.4.0. Within the Averest Namespace, a diverse range of compilers for
synchronous languages, a simulator for those languages, formal verification
support through temporal and other logics, and various transformations for
synthesizing hardware and software for reactive embedded systems, which en-
compass both purely hardware circuits and purely software systems can be
found [25a]. A couple of modules that will be used to implement a schedul-
ing algorithm to extend allocations of processing units for Higher Instruction
Level Parallelism can be found in the Averest.MiniC namespace in the Code-
GenSCAD, MoveCode, IO and DataflowProcessNetworks modules2. These
modules will be used in this chapter to translate MiniC into DPNs, generate
a minimal allocation of processing units using SAT constraints, and finally
translate the allocation into move code and simulate it to estimate a run time.

4.2 Establishing ground rules

Since the topic of this paper is "Extending Allocations of Processing Units
for Higher Instruction Level Parallelism", a previously generated allocation of
processing units for a given program will be considered. The generation of this
allocation will be covered in Section 4.4. For extending these allocations, the
following rules will be followed:

1. The previously generated allocation of processing units cannot be ex-
tended with other instructions, which means that the extension of the
allocations will not map new nodes to the previously generated alloca-
tion.

2. The extended allocation is defined by the additional processing units as-
signed to the algorithm. If the number of additional processing units is
zero, then the previously generated allocation will be returned. If the
number of additional processing units is less than the number of process-
ing units used by the previously generated allocation, the algorithm will
hold and display an error.

1Averest NuGet package: https://www.nuget.org/packages/Averest
2Averest API Reference: http://www.averest.org/AverestLibDoc/reference/index.html
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3. The extended allocations must be executable on a SCAD processor.

4. The extended allocation has to be executable faster, or as fast as the
previously generated allocation.

After establishing these rules, an algorithm utilizing the previously defined
concept in Chapter 3 can be applied to implement and evaluate an algorithm
that extends the allocations of processing units for increased instruction level
parallelism.

4.3 Establishing a folder structure

Before implementing functions to extend the allocation, a simple folder struc-
ture will be defined for more comfortable navigation. The DPN, located in the
source directory, will contain all the necessary data required to generate an
allocation, which is generated by the implemented functions. The DPN folder
contains four subfolders containing the following:

• 1. Compile: contains two simple Python scripts used to generate Graph
visualization

• ExampleMiniC: contains multiple subfolders with MiniC programs and
the resulting data from the implemented functions. The MiniC programs
here are the provided example functions on the averest website

• CustomMiniC: Also contains multiple subfolders with MiniC programs
and the resulting data from the implemented functions. But here, all
custom MiniC codes provided by the user of the scheduling algorithm
will be stored

• MkRainbow: This contains multiple subfolders with DPN resulting from
the MkRainbow function of Averest. The resulting data from the imple-
mented functions will also be stored here.

4.4 Generating the underlying Allocations

As established in Section 4.2, the allocation of processing units needs to be
generated before an algorithm can extend this allocation. To generate this
allocation, multiple functions provided in Averest can be used in the generation:

ParseMiniCFromFile optOstr filename This function parses a program from
a file, writing errors to the output stream ’optOstr’ if it is not None and
returning a MiniCProgram if no errors arise. The ’filename’ describes the full
path to the file.

MiniC2DPN syncCtrl mcp This translates a given MiniCProgram to an
equivalent DPN, returning a DataflowProcessNetwork array. ’syncCtrl’ can
be ignored and will be set to false in the implementation; ’mcp’ refers to the
location of a MiniCProgram.
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MkConstraintsSAT puNum optLevelInfo dpn This function generates con-
straints for code generation from dataflow graphs, returning a four-element se-
quence of values ( ’nodLevels’, ’bufLevels’, ’variables’, ’constraints’). ’puNum’
is the number of the PUs of the SCAD machine, ’optLevelInfo’ should be a
triple of the form (novel, bufLevel, maxNodLevel) option, but will be replaced
in the implementation by None, and dpn is a DataflowProcessNetwork.

SolveConstraintsSAT puNum (nodLevels, bufLevels, variables, constraints)
This function solves the constraints generated by MkConstraintsSAT, return-
ing a four-element sequence of values (’nodOrder’, ’bufOrder’, ’nodAllocation’,
’switchDupNodes’) if the given constraints can be solved. ’bufOrder’ and
’switchDupNodes’ are igsnored; however, this was a fatal flaw and is exam-
ined more closely in Section 5.4. ’nodOrder’ contains a sorted list of nodes per
level, and ’nodAllocation’ is a map that assigns each node of the DPN to one
Processing Unit.

