Improving Instruction Level Parallelism Using
Predication and Loop Optimization

— Student Project Report —

Sapna Bejai
Department of Computer Science
University of Kaiserslautern, Germany
http://es.cs.uni-kl.de

Abstract—Instruction level parallelism (ILP) means that
some instructions of a sequential program are carried out
in parallel on multiple function units within a single micro-
processor. It does not require any special consideration by the
programmer and is dealt with instead by the compiler and
the processor. Parallelization refers to issuing, scheduling and
executing multiple instructions in the same clock cycle to ex-
ploit ILP. To reach this goal, machines must be equipped with
parallel datapaths for concurrent execution of instructions,
alongside the compilers that very necessarily must expose
parallelism to such hardware. A major obstacle for using
ILP in the SCAD machine are control-flow dependencies of
instructions since the current SCAD machines do not make
use of branch prediction. Compiler transformations may
increase the amount of ILP of a program, and in particular,
predication (also called if-Conversion) is known for this effect.
With the advent of modern processor architectures, loops
are considered as good candidates for compiler optimization
to extract higher performance. Loop unrolling as the name
suggests, is a technique of duplicating iterations a specific
number of times to avoid branch and jump overhead; thus
resulting in higher ILP and better performance of programs
with the side effect of increasing the size of the basic blocks.
There has not been a satisfactory answer so far on how
often and when to unroll efficiently. Loop flattening is a
type of software pipelining which transforms any nested and
sequenced loops into a single loop. The report investigates
the increase of ILP of an algorithm that removes all acyclic
control-flow statements by predication and experiments on
loop optimization methods. Our motivation is the optimiza-
tion of program execution by data flow processors like SCAD.

[. INTRODUCTION

In a parallel computation, every used processor is as-
signed a specific task of a part of the parallel algorithm.
Depending on the parallel model of computation, each
processor may have its own individual task (task level
parallelism) or all processors may be given identical tasks
to be performed on their individual data (data level par-
allelism). Machine level parallelism and instruction level
parallelism (ILP) are relatively similar. The former refers
to the number of simultaneous datapaths the architecture
consists of whereas the latter refers to the amount of
parallelism the compiler exposes to the architecture by
means of various techniques [7].

From my earlier student project [2], I have already
learned that ILP is better handled by the compiler and the
processor with a detailed explanation of how an exposed
datapath architecture aims at high parallelism and low
communication between the parallel elements supported
by various dynamic and static scheduling techniques.
Among these techniques, predicated execution is one
outstanding technique which increases ILP by eliminating
control-flow so that basic blocks of the program are
merged and more independent instructions can be found
for scheduling in a parallel way. With this predicated ap-
proach, we clearly saw an increase in the ILP as compared
to the execution of actual MiniC benchmark programs.
In addition to this, we also proposed the technique for
unrolling the loop.

In this student research project report, my study con-
siders now loop unrolling, in particular, the impact of
the number of unrollings, called the unroll factor in the
following, on the amount of ILP of the program. We
implemented an approach to perform loop unrolling irre-
spective of the number of loop iterations in the program.
We would be performing new empirical experiments with
loop unrolling and also theoretically study about the
benefits of flattening sequences of nested loops along with
predication.

The remainder of this project report is organized as
follows: Section II is divided into 2 parts: The first part
highlights our earlier project with the implementation of
predication, and the second part gives a quick tour on
the literature introducing loop unrolling and loop flatten-
ing. Section III explains loop unrolling implemented as
an enhancement over the earlier predication algorithm
defined in my earlier student project [2]. Section IV
describes the experimental setup and the calculation of
ILP with quantitative results. Here, we evaluate the effect
of loop unrolling with various unroll factors, and we also
perform an empirical study on how the ILP varies for
different categories of loop combinations with different
unroll factors applied on the MiniC programs. Finally, we
summarize conclusions and future work in Section V, and

list the benchmark programs in Section A that are used
for our experiments.

