Evaluating the Effect of Predication on
Instruction Level Parallelism

— Student Project Report —

Sapna Bejai
Department of Computer Science
University of Kaiserslautern, Germany
http://es.cs.uni-kl.de

Abstract—Instruction level parallelism (ILP) means that
some instructions of a sequential program are carried out
in parallel on multiple function units within a single micro-
processor. It does not require any special consideration by the
programmer and is dealt with instead by the compiler and the
processor. The amount of ILP existing in programs may vary
a lot and is also application-specific: In high performance
computing like computer graphics and scientific computing,
the amount of ILP may be very large while other applications
may exhibit less ILP. However, also compiler transformations
may increase the amount of ILP of a program, and in
particular, predication (also called if-conversion) is known
for this effect. The report investigates the increase of ILP of
an algorithm that removes all acyclic control-flow statements
by predication and that reiterates innermost loop bodies for
a given number of times. Our motivation is the optimization
of program execution by data flow processors like SCAD. In
these architectures, the early availability of operands and
independence of many instructions determines the ILP so that
we are measuring the latter by some benchmark programs.

[. INTRODUCTION

In a parallel computation, every used processor is as-
signed a specific task of a part of the parallel algorithm.
Depending on the parallel model of computation, each
processor may have its own individual task (task-level
parallelism) or all processors may be given identical tasks
to be performed on their individual data (data-level paral-
lelism). The task may be a simple operation like increment
of a counter or it may be a complicated subroutine that
involves many operations. The size of these tasks is ex-
pressed as the granularity of the parallelism. Granularity
[7] (see Table I) is a relative measure of the ratio of the
amount of computation to the amount of communication
within a parallel algorithm’s implementation. The grain
size of a parallel task is the number of its atomic sequen-
tial instructions!.

In this report, we are mainly interested in instruction
level parallelism (ILP) which considers the parallel execu-
tion of instructions of a sequential program on multiple
function units within a single microprocessor. It does not
require any special consideration by the programmer and

ISee http://home.wlu.edu/~whaleyt/classes/parallel/topics/
granularity.html and [2] for a further discussion.

is dealt with instead by the compiler and the processor.
ILP is exploited in processors in many ways: In particular,
the most popular one is pipelining which is nowadays
used in essentially all processors. A further increase of
ILP has been achieved by optimizing the scheduling of
the instructions of a sequential program. The two major
techniques used for this are dynamic scheduling where the
processors fetch many instructions, analyze their depen-
dencies and schedule them out-of-order on the available
function units to exploit ILP. In contrast, static scheduling
uses special compiler techniques like trace scheduling and
modulo scheduling to increase the ILP for processors like
VLIW processors that offer many processing units but do
not dynamically reschedule the given instructions. The
classic static/compiler techniques used to increase ILP
have been refined in many ways like superblock and
hyperblock formation, techniques used in optimizing the
block formation, and also many techniques to unroll or
reiterate loops. Among these, predicated execution (also
called if-conversion) is one outstanding technique which
increases ILP by eliminating control-flow so that basic
blocks of the program are merged and more independent
instructions can be found for scheduling in a parallel way.
While predication is generally considered to increase the
amount of ILP, some authors also reported negative effects
and therefore introduced reverse if-conversion (RIC).

The use of ILP of a program also depends on a par-
ticular processor, and clearly on the kind and number
of its processing units. In this report, we do not assume
application-specific processing units, and neither do we
assume special function units. Instead, all function units
are considered to be universal ones, i.e., to be able
to execute all kind of basic atomic instructions of the
programs (like arithmetic operations etc.). Of course,
we assume the processor however to be able to offer
predicated execution.

In this student research report, we consider the effect
of predication on the ILP of sequential programs. The
remainder of this project report is organized as follows:
In Section II, we consider the SCAD datapath processor
architecture that we envision to make us of ILP. Section

Granularity of Parallelism

Parallel Blocks | Architectures

Task-level parallelism (coarse grain)

Processes Multiprocessors

Loop-level parallelism (medium grain)

Loop iterations | Multiprocessors through

program Transformations

Instruction-level parallelism (fine grain)

Instructions Superscalars and VLIWs

TABLE I: Different Types of Parallelism.