Using these four functions, the allocation of processing units can be gener-
ated. Furthermore, to generate an optimal starting point for the extension, a
minimal allocation should be generated, which means that an allocation using
a minimal number of processing units should generated. This can be achieved
by sequentially increasing the number of processing units until the function
SolveConstraintsSAT returns a four-element sequence of values. This is imple-
mented in the new let MakeSAT function in the Logic module.

MakeSAT(name, subfolder) This function determines the minimum number
of Processing units and the allocation required to execute a MiniC program
on a SCAD processor, returning a four-element sequence of values (’minimal-
PUs’, ’nodeOrder’, ’nodeAllocation’, ’dpn’). The input variables ’name’ and
’subfolder’ represent the filename of the MiniC program and the location of this
file adhering to the folder structure previously established. ’minimalPUs’ refers
to the number of processing units required. ’nodeOrder’ and ’nodeAllocation’
are results from SolveConstraintsSAT, and ’dpn’ represents a DataflowProcess-
Network.

4.5 Preparing the DPN

For the extension of the allocation, some preparation on the DPN needs to be
addressed to facilitate the scheduling process. Therefore, three functions are
implemented in the Logic module, and the name and the subfolder correspond
to the location of the MiniC file that generated the DPN:

ParseFromDPN (name, subfolder) The function uses the Averests function
PrintDPN, which writes a DPN to an output stream and transforms this output
into an array of four-element sequences of values for each node. The sequence
of values consists of the node number, the operation type, and the required
tokens for the node’s execution. The tokens are represented in the form x : v,
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where x depicts the originating node of the token and v is the label used in
the DPN output stream of the node. If x is depicted as ’-’, then the token is
either a constant value, an input or an output.

FindLevels(name, subfolder) FindLevels uses ParseFromDPN to find a level
for each node in a DPN, outputting levelized and levels. levelized contains an
array with a subarray for each level. The subarrays are filled with all nodes
that are sorted in the corresponding level. The output levels is an array of
tuples where each node in the DPN a level is assigned.

FindTransitiveDependencies (name, subfolder) This function uses Parse-
FromDPN to find all dependencies of a node and returns a four-element se-
quence (’predecessor’, ’successor’, ’pOut’, ’sOut’). ’predecessor’ and ’successor’
are arrays that contain a node and all transitive nodes that must be executed
before and after the node’s execution. ’pOut’ and ’sOut’ are arrays that con-
tain all direct predecessors and successors that must be executed directly before
and after the node.

The function FindLevels uses an algorithm based on ALAP Scheduling, as
explained in Section 3.1, to assign a level to each node. This is used to ensure
that tokens are only generated when needed and do not fill up the buffer of
processing units unnecessarily. Using an algorithm based on ALAP Scheduling
helps to reduce the creation of critical crossings and ensures faster execution
times.

4.6 The Sheduling algorithm

To use the scheduler, the following function needs to be executed.

simpleShedule (’levelData’, ’dependencies’, ’satResults’, ’pus’, ’name’, ’sub-
folder’) This function’s input is ’levelData’, which is the result of FindLevels,
’dependencies’, the result of FindTransitiveDependencies, and ’satResults’, the
result of MakeSAT. Additionally, ’pus’ refers to the total number of processing
units that should be used for the schedule. The variables ’name’ and ’sub-
folder’ refer to the name of the MiniC program and its location within the
folder structure.

Using the scheduler is relatively easy, as only one function needs to be ex-
ecuted; however, the underlying algorithm that the function uses to find a
schedule is more complex. The previously established concepts that are de-
picted in the Sections 3.2 and 3.5.4 are used to find an optimal schedule while
still adhering to the established rules in Section 4.2.