II. BACKGROUND AND RELATED WORK
A. Predication algorithm

Each conditional branch contains a target instructions
to which control flows if the branch condition evaluates
to true or a false. In control-flow graphs (CFGs), this
leads to different basic blocks that are obstacles for ILP.
SCAD machines do not make use of branch prediction to
overcome control-flow dependencies of instructions. This
is typical for statically scheduled processors in contrast
to dynamically scheduled architectures that break the
control-flow barriers by branch prediction. To eliminate
control dependencies, we followed the approach of pred-
icated execution by merging many basic blocks into one
large hyperblock. Our algorithm first reads the MiniC
file and inlines all function calls. It then reiterates loops
according to the code transformations if the loop bodies
do not contain other loops. After predication, the only
basic blocks that remain are due to loops. Acyclic code
regions are predicated, i.e., all instructions are given a
predicate condition that must hold for the execution of the
instruction [2]. To this end, a single pass over the program
statement is made where a preliminary predicate condi-
tion is updated whenever an if-statement is traversed. If-
then-else parts are merged into a single basic block that
contains predicated assignments, thus transforming all
control dependencies into data dependencies [1]. This has
the advantage that the ‘then’ and ‘else’ parts are scheduled
and executed simultaneously by the processor ignoring
the instructions that were not supposed to be run [4].
The advantage is that even though some instructions are
scheduled that are not executed at all, more instructions
can be scheduled in parallel to increase the amount of
ILP.

B. Related Work

1) Loop unrolling: is expected to be a relatively in-
expensive compiler optimization technique. The number
of times by which the loop body will be duplicated
plays a major role in deciding the effectiveness of the
unrolling technique. It can lead to better performance by
creating many copies of the loop body, thus eliminating
the occurrence of loop indexing overhead and conditional
branching. As a consequence, the increase of the block
size results in a higher probability of parallel execution
of instructions. In contrast, if unrolled inappropriately, it
may contribute to drastic increase in code size sometimes
leading to bad ILP.

From the literature study [5], outer loop unrolling is
often questionable in that if often has no improvement.
All innermost loops are actual candidates for unrolling.
As we see from Figure 1 and Figure 2, an extra loop
body is added, either at the end (epilogue) or at the
beginning (prologue) of the unrolled body. The unroll

factor is related to the loop iteration count. If the loop is
unrolled n times, and the iteration count is not a multiple
of the loop unroll factor, then additionally to the unrolled
loop, a prologue or epilogue to the loop is added which
executes the first few or the last few iterations of the
original loop. For example, when the loop iteration count
is 10 and the unroll factor is 4, then two bodies of the
rolled loop are inserted as prologue or epilogue.

The disadvantage of this approach is the additional loop
overhead which is observed when:

« an additional conditional branch checks if the epi-
logue or the prologue code is executed,

« extra instructions to do the calculation based on the
iteration count (division in first figure and subtrac-
tion in second figure) of the unrolled loop.

A modulo or division operation is expensive which can
also be replaced by cheaper shift operations if the unroll
factor is a power of two, and the loop bounds are of
unsigned type. Subtraction is relatively a little inexpensive
operation, thus placing the extra code as epilogue is
better. However, in general, a division operation or a
subtraction is an extra calculation. If the unrolled loop
is either nested inside another loop or is inside a function
being called frequently, then there is lot of overhead.

2) Loop flattening methods:: Unlike other loop opti-
mization methods that just consider innermost loops, loop
flattening tends to effect the nested and sequenced loops
[6], [3]. It doesn’t duplicate any blocks; reduces the
initiation interval merging all the blocks of a nested loop
into a single loop body, thus regulating when various
blocks execute and how data/values flow between these
blocks [8]. From the table I, only perfect and semi-perfect
loops can be flattened. Loop flattening can benefit from if-
Conversion as it eliminates back-edges of flattened loops.

Perfect Loops Semi-perfect Other types

Loops

Only the inner
most loop has
body (contents)

same as perfect
loop

Should be con-
verted to perfect
or semi-perfect

loops

same as perfect
loop

There is no
logic specified
between the
loop statements

Outer most loop
bound can be
variable

Loop bounds
are constant

TABLE I: Loop Types

A very detailed view is observed in Figure 3 which
explains the significant benefits obtained from flattening
of the nested loops. The original code had nested loops,
resulting in a total of 36 loop calls. After the loop flatten-
ing transformation, the enhanced code has 28 loop calls.

for (i = m; i <

n; i+H){

Fig. 1: Loop Unrolling Example: ’for’ loop construct program snippet [4]

