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Preface

Thanks go to the staff of the Robotic Research Lab at the University of Kaiser-
slautern that helped me solve tricky problems during the work on this thesis.

Hereby I would also like to apologize to all of my friends and family that suffered
from my moods and constant pressure during these ten weeks, which are – in my
opinion – much too less time to create anything that holds water.

The image on the cover shows the FlexRay for Linux logo, designed by Joachim Folz
and kindly released under the Creative Commons BY-NC-SA 3.0 Germany license1.
It depicts the ray2 from the official FlexRay logo (see Figure 1) morphed with Linux’
mascot, the penguin Tux.

Figure 1: The official FlexRay logo

1http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
2Not an optical ray but the fish

http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en
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1. Introduction

1.1 Motivation

Today the need for deterministic communication protocols for security critical ap-
plications constantly increases. These applications can escpecially be found in the
automotive domain. As concepts like x-by-wire with x ∈ {drive, steer, brake, . . .},
where steering arms and brake pipes are replaced by electric wires and integrated
circuits, become more and more popular, robust and fail-safe communication sys-
tems are needed to realize such functionality. Failures of these critical systems will
almost immediately lead to severe accidents and personal injury.

Of course, the use of communications protocols such as FlexRay is not limited to
automotive applications. Especially in robotics, similar problems exist, consider a
heavy autonomous offroad robot, like RAVON1. A robot of this size can easily harm
people if the safety mechanisms fail.

But not only safety concerns are of interest in robotics. There are often situations
where a lot of sensor values need to be queried and actuator values have to be set.
Often, also exceptional events that occur sporadically, such as user interaction or
debug messages that need to be transmitted. For such scenarios FlexRay is well-
suited, because it provides guaranteed, periodic static slots and optional dynamic
slots that transmit data every once in a while. At the Robotic Research Lab2

(RRLab) at the University of Kaiserslautern, currently Controller Area Network
(CAN) is used to transmit sensor and actuator values. Future applications with
many sensors and actuators will probably exceed the capabilities of CAN and need
a communication systems with more capacity, such as FlexRay.

To effectively debug or to interact with embedded systems that employ FlexRay, it is
neccessary to somehow connect a personal computer to the system. Because Linux is
the default operating system at the RRLab, a framework for Linux is needed to work
with it. As FlexRay is a quite young technology that has not yet been intensively

1http://agrosy.cs.uni-kl.de/en/robots/ravon/technical-data-of-ravon/
2http://rrlab.cs.uni-kl.de/

http://agrosy.cs.uni-kl.de/en/robots/ravon/technical-data-of-ravon/
http://rrlab.cs.uni-kl.de/
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used in the industry, there exist few attempts to bring this technology to Linux.
Solutions by Vector Informatik GmbH3 only include Microsoft Windows drivers at
the time of writing. TZ Mikroelektronik4 offers products with support for a variety
of operating systems, including Linux, but does not seem to make these drivers and
frameworks publicly or even freely available. Also their code is probably limited to
their own hardware products only.

1.2 Goals

The goals of this Bachelor thesis are the following:

• Provide an introduction to and a basic understanding of the FlexRay protocol

• Development of a cheap and universal interface to connect a FlexRay cluster
to virtually any computer running Linux

• Establishment of an infrastructure in the Linux kernel to communicate over
FlexRay, similar to the SocketCAN architecture [LLCF 06]

• Make this infrastructure freely available

• Describe a specific hardware setup of a FlexRay cluster, leaving the reader
with enough knowledge to implement own FlexRay systems

1.3 Overview

The thesis is divided into several chapters. chapter 1 contains the introduction you
are currently reading, chapter 2 gives a general, controller independent overview
of FlexRay. The next chapter, chapter 3, introduces the hardware components
that have been used during the research as well as the low level FlexRay driver by
Freescale. chapter 4 describes the implementation of FlexRay for Linux, followed by
chapter 5 which contains conclusions and possible future work, based on this thesis.

1.4 Notations

For the sake of readability, the following notations will be used troughout the thesis:

• Hexadecimal numbers will be prefixed by 0x, such as 0x1337

• Binary numbers (bitvectors) will be suffixed with b, such as 1001100110111b

• Function names, datatypes, variables and constants will be printed in monospace
font, like ioctl(), struct sockaddr_fr, Fr_buffer_info_type, FLEXRAY_

INIT

• File-system paths and systems commands will be printed in monospace font,
/dev/ttyUSB0, lsmod

3http://www.vector.com/
4http://www.tzm.de/

http://www.vector.com/
http://www.tzm.de/
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• Network device names and Kernel module names will be printed in monospace
font, e.g flexray0, flexray_serial.ko

• Web-links are colored blue and should be “clickable” in the online version of
the document, example: http://www.uni-kl.de/

http://www.uni-kl.de/
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2. FlexRay

This chapter will first give a short overview of FlexRay and its history. Then, the
communication cycle and the format of FlexRay frames is explained in detail. Most
of the information in this chapter can be found well-explained in [Rausch 07], but the
FlexRay protocol specification [PS 05] is also a very valuable source when studying
FlexRay.

2.1 Overview
FlexRay has been designed by the FlexRay consortium as a flexible (hence part of
the name) and fast communication system that can satisfy many of the needs of
automotive applications.

The FlexRay consortium has existed since 2000, its core members are BMW, Volk-
swagen, Daimler AG, General Motors, Robert Bosch GmbH, NXP semiconductors
and freescale semiconductors. Additionally to the core members, there are over 100
other members that develop FlexRay hard- and software. FlexRay has always been
developed to suit the needs of automotive applications, such as emerging trends like
steer- or break-by-wire.

The need for deterministic communication systems comes clear while looking at
the Controller Area Network , which is in use for automotive applications for some
time now. CAN uses priority-based bus arbitration that allows the user to transmit
important messages in favor of less important ones. Unfortunately, a lot of highly
important messages can surpress all other messages quite easily. It is quite difficult
to transmit two data streams with equal priorities over CAN.

FlexRay overcomes this problem by dividing the medium into static and dynamic
time slots. During the static segment, a deterministic access schema is used to trans-
mit periodic messages while the dynamic segment allows priority-based transmission
of sporadic messages.

Another great feature of FlexRay is the capability to use two physical transmission
channels, named channel A and B. Each channel can transmit up to 10MBit/s on
the physical layer, which is ten times the factor of the maximum rate that is possible
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with a CAN channel. The two channels can be used to double the overall datarate,
provide redundancy or even both, by transmitting only important messages on both
channels (see subsection 2.3.1 for details).

To connect to a FlexRay cluster, a FlexRay Communication Controller (CC) is
required. It handles the protocol according to the specifications and connects to
some host, e.g. a microprocessor. There exist mainly two types of FlexRay CCs,
standalone integrated circuits and controllers integrated into Microcontrollers (µCs)
or Digital Signal Processors (DSPs).

2.2 FlexRay Network Topologies

FlexRay is not a classical bus system with a single broadcast transmission medium to
which all nodes are connected. This is the reason why the reader will rarely find the
word “bus” in this document. FlexRay networks are not limited to simple busses. It
is also possible to use active star couplers, similar to Ethernet topologies with hubs.
Even the possibility to use different network topologies on the two channels A and
B exists. When speaking of a FlexRay communication system, one usually calls it a
FlexRay cluster .

A simple topology where each channel is connected to a bus can be found in Fig-
ure 2.1. The same logical topology with a different physical realization is the star
topology in Figure 2.2. Finally, a mixed topology consisting of a bus and a star cou-
pler is illustrated in Figure 2.3. Please note that FlexRay networks are not limited
to the few examples here, there are some more possible topologies that will not be
further discussed.

node 1 node 2 node 3

A

B

Figure 2.1: Two channel bus topology

2.3 The Communication Cycle

A FlexRay cluster transfers data in cycles. The frequency of the cycles is defined by
the cycle time of the cluster, which can be configured at configuration time. Cycles
are numbered from 0 to 63, numeration starts again at 0 after 64 cycles. Figure
Figure 2.4 shows the visualization of the cycle time at a real FlexRay node that has
been captured using an oscilloscope.