The primary role of this scheduling function is to produce an efficient execu-
tion plan by leveraging results from a previous SAT-based solution, particularly
in scenarios where the available number of PUs exceeds the minimum required.
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4.7 Visualizing the results

Internally, the scheduling process is guided by a combination of dependency
analysis and level information. Dependencies between operations are extracted
and quantified in terms of the number of predecessors and successors for each
node. This information is sorted and prioritized to help with scheduling deci-
sions, especially for central nodes in the dependency graph. Central nodes are
those that have many successors and should be prioritized so that the sched-
uler can assign operations more flexibly. The level data originating from the
FindLevels function is then transformed into a node-level format to support
actual scheduling and split up into possible processing units. This structure
enables the function to track which operations belong to which processing unit
at each logical time step or level of the computation. With this structure in
place, the function initializes other processing unit objects for handling the
extra PUs that are necessary. These objects store internal buffers and states
for flexible scheduling techniques such as juggling (assigning new operations
as defined in Section 3.5.4) or tracing (continuing the execution of operations
in the buffer). The underlying function is an iterative scheduling loop. With
each iteration, the scheduler attempts to allocate new operations to idle pro-
cessing units (PUs) or to continue executing already buffered operations. The
scheduling algorithm guarantees that all dependencies are respected and that
operations assigned to PUs result in a valid execution sequence. This loop
continues until all operations are scheduled and all buffers are cleared. When
scheduling is completed, the function returns two primary outputs: the order
of node execution and the node-to-processing unit mapping for each node.

In general, SimpleSchedule is a post-SAT scheduling layer that utilizes ad-
ditional hardware resources for performance and parallelism. It integrates the
results from previously established concepts to generate an execution plan for
Dataflow Graphs.

4.7 Visualizing the results

A further visualization technique was designed to make the program execution
on a SCAD processor accessible and easier to understand. This new approach
enables users to understand the program flow and logic while the program
executes, providing information about the execution steps. By expressing the
program activities in a more natural manner, programmers and analysts may
quickly find bottlenecks, improve performance, and also troubleshoot issues.
This visualization technique helps with comprehension but also provides a more
interactive experience since the user can see the changes and results made by
the scheduling algorithm.

GraphvisGenerate(filename, path, dependencies, nodOrder, nodAllocation,
puNum) This function takes the ’filename’ and ’path’, representing the lo-
cation where the results will be stored. The dependencies variable resembles
the result of the ParseFromDPN function. ’nodOrder’, ’nodAllocation’, and
’puNum’ correspond to the generated schedule.
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Using the GraphvisGenerate function will generate a Graphviz file that can
be compiled into a PNG using the two simple Python scripts contained in
folder 1. Compile. The visualization will follow the structure presented in
Figure 4.1

Figure 4.1: The visualization of the resulting Graphviz file resulting from Graphvis-
Generate

The previously established Figure 3.6 inspired this representation in Figure
4.1. The variables x1 and x2 represent the nodes where the values vIn are
generated. Furthermore, x1 and x2 represent the nodes that are defined as
incoming edges of the DPN and need to be executed before the current node.
The current node is represented by cN: op, where cN denotes the current
node number that needs to be executed, and op denotes the operation that
is executed. After executing the node cN, the values vOut are generated and
sent to nodes y1 and y2, respectively, which are defined by the outgoing edges
of the DPN. If a node produces only one token or only one token is used for
the execution of the node, x2: vIn and y2: vIn will be empty. If a vIn is either
a constant value or an input value, then x1 or x2 are represented as ’-’. The
same applies to the output values; thus, the corresponding y will be ’-’.
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4.8 Reducing Runtime

4.8 Reducing Runtime

Generating an allocation using a minimal number of processing units is a time-
intensive and lengthy process. Since the generation of the minimal number
of processing units is provided by Averest functions, it cannot be optimized
without implementing another function. To avoid long waiting times, especially
when extending the PU allocation of one MiniC Program multiple times, the
resulting generated allocation should be saved. The implemented function
MakeSAT automatically saves the resulting allocation for a minimal number
of processing units to a subfolder ’Minimal’ in the folder of the MiniC program
to speed up the process of extending the PU allocation. After the allocation
of minimal processing units is generated the first time, the function reads the
results saved in the text files ending with ’.allocation’ and ’.minimal’. The
file ending with ’.minimal’ contains the number of processing units that are at
least required to generate an allocation, while ’.allocation’ contains the node
Order and node Allocation.