% unrollfactor + 1;
i++) {

rem = (n - m)

for (i =m; i <m + rem;
}

for (1 = m + rem; i < n;
i +=unrollfactor + 1) {

}

maxval n - unrollfactor;
for (i m; i < max val;
i +=unrollfactor + 1)({

]
for (§ = i; § < n; 3+H) |

)

Fig. 2: Leftover iterations inserted as prologue(fig 1) and epilogue(fig 2) [4]

x16

x4

36 transitions

(a) Before Loop Flattening

x4
28 transitions

(b) After Loop Flattening

void foo_top () { void foo_top (-) {

L1: for (i=3;i>=0;i--) {
[Loop body L1]

L1: for (i=3;i>=0;i--) {
[Loop body L1]
} }

L2: for (i=3;i>=0;i--) {
13: for (j=3;3>=0;3--) { L2: for (k=15,k>=0;k--) {
[Loop body L3] »
} [Loop body L3]

} }

L4: for (i=3;i>=0;i--) {
[Loop body L4]

L4z for (i=3;i>=0;i--) {
[Loop body L1]

(c) Loop flattening transformation

Fig. 3: Loop flattening example [8]

C. Algorithm Implemented

For our experiments, we use the experimental compiler
used for teaching purposes of the embedded systems
group of the computer science department of the uni-
versity of Kaiserslautern. Inputs are MiniC programs that
consist of the following statements where A, A;, and
Ao are left-hand side expressions, 7 is a right-hand side
expression:

[lf(O’) Sl else SQ
e while(o) S

e do S while(o)

o for(i=m.n) S

Loop_outer: for (i=3;i>=@;i--) {
Loop_inner: for (j=3;j>=0;j--) {
[Loop body]

(a) Perfect Loop

Loop_outer: for (i=3;i»>N;i--) {
Loop_inner: for (j=3;j>=0;j--) {
[Loop body]
}
}

(b) Semi perfect loop

Loop_outer: for (i=3;i>N;i--) {
[Loop body] &
Loop_inner: for (j=3;j3>=M;j--) {
[Loop body] [

(c) Other Loop
Fig. 4: Types of Loop for flattening [8]

e return

e Sync
Available data types are bool, nat, int as atomic data
types, and [n]« for arrays on type « and ax/3 as product,
i.e., pairs, of types o and 8. MiniC programs are further-
more structured into threads and functions, but we only
consider a single thread for our experiments.

Our algorithm first reads the MiniC file and inlines all
function calls. Acyclic code regions are predicated, i.e.,
all instructions are given a predicate condition that must
hold for the execution of the instruction. To this end, a
single pass over the program statements are made where
a preliminary predicate condition is updated whenever
an if-statement is traversed. The procedure is essentially
defined as follows using as initial predicate condition ¢ =
true:

o Pred(p, A=7):=AZ 7

o Pred(p, A1, 00 =17) := A1, Ay £r

e Pred(p,S1 S2) := Pred(p, S1) Pred(ip, Ss)

Pred(p,if(0) S) := Pred(p A0, S)
e Pred(p,if(0) S1 else S3)
:= Pred(¢ A 0,51) Pred(p A —0o,S3)
e Pred(p,while(o) S)
= if(y) while(o) Pred(true,5)
e Pred(p,do S while(o))
:= if(y) do Pred(true, S) while(o)
Statement A\ £ 7 denotes thereby a predicated assign-
ment, i.e., the assignment A\ = 7 is executed only if ¢
holds (and otherwise, nothing is executed).

In this project report, we are developing our loop
unrolling algorithm and determine empirically an optimal
loop unroll factor by to overcome the above observed
issues, as in Figure 2. Our main focus was observing
whether our algorithm gives a better ILP and if yes, how
does it vary with different loop combinations, summariz-
ing the results observed here as well as from the previous
project report.