One whole communication cycle consists of four parts, a static segment, a dynamic
segment, the Symbol Window and the Network Idle Time (NIT), see Figure 2.5.
The static segment and the Network Idle Time are mandatory for every FlexRay
cluster while dynamic segment and Symbol Window are optional.
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node 1 node 2 node 3

A B

Figure 2.2: Star topology with two star couplers

node 1 node 2 node 3

node 4

A

B

Figure 2.3: Mixed topology, channel A on bus, channel B on star coupler

The Symbol Window is used to transmit symbols like the Media Test Symbol (MTS),
which can be used to validate that the all nodes are correctly operating, but their
scope is beyond this document. Interested readers may refer to the FlexRay Protocol
Specification [PS 05]. The Network Idle Time is a phase in the communication cycle
where no communication takes place. The time can be used by the FlexRay Com-
munication Controller to perform calculations that cannot be done during normal
communication, such as running algorithms to synchronize the time on all nodes.

Of greater interest for the user of the protocol are the concepts of the static and the
dynamic segment. Both of them will now be explained in detail.

2.3.1 Static Segment

The static segment uses Time Division Multiple Access (TDMA) to reserve band-
width for nodes. TDMA allows multiple users to access a shared medium by
dividing the time into several, usually same-sized, slots. Each node is assigned one
or more of these slots. Only the “owner” of a slot may send in it, see Figure 2.6.
One important prerequisite for TDMA to work is a common understanding of time.
The clocks of all participants must be synchronized, so that each one can send in
the correct slot and at the correct slot-boundaries.
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Figure 2.4: Visualization of the cycle time, which is 5ms (or 5000 macro ticks) for this
example

TDMA is exactly the procedure that is used in the static segment of FlexRay to allow
guaranteed, contention-free1 communication. It is important to note that the static
segment is usually configured before deploying a FlexRay system. As soon as the
communication is running, the configuration of the static segment cannot be changed
anymore2. Essential for the organization of the static segment is the division of the
segment into slots. These slots are all of the same length. The number of static slots
can be configured for a FlexRay cluster using the variable gNumberOfStaticSlots.
Each slot carries exactly one FlexRay frame which usually contains payload. The

1Contention-free means that there is no competition among senders, slots are exclusively re-
served.

2Except when the communication is stopped, then reconfiguration is possible.

static segment dynamic segment symbol window NIT

cycle time

time

Figure 2.5: Contents of one FlexRay communication cycle
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A B C A A B C A . . .

cycle time

time

Figure 2.6: The principle of Time Division Multiple Access (TDMA), there are three
participants, A, B and C. Note that A has two time slots per cycle reserved and that the
fifth slot is unused.

frame-ID of this frame is always equal to the id of the slot it is sent in. In slot 1 only
frames with an ID of 1 will be sent, in slot 2 all frames have the ID 2 and so on.

The length of each slot is given by the configuration variable gdStaticSlot and
needs not only be long enough to carry a whole FlexRay frame but also an idle
delimiter as well as some safety margin for the cluster to operate properly. See
Figure 2.7 for a visualization of the static segment within one communication cycle.
The first slot in the static segment is always numbered one, not zero.

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7

FlexRay Frame

static segment

time

Figure 2.7: Contents of the static segment of an example communication cycle

When designing a FlexRay system, especially the static segment must be tailored
well for the intented usage-scenario. This process includes assigning static slots to
nodes. Keep in mind that FlexRay provides two physical channels. During each slot,
channel A and channel B can be used to transmit data. For improved redundancy a
node may use both channels for the same data, but may also transmit different data
on each channel. A slot can even be used by two nodes, one channel for each node.

Not all static slots need to be used, of course. There may also be empty slots where
no frames will be sent in. Figure 2.8 shows how such a typical assignment of slots
might look like.

2.3.2 Dynamic Segment

The dynamic segment is more complex as the static segment as it does not use a
simple access schema like TDMA, but a schema that implements contention among
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A

B

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7

node 1

node 1

node 2

node 3

node 4 node 5 node 1

node 1 node 6

static segment

time

Figure 2.8: Assignment of slots (on two channels) to nodes of the cluster

nodes. This allows a priority-based access similar to that of Controller Area Network
(CAN). The method used for FlexRay is also called the Minislot Procedure, as the
time of the dynamic segment is also slotted into a number of Minislots (given by the
configuration variable gNumberOfMinislots).

During the dynamic segment, a priority based access schema is used. Numbering of
the dynamic slots continues the numbering of the static slots seamlessly, so if the last
static slot was numbered 60, the first dynamic slot will be numbered 61. A node may
send in the dynamic segment, when its slot counter matches the ID of the frame to
be sent. It is important to notice, that each frame sent in the dynamic segment may
occupy several Minislots (in contrast to the static segment, where exactly one slot
must be used). The slot counter is increased as soon as a frame has been completely
sent, so there is no direct mapping of minislot numbers to slot numbers. If a slot is
not used, it will only “waste” one (quite small) minislot before the next slot begins.
It can easily be seen, that higher slots IDs have lower priority. If there is much to
send in lower slots, the higher slots might just “drop out” of the dynamic segment,
which means the slot counter will never reach a slot ID of e.g. 70 and so a node
using slot 70 may not send in that particular cycle. See Figure 2.9 for a visualization
of the communication in the dynamic segment.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Minislot numbers

Slot
61

Slot
62

Slot
63

Slot
64

Slot
65

Slot
66

Slot
67

Slot
68

Slot
69

Slot
70

Slot
71

dynamic segment

time

Figure 2.9: Example communication in the dynamic segment. Only one channel is
depicted.
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2.4 Frame Format

This sections describes the layout of FlexRay frames as they are transmitted in either
static or dynamic slots. The description of the frame-format can be found in the
FlexRay Communications System Protocol Specification [PS 05], each frame consists
of a header, the payload and a trailer containing a checksum, see Figure 2.10.

Header Payload (0-254 Bytes) Trailer (CRC)

FlexRay frame

Figure 2.10: Layout of one FlexRay frame

2.4.1 Frame Header

The header has an overall size of 5 Bytes. Figure 2.11 shows the format of the Frame
Header. The fields in it will now be explained in detail.

0 1 2 3 4 5 15 16 22 23 33 34 35 36 37 38 39
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(11 bits)
Payload
Length
(7 bits)

Header CRC
(11 bits)

Cycle Count
(6 bits)

Figure 2.11: Format of the frame header

2.4.1.1 Reserved Bit (1 bit)

The first bit in the frame is a bit that has been reserved for further expansions of
the protocol. For protocol version 2.1, a sending node always sends a zero but a
receiving node must accept both zero and one in this field.

2.4.1.2 Payload Preamble Indicator (PPI) (1 bit)

The Payload Preamble Indicator indicates the presence of special control information
in the frame. For the static segment, this bit indicates whether there is a Network
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Management Vector contained in the payload. Network Management Vectors can
be used for powersaving purposes but are optional to implement according to the
FlexRay protocol specification. In the dynamic segment the bit is set to tell the
receiver that a message identifier is present in the payload, the purpose of this
message identifier is not discussed here.

2.4.1.3 Null Frame Indicator (1 bit)

If the Null Frame Indicator bit is set to zero3, the frame contains no usable payload.
The payload bits are all set to zero in this case. There are several situations in which
null frames may be sent, e.g. during startup or when no new data is ready to be
transmitted in the static segment.

2.4.1.4 Sync Frame Indicator (1 bit)

A set Sync Frame Indicator bit indicates that this frame is a sync frame which is
used to synchronize the whole FlexRay cluster. Note that if a FlexRay node sends
sync frames (i.e. it is a sync node), it does this in one slot, the so-called Keyslot.

2.4.1.5 Startup Frame Indicator (1 bit)

The Startup Frame Indicator is set to one for startup frames. Startup frames are
needed during startup of the cluster and are only sent by coldstart nodes.

