
Improved Construction Heuristics and
Iterated Local Search for the Routing and

Wavelength Assignment Problem

Kerstin Bauer1, Thomas Fischer1, Sven O. Krumke2, Katharina Gerhardt2,
Stephan Westphal2, and Peter Merz1

1 Department of Computer Science
University of Kaiserslautern, Germany

{k_bauer,fischer,pmerz}@informatik.uni-kl.de
2 Department of Mathematics

University of Kaiserslautern, Germany
{krumke,gerhardt,westphal}@mathematik.uni-kl.de

Abstract. This paper deals with the design of improved construction
heuristics and iterated local search for the Routing and Wavelength As-
signment problem (RWA). Given a physical network and a set of com-
munication requests, the static RWA deals with the problem of assigning
suitable paths and wavelengths to the requests. We introduce bench-
mark instances from the SND library to the RWA and argue that these
instances are more challenging than previously used random instances.
We analyze the properties of several instances in detail and propose an
improved construction heuristic to handle ‘problematic’ instances. Our
iterated local search finds the optimum for most instances.

1 Introduction

The Routing and Wavelength Assignment problem (RWA) deals with Wavelength
Division Multiplexed (WDM) optical networks, where communication requests
between nodes in a network have to be fulfilled by routing them on optical fiber
links with a given capacity. Chlamtac et al . [1] showed the static RWA in general
networks to be NP-complete since it contains the graph-coloring problem.

The problem is defined as follows: Given is a graph G(V, E, W) with nodes V ,
arcs E and wavelengths W . An arc e ∈ E is an optical fiber link in the physical
network, where each wavelength λ ∈ W is eligible. A request ri = (vs

i , v
t
i , di)

connects nodes vs
i and vt

i having a demand of di ∈ N
+. For each unit of demand

a lightpath between the request’s endpoints has to be established. A lightpath is
an optical path between two nodes created by the allocation of the same wave-
length throughout the path of optical fiber links providing a ‘circuit-switched’
interconnection. Lightpaths have to fulfill two constraints: The wavelength con-
flict constraint defines that each wavelength on a physical link is used by at most
one lightpath at the same time. The wavelength continuity constraint requires a
lightpath to use the same wavelength on each link. There are problem variants

J. van Hemert and C. Cotta (Eds.): EvoCOP 2008, LNCS 4972, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Construction Heuristics and Iterated Local Search 159

1

2

3

4

5
Fig. 1. Example for the RWA, using three wave-
lengths (different line styles) to route the requests
{(1, 5, 2), (1, 4, 1), (2, 4, 1)}. The first request uses
the dashed lightpath 〈1, 3, 5〉 and dotted path
〈1, 2, 4, 5〉, the second request uses the solid path
〈1, 3, 4〉 and the last request uses the dashed path
〈2, 4〉. Physical links are shaded in light gray.

relaxing these constraints: The first constraint can be relaxed by multiple-fiber
links [2], the latter constraint can be relaxed by introducing wavelength convert-
ers [3] which change the wavelength of a lightpath at selected nodes.

The RWA can be seen as a static (static lightpath establishment, SLE) or a
dynamic (dynamic lightpath establishment, DLE) problem. Furthermore, there
are different types of cost functions available for the RWA. In the static case,
a set of requests to be routed in parallel is known a priori and the objective is
to find lightpaths for all requests minimizing the number of used wavelengths.
In the dynamic case, time-bounded requests turn up over time, the routing has
to be decided on-line, and the objective is to maximize the number of routed
requests. In this paper, we focus on the static minimization problem.

First, we present related work on the static RWA and iterated local search.
In Sec. 2 we give a formulation for the static RWA’s lower bounds. Section 3 de-
scribes the used benchmark instances and our improved construction heuristics.
In Sec. 4 we discuss a local search for the RWA, embedded into our iterated local
search in Sec. 5. Finally, we draw conclusions and present ideas for future work.