III. ALGORITHM

After the application of the above mentioned ’if-
conversion transformation’, the structure of basic blocks
concerning loops is kept, but if-then-else parts are merged
into a single basic block that contains predicated assign-
ments. In particular, innermost loop bodies will now only
consist of a single basic block so that unrolling this basic
block before predication will generate also a single basic
block of twice the size where now two of the previous
loop bodies can be scheduled together. Hence, after pred-
ication, the only basic blocks that remain are due to loops.
The ‘loop transformation’ algorithm then reiterates loops
according to the following code transformations if the
loop bodies do not contain other loops:

o while(o) S = while(o) {S; if(0) S}

e do S while(s) = do {S; if(s) S} while(o)

o for(i=m..n) S

={ nat i; i=m; while(i<=n)do S; i=i+1; }
The above rules may be applied for a given number of
times ¢, thus creating ¢ + 1 copies of an innermost loop
body.

It is clearly observed that in our loop unrolling al-
gorithm, there is no explicit correlation between the
unrolling factor and loop iteration count. We make the
inline copies of loop body, where the number of copies
is defined by the ’unroll-factor’ given in command line
during the program execution. Neither for compile-time
nor for execution-time, the iteration count need not be
multiples of an unroll factor as mentioned in other re-
search papers. This avoids the overhead caused from the
left over iterations as seen in Figure 2.

For example, Figure 9 shows a simple algorithm for
iterating an array a of 10 natural numbers. We explicitly
pass the unroll factor during the execution. Figure 5
shows the code transformation when the loop is unrolled
twice. As can be seen, when unrolled, the ’for’ loop is

Etestsmme 3 | ! Bicsts_predmnc B

[chread 2pPa02Example { 1 thread ApPaOZExample{
= [10]nat a: 2 {
3 nat i; 3
for (i=0..9) 4
ali]l = i; 5 [l0]mat a;
{
nat i;
{
nat i;
i=o0;
while({i <= 8)) {

Fig. 5: Code transformation of a for’ loop program

replaced with 'while’ and the loop body;, i.e; when unrolled
twice, the loop body is duplicated 3 times. Inline function
expansion replaces frequently invoked function calls with
the function body itself. Function inlining increases the
code size minimally and providing the benefit of de-
creased number of function calls. According to [5], late
application of loop unrolling is good. Less predication
is required because loop unrolling cannot introduce new
common sub expressions. Loop body would be considered
as single block. After unrolling, the single earlier block is
now increased in size due to the unroll-factor times.

As already noted from Figure 5, loop unrolling results
in an increase of the code size. Our goal is to see if the
algorithm gives a better ILP, and how many times a loop
needs to be unrolled to get an efficient output. We now
define a hypothesis: The exact number of times a loop needs
to be unrolled for optimized ILP cannot be defined, but a
default value of °2’ gives better result with a decent increase
in code size due to expansion. We have to evaluate this
hypothesis by our empirical experiment.

IV. EXPERIMENTAL EVALUATION

To measure the effect on the available ILP by our loop
unrolling algorithm, we first obtain the control-flow graph
(CFG) from the MiniC compiler', and calculate the ILP for
the entire program. After this, we generate the predicated
MiniC program using our algorithm and calculate its ILP.
A reduced number of blocks and maximum ILP within a
block indicate that our algorithm has been successful at
improving the amount of ILP.

The benchmarks were chosen based on the combina-
tions of loop types as mentioned in Table III. To measure
the amount of ILP per basic block, we consider the data
dependency graphs of each basic block, and calculate
the length of the longest path as the number of cycles

1See https://es.informatik.uni-kl.de/tools/teaching/MiniC.html

bool _c 0,bool _c 1,bool _c 2,bool _c_3,bool _c_4;

Benchmark
Test9
Fibonacci

Description

Calculate vector length using the formula
Calculate 'n’ Fibonacci numbers

First Order Linear Find recurrence relation of the type First Order
Insertion Sort Sorting an array

Inner Product Dot product of 'n’ dimension vector space

Euclid Compute Greatest Common Divisor
Heron Integer Approximation of the sqrt of natural number
SumUp Summation of 'n’ consecutive numbers

O 0N O AWN

Test7

Test8

Insertion MaxSort
Test14

Daxpy

Liveness Analysis

—
(=}

for loop

jary
—

Another version of insertion sort

—
N

’for’ loop with independent loop body

=
w

Vector Processing

TABLE II: Description of Benchmarks used by Experi-
ments.