4.9 Using the Schedular

Using the implemented scheduler is relatively easy. When starting the sched-
uler, a console application guides the user through the process of moving the
MiniC program to the correct folder based on the established folder structure,
selecting the correct MiniC program to be scheduled, and warning the user if
an error occurs.
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5 Experimental evaluation

In Section 5.1, a overview of the schedulers utilized for the evaluation is pro-
vided. This section outlines the criteria for their selection, detailing the unique
features and capabilities that make them suitable for our research objectives.
Additionally, we will elaborate on the experimental methodology employed, in-
cluding the specific parameters and settings under which the evaluations were
conducted, as well as the rationale behind our chosen approach. This thorough
explanation aims to ensure clarity and reproducibility in our findings.

To make this comparison more tangible, we will anchor our discussion in
a specific example that exemplifies these scheduling mechanisms. This ap-
proach will not only clarify the theoretical concepts but also demonstrate their
practical relevance in real-world scenarios.

Furthermore, this Section 5.2 will delve into the intricate relationship be-
tween the allocation of processing units and the effectiveness of the extended
schedule. Ultimately, our analysis will show that the choice of scheduler, in
conjunction with the way processing units are allocated, plays a crucial role in
determining the success and efficiency of the overall scheduling strategy.

Finally, we will examine additional examples to gain a deeper understand-
ing of how the scheduling algorithm impacts the execution time. This will
involve analyzing various scenarios in which the algorithm has been applied,
allowing us to assess its efficiency, adaptability, and performance under differ-
ent conditions. By doing so, we aim to identify best practices and potential
improvements that can enhance its functionality.

5.1 Expirimental Setup

In embedded systems, scheduling algorithms must be optimized for perfor-
mance and resource utilization. Three different scheduling techniques that are
important for evaluating the implemented scheduler will be discussed: con-
structing a Schedule for a minimum number of processing units (described in
Section 4.4), optimal scheduling (defined in Section 3.5.1), and vertex-disjoint
paths (depicted in Section 3.3). Each of these methodologies provides differ-
ent perspectives and methods for task management in embedded systems. By
critically analyzing the execution time of these techniques, we highlight their
efficiency and generalizability for different applications.

A SCAD simulator can be used as a key tool for testing the systems. The
values of the inputs for each DPN are replaced with the constant value of
0. This isolates components and verifies functionality independent of variable
inputs.

After the scheduling is complete and the resulting schedule is translated into
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move code to translate the given allocation, the Averest function CodeGenScad
can be used. Simulating the code will determine the number of cycles required
to execute it.

Two methods are available to simulate the code. The first is to use the
provided Averest function, which simplifies the simulation and provides an
idea about the code’s performance. The simulations can also run from the
Teaching Tools website1. This platform has a basic user interface and visual
representation of the execution cycle. Both methods are useful for analyzing
the code’s operational efficiency and execution time in cycles.

5.2 Looking deeper into one specific example

The following code was developed by the Embedded Systems Group at Rheinland-
Pfalz Technical University (RPTU) in Kaiserslautern. It will be the main
course of discussion for evaluating the implemented software in depth.

Listing 5.1: MinTwoPusNeeded MiniC program
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// This MiniC program gene ra t e s a DPN that r e qu i r e s two PUs f o r s chedu l ing
// even i f we a l low that the outputs o f D−nodes are switched .
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

nat x00 , x01 , x02 , x03 ;
nat x30 , x31 , x32 , x33 ;

thread t105 {
nat x10 , x11 , x12 , x13 ;
nat x20 , x21 , x22 , x23 ;

x10 = x00 + x01 ;
x11 = x01 + x03 ;
x12 = x02 + x00 ;
x13 = x03 + x02 ;

x20 = x10 + x13 ;
x21 = x11 + x11 ;
x22 = x12 + x12 ;
x23 = x13 + x10 ;

x30 = x20 + x23 ;
x31 = x21 + x22 ;
x32 = x22 + x21 ;
x33 = x23 + x20 ;

}

This MiniC program specifies a basic calculation to demonstrate a situation
in which at least two Processing Units are required to schedule. On the upper
level, the program specifies global variables x00 to x03 as input variables and
x30 to x33 as the calculated outcomes. All intermediate computations are
performed in thread t105 using local variables.

In the first computation layer within the thread, intermediate variables x10
through x13 are calculated based on the global inputs. These are independent
and can be performed in parallel.