1.1 Related Work

Ozdaglar and Bertsekas [4] present a Linear Programming (LP) approach to
the RWA. Here, the RWA is represented as a multicommodity network flow
problem with additional constraints. Additional constraints vary for setups with
no, sparse, or full wavelength conversion. The LP formulations are similar to
our formulation (Sec. 2), except that the authors use a piecewise linear cost
function and limit the maximum number of wavelengths, whereas we assume
constant link costs of 1 and impose no limit on the wavelengths to guarantee
feasibility.

A memetic algorithm is presented by Sinclair [5] including a mutation op-
erator, recombination (exchange a subset of paths between parents, reassign
wavelengths) and two local search operators. The fitness function is rather com-
plicated considering link length, link usage, node degree, and more. The first local
search (called ‘path reroute’) reroutes a request in a wavelength with smaller in-
dex using one of the k-shortest paths, whereas the second local search (‘path
shift-out’) assigns a path to another wavelength, but shifts out conflicting paths
first. The network model uses the concept of several fibers on one physical link.
Although this approach is said to perform well, the large population size (500)
and the vast number of generations (100 000) question its efficiency.

160 K. Bauer et al.

Another approach for the RWA on general graphs is splitting the problem into
subproblems for routing and wavelength assignment, respectively. An extensive
overview on this approach is provided in [6] by Zang et al . and in [7] by Choi et al.

The static RWA is an NP-complete problem, for which we present an iter-
ated local search algorithm. Iterated Local Search (ILS) [8] describes a class of
algorithms that build a sequence of solutions using an embedded local search
(LS) algorithm. To leave local optima, results of the embedded algorithm may
be perturbated e. g. by a random mutation which moves the current solution to a
different part of the search space allowing the LS to find other (hopefully better)
local optima. LS [9] is an algorithm class defining for each solution a neighbor-
hood, which is a subset of the solution space and contains all solutions which
differ from the current solution in some selected aspect. In each iteration, the
algorithm evaluates the current solution’s neighborhood to choose a new solution
and thus performs a random walk in the search space. Both neighborhood and
moving strategy influence the LS’s performance. Furthermore, LS algorithms are
incomplete (finding optimal solutions is not guaranteed) and get stuck in local
optima requiring diversification.

2 Lower Bounds

To evaluate our solutions’ quality, we determined lower bounds by solving a
relaxation of the RWA. Disregarding the wavelength continuity constraint, the
RWA reduces to a multicommodity flow problem as follows. For each request r ∈
R we have commodity which needs to be routed by means of flow through the
network G. The mass balance dr

v required for request r at node v is −di if v = si,
+di, if v = ti and zero otherwise. Let variable xr

(i,j) indicate the amount of flow
from request r sent over the edge (i, j) ∈ E. Then, the problem of minimizing
the maximum flow sent over an edge can be stated as:

min max
(u,v)∈E

∑

r∈R

xr
(u,v) +

∑

r∈R

xr
(v,u)

∑

u∈V :(u,v)∈E

xr
(u,v) −

∑

u∈V :(v,u)∈E

xr
(v,u) = dr

v ∀v ∈ V, r ∈ R (1)

xr
(u,v)+xr

(v,u) ≤ dr
v ∀r ∈ R, (i, j) ∈ E (2)

xr
(u,v) ∈ N ∀r ∈ R, (u, v) ∈ E

The objective is to minimize the maximum load of any edge in the network.
Constraints (1) are flow-conservation constraints ensuring each request in the
demand is fulfilled. Constraints (2) ensure that the flow for a request traverses
an edge (u, v) only in one direction.

3 Benchmark Instances and Construction Algorithms

Solutions can be represented by a mapping from requests to sets of wavelength-
path combinations. As our objective has the prerequisite of fulfilling all requests

Improved Construction Heuristics and Iterated Local Search 161

completely, an equivalent representation can be achieved by setting the requests’
demands to 1, but allowing multiple requests for the same node pair. Therefore
w. l. o. g., for the course of this paper every request has a demand of exactly one.

A proposal for a construction algorithm is given in [10]. Requests are processed
iteratively by assigning each request a wavelength and a path depending on one
of the strategies below. Initially, one wavelength is available, but the number of
wavelengths is increased when no path can be found for a request.