Loop Combination | Benchmark used

for | Test8, Daxpy
’for’+ independent loop body | Testl4
while | Test10, SumUp, Euclid
if + while | Fibonacci
do + while | Test7, Heron
for + while | InsertionSort
while + while | InsertionMaxSort

TABLE III: Various Loop Combinations and Benchmarks

required to execute the basic block. For each basic block
of the unpredicated and the predicated CFG, we use ASAP
schedules where instructions are scheduled to cycles, and
calculate for each basic block the number of instructions
divided by the number of cycles to execute them, i.e., the
average number of instructions executed per cycle of the
basic block. Hence, we define for each basic block

number of Instructions

ILPpiock =
block number of cycles

The arithmetic means of all the ILPs per block in the entire
program gives the ILP of the execution of the program (we
assume here that all blocks are executed equally often
which is however not realistic):

1 n
ILPpyog = Z ILP;,
=1

where n is the number of blocks of the program, and ILP;
is the ILP of basic block i. The standard used to measure
performance is Cycle Per Instructions (CPI).

The enhanced algorithm shows that loop unrolling
plays a major role in determining the ILP of the program,
due to the higher ILP obtained from the block containing
the loop. Unrolling increases the size of the basic block
containing the loop. This implies that the ILP of the entire

program can be defined by the ILP of the block whose size
is increased, since there is a cyclic entry to that block, as
seen from Figure 6. Here, benchmark Test8 is unrolled
twice and thrice, respectively. We observe that ILP and the
size of other basic blocks without loop construct remains
fixed even after unrolling as many times.

A. Comparison of Results

In this section, we present the results of our study across
different benchmarks as well as across 2 different opti-
mization algorithm approaches (If-Else, Loop unrolling).
The study was conducted in 2 sets: In the first set,
we performed the ILP calculations on programs catering
to various types of branching constructs (see Table II).
Figure IV presents the results in terms of percentage
increase in the ILP. These programs contained if-then-
else, function calls constructs, and loop statements. We
can summarize that there has been an increase in the
performance from the visualization obtained by listing the
results in Figure 7.

In the second part, we performed the experiment on
different benchmarks based on the combinations of loops
as specified in Table III. We measured the impact on ILP
due to loop unrolling passing different unroll factors like
2,3, and 4 during execution time from the command line.
Since the ILP of non-loop blocks remains fixed, we discard
the ILP of these basic blocks and consider only the ILP of
the loop-unrolling blocks which is a comparatively bigger
number. For the unroll factors 3 and 4, the change in
ILP is very minimal which shows that unrolling had very
limited effect. Figure V presents the results in terms of
variations in ILP with respect to the loop unrolling factor.
A significant improvement in ILP is observed graphically
from Figure 8 which boldly states that unrolling loops
heavily impacts ILP.

There has not been a significant increase in ILP when
loops are unrolled more than twice. Thus, we can state
that it is better to use default unroll factor as 2. Because
the larger the unroll number, the more aggressive the loop
unrolling, we get a very marginal improvement in ILP, but
at the cost of very huge dataflow graph and huge increase
in code size. It is noteworthy that code optimization
techniques whose purpose is to improve the performance
of a program, should not increase the executable code size
significantly. Specially in areas of embedded processors,
the increase in the size of the executable can offset
the gains provided by unrolling. After the investigation
and experimentation on loop unrolling, the result thus
supports the hypothesis of using the default unroll factor
as 2.

V. CONCLUSION AND FUTURE WORK

Based on the results obtained from the experiments, we
observe a significant improvement of the amount of ILP
by predicating and unrolling the loops in the programs.
If-conversion converts multiple basic blocks into a single

Fig. 6: CFG of Benchmark Test8 MiniC program, with loop unroll factor 2 and 3 in the first and second CFG respectively.

ILP Comparison on Predicated Execution(see Appendix for Benchmark Programs)

Benchmark Program

ILP Before Predication

ILP After Predication

% Increase in ILP

Insertion Sort 1.29 1.76 36.43
Bubble Sort 1.39 1.64 17.98
Inner Product 1.42 1.6 12.68
First Order Linear Rec-1 2.47 3.04 23.07
Sum Up 1.22 1.3 5.9
Fibonacci 1.68 1.81 7.74
Test 9 2.55 3 17.65

TABLE IV: Measuring the Increase of ILP of Various Benchmark Programs.