III introduces predication in general, and Section IV de-
fines the predication technique considered in this report
for improving ILP. Section V describes the experimental
setup and the calculation of ILP with quantitative results.
Finally, we summarize conclusions and future work in
Section VI, and list in Section A the programs used as
benchmark programs for the experiments.

II. EXPOSED DATAPATH ARCHITECTURES

Most modern processor architectures as well as compilers
which try to expose ILP in programs [10] depend on
the amount of available registers to store intermediate
results. Limited numbers of registers and the consequent
need of load and store instructions limit the use of
ILP [4]. Increasing the number of registers is however
difficult because this number is directly encoded in the
instruction sets. Increasing the number of registers and
PUs quickly leads to a bottleneck in wiring these on the
chips. Conventional processor architectures are therefore
restricted in exploiting ILP due to the limited number of
available registers in their instruction sets.

Exposed datapath architectures therefore expose not
only the processing units, but also all datapaths between
them [8], hence eliminating the use of central/global
registers. Exposed datapath architectures [4] aim at ap-
plications with high parallelism and low communication
between the parallel elements. These architectures pro-
vide many PUs and allow the compiler to move values
directly from one PU to another one. They allow the
compiler to mitigate communication delays by appropri-
ate instruction placement which minimizes the physical
distance that the data from a producer PU must travel to
reach the consumer PUs. The compiler not only schedules
instructions to functional units, but also takes care of
directly moving values between functional units avoiding
the need of registers at all. Bypassing register usage this
way generally allows the compiler to improve the degree
of instruction-level parallelism.

A particular exposed datapath architecture called SCAD
has been developed at the university of Kaierslauern (see
Figure 1). The PUs of a SCAD architecture are connected
with each other by the data transport network (DTN) and
by the move instruction bus (MIB) also a special control
unit (CU). The inputs of PUs have FIFO buffers for input
and output values so that the parallel execution of PUs
does not require synchronization and PUs can execute
instructions as soon as operands are available following

Input1 Input 2 Copies1

fullBuffer
i =i

Execution
Unit

DTN

Output1

(a) SCAD Machine with a single universal PU.

.

])

3

e

e @

iz’ dez”

(b) SCAD Machine with many PUs
Fig. 1: Architecture of a SCAD Machine

the dataflow paradigm. SCAD programs consist of move
instructions that simply instruct PUs to send available
results to other PUs which consume these as operands for
their executions. The CU fetches the move instructions of
a SCAD program in program order following the program
counter, and broadcasts these on the MIB (given in red

b=rand()

b>a
‘2;/ \:\’9
—q d=b+3

b=rand()

b=q

b d=b+3

=b*2

P2,P3 cmpp.un.uc b>a if true // if b>a then P2=true,P3=false

if true // b=random number

else P2=false, P3=true

if P2 //if P2 is true, b=q else nullify

if P3 //if P3 is true, d=b+3 else
nullify statement

if true // t=b*2

a) Original Control Flow Graph

b) Predicated Hyperblock

Fig. 2: Example showing the transformation into predicated conditional-free dataflow format [6]

color in Figure 1). The producer and consumer PUs then
notify these addresses so that the values can be moved
later on when these are available. The data moves are
done via the DTN (given in green color in Figure 1)
which is used by the PUs to asynchronously send values to
each other whenever these are available. SCAD machines
therefore execute a sequential program consisting of move
instructions whose effect is to transport a value from the
head of an output queue of a processing unit to the tail
of an input queue of the same or another processing unit.

The breadth-first traversal on expression trees by com-
pilers when generating code for the SCAD machine en-
sures that the operands are found in the correct order in
the buffers and also ensures that there is no need for an
additional memory. The experimental results of [3], [5]
not only demonstrate the superiority of this special code
generation compared to the traditional register based
code generation, but also show that this compilation
enables exposed datapath architectures to exploit concur-
rency in programs to the fullest [5]. The classic depth-first
traversal was influenced by the reuse of registers, while
the classic queue machines directed how to exploit the
maximum ILP via the breadth-first approach eliminated
the use of registers completely.