First Fit (FF_RWA). Requests are ordered randomly and will be routed in
the first wavelength with a feasible (shortest) path.

Best Fit (BF_RWA). Requests are ordered randomly and will be routed in
the wavelength with the shortest feasible path.

First Fit Decreasing (FFD_RWA). Requests are sorted non-increasingly
by the length of each request’s shortest path in G and will be routed in
the first wavelength with a feasible path.

Best Fit Decreasing (BFD_RWA). Requests are sorted non-increasingly
by the length of each request’s shortest path in G and will be routed in
the wavelength with the shortest feasible path.

Experimental results in [10] indicate that BFD_RWA finds best results. Here,
all test instances were constructed by the Erdős-Rényi random graph model
G(n, p) [11], where each possible edge (i, j) is chosen with probability p = δ

n−1
independently from all other edges (where n = |V | and δ is the expected node
degree) and only connected graphs are accepted. In a second step the graph
is made bidirectional by replacing each undirected edge by a pair of antipar-
allel directed edges. The demand between each pair of nodes (i, j) ((i, j) and
(j, i) are considered as different node pairs) was set to 1 by a given probability
between 0.2 and 1.0. Similar instances have been used in other publications,
e. g. [12,13].

Our own preliminary experiments with this graph model and demand ma-
trix (in our setting, however, edges can be used in both directions and thus
are not replaced by a pair of unidirectional edges) indicate that this type of
instance is completely uninteresting due to two facts: First, the demand is so
small that construction algorithms as above already give (near-)optimal solu-
tions. In a preliminary experiment, we generated a G(n, p) instance with 50
nodes, δ = 3, and probability for a request between a node pair of p = 0.4,
where the BFD_RWA construction heuristic found a solution whose quality
equals the lower bound (Sec. 2). Second, the underlying graph is ‘pathological’
in most cases. We call a graph pathological if it is only 1-edge connected, i. e.
it contains at least one bridge. To illustrate the high probability of getting a
pathological graph by the Erdős-Rényi random graph model, consider a graph
G(100, δ=3). Here it is rather improbable that a graph with a connectivity of
degree > 1 will be generated. The probability of one special node being a leaf
is already

(
1 − 3

99

)98 ·
(3

99

)1 · 99 = 0.147 indicating that the probability of an
at least 2-edge connected graph is very small [14]. Every request depending on
such a bridge automatically requires an additional wavelength increasing the

162 K. Bauer et al.

Table 1. Properties of instances from SNDlib [15]. ‘Pairs’ describes the number of node
pairs communicating with each other, ‘Requests’ summarizes the demand volume.

Instance Nodes Edges Pairs Requests Lower Bound

atlanta† 15 22 210 6840 1256
france† 25 45 300 10008 1060
germany50 50 88 662 2365 147
janos-us-ca† 39 122 1482 10173 1288
newyork 16 49 240 1774 85
nobel-eu 28 41 378 1898 304
nobel-germany 17 26 121 660 85
nobel-us 14 21 91 5420 670
norway 27 51 702 5348 543
pdh 11 34 24 4621 214
polska 12 18 66 9943 1682
zib54 54 81 1501 12230 705

† Instance has been modified, see text for details.

total number of wavelengths, although previously allocated wavelengths still
have a lot of free links.

Instead of generating random instances as described above, we used standard
benchmark instances from the SNDlib collection [15]. This collection consists
of 22 networks and a set of associated models which can be used as problem
instances for the Survivable Network Design problem. The data was derived
from industrial and research background. A network is described by nodes,

Fig. 2. Instance germany50 based
on 50 cities in Germany

(physical) links, demands, and other, for our
problem irrelevant planning data. From this
collection we chose 12 networks as listed in
Tab. 1. We restricted our selection as the other
instances were either uninteresting for sophis-
ticated algorithms or exceeded our available
system capacities. To include some large in-
stances, we scaled down the demand ma-
trices of instances atlanta, france, and
janos-us-ca by a factor of 20, 10, and 200,
respectively. For the benchmark instances, ca-
pacity constraints and predefined admissible
paths were not used and edge costs were fixed
to 1. Edges were interpreted to be bidirec-
tional and all demands between node pairs
(i, j) and (j, i) were summed up to a unidirec-
tional demand. The graph of instance nobel-us corresponds to the well-known
NSF network with 14 nodes.

