Synthesis of Synchronous Programs for Parallel
Architectures

Daniel Baudisch

Embedded Systems Group
Department of Computer Science
University of Kaiserslautern, Germany

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch) 1

Outline

@ Introduction
© Partitioning - The " Vertical Slicing” Approach
© Partitioning - The "Horizontal Slicing” Approach

@ Dynamic Scheduling And Dynamic Superscalarity

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Introduction

Outline

e Introduction

Synthesis of Syn s for Parallel Architectures (Daniel Baudisch)

Introduction

Motivation

@ synthesis to sequential languages already given, e. g.

e Edwards: Compiling Esterel into sequential code
o Weil et al. Efficient Compilation of Esterel for Real-Time
Embedded Systems

@ synthesis to multithreaded code more challenging
(especially for heterogenous/distributed systems)

@ goal: enhancement of throughput

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Introduction

Synthesis Flow

1
| [t]
1
1
| Crwns |
1
1
==
1
Y

@ here: from synchronous guarded actions to distributed systems

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Introduction

Guarded Actions

@ intermediate format for synchronous languages

@ same MoC as source language

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Introduction

Guarded Actions

System (Example)

Interface:
Inputs: I, €
Output: o

Locals: x,y,z
Guarded Actions:
C = o0=X+t1Yy
true = x=1i-1i
true = z=2-1i

true = next(y) =z+1

’céozx—&-y‘ next(y) =z+1

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Introduction

Creating Threads

Recent approaches partition DG:
o "vertical” slicing = multiple threads to execute one step
@ "horizontal” slicing = pipelining of DG
@ in progress: out-of-order execution
= applying techniques known from processor design

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Outline

9 Partitioning - The " Vertical Slicing” Approach

Synthesis of Synchr s Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Approach

Basic idea:
@ group actions
@ avoid dependencies between groups

@ non-depending groups can be run in parallel

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Approach

Insertion of Forks and Joins °

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by

’coéy:...‘ ’cliz:
two or more actions
@ join, if an action depends
on two ore more variables
-=1(y,2)

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Approach

Insertion of Forks and Joins

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by

two or more actions

@ join, if an action depends
on two ore more variables

.=1f(y,2)

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Approach

Insertion of Forks and Joins

Inserting pairs of forks and joins
into the DG. In principle:

o fork, if a variable is used by
two or more actions

@ join, if an action depends
on two ore more variables

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Vertical Slicing” Approach

Approach

@ each fork-join-pair encloses a set of threads
@ fork-join-pairs can be nested = nested parallelism

@ can be synthesized, e. g. to C using OpenMP
(fork-join-pairs must not overlap)

@ details can be found in Baudisch, Brandt, Schneider.
Multithreaded Code from Synchronous Languages: Extracting
Independent Threads for OpenMP

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Outline

e Partitioning - The "Horizontal Slicing” Approach

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Motivation

First approach may fail to create enough threads due to
dependencies.

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Approach

@ break DG into components, such that

e inputs of DG are inputs of first component
e output one component is input of next component
e outputs of last component are also outputs of DG

@ each component is synthesized as one thread
@ components can run asynchronously (GALS)

@ data transfer between components done using fifo buffers =
TODO: reduction of transfer using endochrony/isochrony

@ details can be found in Baudisch, Brandt, Schneider-
Multithreaded Code from Synchronous Languages: Generating
Software Pipelines for OpenMP

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Example

next(y) =z+1

Synthesis of Syn: niel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Example

Pipelined

next(y) =z+1

Synthesis of Syn s for Parallel Architectures (Daniel Baudisch)

Partitioning - The " Horizontal Slicing” Approach

Pros and Cons

@ does not accelerate processing of one input set
@ increases throughput
@ same problems as in hardware design:

data conflicts, e. g. RAW conflicts

= solved by using fifo buffers but have same effect as
forwarding and stalling

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

Outline

e Dynamic Scheduling And Dynamic Superscalarity

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

Approach

Dynamic Scheduling + Data Flow Processing

@ one table containing all inputs and intermediate results of
input set = comparable to reservation station + reorder
buffer (RSRB)

@ 3 threads to manage execution

o reader thread
o dispatcher thread
o writer thread

@ arbitrary number of threads to execute synchronous program

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

Approach

@ synchronous program is translated to an arbitrary number of
threads (components)
e each component requires that (not necessary all but) some
inputs and some local variables are known
e a component should be executed for an input set as soon as
these variables are known

comparable to functional units in a processor's EX-stage
but

e software: apply each unit / input set

o hardware: apply exactly one unit / input set

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

Approach

@ one reader thread
e reads inputs and puts them to the RSRB
@ one dispatcher thread
as soon as an entry for an input set changes:

e compare available variables with those that are necessary to
fire components

e compare if all outputs are available and send values to writer
thread

e check if all components have been fired and remove input set

@ one writer thread

e send output values in-order to environment

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

Pros and Cons

does not accelerate processing of one input set
increases throughput

analogous elegant resolving of data conflicts as in hardware

out-of-order requires independency of input sets, or:
TODO: speculative execution

e causes race conditions

@ requires good speculations or

e much much more cores (e. g. GPGPUs)

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

Dynamic Scheduling And Dynamic Superscalarity

The End

Thank you for your attention!

Questions? Suggestions? Ideas?

Synthesis of Synchronous Programs for Parallel Architectures (Daniel Baudisch)

	Synthesis of Synchronous Programs for Parallel Architectures
	Introduction
	Partitioning - The "Vertical Slicing" Approach
	Partitioning - The "Horizontal Slicing" Approach
	Dynamic Scheduling And Dynamic Superscalarity