SCAD machines resemble queue machines but in con-
trast to queue machines, they have more than one queue
and may have also many PUs. The code generation for
SCAD machines is therefore different to queue machines
[31, [4], [5] and has been recently proved to be NP-
complete [1].

III. PREDICATED EXECUTION

A major obstacle for using ILP in the SCAD machine
are control-flow dependencies of instructions since the
current SCAD machines do not make use of branch pre-
diction. This is typical for statically scheduled processors
in contrast to dynamically scheduled architectures that
break the control-flow barriers by branch prediction.
The essential low-level control-flow statements are
conditional and unconditional branches, i.e., if-then-else

statements and goto statements. Using these basic control-
flow statements other high-level statements can be de-
fined like loops. Conversely, compilers decompose high-
level statements to low-level statements of intermediate
languages where control-flow statements are also con-
ditional and unconditional branches. In this report, we
consider sequential programs given in such a typical
intermediate language.

Each conditional branch contains a target instructions
to which control flows if the branch condition evaluates to
true or a false. In control-flow graphs (CFGs), this leads to
different basic blocks that are obstacles for ILP. Predicated
execution creates one hyperblock of such typical if-then-
else structures as shown in Figure 2.

Predication, i.e., if-conversion, therefore replaces a
set of basic blocks containing conditional control flow
between the blocks with a single block of predicated
instructions, thus transforming all control dependencies
into data dependencies [9]. This has the advantages that
the ‘then’ and ‘else’ parts are scheduled and executed
simultaneously by the processor ignoring the instructions
that were not supposed to be run [6]. The advantage is
that even though some instruction are scheduled that are
not executed at all, more instruction can be scheduled in
parallel to increase the amount of ILP.

IV. ALGORITHM

For our experiments, we use the experimental compiler
used for teaching purposes of the embedded systems
group of the computer science department of the uni-
versity of Kaiserslautern. Inputs are MiniC programs that
consist of the following statements where A,)\;, and
Ao are left-hand side expressions, 7 is a right-hand side
expression:

« A\ = T,

. A1,>\2 =T,

. 51 SQ

o if(0) S

o if(0) S else Sy

e while(o) S

e do S while(o)
o for(i=m.n) S
e return v

e Sync

Available data types are bool, nat, int as atomic data
types, and [n]« for arrays on type « and ax/3 as product,
i.e., pairs, of types « and . MiniC programs are further-
more structured into threads and functions, but we only
consider a single thread for our experiments.

procedure BubbleSort([]lnat Xx,nat xlen) {
nat 1i,y,swapped;
do {
swapped = 0;
for(i=1..xlen-1) {
// if pair x[i—1],x[i] is in the wrong order
if(x[1i-11 > x[i]) {
// then swap it and remember the change
y = x[i-1];
x[1-1] = x[i];
x[i] =vy;
swapped = 1;
}

} while(swapped==1)
return;

// create a test array in reverse order
procedure Initialize([]nat Xx,nat xlen) {
nat i;
for(i=0..xlen—1)
x[i] = xlen—1i;
return;

thread t {
[10]nat Xx;
Initialize(x,10);
BubbleSort(x,10);

Fig. 3: MiniC Program BubbleSort (Before Predication)

For example, Figure 3 shows the well-known bubblesort
algorithm for sorting an array x of 10 natural numbers.
The program defines two procedures, one for generating
an unsorted array [9, . ..,0] and the other one for sorting
this sequence with the bubblesort algorithm. Figure 4
shows its control-flow graph (CFG) consisting of the basic
blocks of the program. As can be seen, there is one loop
that stems from procedure Initialize and two nested
loops that stem from procedure BubbleSort.

As can be observed — and this is the usual observation
— the program yields a control-flow graph with many
small basic blocks so that compilers cannot make use of
much ILP. For this reason, compilers have to merge basic
blocks to larger ones using different techniques like trace
scheduling, modulo scheduling and hyperblock formation,
i.e., predication. As already explained, we want to mea-
sure the effect of the increase of ILP using predication on
algorithms.