Our preliminary experiments indicated that the structure of the graph is not
the only limiting factor for the solution quality. Additional problems arise if the

Improved Construction Heuristics and Iterated Local Search 163

requests’ load is unbalanced distributed among the node pairs. Given a node
with degree δ, in each wavelength this node can handle at most δ requests, es-
pecially requests starting or ending in this node. In instance germany50 (Fig. 2),
the highlighted node has a node degree of 2 and 43 requests start here with a
summarized demand of 293. This leads to the lower bound � 293

2 � = 147, which
equals the solution found by our iterated local search (Sec. 5) and the lower
bound given by the multicommodity flow solution (Tab. 1).

We classify requests depending on overloaded edges as ‘evil’ requests. The
influence of evil requests can best be observed for instances where an unfavorable
combination of graph and request set leads to some heavily overloaded edges.
These observations motivate a new approach of the construction heuristic. In
this new approach, evil requests are preferably routed during the construction
phase. For our experiments we consider three different sorting strategies. Other
combinations of the components Len, Anti and Evil are also possible but will
not be considered further.

Len. Requests are ordered non-increasingly by the length of their shortest path,
equals BFD_RWA.

AntiEvil. Evil requests are routed first, otherwise using a random sorting.
LenAntiEvil. Requests are first sorted by Len and within each set of requests

with equal shortest path length by AntiEvil.
AntiEvilLen. Requests are first sorted by AntiEvil and within the evil and

non-evil requests, respectively, by Len.
Shuffle Requests are ordered in a random fashion.

To locate evil requests for a given graph and set of requests, we propose the
following method. In the first step, an initial solution is constructed with the
standard BFD_RWA algorithm and all edges e ∈ E′ heavily used in marginally
used wavelengths are taken as candidates for overloaded edges. We define margin-
ally used wavelengths as wavelengths whose usage lies below a multiple k of the
average path length. In a second step requests are marked as evil requests, if they
cannot be routed in G \ E′ (Fig. 3). Here, u(s, λ) calculates the actual load of
wavelength λ (number of used physical links), use(s, W ′, e) describes how often
edge e is used in solution s restricted to wavelengths W ′, and routeable(G, r)
checks if request r is physically routeable in G.

1: function FindEvilRequests(Graph G, Requests R, k ∈ R)
2: s ← BFD_RWA(G, R) � Construct a BFD_RWA solution
3: n ← k · �avgr∈R l(pG,s(r))� � n is the k times the average path length in s
4: E ← ∅ � Set of possibly overloaded edges
5: W ′ ← {λ ∈ W : u(s, λ) < n} � Set of marginally used wavelengths
6: for all e ∈ E do
7: if use(s, W ′, e) > |W ′| − 2 then � is e used in > |W ′| − 2 wavel. of W ′?
8: E′ ← E′ ∪ {e} � store overloaded edge
9: return {r ∈ R : ¬routeable(G \ E′, r)}

Fig. 3. Determination of Evil Requests

164 K. Bauer et al.

Table 2. Construction heuristic’s results (minimum and average over 50 runs)

Len LenAntiEvil AntiEvilLen AntiEvil Shuffle
Instance min avg min avg min avg min avg min avg