ILP measure on Loop Unrolling(see Appendix for Benchamrk programs)

Benchmark Program Factor = 2 Factor = 3 Factor=4
Euclid 2.44 2.58 2.66
Test 10 3.53 3.65 3.87
SumUp 1.75 2 1.95
Test 8 1.91 1.83 1.87
Daxpy 1.4 1.4 1.46
Fibonacci 2.7 3.45 3.77
Test 7 1.91 2.06 2.04
Test 14 2.73 2.8 2.93
Heron 1.31 1.34 1.36
Insertion Sort 2.54 2.55 2.55
Insertion MaxSort 2.36 2.55 2.36

TABLE V: Observation of ILP variation for different Unroll Factors.

5 | |
[0 pre-Predicate [0 Post-Predicate
4+ |
3
3 2
R 2.5
< aiind
2 1.8 1.68 1.81 i
1.3 199 1.3
1 L]
0 T T T T
InsertionSort Fibonacci SumUp FirstOrderLinear

Fig. 7: Relative Increase of ILP with Predication.

5 \ \ \
0 0 Pre-Unrolling [0 Post-Unrolling
4 |
3 N
2.7
2.54 — 2 4
S) 2.44
20 1.68 1.75 |
1.3 199 1.33 1.31
1 0.96
0 T T T T T
InsertionSort Fibonacci SumUp Euclid Heron

Fig. 8: Relative Increase of ILP with Loop Unrolling.

hyperblocks eliminating the conditional branches. Loop
unrolling further enlarges the size of the single basic
block by eliminating the conditional and branch jump
overheads of the unrolled loop body. The enhanced al-
gorithm shows that loop unrolling plays a major role in
determining the ILP of the program due to the larger ILP
obtained from the block containing the loop. Based on the
selection of efficient loop unroll factor, we can determine
that programs’ executions is dominated by loop branches.
Loop unrolling dynamically leads to increased code size
due to code expansion. But with the appropriate choice
of an unroll factor, we consider the ILP of the unrolled-
loop basic block alone, since it has high weight. If the
loop body is too thin, then no major improvement is
observed by unrolling the loop body. At the same time,
too fat loop bodies also lead to register spilling. Just like
loop unrolling, function calls also lead to better ILP but
increase the size of the block affecting the instruction
table. Since we envision to apply these optimization

algorithm on SCAD machines which has FIFO buffers and
no overhead of register limitation resulting in out of order
execution based on the availability of operands, we are
not interested in the code size increase.

Loop flattening may be used as an additional perfor-
mance booster by merging perfectly nested loops into sin-
gle loop with additional logic for data flow. In future, we
envision to implement all the ILP optimization techniques
discussed here in SCAD machines to observe the behavior,
as the registers are replaced by FIFO buffers. Execution
time of real-time applications is a very important factor in
determining the performance of the application. Our pro-
posal of combining loop unrolling followed by predication
applied on the SCAD architecture which totally supports
asynchronous data execution, is fully expected to give a
better execution time .

Some techniques like Single Static Assignment (SSA) or
Predicated SSA (PSSA) are only exploitable for programs
containing many variables involvements, and when pro-
cessor architectures consist of registers involving register
renaming. PSSA seeks to accomplish the same objectives
as SSA for a predicated hyperblock. As a limitation, we
can state that single static assignment depends on the
type of the program. Adjustment of hyperblocks during
scheduling ’partial reverse if-conversion’ as mentioned by
[1] is still questionable as it is explorable when aggressive
scheduling is performed. So, we can conclude that it
depends on the code-transformation logic implementation
of if-conversion.

REFERENCES

[1] D. August, W.-M. Hwu, and S. Mahlke. The partial reverse if-
conversion framework for balancing control flow and predication.
International Journal of Parallel Programming, 27(5):381-423, Oc-
tober 1999.

[2] S. Bejai. Evaluating the effect of predication on instruction level
parallelism. Master’s thesis, Department of Computer Science,
University of Kaiserslautern, Germany, April 2019. Project.

[3] A. Carminati, R. Starke, and R. de Oliveira. Combining loop
unrolling strategies and code predication to reduce the worst-
case execution time of real-time software. Applied Computing and
Informatics, 13(2):184-193, July 2017.

[4] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Path anal-
ysis and renaming for predicated instruction scheduling. Interna-
tional Journal of Parallel Programming, 28(6):563-588, December
2000.