Our algorithm first reads the MiniC file and inlines all
function calls. It then reiterates loops according to the

read{}
write{_t@, t1, t2,i FC1}
0000 : i FC1 :=0

read{i_ FC1}
write{_t3, t4, t5, t6, t7,i FCl,x
0005 : _t4 := 10

LD 6 - 1
0011 : t7 :=1i FCl <= t5
0012 : if _t7 goto 5

read{}
write{}
0013 : goto 14

read{}

write{ t10, t8, t9,i FC2,swapped FC2
0014 : swapped FC2 = 0

0015 : i FC2 :=1

0016 : t9 := 10

0017 : t8 := t9 -1

0018 : t10 := t8 < i FC2
0019 : if _t10 goto 38

read{i_ FC2,x}

write{_t11, t12, t13, t14}
i FC2 -1
x[_t11]

x[1_ FC2]

: : 112 <= _tl
: if _t14 goto 33

read{i_ FC2,x}

write{_t15, t16, t17,swapped FC2,x,y_FC2}

0025 : t15 :=i FC2 -1

0026 : y FC2 := x[_t15]

0027 : _t16 := x[i_ FC2]
: =1 FC2

1

0030 : x[1_FC2] := y FC2
0031 : swapped FC2 :=1
0032 : goto 33

0033 : i FC2 := i FC2
g 0
i

= 119 - 1
0036 : t20 := i FC2 <= t1§
0037 : if t20 goto 20

|

read{swapped__F(C2}

write{ t21, t22}

0038 : t22 :=1

0039 : t21 := swapped FC2 == t2
0040 : if t21 goto 14

read{}
write{}
0041 : goto 42

read{}
write{}
0042 : sync

Fig. 4: Control-flow Graph (CFG) of BubbleSort Before
Predication

following code transformations if the loop bodies do not
contain other loops:

o while(o) S = while(o) {S; if(0) S}

e do S while(o) = do {S; if(0) S} while(o)

e for(i=m..n) S

={ nat i; i=m; while(i<=n)do S; i=i+1; }

The above rules may be applied for a given number of
times ¢, thus creating ¢ copies of an innermost loop body:.

After this, acyclic code regions are predicated, i.e., all
instructions are given a predicate condition that must

thread t {
bool cO;
[10]nat Xx;
// inlined code of Initialize
nat i0;
for(10=0..9)
x[10] = 10-i0;
// inlined code of BubbleSort
nat il,yl,swapped;
do {
swapped = 0;
for(il=1..9) {
cO0 = x[il] < x[il-1];
yl = (c0 ? x[i1-1] : yl1);
x[i1-1] = (c0 ? x[il] : x[il-1]1);
x[11] = (c0 ? y1 : x[il]);
swapped = (cO0 ? 1 : swapped);

}
} while(swapped)

Fig. 5: Predicated MiniC Program BubbleSort Without
Unrolling of Loops

hold for the execution of the instruction. To this end, a
single pass over the program statements are made where
a preliminary predicate condition is updated whenever
an if-statement is traversed. The procedure is essentially
defined as follows using as intial predicate condition
© = true:

o Pred(p, A=7):=XZ 71

o Pred(p, A, o =7) = A, o 27

o Pred(yp, S1 S2) := Pred(p, S1) Pred(yp, S2)

e Pred(p,i£(0) S) := Pred(p A0, S)

e Pred(p,if(0) S1 else Ss)

:= Pred(¢ A 0,51) Pred(p A —0o,S3)
e Pred(p,while(o) S)
:=if(p) while(o) Pred(true,S)
e Pred(p,do S while(o))
:= if(y) do Pred(true, S) while(o)
Statement A\ = 7 denotes thereby a predicated assign-
ment, i.e., the assignment A\ = 7 is executed only if ¢
holds (and otherwise, nothing is executed).

After applying the predication algorithm, the predicated
MiniC code of the bubblesort MiniC program shown in
Figure 3 looks as shown in Figure 5 and Figure 6,
respectively, if innermost loop bodies are not unrolled at
all or unrolled once, respectively.