atlanta 1415 1473.7 1417 1474.0 1424 1518.0 1460 1556.5 1457 1524.8
france 1091 1115.1 1095 1120.2 1094 1131.7 1110 1175.3 1105 1164.6
germany50 185 193.2 185 190.8 165 166.4 161 164.3 163 172.9
janos-us-ca 1781 1806.7 1764 1791.3 1495 1507.2 1523 1567.3 1522 1611.7
newyork 92 96.9 91 97.4 91 96.4 95 100.5 93 101.3
nobel-eu 304 304.2 304 304.0 304 304.0 304 305.5 304 310.3
nobel-germany 91 94.0 92 94.1 91 94.5 93 98.8 92 99.7
nobel-us 827 892.1 812 885.7 836 890.1 805 877.7 835 898.6
norway 555 564.8 557 564.7 559 568.5 570 586.8 570 585.0
pdh 267 298.0 275 296.4 271 298.7 257 297.0 268 291.6
polska 1750 1836.1 1747 1861.6 1788 1943.1 1842 2010.7 1855 1971.9
zib54 824 903.7 816 884.2 825 892.2 827 947.6 854 983.3

3.1 Experimental Results

All problem instances in Tab. 1 were solved by the construction heuristics Len,
LenAntiEvil, AntiEvilLen, AntiEvil and Shuffle. Each experiment was repeated
with 50 seeds, the results (minimum and average) are summarized in Tab. 2.

As can be seen in Tab. 2, there exists no clear preference between the sort-
ing strategies Len and LenAntiEvil (except for germany50 and janos-us-ca,
the confidence intervals overlap). Instances germany50, janos-us-ca, nobel-us,
and pdh perform better with the sorting strategy AntiEvil than with Len or
LenAntiEvil regarding the best solution, however, only for janos-us-ca and
germany50 there is a significant difference (99 %). E. g. the best solution for
germany50 using AntiEvil is 13.0 % better than using Len or LenAntiEvil. We
observed that for these instances the least used wavelengths in solutions built
using Len contain only a few, similar paths indicating that the underlying re-
quest matrix is unbalanced and thus yields some heavily overloaded edges. E. g.
in one selected solution for germany50, a request having a demand of 76 uses 32
wavelengths used by no other request to route 63 lightpaths. As long as there
exist few evil requests, AntiEvilLen nearly matches with the sorting strategy Len
and thus has quite a similar but slightly worse performance. For the instances
where AntiEvil performs well, no clear preference can be made between AntiEvil
and AntiEvilLen. Thus, for unknown instances our experiments indicate first to
try both strategies Len and AntiEvil and then depending on which strategy
performs better to construct the final solutions either with Len/LenAntiEvil or
with AntiEvil/AntiEvilLen, respectively. However, there may be a large vari-
ance between different solutions from the same construction heuristic. E. g. for
nobel-us, the variance on the number of wavelengths ranges between 24.2 and
40.5 (not shown in Tab. 2). This suggests to construct several solutions to confirm
the decision for the best construction heuristic.

Improved Construction Heuristics and Iterated Local Search 165

1: procedure ShiftPaths(Solution s, Requests R)
2: for all r ∈ R do � for each request . . .
3: W ′ ← {λ ∈ W |ΨG,s(r, λ)
= ∅} � find wavelengths in which r can be routed
4: λ ← arg maxλ∈W ′ u(s, λ) � find wavelength λ with maximum load
5: if u(s, λ) > u(s, λs(r)) then � compare usage of λ and request’s wavel.
6: λs(r) ← λ � set request’s new wavelength
7: pG,s(r) ← ΨG,s(r, λ) � request’s path set to shortest path in new wavel.

Fig. 4. Local Search moving path to wavelengths with higher load

4 Local Search

Although there is a large variety in solution quality among different request
sorting strategies and random seeds, in many cases the results are considerably
worse than the lower bounds motivating our local search (LS).

The general idea of our LS is to shift requests from less used wavelengths to
more often used wavelengths by looking for alternative (possibly longer) paths.
The algorithm (Fig. 4), which operates on a solution s and the set of requests
R, works as follows: For each request r ∈ R, the set of all wavelengths W ′ ⊆
W in which r is routeable is determined. Among all wavelengths in W ′, the
wavelength λ with highest load is chosen. If the load for λ is larger than the load
for the request’s current wavelength, then the request’s wavelength is set to λ
and the request’s path is updated with the shortest path in λ. Function ΨG,s(r, λ)
calculates the shortest path in G for request r routed in λ and function u(s, λ)
is introduced in Sec. 3. We define ΨG,s(r, λ) = ∅, iff there exists no such path.

