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Introduction

Motivation

@ synthesis to sequential languages already given, e. g.

e Edwards: Compiling Esterel into sequential code
o Weil et al. Efficient Compilation of Esterel for Real-Time
Embedded Systems

@ synthesis to multithreaded code more challenging
(especially for heterogenous/distributed systems)

@ goal: enhancement of throughput
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Synthesis Flow
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@ here: from synchronous guarded actions to distributed systems
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Introduction

Guarded Actions

@ intermediate format for synchronous languages

@ same MoC as source language
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Introduction

Guarded Actions

System (Example)

Interface:
Inputs: I, €
Output: o

Locals: x,y,z
Guarded Actions:
C = o0=X+t1Yy
true = x=1i-1i
true = z=2-1i

true = next(y) =z+1

’céozx—&-y‘ next(y) =z+1
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Introduction

Creating Threads

Recent approaches partition DG:
o "vertical” slicing = multiple threads to execute one step
@ "horizontal” slicing = pipelining of DG
@ in progress: out-of-order execution
= applying techniques known from processor design
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Partitioning - The " Vertical Slicing” Approach

Approach

Basic idea:
@ group actions
@ avoid dependencies between groups

@ non-depending groups can be run in parallel
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Partitioning - The " Vertical Slicing” Approach

Approach

Insertion of Forks and Joins °

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by

’coéy:...‘ ’cliz:
two or more actions
@ join, if an action depends
on two ore more variables
-=1(y,2)
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Approach

Insertion of Forks and Joins

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by

two or more actions

@ join, if an action depends
on two ore more variables

.=1f(y,2)
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Approach

Insertion of Forks and Joins

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by
two or more actions

@ join, if an action depends
on two ore more variables
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Partitioning - The " Vertical Slicing” Approach

Approach

@ each fork-join-pair encloses a set of threads
@ fork-join-pairs can be nested = nested parallelism

@ can be synthesized, e. g. to C using OpenMP
(fork-join-pairs must not overlap)

@ details can be found in Baudisch, Brandt, Schneider.
Multithreaded Code from Synchronous Languages: Extracting
Independent Threads for OpenMP
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Partitioning - The " Horizontal Slicing” Approach

Motivation

First approach may fail to create enough threads due to
dependencies.
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Partitioning - The " Horizontal Slicing” Approach

Approach

@ break DG into components, such that

e inputs of DG are inputs of first component
e output one component is input of next component
e outputs of last component are also outputs of DG

@ each component is synthesized as one thread
@ components can run asynchronously (GALS)

@ data transfer between components done using fifo buffers =
TODO: reduction of transfer using endochrony/isochrony

@ details can be found in Baudisch, Brandt, Schneider-
Multithreaded Code from Synchronous Languages: Generating
Software Pipelines for OpenMP
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Example

next(y) =z+1
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Partitioning - The " Horizontal Slicing” Approach

Example

Pipelined

next(y) =z+1
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Partitioning - The " Horizontal Slicing” Approach

Pros and Cons

@ does not accelerate processing of one input set
@ increases throughput
@ same problems as in hardware design:

data conflicts, e. g. RAW conflicts

= solved by using fifo buffers but have same effect as
forwarding and stalling
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Dynamic Scheduling And Dynamic Superscalarity

Approach

Dynamic Scheduling + Data Flow Processing

@ one table containing all inputs and intermediate results of
input set = comparable to reservation station + reorder
buffer (RSRB)

@ 3 threads to manage execution

o reader thread
o dispatcher thread
o writer thread

@ arbitrary number of threads to execute synchronous program
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Dynamic Scheduling And Dynamic Superscalarity

Approach

@ synchronous program is translated to an arbitrary number of
threads (components)
e each component requires that (not necessary all but) some
inputs and some local variables are known
e a component should be executed for an input set as soon as
these variables are known

comparable to functional units in a processor's EX-stage
but

e software: apply each unit / input set

o hardware: apply exactly one unit / input set
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Dynamic Scheduling And Dynamic Superscalarity

Approach

@ one reader thread
e reads inputs and puts them to the RSRB
@ one dispatcher thread
as soon as an entry for an input set changes:

e compare available variables with those that are necessary to
fire components

e compare if all outputs are available and send values to writer
thread

e check if all components have been fired and remove input set

@ one writer thread

e send output values in-order to environment
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Dynamic Scheduling And Dynamic Superscalarity

Pros and Cons

does not accelerate processing of one input set
increases throughput

analogous elegant resolving of data conflicts as in hardware

out-of-order requires independency of input sets, or:
TODO: speculative execution

e causes race conditions

@ requires good speculations or

e much much more cores (e. g. GPGPUs)
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Dynamic Scheduling And Dynamic Superscalarity

The End

Thank you for your attention!

Questions? Suggestions? Ideas?
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