
Sapna Bejai
Department of Computer Science

TU Kaiserslautern
Date: 02.04.2019

Evaluating the Effect of Predication on
Instruction Level Parallelism

• Granularity of Parallelism
• Instruction-Level Parallelism (ILP)
• Synchronous Control Asynchronous Dataflow (SCAD): Overview
• Predicated Execution: Overview
• Predication Algorithm
• Experiments and Results
• Conclusion and Future Work

Agenda

�2

Measure of the amount of computation done in parallel of an algorithm.

Granularity of Parallelism

�3

• ILP: parallel execution of sequence of instructions derived from a sequential program.

• Applied on multiple function units within a single microprocessor.

• Amount of ILP is application-specific.

• Compiler transformations (predication) can increase the amount of ILP.

• Overlap the execution of individual operations without explicit synchronization.

ILP: What and Why

�4

Approaches to exploiting ILP:

• hardware approach: dynamic parallelism.

• software approach: static parallelism at compile time.

Compilers use:

➢ global knowledge about the program not available to the hardware.

➢ description of the target machine architecture to guide machine-specific optimizations.

Continued...

�5

• code generation technique- breadth first traversal.

• operands are found in the correct order in the queue.

• no need for an additional memory.

• out-of-order execution leading to a good level of ILP.

• early availability of operands & independence of many instructions.

ILP techniques on SCAD

�6

• Basic block scheduling: may suffer from small size of basic blocks
• Extended basic block scheduling: groups of basic block scheduling

 Predicated Execution Loop Unrolling

Compilation Techniques for ILP

�7

• Predication (If-conversion) replaces a set of basic blocks of conditional controls with a
predicated single block of instructions.

• Control dependencies are this way transformed into data dependencies.

Advantage:
➢ Some instructions are scheduled which are never executed, but more instruction can be

scheduled in parallel to increase the amount of ILP.

➢ `then' and `else' parts are scheduled and executed simultaneously ; ignoring the instructions
that were not supposed to be run.

Predicated Execution

�8

  

Predication Example:MiniC Program Input 

�9

Predicated Output(without Loop Unrolling)

�10

Predicated Output  
(With Loop Unrolling)

�11

• Remove all acyclic control-flow statements by predication.
• Reiterate innermost loop bodies for a given number of times.

➢ Compute CFG of the original and the predicated program, using the
experimental MiniC compiler.

➢ Compute ILP= (Number of instructions) / (Length of the longest path of the
 data dependency graphs).
➢ Compare their respective ILPs.

Experiment

�12

MiniC Statements: Predicate Assignment Rule:
➢ Atomic data types : bool, nat, int
➢ Arrays : [n]α for arrays on type α

Predicate Algorithm Definition

�13

Procedure:
➢ Inline all function calls.
➢ Reiterate loops and follows the code transformation rule.
➢ Predicated assignment rule works only if the predicate condition is true .

Code Transformation Rule:

Continued...

�14

Compare block sizes (Bubble Sort - without unrolling)

�15

Result Comparison

�16

Limitation:
Single Static Assignment (SSA) can be exploited only when the program has various
variables.

Future Work: Investigate on
• Domination of Program execution by loop or non-loop branches.
• Feasibility of increased code size due to Loop Unrolling.
• Discardment of other BBs when loop unrolled larger times.
• Relation between False dependencies and Reverse If Block technique.

Conclusion & Future Work

�17

Any Questions ?

Thank You

�18