4.1 Experimental Results

To evaluate the effectiveness of the LS, we performed multistart experiments
using the same setup as described in Sec. 3.1. We applied our LS ShiftPaths to
the 50 initial solutions of each construction heuristic setup until a local optimum
was reached. The results are summarized in Tab. 3 (best of 50).

When comparing our multistart LS algorithm to the construction heuristics,
the former performs only slightly better than the underlying construction heuris-
tic. E. g. for instance germany50, the construction heuristic’s best solution us-
ing Len is 185 (average 193.2), but the multistart LS’s best solution is only
184. A significance analysis (99 % confidence interval) shows that the multi-
start LS improves the construction heuristics only in 5 cases (france+Shuffle,
germany50+AntiEvil/AntiEvilLen, norway+AntiEvil/Shuffle).

This observation matched our expectations, as both the construction heuris-
tics and the LS follow similar strategies. The only difference is that the construc-
tion heuristics prefer shortest paths, whereas the LS allows to reroute requests
using longer paths if the load on wavelengths gets changed in respect of the opti-
mization criterion. Differences in the quality of solutions created by the various
construction heuristics cannot be compensated by the multistart LS.

166 K. Bauer et al.

Table 3. Multistart local search’s results (best of 50 runs)

Instance Len LenAntiEvil AntiEvilLen AntiEvil Shuffle

atlanta 1414 1417 1424 1418 1430
france 1086 1092 1085 1102 1096
germany50 184 185 164 159 160
janos-us-ca 1781 1764 1494 1497 1495
newyork 92 90 91 92 92
nobel-eu 304 304 304 304 304
nobel-germany 91 91 91 91 89
nobel-us 827 804 808 787 802
norway 554 554 555 556 560
pdh 263 259 266 254 256
polska 1748 1747 1787 1827 1854
zib54 800 787 785 785 810

5 Iterated Local Search

As shown above, local search alone is not sufficient to considerably improve
the quality of the initial solutions. Thus, in order to escape from local optima,
we introduce an iterated local search (ILS) combining the local search with
a mutation (perturbation) operator which randomly changes paths within an
already existing solution (Fig. 5). In each mutation step, two wavelengths λ1
and λ2 are randomly chosen and an arbitrary request whose path p is routed
in the wavelength with lower usage (here, λ2) is taken. Paths preventing p from
being routed in wavelength λ1 are removed from the solution and p is routed in
λ1. The function rem(s, λ1, p) determines the paths to be removed and stores the
paths’ requests in R′. To restore a valid solution, all requests in R′ are rerouted
in the first possible wavelength.

We applied different mutation strategies to the ILS, where the strength is
defined by a percentage of the number of paths. Mutation strategies were ei-
ther constant (ranging between 1 % and 25 %) or variable, where the mutation
strength started with an initial high mutation rate (either 10 % or 25 %) and
decreased linearly (step width 1 % or 2 %) until reaching a strength of 1 %.

Within our ILS, we accept new solutions after mutation and local search
iff it is better (by length-lex ordering on wavelength usage vectors) than the
previous best solution, otherwise the previous best solution is restored. Length-
lex ordering sorts vectors first by length and then by lexicographic ordering.

5.1 Experimental Results

Due to similarities of Len and LenAntiEvil, we restrict the following discussion to
Len, AntiEvil, AntiEvilLen, and Shuffle. The number of generations was limited
to 50 as for most instances optimal solutions were found within this bound.
Experiments were repeated 50 times.