2.4.1.6 Frame ID (11 bits)

The Frame ID reflects the slot number in which the frame is transmitted. The ID
has a length of 11 bits, thus theoretically 2048 different frame IDs are possible, but
ID 0 is invalid.

2.4.1.7 Payload Length (7 bits)

The Payload Length field is seven bits long and describes the number of 16 bit words
in the payload. This value must be multiplied by two to get the size of the payload
in bytes. Values from 0 to 27− 1 = 127 are possible, thus the maximum payload per
frame is 254 bytes.

2.4.1.8 Header-CRC (11 bits)

The Header-CRC is caculated over the Sync Frame Indicator, Startup Frame In-
dicator, Frame-ID as well as the Payload Length. The CRC polynomial is defined
as

x11 + x9 + x8 + x7 + x2 + 1 (2.1)

which will be represented as 101110000101b = 0xB85. Header-CRC generation
assumes a fixed initialization vector of 0x1A. A reference implementation of the
checksum algorithm can be found in Listing A.1 on page 53.

2.4.1.9 Cycle Count (6 bits)

The Cycle Count field contains the value of the cycle counter at the transmitting
node, it ranges from 0 to 63.

3Note the inverted semantics here!
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2.4.2 Frame Trailer

After the payload, the Frame Trailer follows. It contains another CRC-sum, the
Frame CRC. This CRC is calculated over the whole frame. The polynomial is
defined as

x24 + x22 + x20 + x19 + x18 + x16 + x14 +

x13 + x11 + x10 + x8 + x7 + x6 + x3 + x+ 1 (2.2)

which will be represented as 1010111010110110111001011b = 0x15D6DCB. The
trailer CRC uses different initialization vectors4 for the two different channels A and
B. Channel A uses 0xFEDCBA while channel B uses 0xABCDEF. This measure
makes the system robust against accidently interchanging the two channels.

2.4.3 Frame Encoding

Before a frame is physically transmitted on the medium, a Transmission Start Se-
quence (TSS) is sent out. The TSS consists of a configurable time of low level on
the medium. It is used to activate bus drivers and active star couplers on the cluster.
After the TSS follows the so-called Frame Start Sequence (FSS), a single high-bit.
Then the real frame data including header, payload and trailer follows byte per byte.
Each byte is prepended by a Byte Start Sequence (BSS), consisting of a high bit
directly followed by a low bit. The purpose of the BSS is to avoid long sequences
of high or low bits that make synchronization of the receiver difficult. At the end
of the data, another sequence, called the Frame End Sequence (FES) is sent out.
This sequence is formed by a low bit followed by a high bit. If the frame is sent in
the static segment the transmission is over now, see Figure 2.12.

For a frame in the dynamic segment, a little more has to be done. After the FES,
a Dynamic Trailing Sequence (DTS) has to be sent to extend the duration of the
transmission till the next minislot begins, see Figure 2.13.

High

Idle
Low

TSS BSS

0 1 2 3 4 5 6 7

BSS

0 7

FES

FlexRay frame

Figure 2.12: Encoding of a frame sent in the static segment

2.4.4 Example Frame

A typical Startup Frame, captured on the physical layer, can be seen in Figure 2.14.
The Null Frame Indicator is zero, so there will be only zeroes as data. Both Sync

4The shift-register used to compute the CRC sum is initialized with this value before shifting
any data in.
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High

Idle
Low

TSS BSS

0 1 2 3 4 5 6 7

BSS

0 7

FES DTS

FlexRay frame

Figure 2.13: Encoding of a frame sent in the dynamic segment

Frame Indicator and Startup Frame Indicator are set so this frame will be used to
synchronize clocks as well as for synchronization during the startup phase. The
Frame-ID is set to 4 for this frame because the frame is sent in slot 4 (this has been
configured a priori). The Payload Length indicates 16 · 2 = 32 bytes of payload.
The following 11 bits form the CRC-sum which equals 0x6D3. The Cycle count is
zero which means that this is the first Startup Frame sent by this node. The 32
data bytes announced in the header can be counted in the upper part of the figure,
it is followed by a trailer containing a CRC-sum for the frame. Figure 2.15 shows
the end of the Startup Frame with the trailer containing the 24 bit long CRC-sum
which is 0x955F4E in this example (this data has been collected on channel A, so
the sum is correct).
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TSS Frame-ID
(= 4)

Payload-Length
(= 16 · 2 Bytes)

CRC
(= 0x6D3)

Cycle-Count
(= 0)

76543210 76543210 76543210 76543210 76543210 76543210 76543210 76543210

Figure 2.14: Startup Frame with magnified frame header in the lower part of the image

Figure 2.15: Startup Frame with magnified frame trailer in the lower part of the image
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3. Hardware Components

After the general description of the principle of operation of FlexRay, the specific
implementation that has been used during the research for this thesis will now be
explained. The experimental boards that carry the FlexRay Communication Con-
trollers and that have been used throughout the work will also be presented. Note
that these board have been designed before this thesis and are not part of the work.

3.1 Experimental Board

For the research, two identical experimental boards served as the hardware to tinker
with. Each of the board hosts a MC56F8357 digital signal processor, a MFR4310
FlexRay Communication Controller, an Altera MAX II CPLD, 512 KiB SRAM,
as well as some other components. All important components such as DSP and
FlexRay CC will introduced in the following sections.

The logical layout of the board can be seen in Figure 3.1, see Figure 3.2 for an image
of the real board.

DSP
MC56F8357

CPLD
Altera

MAX II

FlexRay
CC

MFR4310
SRAM

Figure 3.1: Logical layout of the experimental FlexRay board



24 3. Hardware Components

Figure 3.2: Top of the experimental FlexRay board

3.2 Freescale MC56F8357 DSP

The MC56F8357 is a 16bit digital signal processor from freescale semiconductor. It is
capable of executing up to 60 MIPS1 at 60MHz core frequency. Internal peripherals
include 16kB data RAM, 256kB program flash, 2x6 PWM channels, 4 timers and 1
CAN (Controller Area Network) controller [56F8357 07].

3.2.1 Memory Layout

The DSP makes use of some external devices in memory mapped mode, such as the
external RAM which is connected to the chip-select pin CS0. The external RAM
starts at address 0x40000 and and ends at 0x7FFFFF, 512 KiB later. Unfortunately
the RAM on the board or the connection seems to be broken as it is not working
reliably, thus it remains unused.

The FlexRay Communication Controller is connected to chip-select CS4 and mapped
to the addresses 0x3000-0x4FFE.

TODO: insert image of memory map

1Million Instructions Per Second
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3.3 Freescale MFR4310 FlexRay Communication

Controller

Freescale’s MRF4310 is a FlexRay Communication Controller. It has support for
variable bit rates such as 2.5, 5, 8 or 10 MBit/s. Three selectable host interfaces
provide connectivity to microcontrollers: the HCS12 interface, the Asynchronous
Memory Interface (AMI) as well as the MPC Interface [MFR4310 08].

The controller provides no physical layer interface so an external physical layer in-
terface has to be used, see the next section about the physical layer.

3.4 Physical Layer Interface

The FlexRay Physical Layer is specified in [EPL 06], it specifies what cables should
be used, how bus drivers should be designed and much more. Signals are always
transmitted differentially over two wires to be more robust against external distur-
bances.

TODO: what transceiver exactly is used, cite datasheet, draw image illustrating the
transceiver.

3.5 FlexRay UNIFIED Driver

Fortunately, Freescale, the manufacturer of the MFR4310 FlexRay Communication
Controller has released a driver for a variety of their FlexRay controllers. This driver
is called the FlexRay UNIFIED Driver [Freescale 06]. The driver code runs well on
the MC56F8357 DSP.

The goal of this driver is to provide a hardware independent API to various Freescale
FlexRay Communication Controllers including standalone controllers as the MFR4310
employed here as well as microcontrollers with integrated FlexRay modules.

