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 block oriented
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 still use registers due to
 execution paradigm and/or code generator drawback
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Code Generation Idea: Expression DAG
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Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j
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SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient
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Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation: An Example

program constraints solution move program

x4 = x0 + x1
x5 = x2 ∗ x3
x6 = x4 / x5
x7 = x5 − x4
x8 = x6 + x7

(∧
xi∈V

∨2
k=0 αi ,k

)
∧(∧

xi∈V
∧2

k=0 αi ,k ⇒
∧2

j=0,j 6=k ¬αi ,j

)
βi ,j :⇔

∨2
k=0 αi ,k ∧ αj ,k∧

xi ,xj∈V βi ,j ⇒

 xi ≺ xj ⇒ ¬xj ≺d xi
∧

xj ≺ xi ⇒ ¬xi ≺d xj


∧

xi ,xj ,xk∈V xi ≺ xj ∧ xj ≺ xk ⇒ xi ≺ xk∧
xi∈V ¬xi ≺ xi

γi ,j ,k :⇔ βj ,k ∧ xj ≺ xk ⇒ xi ≺ xk

∧
xi ,xj∈V

∧
xk∈V βi ,j ⇒



 xi ≺ xj
∧

γL(i),L(j),k ∧ γR(i),R(j),k


∨ xj ≺ xi
∧

γL(j),L(i),k ∧ γR(j),R(i),k





0 1 2

x3 x5 x4
x2 x6 x8
x0 x7
x1

3 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
2 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
0 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
1 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
lsu@out → pu0@in1
lsu@out → pu0@in0
(*,2) → pu0@opc
pu0@out → pu0@in1
lsu@out → pu1@in0
lsu@out → pu1@in1
(+,2) → pu1@opc
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Proof of Concept: Minimal PUs

Z3 SAT solver

 up to 26 instr programs

 timeout of 60 seconds

direct instr communication

 overhead-free
 only up to 4 PUs

heuristic

 compile real benchmarks
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Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .
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commercial architectures

 register file bottleneck  restricted use of ILP

state-of-the-art exposed datapath architectures

 bypass registers by direct instruction communication

 still require registers to execute programs

SCAD architecture

 uses FIFO buffers  scalable

 register-less code generation

 optimal code by SAT solver
 heuristic for real benchmarks
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Thank You!



Superscalar design

Instruction Scheduler

Reservation Station

Reorder Buffer

C
om
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 T
ab

le

1 / 24



VLIW design

Register File

Instruction Register
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TTA design

Move Instruction Bus

Register File
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TRIPS design

R
e
g
is

te
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SCAD with mesh network
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SCAD with fat tree network

Move Instruction Bus

Split 2x2

Split 4x4

Split 2x2

Split 8x8

Split 4x4

Split 2x2 Split 2x2
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SCAD, SO-SCAD, DO-SCAD PUs

PU

from MIB

from/to DTN

l r

o

op cp

PU

from MIB

from/to DTN

opl r

o

cp

PU

from MIB

from/to DTN

(op,t)(l,t) (r,t)

(o,t)

(cp,t)
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Minimal PU: program size
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Minimal PU: program level
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Optimal code generation feasibility
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Control unit in SCAD

c then else

Program Memory
CU

from DTN

to MIB

then

Program Memory
CU

from DTN

to MIB

c else p

stall on branch predict branch
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Predicated execution in SCAD

ϕ

D

0 switch 1 1 switch 0

fg

merge

z

yxinp

xout

D

g f ϕ

0 select 1

xinp

y z

xout

sequential ite parallel ite

if ϕ(z) then {x = f (x , y); } else {x = g(x); }
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Balancing Copies

unbalanced program

x ←− . . .

x ←− . . . . . .←− x

. . .←− x

. . .←− x

max copies

x ←− . . .

dx ←− x

dx ←− x

dx ←− x

x ←− . . . . . .←− x

. . .←− x

. . .←− x

min copies

x ←− . . .

x ←− x

x ←− . . .

x ←− x

. . .←− x

. . .←− x

. . .←− x
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SSA

x ←− . . .

. . .←− x

x ←− . . .

. . .←− x

. . .←− x

x ←− . . .

. . .←− x

x1 ←− . . .

. . .←− x1

x2 ←− . . .

. . .←− x1

. . .←− x1

x3 ←− . . .

x4 ←− φ(x2, x3)

. . .←− x4

x1 ←− . . .

. . .←− x1

x2 ←− . . .

x4 ←− x2

. . .←− x1

. . .←− x1

x3 ←− . . .

x4 ←− x3

. . .←− x4

non-SSA SSA after elimination
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SSI

x ←− . . .

. . .←− x

x ←− . . .

. . .←− x

. . .←− x

x ←− . . .

. . .←− x

x1 ←− . . .

σ(x5, x6)←− x1

. . .←− x5

x2 ←− . . .

. . .←− x6

. . .←− x6

x3 ←− . . .

x4 ←− φ(x2, x3)

. . .←− x4

x1 ←− . . .

x5 ←− x1

. . .←− x5

x2 ←− . . .

x4 ←− x2

x6 ←− x1

. . .←− x6

. . .←− x6

x3 ←− . . .

x4 ←− x3

. . .←− x4

non-SSI SSI after elimination
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Benchmarks

Program Label Input

factorial fact {1, . . . , 12}
fibonacci fib {1, . . . , 20}
sumup sumup add numbers {1, . . . , 500} in a loop
euclid euclid compute gcd of pairs {101, 1001}, . . . , {150, 1050}
heron heron compute square root of first 20 perfect squares
daxpy daxpy vector length 100
eratosthenes sieve sieve determine prime numbers in {1, . . . , 100}
insertion sort insort reverse sorted array [15, . . . , 1]
bubble sort bbsort reverse sorted array [15, . . . , 1]
matrix multiply matmul 4× 6 and 6× 8 matrices
image convolution imgconv 6× 6 image and 3× 3 kernel
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Execution time using minimal buffer size
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Execution time using maximal buffer size
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Number of PU firings
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Resource usage
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Number of data transmissions
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Number of data transmissions by PUs
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1-level programs on 1 PU, 1 LSU SCAD
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Loop dataflow graph

f

D1

ϕ

0 switch 1

xinp

xout
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