Improved Construction Heuristics and Iterated Local Search 167

1: procedure Mutate(Solution s, Requests R, strength)
2: for i = 1 . . . strength do
3: (λ1, λ2) ← RandomWavelengths
4: if u(s, λ1) < u(s, λ2) then
5: swap(λ1, λ2)
6: r ← rInWL(s, λ2, R) � get a request r with path p in wavelength λ2

7: p ← pG,s(r)
8: R′ ← rem(s, λ1, p) � remove paths stopping p from being routed in λ1

9: pG,s(r) ← p
10: λs(r) ← λ1

11: for all r ∈ R′ do � for all currently unrouted paths
12: λs(r) ← arg minλ∈W ΨG,s(r, λ)
= ∅
13: pG,s(r) ← ΨG,s(r, λ) � route request on the first possible wavelength

Fig. 5. Mutation shifting path between wavelengths

Whereas LS without mutation is not powerful enough to improve initial solu-
tions, the ILS always improves them to the optimum for many instances (reach-
ing the LB from Sec. 2 and Tab. 1). Best results were achieved with a variable
mutation strategy, where the initial strength was set to 25 % decreasing by 2 %
each generation (25%↓2%, Tab. 4). In each setup, the ILS resulted in significantly
better results than the multistart LS (99 % confidence intervals).

Regarding the convergence towards the optimal solution, we observed two
different patterns. In the first case, the optimal solution was reached in a few
generations by setups with strong mutation, whereas setups with weak muta-
tion converged much slower. Instance atlanta (Fig. 6a) is an example for this
behavior, where the optimal solution is reached after about 15 generations for
strong mutation (25 %), after 40 generations for mutation strength 5 % and not

Table 4. Iterated Local Search’s results with minimum and average over 50 runs for
the mutation strategy starting at 25 % and decreasing by step width 2% (25%↓2 %)

Len AntiEvilLen AntiEvil Shuffle
Instance LB min avg min avg min avg min avg

atlanta 1256 1256 1256.5 1256 1256.4 1256 1256.3 1256 1256.2
france 1060 1061 1062.5 1060 1062.4 1060 1062.7 1061 1062.9
germany50 147 147 147.8 147 147.6 147 148.0 147 147.5
janos-us-ca 1288 1343 1351.4 1337 1347.5 1340 1357.8 1342 1358.4
newyork 85 85 85.1 85 85.2 85 85.0 85 85.2
nobel-eu 304 304 304.0 304 304.0 304 304.0 304 304.0
nobel-germany 85 85 86.2 86 86.5 85 86.4 86 86.4
nobel-us 670 684 689.3 685 689.3 684 689.3 684 688.6
norway 543 543 543.0 543 543.1 543 543.1 543 543.0
pdh 214 215 217.3 215 217.2 216 217.3 215 217.0
polska 1682 1682 1682.2 1682 1682.1 1682 1682.1 1682 1682.1
zib54 705 709 711.3 709 711.5 708 710.0 708 710.2

168 K. Bauer et al.

Generation

N
um

be
r

of
W

av
el

en
gt

h

1%
5%

25 %
25%↓2 %

1250

1275

1300

1325

0 10 20 30 40 50

(a) atlanta using Len

Generation

N
um

be
r

of
W

av
el

en
gt

h

1%
5%

25 %
25%↓2 %

1350

1375

1400

1425

0 10 20 30 40 50

(b) janos-us-ca using AntiEvilLen

Fig. 6. Performance plots for two ILS setups using different mutation strategies

reached for weak mutation (1 %) within 50 generations. In the second case, the
optimal solution was not reached by our ILS. Again, our mutation strategies
performed differently. Stronger mutations let the ILS converge faster, but, how-
ever, get stuck in weak local optima. Weaker mutation lead to slow convergence,
but end eventually in better solutions. Using dynamic mutation, our ILS con-
verges fast during the initial phase and later is able to continuously improve
its current solution. An example for this behavior is shown in Fig. 6b for prob-
lem instance janos-us-ca. The bump for line ‘25%↓2%’ is due to the dynamic
mutation strategy and varies for different parameters.

For 8 out of 12 benchmark instances our algorithm is able to find optimal
solutions, as it reaches the lower bound. Here, we can argue that the use of
wavelength converters will not result in solutions with less wavelengths, as the
lower bound is based on a relaxation assuming wavelength converters at ev-
ery node. For pdh and zib54, near-optimal solutions are found, and with more
generations our algorithm can find optimal solutions. Only for janos-us-ca and
nobel-us our ILS is not able to reach solutions close to the lower bound. Reasons
may be that these two problem instances are harder than the other instances or
that the lower bounds are considerably below the optimal solution.