To use the driver, the Communication Controller should first be hardware reset. This
is not part of the driver but can easily be done manually by triggering the reset pin of
the controller. The first action by the driver is to use Fr_init to put the module into
the configuration state POC:config. In this state, Fr_set_configuration sets the
configuration parameters. The function Fr_buffers_init configures the necessary
message buffers, according to the configuration given.

For each message buffer, a callback function may be registered using Fr_set_MB_

callback. This function will then be called when data has been received for the
buffer or new data can be sent (in case of a transmission buffer).

Fr_leave_configuration_mode has to be used to exit the POC:config and enter
the POC:ready state. In this state, the controller will wait for a successful startup
of the cluster. Manually stopping the FlexRay communication can be achieved by
using Fr_stop_communication.
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3.5.1 Message Buffers

Reception and transmission of FlexRay frames is realized using message buffers.
These message buffers are a little non-intuitive thus they will be discussed in detail.

First, there exist four types of buffers that can be configured using their correspond-
ing configuration-datatypes:

• Transmit buffers

• Receive buffers

• FIFO receive buffers

• Receive shadow buffers

Some configuration options are present in all types of message buffers2. Each message
buffers must have a slot ID (or even ranges of IDs in the case of FIFO message buffers)
as well as a channel-type (A, B or AB) assigned to define when and on which channel
reception of transmission takes place. Receive and transmit buffers also provide a
filter configuration that is matched against the current cycle.

Transmit message buffers are used to transmit data to the FlexRay cluster, they
are configured using the struct Fr_transmit_buffer_config_type. Configuration
of a transmit message buffer includes payload length, buffer type (single of double
buffered), transmission mode (i.e. state or event driven transmission) and some
more. If double buffering is used, the buffer will occupy two message buffers. Receive
buffers can be used for receiving data from the FlexRay cluster. They are configured
with Fr_receive_buffer_config_type.

Transmission buffers configured for state driven transmission are automatically trans-
mitted on every cycle, regardless of whether the buffer contents have been updated
or not. On the other hand, event driven buffers will only be transmitted when the
buffer contents have been updated. If no new data is available a Nullframe is sent, in
case the buffer is configured for the static segment or nothing is sent for the dynamic
segment.

Finally, receive shadow buffers must be configured. They play a special role as they
are not user-accessible like the three buffers introduced before. These buffers are
used internally for the reception of frames from the two channels. As soon as a
frame has been received correctly it is transferred from the receive shadow buffer to
the individual message buffer that has been assigned to that frame. Configuration is
done using the struct Fr_receive_shadow_buffers_config_type. It is important
to notice, that receive shadow buffers must be configured to ensure proper operation
of the node.

As soon as a configuration for each message buffer is ready in memory an array
of Fr_buffer_info_type structs must be created that contains the buffer-type, a
pointer to the configuration-struct as well as the index of the message buffer that
should be used as the buffer. Here again, it is important to note, that double

2Excluding shadow buffers which serve a special purpose
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transmit buffers need two buffer places, thus the message buffer index for the next
buffer must be increased by two instead of one.

Finally – to make things even more complicated – another array of types Fr_index_
selector_type needs to be created that contains only integers that represent indexes
to the Fr_buffer_info_type array. Each buffer that is selected using the selector
will be used later. In the case of the FlexRay 4 Linux integration only buffers
that are really needed are added to the Fr_buffer_info_type array, so that the
Fr_index_selector_type array basically contains indexes for all buffers.

3.5.2 Cycle Filter Configuration

The MFR4310 provides a cycle filter that can be used for transmit as well as for
receive buffers. The configuration is done using three parameters. The first is just
a boolean that switches the filter on or off, the other two are called filter value and
filter mask. Filter value and filter mask are each 6 bit wide (as the cycle counter).
If the filter is enabled the following condition must hold for the filter to match:3

cycle ∧mask = value ∧mask (3.1)

Consider a mask of 0x1 = 000001b and a value of 0x0 = 000000b, then the left side
of Equation 3.1 will be 000001b iff the cycle is odd. The right side is always 000000b
as 0x0 ∧ 0x1 = 0x0. As a result this filter will only match for even cycles. When a
value of 0x1 = 000001b is chosen, the filter matches only the odd cycles. Some more
examples of using the cycle filter can be found in Table 3.1.

3.5.3 Transmitting and Receiving

Transmitting and receiving is done using the previously configured message buffers.
Unfortunately there seems to be no way to transmit/receive by slot ID in the driver.
Transmitting and receiving can only be done by specifying the correct buffer index
that has been assigned before. To transmit or receive by slot ID nonetheless, a
mapping between slot ID and message buffer is needed. Fortunately the Fr_buffer_
info_type array contains all information needed to map the values.

3Note that the meaning of the logical-and “∧” has been extended to bitvectors instead of single
bits for the equation.
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Cycle
M/V M/V M/V M/V M/V M/V M/V M/V
0x1 /
0x0

0x1 /
0x1

0x2 /
0x0

0x2 /
0x2

0x3 /
0x0

0x3 /
0x1

0x3 /
0x2

0x3 /
0x3

0 X X X
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X

Table 3.1: Filter matching examples, M/V denotes mask and value pairs
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To integrate FlexRay communication into personal computers it must somehow be
connected to it. There exist commercial solutions to interface FlexRay systems using
USB or PCI1. These solutions are very powerful but also quite expensive and they do
only provide closed source drivers for Microsoft Windows. Features of these solutions
include the ability to monitor even the startup phase were no synchronization has
been established yet [Vector 08].

4.1 FlexRay over Serial Links
To encapsulate the FlexRay protocol over serial links such as USB or serial ports,
many different operations must be put into a serializable format. This is realized
using a simple packet-based protocol that will now be explained.

4.1.1 Packet Format

The protocol uses a specific packet for each operation. These packets can then be
transmitted byte per byte over a serial link. Each packet carries a header that
contains a one-byte field that is used to encode the type of operation as well as
optional arguments, see Figure 4.1. The packets do not carry a length field, because
the length can be calculated using the operation header and the length-field of the
FlexRay frame in case of a data packet.

There exists the following types of packets:

• Packets without additional arguments (init, start communication, stop com-
munication, wakeup, enter config, leave config), Figure 4.2

• Set low level configuration, Figure 4.3

• POC state, Figure 4.4

• Add RX/TX buffer, Figure 4.5

• Frame data, Figure 4.6

1E.g. Vector VN3600 or Vector VN3300
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Operation (8 bit) Arguments (optional, size variable)

Figure 4.1: Format of a generic FlexRay over Serial packet

Operation (8 bit)

Figure 4.2: Format of the FlexRay over Serial packet without arguments, it just contains
the operation header-field.

4.1.2 FlexRay over UART

If the UART is chosen as the low level communication medium, data units are
typically chunks of 8 bits (1 byte). The FlexRay over Serial packets just discussed
consist of up to several hundred bytes, but now have to be transmitted byte-per-
byte. Because a simple two-wire UART cannot signal packet starts using dedicated
wires, in-band signaling is needed to properly separate packets from each other. This
is done by encasulating the FlexRay over Serial packets into FlexRay over UART
frames. Those frames contain a 16 bit length field, the payload (which is always a
FlexRay over Serial packet) and a checksum to validate the payload, see Figure 4.7.
The start of a new frame is signalled using a reserved START-byte. Whenever a
START-byte is encountered in the data-stream, this START-byte needs to be escaped
by an escape byte ESC followed by the byte ESC_START. Whenever a ESC-byte in
found in the data-stream, it will be replaced by ESC, followed by ESC_ESC. At the
receiver-side, the START-byte can then be used to detect the beginning of a frame.
Before passing the data to the upper layers, the receiver has to recover the escaped
bytes. To sum up:

• START marks the beginning of a frame

• START in the data is escaped as ESC, ESC_START

• ESC in the data is escaped as ESC, ESC_ESC

4.2 An Introduction to the Linux Kernel
To goal of this section is not to give a an explanation about how operating systems
work. It shows merely how some typical functionality is implemented in the Linux
Kernel.