1Teaching Tools website for simulating move code:
https://es.cs.rptu.de/tools/teaching/ScadSim.html
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The second layer is based on the first, and variables x20 through x23 are
calculated from the first layer. Some expressions use values from several first-
layer variables; for example, both x20 and x23 require x10 and x13, so there
is some data contention there. Other expressions, such as x21 = x11 + x11,
repeat the use of the same variable, exhibiting self-dependency without in-
troducing new external dependencies. Finally, the third layer of computation
returns the values x30 through x33 from the second layer. These outputs have
overlapping dependencies; for instance, x33 and x30 both need x23 and x20,
while x31 and x32 require x22 and x21. This dependency overlap implies that
some computations must wait till their inputs are obtainable, and some inter-
mediate results have to be obtained more than once, further complicating the
scheduling problem. This program presents a challenging program scheduling
challenge due to its data reuse and dependency structure. Even if the output
execution order is flexible, the overlapping use of intermediate values makes
some computations wait for others to finish. If all operations are mapped to
a single processing unit (PU), this leads to contention. The scheduler must
distribute tasks among at least two processing units to keep tasks progressing
and prevent execution stalls.

The previous program can be visualized as a DPN, resulting in Figure 5.1.
Additionally, all nodes can be assigned levels based on their position in the
DPN due to the dependencies established by the incoming and outgoing edges
in the graph. Levels can be thought of as hierarchical layers that reflect the
order of dependency among the nodes. Nodes with lower levels may serve as
parents for nodes at higher levels because nodes of a higher level consume the
tokens of lower levels and can, therefore, only be executed when the nodes of
the lower levels are executed beforehand. With this in mind, the DPN can be
divided into the following levels:

• level 1 {12, 13, 22, 23}

• level 2 {0, 7, 3, 6}

• level 3 {14, 15, 16, 17}

• level 4 {1, 2, 4, 5}

• level 5 {18, 19, 20, 21}

• level 6 {8, 9, 10, 11}

As previously established, the minimum number of processes required is al-
ready defined as two. Using the SatConstraints to find a schedule results in
the following node order and Pu allocation

• PU 0 {1, 3, 5, 6, 7, 9, 15, 16, 17, 19, 20, 21}

• PU 1 {0, 2, 4, 6, 8, 10, 11, 12, 13, 14, 18, 22, 23}

The following node order:
{12, 13, 22, 23, 7, 6, 16, 17, 2, 20, 4, 21, 10, 3, 9, 0, 15, 14, 1, 18, 5, 19, 8, 11}
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Figure 5.1: The visualization of DPN of the Program MinTwoPusNeeded, labeled
with the number of each node according to the DPN

Transforming this schedule into move code and replacing the input variables
x00, x01, x02, and x03 with constant values to factor out the time required
for memory access, the execution of this schedule will take 18 cycles. This
is far from optimal, as, for example, Processing Unit 1 handles all the token
duplications in level 1; thus, processing unit 0 stalls until cycle 3 to execute
instruction 7, which is the first instruction scheduled to be executed on pu 0.

Using the implemented scheduling algorithm to extend the allocations to use
other processing units results in the following schedule:

• PU 0 { 3, 5, 7, 9, 16, 17, 19}

• PU 1 {4, 6, 8, 10, 11, 14, 18, 23}

• PU 2 {0, 1, 2, 12, 13, 15, 20, 21, 22}

The following node order:
{23, 12, 13, 22, 7, 6, 0, 3, 17, 14, 15, 16, 5, 4, 2, 1, 19, 18, 20, 21, 9, 10, 8, 11}
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5.3 Expanding the examples for further evaluation

Sheduling Algorithm PUs used Execution time in cycles.
optimal Schedule 24 6
minimal PUs 2 18
Vertex-Disjoint Paths 4 6
Extended Schedule 3 3 12
Extended Schedule 4 4 9
Extended Schedule 5 5 6

Table 5.1: Execution time for MinTwoPusNeeded with different scheduling ap-
proaches

Transforming this schedule into move code and also replacing the input
variables x00, x01, x02, and x03 with constant values to factor out the time
required for memory access, the execution of this schedule will take 12 cycles.
This schedule reduces the execution time from 18 to 12 cycles by adding only
one processing unit. This is still not close to an optimal schedule. As mentioned
before, processing unit 0 does not handle any nodes level 1. This is due to the
established rules in Section 4.2 and cannot be changed.

