™ -
B TECHNISCHE UNIVERSITAT
INFORMATIK I = KAISERSLAUTERN

Evaluating the Effect of Predication on
Instruction Level Parallelism

Sapna Bejai
Department of Computer Science

TU Kaiserslautern
Date: 02.04.2019

=
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Agenda

o Granularity of Parallelism

e Instruction-Level Parallelism (ILP)

« Synchronous Control Asynchronous Dataflow (SCAD): Overview
o Predicated Execution: Overview

« Predication Algorithm

o Experiments and Results

e Conclusion and Future Work

™ -
B TECHNISCHE UNIVERSITAT
INFORMATIK I = KAISERSLAUTERN

Granularity of Parallelism

Measure of the amount of computation done in parallel of an algorithm.

Granularity of Parallelized blocks Availability
Parallelism

Task level parallelism (coarse processes multiprocessors

grain)

Loop level parallelism loop iterations Multiprocessors through
(medium grain) program Transformations
Instruction level parallelism instructions Superscalars and VLIWs
(fine grain)

=
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

ILP: What and Why

o ILP: parallel execution of sequence of instructions derived from a sequential program.
o Applied on multiple function units within a single microprocessor.

 Amount of ILP is application-specific.

o Compiler transformations (predication) can increase the amount of ILP.

» Overlap the execution of individual operations without explicit synchronization.

= .
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Continued...

Approaches to exploiting ILP:
« hardware approach: dynamic parallelism.

« software approach: static parallelism at compile time.

Compilers use:
> global knowledge about the program not available to the hardware.

> description of the target machine architecture to guide machine-specific optimizations.

= :
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

ILP techniques on SCAD

« code generation technique- breadth first traversal. By pvet] g o)

« operands are found in the correct order in the queue.

AlAlAlA
L1
AlAlAlA
- -
= | o o |
LT 1]

« no need for an additional memory. ?~m~

Output 1

« out-of-order execution leading to a good level of ILP.

« early availability of operands & independence of many instructions.

™ -
B TECHNISCHE UNIVERSITAT
INFORMATIK = KAISERSLAUTERN

Compilation Techniques for ILP

« Basic block scheduling: may suffer from small size of basic blocks
« Extended basic block scheduling: groups of basic block scheduling

Predicated Execution Loop Unrolling
| =1, =1,

while (i< 100){ while (i<100){
H/\ afi] = b[i+1] + (i+1)/m = bi+1] + (i+1)/m

PAEAP1 _ Preciosts deing ibE]iﬁ[l A]-im bii] = afi-1] - im
P2 P2) a[i+1] = b[i+2] + (i+2)/m
f ‘ b[i+1] = a[l] - (i+1)/m

I=i+2
])

=
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Predicated Execution

« Predication (If-conversion) replaces a set of basic blocks of conditional controls with a
predicated single block of instructions.

» Control dependencies are this way transformed into data dependencies.
Advantage:
> Some instructions are scheduled which are never executed, but more instruction can be

scheduled in parallel to increase the amount of ILP.

> ‘then'and ‘else' parts are scheduled and executed simultaneously ; ignoring the instructions
that were not supposed to be run.

i =
B TECHNISCHE UNIVERSITAT
INFORMATIK I = KAISERSLAUTERN

Predication Example:MiniC Program Input

procedure BubbleSort([]nat X,nat xlen) {
nat 1i,y,swapped;
do {
swapped = 0;
for(i=1l..xlen—1)
// if pair x[i—1],x[1] is in the wrong order
if(x[1—1] > x[1i]) {
// then swap it and remember the change

y = x[i—-1];
x[1—-1] = x[i];
x[i] =vy;
swapped = 1;
}
} while(swapped==1)

return;

// create a test array in reverse order
procedure Initialize([]lnat Xx,nat xlen) {

nat 1i;
for(i=0..xlen—1)

x[1i] = xlen—1i;
return;

thread t {
[10]nat x;
Initialize(x,10);
BubbleSort(x,10);

™ -
B TECHNISCHE UNIVERSITAT
INFORMATIK [= KAISERSLAUTERN

Predicated Output(without Loop Unrolling)

thread t {

bool c0;

[10]nat x;

// 1nlined code of Initialize
nat 10;

for(10=0..9)

x[10] = 10—1i0;
// inlined code of BubbleSort
nat 11,yl,swapped;
do {
swapped = 0;
for(11=1..9) {
cO0 = x[11l] < x[1i1-1];
yl = (cO ? x[11-1] : y1);
x[11—-1] = (cO® ? x[11l] : x[11-1]);

x[11l] = (cO ? y1 : x[1il]);
swapped = (cO ? 1 : swapped);
}
} while(swapped)