Operation (8 bit) Low-Level Conf. (72 bit)

Figure 4.3: Format of the FlexRay over Serial Low-Level configuration packet, operation
is always set to FR_SERIAL_PACKET_OPERATION_SET_LOW_LEVEL_CONFIG for these packets.
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Operation (8 bit) POC-State (8 bit)

Figure 4.4: Format of the FlexRay over Serial POC-state packet, operation is always set
to FR_SERIAL_PACKET_OPERATION_POC_STATE for these packets.

Operation (8 bit) TX/RX Buffer Conf.. (13/7 bit)

Figure 4.5: Format of the FlexRay over Serial Low-Level configuration packet, operation
is always set to FR_SERIAL_PACKET_OPERATION_ADD_TX_BUFFER or FR_SERIAL_PACKET_
OPERATION_ADD_RX_BUFFER for these packets.

4.2.1 Loadable Modules

If configured and compiled with the option CONFIG_MODULES, the Linux Kernel can
dynamically link additional code during runtime. This code is available in the form
of Kernel modules. Modules can provide almost any functionality, they can for
example add new network protocols or devices drivers for new network interfaces to
the Kernel. Modules can be loaded using the commands insmod or modprobe, the
first one needs a path to the module while the latter searches in well-known paths
for the module and can also automatically load dependencies. The command rmmod

is used to unload modules, as long as they are not currently in use.

When modules are loaded, a function declared with module_init() is executed
where e.g. data-structures can be initialised. When the module is unloaded, the
function passed to module_exit() is executed, here cleanup operations, such as
freeing allocated memory should be performed.

4.2.2 Linux Network Interfaces and Sockets

Linux supports a lot of different network interfaces, including typical every-day hard-
ware such as ethernet adapters, wireless LAN cards, but also virtual interfaces like
the TUN/TAP devices that are e.g. used in virtual private network solutions. Every
network device can be identified by the user by its name, for ethernet this is eth0 for
the first ethernet device, eth1 for the second, . . . , for wireless lan usually wlanX and
for tun-devices tunX (with X ∈ N0). Every network interface in the system internally
gets a number (called the interface index – ifindex) that can be used within the
kernel (or even in userspace as can be seen later) to uniquely identify it.

Operation (8 bit) FlexRay Frame (size variable)

Figure 4.6: Format of the FlexRay over Serial data packet, data packets are used to
encapsulate FlexRay frames. Operation is always set to FR_SERIAL_PACKET_OPERATION_
DATA for these packets. FlexRay Frame is of type flexray_frame.
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Length (16 bit) Payload (0...x Bytes) CRC (16 bit)

Figure 4.7: Format of the FlexRay over UART frames

Network interfaces can be configured using the tool ifconfig for devices that can
handle the internet protocol it can e.g. be used to set the IP-address. Common for
all devices is the ability to bring a network interface up or down, using the command
ifconfig devX up respectively ifconfig devX down.

Userspace applications cannot use the network interfaces directly, there is no way to
“open”e.g. eth0. Instead applications must create sockets using the socket(domain,
type, protocol) call. The arguments specify for what type of protocol the socket
is created. By using socket(PF_INET, SOCK_STREAM, IPPROTO_TCP), a typical
TCP/IP socket is allocated while socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)

creates a UDP/IP socket. The protocol-family is the same in both cases, PF_INET
for IPv4 traffic. By replacing the protocol-family with PF_INET6 IPv6 connections
can be established.

There are several operations that can be done with sockets. Two of them are very
important, send() and recv(). They are used for sending or receiving data to/from
the socket. By using send(), data is passed over to kernel space and by using recv()

data from kernel is passed into userspace. Another method to interact with sockets
or the network devices that are “behind” the sockets is by using specific ioctl()

commands, see the next section.

4.2.3 The ioctl() Syscall

The ioctl() call can be used to do dozens of operations with devices or also sockets.
Almost anything that cannot be done semantically correct with recv() or send()

calls can probably be done with ioctl()s. Consider for example setting the baudrate
for a serial device. Theoretically this could somehow be encoded into a write()

call, but that would probably easily cause trouble and especially confusion, because
setting the baudrate has nothing to do with “writing” to a serial port. Similar
problems arise for the FlexRay network device. Many tasks have to be accomplished
that are neighter sending nor receiving, such as configuring the Communication
Controller, reading POC-states or stopping the communication.

The ioctl() requests are fairly easy to understand, each request consist of a request-
id to distinguish between different request-types and a void *2 pointer to some mem-
ory, usually an application-specific struct. Because a pointer (or call-by-reference)
is used, ioctl() is basically bidirectional, there exists request that only transfer
data from user to kernel space, there are some that transfer data from kernel to user
space or there are even some that do both at a time.

2Actually, it is not a void pointer, which has traditional reasons, but one could imagine it to
be one.
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4.2.4 The select() Syscall

When it comes to non-blocking input/output operations the select() call comes
handy. It allows to wait for input, the ability to write or for exceptions on several
file-descriptors (which include sockets) at the same time. Optionally a timeout for
the wait-operation can be specified.

4.3 FlexRay 4 Linux

This section can only give a overview of the situation for – at the time of writing –
current Linux versions (e.g. 2.6.28). Many parts of the Kernel API change from time
to time so that this information here might easily be outdated. A great overview
about Linux Kernel programming in general gives [Corbet 05]3, for Linux networking
internals, see [Benvenuti 05].

4.3.1 The PF_FLEXRAY Protocol Family

FlexRay communication for Linux is implemented as a new network protocol. A
network protocol matches the nature of a communication system such as FlexRay
better than e.g. a character driver.The advantages of doing so a numerous – straight-
forwarded calls such as socket(), recv() or send() can be used to establish com-
munication and the whole interface can easily be used by several users or processes.

Linux provides several protocol families that lets the user create specific sockets
to communicate using a large variety of protocols. Well known protocols include
PF_INET, PF_INET6 which provide sockets for the Internet Protocol (IP) version 4
respecively 6. There are also less known protocol families, e.g. PF_BLUETOOTH which
implements important protocols for the Linux Bluetooth stack BlueZ or the quite
interesting protocol family for the controller area network (CAN) named PF_CAN.
All supported protocol families are defined in linux/socket.h.

Defining the protocol in linux/socket.h is of course not enough, the protocol family
must also be implemented, e.g. in form of a Kernel module. When such a Kernel
module is loaded it must register the protocol family it implements at the Linux
networking core. This is done using the API function sock_register (see net/

socket.c). This function takes a pointer to a struct net_proto_family which
contains the number of the protocol family and a pointer to a function to create
protocol specific sockets.

A typical protocol family registration could look like in Listing 4.1.

Listing 4.1: Registering a protocol family

/* the description of the protocol */

static struct net_proto_family fr_family_ops = {

/* the protocol family, see linux/socket.h */

.family = PF_FLEXRAY,

5 /* a pointer to a function to create sockets */

.create = fr_create,

/* the "owner" of this protocol */

3This book is also available online under Creative Commons License.
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.owner = THIS_MODULE,

};

10

/* register it at the socket subsystem */

sock_register(&fr_family_ops);

This is how the output looks when the protocol is registered and unregistered:

# insmod flexray.ko

flexray: Initializing FlexRay4Linux protocol stack

NET: Registered protocol family 36

# rmmod flexray

NET: Unregistered protocol family 36

flexray: Successfully unloaded.

A “Ethernet” protocol ID must be registered in linux/if_ether.h. This is named
ETH_P_FLEXRAY. This is needed to register handlers for the new protocol family.
af_flexray registers this handler to receive the FlexRay frames from the network
driver.

4.3.2 Raw FR_RAW Sockets

Once the protocol family has been registered at the socket subsytem, single protocols
for this protocol family can register themselves in turn at the protocol family.

Particularly useful protocols are RAW protocols that can be used for debugging
because they usually pass more data to the user than neccessary during normal
operation. The FlexRay subsystem also provides a raw protocol named FR_RAW that
can be used to receive and send on all registered FlexRay slots using specially crafted
structs.