In both cases, the structure of basic blocks concerning
loops is kept, but if-then-else parts are merged into a
single basic block that contains predicated assignments.
In particular, innermost loop bodies will now only consist
of a single basic block so that unrolling this basic block be-
fore predication will generate also a single basic block of
twice the size where now two of the previous loop bodies
can be scheduled together. Hence, after predication, the
only basic blocks that remain are due to loops.

V. EXPERIMENTAL EVALUATION

To measure the effect on the available ILP by our predica-
tion algorithm, we first compute the CFG of the original

thread t{
bool c0,cl,c2,c3,c4,c5,c6,c7,c8;
[10]nat Xx;
// inlined code of Initialize
nat i;
i=0;
while(i<=9) {
x[i] = 10—1i;
i = 1i+1;
c0 = i<=9;
cl = !cO;
x[i]l = (cO0 ? (10-—1i) : x[i]);

i=(co ? (i+l) : 1i);

}
// inlined code of BubbleSort
nat yl,swapped;

do {

swapped =

nat il;

il = 1;

while(il<=9) {
c2 = (x[il] < x[i1-1]);
c3 = !c2;
yl = (c2 ? x[i1-1] : y1);
x[11-1] = (c2 ? x[il] : x[il1l-1]);
x[11l] = (c2 ? yl : x[il]);
swapped = (c2 ? 1 : swapped);
il = 11+41;
cd = il<= 9
c5 = Ic4;
c6 = (x[il] < x[i1-1]);
c7 = c4 & c6;
c8 = c4 & !cb6;
yl = (c7 ? x[11 1] : yl);
x[i1—1] = (c7 ? x[il] : x[il1-1]);
x[11l] = (c7 ? yl : x[il]);
swapped = (c7 ? 1 : swapped);

il = (c4 7 (il+1) : il);

} while(swapped)

Fig. 6: Predicated MiniC Program BubbleSort With Un-
rolling Innermost Loop Bodies Once

and the predicated program and then compare their
respective ILPs. To measure the ILP, we compute the data
dependency graphs for each basic block and schedule the
instructions by an ASAP (as-soon-as-possible) schedule.
The number of instructions divided by length of the
longest path of these data dependency graphs is then used
as measure of ILP since it means how many instructions
of the basic block can be executed in average in parallel
of the basic block. We compare this ILP before and after
predication and, in particular, we consider these numbers
for the innermost loop bodies that usually contribute most
to the runtime of a program.

In particular, we first obtain the CFG from the MiniC
compiler?, and calculate the ILP for the entire program.
After this, we generate the predicated MiniC program
using our algorithm and calculate its ILP. A reduced num-
ber of blocks and maximum ILP within a block indicate
that our algorithm has been successful at providing an
improvised overall ILP.

Table II shows the analysis for program BubbleSort:
While the original CFG shown in Figure 4 consists of

2See https://es.informatik.uni-kl.de/tools/teaching/MiniC.html

read{}
wrlte(tﬂ t1, t2,i}
0000

0001 :

0002 :
0003 :
0004 :

read{i}
write{_t3, t4, t5, t6, t7,i,x
005 : t4 : 0

=10
_t6 - 1

: = 1< t5
Y _t7 goto 5

read{}

write{_i FC1, swapped | FCl _tl10, t8, t9|
0013 : swapped FC1 :=

0014 : i FC1 :=1

0015 : 7(9 1= 10

;8 = t9 - 1
0017 : th = _t8 < i FC1
0018 : if _t10 goto 47

— |l

(read{ i FCl swapped FC1, y FC1,x}
write{ c1,
0019 :
0020 :

[t
t11 < _t13
tl4 == co

i FCl -1
[t15]

: Zewapped FCL[_£27] := _t26
0042 : i FC1l := i FC1 +
0

t29

: 0 i FCl <= _t28
\9046 : if t30 goto 19

i FCl swapped FC1, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26, t27, t28, t29, t30, FC1,x}
C1]