6 Conclusion

In this paper we improved an existing construction heuristic and developed an
iterated local search for the static RWA. We adopted problem instances from
the SND library for the RWA and argued that these benchmark instances are
more interesting than previously used random instances.

As for some benchmark instances the BFD_RWA construction heuristic per-
formed badly, we subsequently suggested alternative request sorting strategies

Improved Construction Heuristics and Iterated Local Search 169

resulting in considerably better initial solutions. To further improve these so-
lutions, we introduced an ILS which finds provable optimal solutions for eight
instances and near-optimal solutions for two more instances.

Future work will focus on run-time optimizations for large instances. We are
evaluating a multi-level approach based on the scaling mechanism we used for
large problems in this paper. Furthermore, using don’t-look-bits on wavelengths
or requests to restrict the search space is another promising concept.

References

1. Chlamtac, I., Ganz, A., Karmi, G.: Lightnet: Lightpath based solutions for wide
bandwidth wans. In: INFOCOM, pp. 1014–1021 (1990)

2. Xu, S., Li, L., Wang, S.: Dynamic routing and assignment of wavelength algo-
rithms in multifiber wavelength division multiplexing networks. IEEE J. Sel. Areas
Comm. 18(10), 2130–2137 (2000)

3. Chlamtac, I., Faragó, A., Zhang, T.: Lightpath (Wavelength) Routing in Large
WDM Networks. IEEE J. Sel. Areas Comm. 14(5) (1996)

4. Ozdaglar, A.E., Bertsekas, D.P.: Routing and wavelength assignment in optical
networks. IEEE/ACM Trans. Netw. 11(2) (2003)

5. Sinclair, M.C.: Minimum cost routing and wavelength allocation using a genetic-
algorithm/heuristic hybrid approach. In: Proc. 6th IEE Conf. Telecom. (1998)

6. Zang, H., Jue, J.P., Mukherjee, B.: A Review of Routing and Wavelength As-
signment Approaches for Wavelength-Routed Optical WDM Networks. Optical
Networks Magazine 1(1), 47–60 (2000)

7. Choi, J.S., Golmie, N., Lapeyrere, F., Mouveaux, F., Su, D.: A Functional Clas-
sification of Routing and Wavelength Assignment Schemes in DWDM networks:
Static Case. In: Proc. of the 7th International Conference on Optical Communica-
tions and Networks, OPNET 2000, pp. 1109–1115 (2000)

8. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Op-
erations Research & Management Science, vol. 57, pp. 321–353 (2002)

9. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, San
Francisco (2004)

10. Skorin-Kapov, N.: Routing and Wavelength Assignment in Optical Networks using
Bin Packing Based Algorithms. EJOR 177(2), 1167–1179 (2007)

11. Erdős, P., Rényi, A.: On Random Graphs I. Publ. Math. Debrecen 6, 290–297
(1959)

12. Manohar, P., Manjunath, D., Shevgaonkar, R.K.: Routing and Wavelength Assign-
ment in Optical Networks From Edge Disjoint Path Algorithms. IEEE Communi-
cations Letters 6(5), 211–213 (2002)

13. de Noronha, T.F., Resende, M.G.C., Ribeiro, C.C.: A Random-Keys Genetic Al-
gorithm for Routing and Wavelength Assignment. In: Proc. of the Seventh Meta-
heuristics International Conference (MIC 2007) (2007)

14. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
15. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0–Survivable Net-

work Design Library. In: Proc. of the 3rd International Network Optimization Con-
ference (INOC 2007), Spa, Belgium (2007), http://sndlib.zib.de

http://sndlib.zib.de

	Improved Construction Heuristics and Iterated Local Search for the Routing and Wavelength Assignment Problem
	Introduction
	Related Work

	Lower Bounds
	Benchmark Instances and Construction Algorithms
	Experimental Results

	Local Search
	Experimental Results

	Iterated Local Search
	Experimental Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