The FlexRay core exports the symbol fr_proto_register which must be used to
register FlexRay protocols, see Listing 4.2 for an example on how to register the raw
protocol.

Listing 4.2: Registering a FlexRay protocol

/**

* description of the FR_RAW protocol

*/

static struct fr_proto raw_fr_proto = {

5 .type = SOCK_RAW,

.protocol = FR_RAW,

.ops = &raw_ops,

.prot = &raw_proto,

};

4.3.3 FlexRay Network-Devices

The identifier ARPHRD_FLEXRAY must be defined in linux/if_arp.h.

TODO: some more words, how does it work
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4.3.4 Serial Line Discipline

When the FlexRay controller is connected to a serial port (a so-called “tty”) of the
Linux system it is usually not available for use within a Kernel driver but only for
userspace using the corresponding device-file, e.g. /dev/ttyS0 for the first serial
port. Note that this does not only apply for the classic RS232-style serial ports still
found on older hardware but also for other serial devices such as USB-Serial adapters
(/dev/ttyUSBx), or even cellphones (/dev/ttyACMx). Luckily, a mechanism called
Serial Line Discipline is available in the Linux Kernel that allows to virtually “con-
nect” these usually only userspace accessible devices to kernel drivers. A prominent
example for a line discipline is the Serial Line Internet Protocol (SLIP) [Romkey 88]
discipline (N_SLIP) which is used to transfer IP4 data over serial links5. The SLIP-
implementation takes serial data from the tty, extracts the IP packets and output
them on a network interface (e.g. slip0). The other direction works similarly – the
modules takes incoming IP packets from the network device, transforms them into
a SLIP compatible data stream and outputs this stream on the tty.

Note the similarity of the problem of the SLIP implementation and the flexray-

serial module. Both have to transfer data between a tty and a network device. The
slip module for IP packets and the flexray-serial module for FlexRay frames.

So obviously, a line discipline is needed to connect FlexRay controllers over serial
ports/ttys. The line discipline “Serial FlexRay” has been defined as N_SLFLEXRAY

in linux/tty.h. The module flexray-serial registers the line discipline at ini-
tialization time, see Listing 4.3. The tty_ldisc_ops struct is used to set functions
that are called by the kernel in case of operations on the discipline such as opening
or closing the it or when data is available on the tty.

Listing 4.3: Registering the FlexRay line discipline

/**

* serial line discipline options

*/

struct tty_ldisc_ops fr_tty_ldisc = {

5 .owner = THIS_MODULE,

.magic = TTY_LDISC_MAGIC,

.name = "flexray over serial",

.open = fr_tty_open,

.close = fr_tty_close,

10 .ioctl = fr_tty_ioctl,

.receive_buf = fr_tty_receive_buf,

.write_wakeup = fr_tty_write_wakeup,

};

15 /* register the serial line discipline */

tty_register_ldisc(N_SLFLEXRAY, &fr_tty_ldisc);

4IP as in Internet Protocol
5Note that today, SLIP has been widely replaced by the Point-to-Point Protocol (PPP)

[Simpson 94], e.g. for analog modem or DSL connections
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So far, only the kernel side of serial line discpiplines has been discussed. However,
line disciplines always also needs the userspace to be involved. As stated before, by
default ttys are available to the userspace only, so the userspace has to explicitly
pass the tty to kernel control by setting the appropriate line discipline for it. This
can be done using a special ioctl request called TIOCSETD. This process is usually
called “attaching” the tty to some kernel part, hence the userspace programs that
are designed for this task are usually suffixed attach, e.g. for the already mentioned
SLIP the program is called slattach and for FlexRay it will be called frattach.
How such an program would use the ioctl can be seen in Listing 4.4.

Listing 4.4: Opening a line discipline from userspace (attaching)

int i = N_SLFLEXRAY;

if(ioctl(fd, TIOCSETD, &i) == -1) {

perror("ioctl (set line discipline)");

exit(1);

5 }

4.3.5 Important Data Types

4.3.5.1 struct flexray_frame

The flexray_frame struct is used to describe FlexRay frames that have been re-
ceived from the FlexRay cluster or that are to be sent out to the cluster. This
struct is used at two places: at the userspace/Kernel interface when sending/receiv-
ing frames as well as in the FlexRay over Serial data packet, when encapsulating
FlexRay frames over serial links. See Listing 4.5 for the definition of the struct.

Listing 4.5: The flexray_frame struct

/**

* This type describes a FlexRay frame.

*/

struct flexray_frame {

5

/** ID of the slot the FlexRay frame has been sent in

* or should be sent in */

u16 slot_id;

10 /** number of the cycle the FlexRay frame has been sent in */

u8 cycle;

/** length of the data in 16bit words (not bytes!) */

u8 length;

15

/** the status of the slot the frame was been received in */

u16 slot_status;

/** the payload */

20 u16 data[127]; /* this must be the last field in this struct */
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} __attribute__((__packed__));

4.3.6 Configuring the FlexRay Device

The FlexRay devices can be configured using the already introduced ioctl()s. The
ioctl() is issued to an open PF_FLEXRAY socket. Usually ioctls on sockets act just
on the socket itself, but special requests have been allocated to control the underlying
network device instead of the socket itself. These so-called “device private” requests
are numbered from SIOCDEVPRIVATE to SIOCDEVPRIVATE+15.

The FlexRay for Linux framework only uses one ioctl-request which is called
SIOCDEVFLEXRAY. This constant is defined as the first possible device private re-
quest. To distinguish between several requests to the FlexRay device, a special data
structure named flexray_conf_ioctl is passed to the driver. This data structure
contains a command-field that is used to encode different operations, e.g. initial-
ization of the controller or entering the configuration mode. For more complicated
requests that need to carry additional data, like configuration-descriptions, a pointer
to more data is also included, see Listing 4.6.

Listing 4.6: FlexRay network device ioctls

#define SIOCDEVFLEXRAY SIOCDEVPRIVATE

struct flexray_conf_ioctl

{

5 /** see below */

u8 cmd;

/** pointer to additional data */

void *data;

10 };

#define FLEXRAY_INIT 0x1

#define FLEXRAY_SET_LOW_LEVEL_CONFIG 0x2

[...]

#define FLEXRAY_GET_POC_STATE 0xA

4.3.7 Sending and Receiving Frames

TODO: insert simple send(), recv() example here

4.3.8 Userspace Tools

During the implementation of the FlexRay functionality in Kernel space, some useful
userspace tools emerged that can help debug a FlexRay cluster.

4.3.8.1 Userspace Library

To simplify the use of FlexRay under Linux, a simple userspace library has been
created that can be used to hide the syscalls behind a C-interface.

TODO: write a lot more about the library here
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4.3.8.2 FlexRay Sniffer: flexdump

The program flexdump is a simple sniffer, similar to the universal network sniffer
tcpdump6. flexdump opens a raw FlexRay socket at startup and then just listens
for changes in POC-state as well as for FlexRay frames. It then decodes received
frames and outputs useful information such as:

• Size of the payload

• Slot-Number

• Cycle-Counter

• Flags (Valid, Nullframe, Startup, ...)

• Payload

Please note, that tcpdump itself can also be used to sniff on the FlexRay interface,
e.g. by invoking it with tcpdump -n -i flexray0. This works, because tcpdump

uses the PF_PACKET protocol family which registers ethernet protocol id ETH_P_ALL

to receive all possible network traffic on the machine. Because tcpdump does not
know about the FlexRay (at least at the time of writing) it can of course not decode
the frames like flexdump does.

4.4 Demo Application

4.4.1 Overview

The demo applications consists of two major parts, a FlexRay controller connected
to a Linux computer (node 1) and a another FlexRay controller in an embedded
system (node 2). The embedded system has some components attached to it, a
motor driver with a DC motor, a LED, a display and a switch. The embedded
system uses the same experimental board as the FlexRay adapter for the computer,
that has been introduced in chapter 3.

Both nodes are connected using a standard shielded twisted pair cable of category 5e
and approximately 1 meter length. Both FlexRay channels (A and B) are available
through the cable with the possibilty to manually interrupt one of the channels to
demonstrate the failure safety of FlexRay.