J

S

read{_swapped FC1}

write{_t31, t32}

0047 : 132 := 1

0048 : t31 := swapped FCl == t3
0049 : if t31 goto 13

read{}
write{}
0050 : sync

Fig. 7: Control-flow Graph of BubbleSort After Predication

Bubble sort Blocks
Block Number | Instruction count | Instruction count
Before Pred (10 | After Pred 6
Blocks) blocks)
Block 1 00 to 04 00 to 04
Block 2 05 to 12 05 to 12
Block 3 13 13 to 18
B4 1ot CEHCEN
. Block5 | 20t024 | 47to49 |
Block 6 25 to 32 50
Block 7 33 to 37
Block 8 38 to 40
Block 9 41
Block 10 42

TABLE II: Increase of ILP for BubbleSort.

ten basic blocks, the CFG of the predicated version has
only six basic blocks. The innermost loop body of the
unpredicated version consists of three basic blocks that
are merged into a single one in the predicated version.
The maximal length of a basic block is 8 in the unpred-
icated version, while it is 28 in the predicated version.
In particular, the length of the innermost loop bodies
basic block has this length and it has therefore now good
chances for ILP.

To measure the amount of ILP per basic block, we
consider the data dependency graphs of each basic block,
and calculate the length of the longest path as the number
of cycles required to execute the basic block. Table III
shows these calculations for the CFGs of the BubbleSort
program. For each basic block of the unpredicated and
the predicated CFG, we use the ASAP schedules where
instructions are scheduled to cycles, and calculate for
each basic block the number of instructions divided by
the number of cycles to execute them, i.e., the average

ILP calculation of Bubble Sort

Blocks

Instructions Before Predicate

Instructions After Predicate

Cycle 120001 Cycle 1=00,01
Cycle 2=02
- Cycle 2=02
Cycle 3=03
Cycle 4=04 Cycle 3=03
Cycle 4=04
1
5 instr 5 instr
P = — =125
ILP = =125 1
4 cycles 4 cycles
Cycle 1=05, 08,09 Cycle 1=05,09
Cycle 2=06,10 Cycle 2=06,10
Cycle 3=07,11 Cycle 3=08,07,11
5 Cycle 4=12 Cycle 4=12
8 instr 8 instr
P = =2 ILP = =2
4 cycles 4 cycles
Cycle 1=13,14,15 Cycle 2=16
Cycle 1=13 Cycle 3=17
le 4=1
1 instr Cycle 4=18
3 1P = =1 6 instr
1 cycles ILP = =15

4 cycles

Cycle 1=14,15,16
Cycle 2=17
Cycle 3=18
Cycle 4=19

6 instr
P = =15
4 cycles

Cycle 1=19,20,23,25,28,31,30,40,43,34,36
Cycle 2=32,21,26,24,44
Cycle 3=22,27,33
Cycle 4=39,29,35
Cycle 5=41,37
Cycle 6=38
Cycle 7=42
Cycle 8=45
Cycle 9=46
28 instr
P = — = 3.11
9 cycles

Cycle 1= 20,22
Cycle 2=21
Cycle 3=23
Cycle 4=24

S instr
P = —— =125
4 cycles

Cycle 1= 47
Cycle 2=48
Cycle 3=49
3 instr
ILP = =1
3 cycles

Cycle 1= 25,27,28,31,32
Cycle 2=26,29
Cycle 3=30

8 instr
P = = 2.66
3 cycles

Cycle 1=50
1 instr
ILP = =1
1 cycles

Cycle 1= 33,34
Cycle 2=35
Cycle 3=36
Cycle 4=37

5 instr
ILP = =125
4 cycles

Cycle 1= 38
Cycle 2=39
Cycle 3=40
3 instr
P = =1
3 cycles

Cycle 1= 41
1 instr
P = =1
1 cycles

10

Cycle 1= 42
1 instr
ILP = =1
1 cycles

TABLE III: Calculation of ILP

5 | |

[0 pre-Predicate [0 Post-Predicate
4+ |
3 3

3 - — —
R 2.6 2.5
X bl

2 1.8) H

1.6
1.3 14

1 |

0 T T T T

InsertionSort BubbleSort Test9 FirstOrderLinear

Fig. 8: Relative Increase of ILP of Benchmark Programs.

number of instructions executed per cycle of the basic
block. Hence, we define for each basic block

number of Instructions
number of cycles

ILPyiock =

The arithmetic means of all the ILPs per block in the entire
program gives the ILP of the execution of the program (we
assume here that all blocks are executed equally often
which is however not realistic).