}
10

INFORMATIK

Predicated Output
(With Loop Unrolling)

thread t{

bool c0,cl,c2,c3,c4,c5,c6,c7,c8;
[10]nat x;
// inlined code of Initialize
nat 1i;
i=20;
while(1<=9) {
x[i] = 10—1i;
i=1i+1;
cO = i<=9;
cl = !cO;
x[1i] = (cO® ? (10—-1i) : x[i]);
i=(cOo ? (i+l) : 1);

}
// inlined code of BubbleSort
nat yl,swapped;
do {
swapped = 0;
nat il;
il = 1;
while(1l<=9) ({
c2 = (x[il] < x[i1-1]);
c3 'c2;
yl (c2 ? x[11-1] : y1)

x[11] = (c2 ? y1 : x[il]);
swapped = (c2 ? 1 : swapped);

il = il1+1;

c4d = 11<=9;

c5 = Ic4;

c6 = (x[11] < x[1i1-1]);
c7 = c4 & c6;

c8 =c4 & 'cb;

yl = (c7 ? x[i1-1] : yl);

x[il] = (c7 ? y1 : x[il]);
swapped = (c7 ? 1 : swapped);
il = (c4 ? (il1+1) : il);

}
} while(swapped)

x[il=1] = (c2 ? x[il] : x[il—1]);

x[ii—l] = (c7 ? x[i1l] : x[i1-1]);

/

B TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

11

=
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Experiment

« Remove all acyclic control-flow statements by predication.
» Reiterate innermost loop bodies for a given number of times.

> Compute CFG of the original and the predicated program, using the
experimental MiniC compiler.
> Compute ILP=(Number of instructions) / (Length of the longest path of the
data dependency graphs).

> Compare their respective ILPs.

12

INFORMATIK

Predicate Algorithm Definition

MiniC Statements:
> Atomic data types : bool, nat, int
> Arrays : [n]a for arrays on type a

A =T,

/\1,/\2 =T,

S1 Sa

if(o) S

if(o) S, else S5
while(o) S

do S while(o)
for(z=m.n) S
return 7

sync

= "
I B TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Predicate Assignment Rule:

p = true
e Pred(p A=7):=AZ7
o Pred(pp, A1, A2 =7) := A1, A2 £
e Pred(p,S; S5) := Pred(p, S;) Pred(p, Ss)
e Pred(p,if(0) S) := Pred(¢ A 0,95)
e Pred(p,if(0) S| else S,)

:= Pred(¢o A 0,S5,) Pred(p A =0, S5)
Pred(¢,while(o) 5)

= if(yp) while(o) Pred(true,S5)
Pred(¢,do S while(o))

= if(p) do Pred(true,S) while(o)

13

= :
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Continued...

Procedure:

> Inline all function calls.

> Reiterate loops and follows the code transformation rule.

> Predicated assignment rule works only if the predicate condition is true .

Code Transformation Rule:

e while(o) S = while(o) {S; if(0) S}
e do S while(o) = do {S; if(0) S} while(o)
e for(i=m.n) S
={ nat i; i=m; while(i<=n)do S; i=i+1; }

14

P -
& TECHNISCHE UNIVERSITAT
INFORMATIK [& KAISERSLAUTERN

Compare block sizes (Bubble Sort - without unrolling)

Bubble sort Blocks
Block Number | Instruction count | Instruction count

Before Pred (10 After Pred (6
Blocks) blocks)

Block 1 00 to 04 00 to 04

Block 2 05 to 12 05 to 12

Block 3 13 13 to 18

~ Block4 14019 [EECECENN

Block 5 20 to 24 47 to 49

Block 6 25 to 32 50

Block 7 33 to 37

Block 8 38 to 40

Block 9 41

Block 10 42

15

Qi
Result Comparison

I \

“t

[0 @ Pre-Predicate [l 0 Post-Predicate
_L | _—
3 3
3
2.() ‘) 'r)
- 2.5
2 1.8 H
1.6
1.3 1.4
1 || |
0 T T T T
InsertionSort BubbleSort Test9 FirstOrderLinear

16

=
B TECHNISCHE UNIVERSITAT
INFORMATIK I: KAISERSLAUTERN

Conclusion & Future Work

Limitation:
Single Static Assignment (SSA) can be exploited only when the program has various
variables.

Future Work: Investigate on

o Domination of Program execution by loop or non-loop branches.

« Feasibility of increased code size due to Loop Unrolling.

« Discardment of other BBs when loop unrolled larger times.

« Relation between False dependencies and Reverse If Block technique.

17

™ =
B TECHNISCHE UNIVERSITAT
INFORMATIK / = KAISERSLAUTER

Thank You

Any Questions ?

18