4.4.2 Embedded System

The embedded system uses Pulse Width Modulation (PWM) to control the speed
of the motor, the direction can also be changed. To achieve this, a 16 bit word is
used. The highest bit specifies the direction of the motor and the lower 15 bits carry
the PWM value between 0 and 32767. Pin PWMA0 serves as the PWM source, ISB0
and ISB1 are used to set the direction of the motor.

The LED is connected to pin ISA0 and the switch to ISA1 of the DSP. The switch is
pulled-low by a 22kΩ resistor, pressing the switch causes the pin to be held on high
level.

6http://www.tcpdump.org/

http://www.tcpdump.org/
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A 2× 20 character ASCII display with a HD44780-compatible controller is attached
to the DSP using the pins TD1, TD2, PhaseA0, PhaseB0, Home0 and Index0. It is
interfaced in 4-bit mode and therefore it only needs 4 data lines.

TODO: move all the pin stuff in the appendix .. it’s not that interesting

4.4.3 Linux Computer

The Linux computer runs Linux 2.6.28.7 with all the neccessary FlexRay patches
applied. The serial FlexRay adapter is connected to it using a USB-Serial adapter
of type Prolific PL2303.

A small graphical application, programmed in C using the GTK++-Toolkit, serves
as an interface to the embedded system. The GUI shows the current POC-state
and the value of the switch. A slider can be used to control the motor speed and
direction, a button is used to switch the LED on or off. Text that should appear on
the display of the embedded system can be entered into a text field. See Figure 4.8
for a screenshot. TODO: update screenshot

Figure 4.8: Screenshot of the GUI running on the Linux system

4.4.4 FlexRay Configuration

There are really a lot of parameters that configure a FlexRay cluster, compared
to classic bus systems. These options make out a lot of the flexibility of FlexRay
but are also quite confusing and hard to understand. This section cannot provide
complete instructions on how to configure a FlexRay system, but it tries to give
an introduction. For a deeper understanding, please refer to [Rausch 07], especially
chapter 6.

4.4.4.1 Protocol Parameters

Here is the (non-complete) list of protocol parameter that are used on the demo
cluster:

gColdStartAttempts = 10 The nodes will try up to 10 attempts to cold-start the
cluster
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gdActionPointOffset = 3 Send-start for static frames is 3 macroticks after begin-
ning of slot

gdCASRxLowMax = 83 Maximum length of a Collision Avoidance Symbol (CAS) is
83 bit times.

gdDynamicSlotIdlePhase = 0 Length of the idle phase during a dynamic slot is 0
minislots.

gdMinislot = 40 The duration of a minislot is 40 macroticks

gdMiniSlotActionPointOffset = 3 Send-start for dynamic frames in 3 macroticks
after beginning of slot

gdStaticSlot = 50 The duration of a static slot is 50 macroticks

gdSymbolWindow = 13 The duration of the symbol window is 13 macroticks

gdTSSTransmitter = 11 The duration of the Transmission Start Sequence is 11 bit
times

gdWakeupSymbolRXIdle = 59 The minimal duration of the idle phase during a
wakeup symbol at the receiver is 59 bit times

gdWakeupSymbolRXLow = 50 The minmal duration of the low phase during a wakeup
symbol at the receiver is 50 bit times

gdWakeupSymbolRXWindow = 301 The width of the window to receive two wakeup
symbols is 301 bit times

gdWakeupSymbolTXIdle = 180 The duration of the idle phase of a sent wakeup
symbol is 180 bit times

gdWakeupSymbolTXLow = 180 The duration of the low phase of a sent wakeup sym-
bol is 180 bit times

gListenNoise = 2 The upper limit for the startup/wakeup listen timeout is 2

gMacroPerCycle = 5000 A FlexRay cycle is 5000 macroticks long

gMaxWithoutClockCorrectionPassive = 10 Node will go into passive state after
10 · 2 = 20 cycles without clock synchronization

gMaxWithoutClockCorrectionFatal = 14 Node will halt after 14 · 2 = 28 cycles
without clock synchronization

gNumberOfMinislots = 22 There are 22 minislots in the dynamic segment

gNumberOfStaticSlots = 60 There are 60 slots in the static segment

gOffsetCorrectionStart = 4920 Start of offset correction in Network Idle Time
is 4920 macroticks away from start of cycle
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gPayloadLengthStatic = 16 The payload length in the static segment is 16·2 = 32
bytes

gSyncNodeMax = 5 The maximum number of synchronization nodes (i.e. nodes that
send Sync Frames) is 5

gNetworkManagementVectorLength = 2 The Network Management Vector is 2 bytes
long

pAllowHaltDueToClock = false No direct transitions to POC:halt due to synchro-
nization problems

pAllowPassiveToActive = 20 The number of valid cycles to translate from POC:normal
passive to POC:normal active is 20 · 2 = 40

pChannels = CHANNEL_AB The node is connected to both channels

pdListenTimeout = 401202 The time to wait before initiating wakeup/startup is
401202 microticks

pdMaxDrift = 601 The maximum clock drift between two unsynchronized nodes
over one communication cycle is 601 microticks

pExternOffsetCorrection = 0 The external offset correction is not used

pExternRateCorrection = 0 The external rate correction is not used

pKeySlotId = 1 The keyslot of this node (the Linux side in this example) is slot 1

pKeySlotUsedForStartup = true The keyslot is used for the startup of the cluster

pKeySlotUsedForSync = true The keyslot is used for clock synchronization

pKeySlotHeaderCRC = 0xf2 The header checksum of the keyslot is 0x2f, this must
be calculated using pKeySlotId, gPayloadLengthStatic, pKeySlotUsedForStartup
and pKeySlotUsedForSync

pLatestTx = 21 The number of the last minislot where a new transmission may
begin in the dynamic segment is 21

pMicroPerCycle = 200000 There are 200000 microticks in one cycle

pOffsetCorrectionOut = 1201 The maximum allowed offset correction is 1201 mi-
croticks

pRateCorrectionOut = 600 The maximum allowed rate correction is 600 microticks

pSingleSlotEnabled = false The Single Slot Mode, where only one slot is used,
is disabled

pWakeupChannel = CHAN_A This node sends wakeup patterns on channel A

pWakeupPattern = 16 The wakeup symbol is repeated 16 times
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pMicroPerMacroNom = 40 The number of microticks per macrotick that all imple-
mentations must support is 40

pPayloadLengthDynMax = 64 The maximum payload length for dynamic slots is
64 · 2 = 128 bytes

4.4.4.2 Startup Configuration

Both nodes are configured as coldstarters, because at least two nodes must be con-
figured as coldstarters to successfully start a FlexRay cluster. Node 1 has its keyslot
set to 1 while node 2 uses slot 2 as keyslot. Both nodes attempt up to 20 coldstarts
(see protocol parameter gColdStartAttempts = 20).

4.4.4.3 Static Segment Configuration

There are 60 static slots available in each communication cycle, see protocol pa-
rameter gNumberOfStaticSlots = 60. Node 1 sends in slot 1 and 3 of the static
segment. Slot 1 is used as keyslot and to transmit the motor speed, the speed gets
transmitted periodically in every cycle (state driven transmission) and for higher
reliability on both channels. Slot 3 carries the value of the LED, the transmission is
also state driven but only channel A is used.

Node 2 only sends in slot 2, which is also its keyslot. This slot carries the value of
the switch, that is transmitted state driven and redundantly on both channels. See
Figure 4.9 for an overview of the static segment.

A

B

slot 1 slot 2 slot 3

node 1
motor

node 1
motor

node 2
switch

node 2
switch

node 1
LED

slot 60 slot 61 slot 62

node 1
LCD

node 2
Echo

static segment dynamic segment

time

Figure 4.9: Assignment of static and dynamic slots for the demo cluster

4.4.4.4 Dynamic Segment Configuration

The number of slots in the dynamic segment cannot be calculated as easy as for the
static segment, as dynamic slots may have varying sizes. The first dynamic slot is
numbered 61, because the last static slot has the id 60 (gNumberOfStaticSlots =

60).