1 n
ILPyyoy = — > I,
1=1

where n is the number of blocks of the program, and ILP;
is the ILP of basic block i. For program BubbleSort, we

obtain before predication ILP,,,, = 1321 = 1.39 and after
predication ILP,,,,, = 28¢ = 1.64.

We performed the same calculations on programs cater-
ing to various types of branching constructs (see ap-
pendix). Figure 8 presents the results in terms of percent-
age increase in the ILP. These programs contained if-then-
else, function calls constructs, looping constructs. We can
summarize that there has been significant increase in the
performance from the visualization obtained by plotting
the results.

VI. CONCLUSION AND FUTURE WORK

Based on the results obtained from the experiments, we
observe a significant improvement of the amount of ILP by
predicating the programs. Further investigation is going
on about whether a programs’ executions is dominated
by non-loop branches or loop branches. Loop unrolling
dynamically also leading to increased code size due to
code expansion is also to be considered as major game
player. If the loop unrolling takes place by a bigger
number, then the other blocks in the program execution
can be discarded, but if the loop is unrolled for a very

small number with respect to the larger number of blocks,
then we need to discuss about the further steps.

The predicate manipulation phase termed as ’partial
reverse if-conversion’ i.e; adjustment of hyperblocks dur-
ing scheduling, is proposed by [9] is also the future
discussion activity of this project. To address the problem
of false dependencies, [6] has proposed a predicate-
sensitive implementation of SSA called Predicated Static
Single Assignment (PSSA) which we would also discuss
this in the next phase. PSSA seeks to accomplish the
same objectives as SSA for a predicated hyperblock. As
a limitation, we can state that single static assignment
depends on the type of the program. If the program
instructions involve various variables, then the SSA can
be explored to the most.

REFERENCES

[1] M. Anders. Complexity analysis of code generation for the
SCAD machine. Master’s thesis, Department of Computer Science,
University of Kaiserslautern, Germany, October 2017. Bachelor.

[2] S. Bejai. Compilation techniques for increasing instruction-level
parallelism for the scad machine, 2018. Seminar on Embedded
Systems, Embedded Systems Group, Department of Computer
Science, University of Kaiserslautern, Germany.

[3] A. Bhagyanath, T. Jain, and K. Schneider. Towards code genera-
tion for the synchronous control asynchronous dataflow (SCAD)
architectures. In R. Wimmer, editor, Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (MBMV), pages 77-88, Freiburg, Germany, 2016.
University of Freiburg.

[4] A.Bhagyanath and K. Schneider. Optimal compilation for exposed
datapath architectures with buffered processing units by SAT
solvers. In E. Leonard and K. Schneider, editors, Formal Methods
and Models for Codesign (MEMOCODE), pages 143-152, Kanpur,
India, 2016. IEEE Computer Society.

[5] A. Bhagyanath and K. Schneider. Exploring different execution
paradigms in exposed datapath architectures with buffered pro-
cessing units. In Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen (MBMV),
2017.

[6] L. C. .et al. Path analysis and renaming for predicated instruction
scheduling. International Journal of Parallel Programming, 2000.
University of California, San Diego.

[7]1 N. Hottle. Granularity in parallel algorithms, 1992. http://home.
wlu.edu/~whaleyt/classes/parallel/topics/granularity.html.

[8] E. Jedermann. Exposed datapath processor architecture imple-
mentation survey, 2015. Seminar on Embedded Systems, Embed-
ded Systems Group, Department of Computer Science, University
of Kaiserslautern, Germany.

[9] S. A. Mahlke, D. I. August, and W. mei W. Hwu. The partial

reverse if-conversion framework for balancing control flow and

predication. Center for Reliable and High-Performance Computing,

Hewlett-Packard Laboratories, May 1999.