Continuing to expand this allocation results in a further decrease in the
number of cycles needed for the execution of this DPN on more processing
units. Furthermore, as shown in Table 5.1, the minimal number of cycles
needed for the execution of this DPN is reached with five processing units.
This allocation reaches the minimum number of cycles for execution, but the
algorithm Vertex-Disjoint Paths uses only four processing units to achieve the
same result.

5.3 Expanding the examples for further evaluation

Looking deeper into other DPNs to further evaluate the efficiency of the de-
veloped scheduling algorithm. The special DPN, called the Rainbow DPN, is
a DPN that arises from the calculation y = (x + 1) * ... * (x + n). Using
the implemented Scheduler to evaluate potential efficiency yields the follow-
ing results, as depicted in Tables 5.2 and 5.3. The implemented Scheduler
reaches an optimal execution time by using fewer processing units than the
algorithm using Vertex-Disjoint Paths. The Rainbow DPN with n = 3 utilizes
one fewer processing unit than the Vertex-Disjoint Paths yet achieves an opti-
mal execution time of 13 cycles. For n = 4, the Scheduler can utilize two fewer
processing units, thereby increasing the execution cycles by 1. By using one
fewer processing unit, the algorithm achieves an optimal execution time of 19
cycles.
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Rainbow 3
Sheduling Algorithm PUs used Execution time in cycles.
optimal Shedule 10 13
Vertex-Disjoint Paths 3 13
Extended Shedule 3 2 13

Table 5.2: Execution time for make Rainbow 3 with different scheduling approaches

Rainbow 4
Scheduling Algorithm PUs used Execution time in cycles.
optimal Schedule 14 19
Vertex-Disjoint Paths 5 19
Extended Schedule 3 3 20
Extended Schedule 4 4 19

Table 5.3: Execution time for make Rainbow 4 with different scheduling approaches

5.4 The failure of the algorithm

While executing, a critical oversight arose: the previous allocation for a mini-
mal number of processing units considered switching the results of duplication
nodes. As stated in the implementation, switching the results of duplication
nodes could be ignored; however, this resulted in an error while translating the
allocation to move code. Since the underlying allocation of minimal process-
ing units utilizes switched outputs for generating the allocation for minimal
processing units, the dependencies vary drastically from the original DPN.
Ignoring the switched Duplication nodes results in the schedule not being
executable anymore, thus giving the algorithm a wrong starting point and,
therefore, dooming the implemented scheduler to failure.
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6 Conclusion

This thesis conducted a systematic study of scheduling algorithms for dataflow
process networks (DPNs) with a special emphasis on execution time optimiza-
tion via efficient processing unit (PU) allocation. In a series of carefully con-
structed experiments, we demonstrated how scheduling strategies—ranging
from minimal PU allocation to extended schedules and vertex-disjoint path
methods—impact execution performance in various scenarios.

The MinTwoPusNeeded example demonstrated that even relatively simple
programs can reveal very complex scheduling dependencies that require paral-
lel execution. Our evaluation revealed that exceeding the minimum required
number of processing units can significantly reduce execution time, highlight-
ing the tradeoff between resource utilization and performance.

Further testing with Rainbow DPNs confirmed these results, showing that
the implemented scheduler can, in some cases, outperform more established
methods by achieving optimal or near-optimal cycle counts with reduced re-
sources. These results validate the general principles of the implemented algo-
rithm and its generalization to different dependency structures in DPNs.

This study also revealed important limitations. Most importantly, improper
handling of switched outputs in duplication nodes caused misalignment of de-
pendency graphs and eventually invalidated some generated schedules. This
highlights the need for consistency between theoretical models and practice,
especially when transformations or optimizations related to node behavior or
connectivity are applied.

Although the proposed scheduling algorithm reveals promising performance
characteristics and scalability, it is necessary to refine it to handle edge cases
and ensure that the implemented scheduler functions with any DPN.
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7 Future Work

Although the proposed scheduler developed in this thesis produces encouraging
results, several areas of work remain to be investigated, which may substan-
tially enhance its performance, generality, and robustness. The immediate
priority is the handling of duplication node semantics in cases of switched
outputs. The current implementation does not account for these differences
fully and can result in discrepancies between the theoretical Dataflow Process
Network (DPN) and the generated move code.

Performance-wise, future improvements are possible. As shown in Section
5.2, the underlying allocation is not optimal. It should be regenerated using
another algorithm to accommodate the number of processing units considered
directly, thereby generating a more optimal schedule from the outset.
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