In the dynamic slot 61, node 1 sends up to 128 bytes of data on channel B. The
data represents text that should be written to the display. Node 2 uses slot 62 on
channel A to echo the data that have been received in slot 61 back to node 1. The
transmission buffers for slot 61 and slot 62 are both set to event transmission, so
that the slots are only occupied when data is available.
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4.4.5 Functional Description

When the POC-state changes, the GUI gets updated to reflect the changes. The
user can choose speed and direction of the motor and the status of the LED. Speed
and direction are sent periodically in slot 1 by the FlexRay controller on the Linux
side, the LED value in slot 3. As soon as a frame containing the values is properly
received, they are propagated to the PWM subsystem or the LED respectively.

When the time has come for the embedded system to send in slot 2, it queries the pin
status of the switch and puts the value into the payload. As soon as Linux system
receives the switch data it updates the GUI to visualize the state of the switch.

If the user enters some text and presses enter, the text gets sent in the dynamic
segment to the embedded system, which in turn puts the text on the display.

4.4.6 Experimental Results

Now, one question should come into mind – what happens when one FlexRay channel
fails, let it be channel A or channel B? Looking at Figure 4.9, the theoretical results
can be deduced:

• Startup and continued synchronization of the cluster will still be possible,
because the startup and sync frames are transmitted redundantly on both
channels

• The motor-values are transmitted on both channels so it can still be controlled

• The switch-value is also transmitted on channel A and B so the switch could
serve as an emergency shutdown

• The LED can no longer be controlled when channel A is interrupted, it should
not be a safety-critical device

• The display can no longer display new messages when channel A is interrupted

All these theoretical results have been validated on the real demonstration system.
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5. Conclusions and Future Work

5.1 FlexRay over CAN

The first attempts to interface the FlexRay controller via CAN were quite promising,
except of some shortcomings in the CAN implementation that has been used on the
DSP at the RRLab for a while. Configuring the FlexRay parameters and starting
the communication worked pretty well, receiving FlexRay frames on Linux still.

Unfortunately, as soon as data had to be sent in both directions, a big disadvantage of
CAN came into effect: because it is a shared medium with “unfair”1 arbitration, one
direction (DSP→ Linux) was preferred over the other direction, leading to lost CAN
frames and thus to not-received FlexRay frames. One possibility to work around this
problem had been to detect and retransmit lost CAN-frames, but unfortunately the
existing CAN drivers for Linux did not provide easy means to detect frame losses and
even retransmitting would not have given any guarantees for successful transmission.

Because of the very limited physical bitrate of only 1 MBit/s and the severe arbitra-
tion problems even at quite low loads, the usage CAN has been dropped very soon.
To overcome the problems of accessing the FlexRay controller through a shared
medium, a solution capable of full-duplex2 transmissions had to be found.

5.2 FlexRay over UART

One of the first and most simple things that come into mind when thinking about
serial communication with full-duplex support is the universal asynchronous receiver
and transmitter (UART). Almost all microcontrollers feature an integrated UART
compatible serial interface. Also interaction with PC hardware is easy as most
hardware still has serial transceivers (in the form of RS232) and almost every other

1Unfair meaning the message with highest priority will always win.
2A full-duplex system can simultaneosly send and receive on a logical communication channel,

this can be achieved e.g. by using two physical wires, one for transmission and one for reception or
by the means of multiplexing methods such as Time-Division or Frequency-Division Multiplexing
(TDM/FDM).



46 5. Conclusions and Future Work

hardware can be equipped with USB-Serial converters that provide virtual serial
ports of the Universal Serial Bus.

The FlexRay over UART concept has proven to be a reliable solution for encapsu-
lating and transmitting FlexRay frames. It does not suffer the severe arbitration
issues encountered with CAN and is also a much more flexible solution as there are
many more ways to connect serial devices to a PC than when using CAN.

5.3 FlexRay over USB

Talking about USB and USB-Serial converters one may also consider using USB
directly without additionally pusing all data trough a UART. The best solution
would be to use a DSP with built-in USB controller as from the MFC525x-family.
Those processors offer a USB high-speed controller that should exceed the datarates
of FlexRay generously.

Another solution that does not involve switching processors is to connect a ded-
icated USB controller to the existing DSP. Thanks to the modular design of the
DSP experiment board such a controller can be easily plugged onto it. During the
research for this Bachelor Thesis an ad-on board has been designed with a Maxim
MAX3420E USB controller. This controller connects to the DSP via the Serial Pe-
ripheral Interface Bus (SPI) at up to 26MHz bus-clock frequency. On the other
side it connects to the Universal Serial Bus as a full-speed device (12 MBit/s), see
[MAX3420E 07]. The PCB layout can be found in Figure 5.1 and the schematic of
the circuit in Figure 5.2.

Figure 5.1: The PCB layout of the MAX3420E adapter board

This circuit will hopefully allow the connection to the Universal Serial Bus without
using a USB-Serial converter, soon.

5.4 FlexRay over PCI

The RRLab has already considered designing an expansion card for the PCI Local
Bus. Thanks to the now existing framework the development of a driver for the card
will be much easier than before.
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Figure 5.2: Schematic for the MAX3420E adapter board

5.5 Modular Controller Architecture (MCA)

At the Robotics Research Lab at the University of Kaiserslautern the Modular Con-
troller Architecture (MCA) framework is widely used for a variety of different robots.
This framework already is integration for the controller area network and if FlexRay
is to be used at some robotic applications, also FlexRay would need to be inte-
grated into MCA. Thanks to the now-existing Linux support, the first step for this
integration has just been taken.

5.6 Inclusion in the Linux Kernel

Care has be taken to obey the Linux Kernel Coding Style [Torvalds 07] for all Kernel
code. Additionally, as the FlexRay code is not very invasive (just a few constants
need to be added to external modules) a inclusion in the official Linux source tree
should not be too hard to achieve. Though no further actions have been taken to
do this, yet.
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A. Selected Source Files

Listing A.1: CRC Reference Implementation in C

#define CRC_HEADER_POLY 0xb85

#define CRC_HEADER_IV 0x1a

#define CRC_HEADER_LENGTH 11

#define CRC_HEADER_DATA_LENGTH 20

5

/**

* Header-CRC reference implementation in C

*/

10 unsigned int crc_header_ref(unsigned int data) {

unsigned int shiftreg = CRC_HEADER_IV;

int i;

int bit;

15 for(i = CRC_HEADER_DATA_LENGTH-1; i >= 0; i--) {

bit = ((shiftreg >> (CRC_HEADER_LENGTH-1)) & 0x1) ^

((data >> i) & 0x1);

20 shiftreg <<= 1;

if(bit)

shiftreg ^= CRC_HEADER_POLY;

25 shiftreg &= (1 << CRC_HEADER_LENGTH)-1;

}

return shiftreg;

}
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30

unsigned int create_header(unsigned int frame_id,

unsigned char payload_length,

unsigned char sync_bit,

35 unsigned char startup_bit) {

/*

* SYNC sync frame indicator

* START startup frame indicator

40 *

* X_10 frame-id (key slot = X)

* X_9

*

* X_8

45 * X_7

* X_6

* X_5

*

* X_4

50 * X_3

* X_2

* X_1

*

* X_0

55 *

* Y_6 Payload length (Y*2 bytes)

* Y_5

* Y_4

*

60 * Y_3

* Y_2

* Y_1

* Y_0

*

65 * "Value" is: (SYNC << 19) | (START << 18) | (X << 7) | Y;

*

*/

return

70 (sync_bit << 19) |

(startup_bit << 18) |

payload_length |

(frame_id << 7);

75 }
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unsigned int crc_header(unsigned int frame_id,

unsigned char payload_length,

unsigned char sync_bit,

80 unsigned char startup_bit) {

return crc_header_ref(create_header(frame_id, payload_length,

sync_bit, startup_bit));

85 }
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