M. Schlansker, T. Conte, J. Dehnert, K. Ebcioglu, J. Fang, and

C. Thompson. Compilers for instruction-level parallelism. IEEE

Computer, 30(12):63-69, December 1997.

[10]

APPENDIX

function vectorLength (nat x1,x2,x3,x4)
nat yl,y2,y3,y4;
x1 ;

: nat {

yl = * X1;
y2 = X2 x X2;
y3 = x3 x X3;
y4 = x4 x x4;
yl =yl + y2;
y3 = y3 + y4;

return(yl + y3);

thread test {

nat x1,x2,x3,x4,x5,x6,x7,x8,y;
x1
x2
x3
x4
x5
x6
x7
x8 ;

y = vectorLength(x1,x2,x3,x4) + —

vectorLength(x5,x6,x7,x8);

’

’

o~NOOU A WN =

}

Fig. 9: MiniC Program for Computing Length of Vectors
(Before Predication)

function fibonacci(nat n)
nat i,f1l,f2,fn;

: nat {

return fn;

}

thread Fibonacci {
nat n;
n = fibonacci(10);

}

Fig. 10: MiniC Program Fibonacci (Before Predication)

[8]int y;

function exp(nat X0, nat y0):nat {
nat h,i;
h=1;

if(x0!'=0) {
for(i=1..y0) {
h = hxx0;

}
}

return h;

}

function FirstOrderLinearRec(int y0,

nat {
nat n,i,j,k;
[8][2]int m;
n = 10;

for(i=0..n—

m[i][0]
m[i][1]

ey

H{

alil;
b[i];

}
for(i=0..2){ //log 2 8 = 3

k

exp(2,i);

for(j=k..n—-1){

}

m
m

[l
[l

[0]
[1]

}
//compute y[i]

for(i=0..n-1) {

m[j
m[j

j110] = m[j—Kk][O];

1001 « m[j—K][1] +

ylil= m[i][0] = y@ + m[i][1];

return 1;

}

thread test{
[8]int a;
[8]int b;
nat dummy;
al0] = +1;
all] = +2;
al2] = —-2;
a[3] = —-1;
al4] = +3;
a[5] = —-3;
a[6] = +0;
al7] = +1;
b[0] = +3
b[1] = +1;
b[2] = +0;
b[3] = +1;
b[4] = —2;
b[5] = —-1;
b[6] = +3;
b[7] = —4;

dummy = FirstOrderLinearRec(+1,a,b);

Fig. 11: MiniC Program First Order

(Before Predication)

[lint @, [lint b) : —

m{j1[1];

Linear Recursive

thread InsertionSort {
[10]nat Xx;
nat i,j,y;
// first create a test array in reverse order
for(i=0..9) {
x[i] = 10—-1;

// now apply insertion sort
for(i=1..9) {
y = x[i]; // for element x[i], find its place in
j =1i-1; // already sorted list x[0..i-1]
while(j>0 & x[jl>y) {
x[j+1] = x[j1;
j=13-1;

// now j==0 or x[j]<=y
if(x[j1>y) {
// note that this implies j==
x[j+1] = x[j];
x[j] =y;
} else {
// here we have x[j]<=y, so that y must be —
placed at j+1
x[j+1] = vy;

}
}

Fig. 12: MiniC Program InsertionSort (Before Predication)

procedure Initialize ([]nat a,b,nat n) {

nat i;

for(i=0..n-1) {
ali]l = i+1;
b[i] = i+1;

}

return;

function InnerProduct([]nat a,b,nat n) : nat {
nat 1i,y;
for(i=0..n-1)
y =y + alil«b[i];

return Yy;
}
thread main {
[8]nat a,b;
nat y;
// first create some test matrices a and b
Initialize(a,b,8);
// now call one of the above procedures
y = InnerProduct(a,b,8);
}

Fig. 13: MiniC Program InnerProduct (Before Predication)

function sumUp(nat n) : nat {

nat 1i,sum;

i=1;

sum = 0;

while(i <= n) {
sum = sum + i;
i=1+1;

}

return sSum,

}

thread SumUp {
nat sum;
sum = sumUp(10);

Fig. 14: MiniC Program SumUp (Before Predication)