[5] J. Davidson and S. Jinturkar. An aggressive approach to loop un-
rolling. Department of Computer Science, Thornton Hall University
of Virginia, 2001.

[6] S. Hauck. Enhanced loop flattening for software pipelining of
arbitrary loop nests. University of Washington, WA, USA, 2010.

[7]1 L. Pozzi. Compilation techniques for exploiting instruction level
parallelism, a survey. unpublished manuscript, 1999.

[8] Xilinx. All programmable, improving performance. Department of
Electrical and Computer Engineering, University of Texas,USA.

APPENDIX

thread ApPa02Example {

[10]nat a;

nat i;

for(i=0..9)
ali] = 1i;

Fig. 9: Simple ’for’ loop

thread ApPa02Example {
nat a,b,c,N;

a=0;

do {
b = a+1;
C = c+b;
a = bx2;

} while(a<N)

}

Fig. 10: Liveness analysis

thread daxpy {

[7Inat Xx,y;
nat i,a;
for(i=0..6)
y[i]l = a = x[i] + y[i];
}
Fig. 11: Vector processing
thread t {
[10]nat x,y,Zz;
nat i;
for(i=0..9) {
x[i] = i+1;
y[i] = i+1;
z[i] = x[i] + y[i];
}
}

Fig. 12: ’for’ loop with independent loop body

function heron(nat a) : nat {

nat Xxold,xnew;
xnew = a;
do {

xold = xnew;

xnew = (xold + a/xold)/2;
} while(xnew < xold)
return xold;

thread Heron {

nat z;

z = heron(121); // compute the square root of 121
}

Fig. 13: Find the integer approximation to the square root

of a natural number(Heron’s algorithm)

function euclid(nat a,b) : nat {
nat t;
while(b!=0) {
t = b;
b % b;
a

a
t;
}

return a;

}

thread Euclid {
nat X,Yy,Z;
147;
693;
euclid(x,y);

o

N < X
nun

Fig. 14: Find GCD using Euclid’s algorithm.

function fibonacci(nat n) : nat {
nat i,f1,f2,fn;

return fn;

}

thread Fibonacci {
nat n;
n = fibonacci(10);

Fig. 15: Find the n-th Fibonacci number in linear time.

thread test {

int x,u,y,x1,ul,yl,dx,a;

while(x<a) {
x1 X + dx;
ul (U — ((#3 * x) * (u %= dx))) — (+3 *x y * dx);
yl =y + u % dx;
X x1;
u ul;
y =vyl;

Fig. 16: Solve the differential equation: y” + 3xy’ + 3y
= 0 using forward Euler method

thread InsertionSort {
[10]nat Xx;
nat i,j,Y;
// first create a test array in reverse order
for(i=0..9) {
x[i] = 10—1i;

// now apply insertion sort

for(i=1..9) {
y = x[i]; // for element x[i], find its place in
j = i-1; // already sorted list x[0..i—1]

while(j>0 & x[§1>y) { function sumUp(nat n) : nat {

x[§+1] = x[31; i
j=i-1 sum = 0;

while(i <= n) {

}
// now j==0 or x[j]<=y SUm = sum + i:

if(x[j1>y) { ;v
// note that this implies j==0) ;
X[j+1] = x[31; return sum;
x[jl =vy; H

} else { ¥
// here we have'x[j]<=y, so that y must be —
X[.+]ﬁl?Feq at j+l thread SumUp {
} J =Y nat sum;
) sum = sumUp(10);
} }

Fig. 19: Summation of first 'n’ natural numbers using

Fig. 17: Insertion sort ‘
n*(n+1)/2

thread InsertionMaxSort {
[10]nat Xx;
nat y,n,1i,j,jmax;
// now start sorting
i=n-1;
while(l < i){
// compute maximum of x[0..N—1—1]
jmax = 0;
i=1
while(j <= 1) {
if(x[jmax] < x[j])
jmax = j;
jo= 3+

// now x[jmax] is the maximum of x[0..N—1—1i] and —
is swapped with x[1i]
if(jmax != 1) {
y = x[i];
x[i] = x[jmax];
x[jmax] = vy;
}
i

=1i-1;

Fig. 18: Another version of insertion sort

