Code Generation for Synchronous Control
Asynchronous Dataflow (SCAD) Architectures

Anoop Bhagyanath

Embedded Systems Group
Technische Universitat Kaiserslautern

31 January 2020

Outline

(@ Motivation
(@ SCAD Fundamentals
(3 Optimal Code Generation

@ Heuristic

&) Summary

(@ Motivation

N

SCAD Fundamentals

w

Optimal Code Generation

4) Heuristic

5) Summary

Processor Trend

frequency wall (2005 on) o : . .
i i Vel
~~ Increasing power 108 A‘.A‘m‘:
.. . . Alh“
dissipation 10° YL -

o i .
V-1
oL W éﬁ‘c?‘ﬂ“*““] _frequency (MHz)
(]
N .ﬂ.. ’
10° | o T AR TRF A LY power (W)
v A o8
& B WV v * 4
10' CIRE AR A :‘ .::‘ i
i
e : : v v vy R »g
10° X Boone o omum moonnon !
. .
1970 1980 1990 2000 2010 2020

1/17

Processor Trend

frequency wall (2005 on)

~ increasing power

dissipation

transistor density grows

~~ silicon technology

4 ltransistors

107 »
. “«.g (thousands)
108 F T - i
. A“AAQA :
10° | ‘AA A .0
A e o
o | LY]
v 3 [
ol . “.‘..G;.qua*lﬂ-ﬂ] _frequency(MHz)
°
a ‘..
02k A . ﬁu ;-'- . v"v’v"""“'} }V _|power (W)
1o “ - at v v:t 3‘ :': r:’:o'i
i
P B 2 R
10° —; PR (RS SRS g4 4
1 1
1970 1980 1990 2000 2010 2020

1/17

Processor Trend

frequency wall (2005 on)

! ! 4 Jtransistors

. . 107
~> Increasing power 2" |(thousands)
. . 10° RV i
dissipation L aaihti
10° | Laats .
AL o ot
10t s ‘z‘“ﬂ-’"»w‘ §
. . v 3 n
transistor density grows | . ‘":'Gzﬁ’lﬁ.'“" fo [frequency (MHz)
. L4, et o w
~~ silicon technology 102 | “ e g". " ATV s ¥ {power (W)
1 h - L vy v:z 3' v r::o'i
10 a n v * : .
10° -i R S 4 ‘:o - or—-———_ s
transistors to performance . .
1970 1980 1990 2000 2010 2020

1/17

Parallel Computing

thread-level parallelism

H s ! T < Jtransistors
AN 7
programming difficulty 1o .4 ithousands
- . -oct 6 4, i
~~ timing analysis difficulty 1 o
A A A
. 105 4 aats
in embedded systems AAAA'.’}ﬁq....-
i .
AA 4 4
ol " “A}Qﬁ"““, H _frequency (MHz)
a] 3
10° | At ;’: v A TR LY [power (W)
K L e BER A] ot
10! - vw Y ¥ e »:‘n
, ’ . : : ’: v vv' . s core count
10 ‘ i 1 1
1970 1980 1990 2000 2010 2020

2/17

Parallel Computing

thread-level parallelism

H H o T T + Jtransistors
~~ programming difficulty 1 K
o . o . ‘A:Amg (thousands)
~= timing analysis difficulty 10" L i
. 5 ‘s ands
in embedded systems 10 i caso®
y . P T Lo
10t | ug;’. o
ol i ﬁfﬂiﬂ"*“’ H _frequency (MHz)
instr-level parallelism (ILP) 5 NN 1 LLi vo oy W |power (W)
o°r fhe Lo EA AV
. . N ATy A * 4
~+ various techniques such CRLARACA 2 AR T2
] 2 A - : . vv' s core count
as 00O execution, loop ‘3 Toe b boand
unrolling etc 1970 1980 1990 2000 2010 2020

2/17

Parallel Computing

thread-level parallelism

~ programming difficulty

! ! 4 |transistors

107 .
~> timing analysis difficulty o st |(thousands)
: I Al Tsinate-
in embedded systems . o 22 single-thread
10° | ﬂ}“ 4, s e Performance .
Y] % (SPECint x 10)
104 N N A* J" |
. . A gl i" ||*l.l14 *s |frequency (MHz)
instr-level parallelism (ILP) 1°f As “‘-‘Gi‘;‘, . Tl
; : 102 - s "’:'. ,v;.v‘vv'v,%‘% 3% |power (w)
~~ various techniques such h EI R RN AGMAL IO RY
X 10! = " V.v! ¥ M IR
as OO0 execution, loop N - ol core count
. 10° | . : el ‘:o RGRRAIING ¢ dutad 4
unrolling etc L) . .
1970 1980 1990 2000 2010 2020

~~ still limited utilization

2/17

memory wall

~~» memory hierarchy ~~ registers closest to processor

~~ register-register architectures

3/17

Commercial Architectures

memory wall
~~» memory hierarchy ~~ registers closest to processor

~~ register-register architectures

ILP bottleneck ~~ irrespective of number of processing units (PU)

3/17

Commercial Architectures

memory wall
~+ memory hierarchy ~> registers closest to processor

~= register-register architectures

ILP bottleneck ~~ irrespective of number of processing units (PU)

register file
~~ limited registers ~ scale with O(n?)
~~ limited register file ports

area and power scale with k3, access time scale with k3/2

3/17

expression tree

3 steps

4/17

expression tree 2W port reg file

x1 x2

@ ® & » U

3 steps 4 steps

4/17

Limited ILP Utilization: An Example

expression tree 2W port reg file 2 regs
O,
x1 x2
° x3 x4
() () -/ ()
@ @ @ © - @ @ &

3 steps 4 steps 5 steps

4/17

communicate values directly from producer PU to consumer PU

~ direct instruction communication

5/17

State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures

~~ compiler move values directly between PUs

5/17

State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures
~~ compiler move values directly between PUs
TTA ~ registers at PU output and inputs

~ still require central register file

5/17

State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures
~~ compiler move values directly between PUs
TTA ~ registers at PU output and inputs
~ still require central register file
TRIPS ~~ instruction buffers at PU inputs
~+ block oriented

~~ register file for communicating across blocks

5/17

State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures
~~ compiler move values directly between PUs
TTA ~ registers at PU output and inputs
~ still require central register file
TRIPS ~~ instruction buffers at PU inputs
~+ block oriented

~~ register file for communicating across blocks
RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

5/17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic
ooooe 00000 0000 oo

State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures
~~ compiler move values directly between PUs
TTA ~ registers at PU output and inputs
~ still require central register file
TRIPS ~~ instruction buffers at PU inputs
~+ block oriented
~ register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc
~> still use registers due to

~+ execution paradigm and/or code generator drawback

Summary

oo

5/17

1) Motivation
(@ SCAD Fundamentals

3) Optimal Code Generation
4) Heuristic

5) Summary

SCAD Architecture

FIFO buffers P—

Memory

~ scale with O(n) COntml Unlt

Move Instruction Bus

LR

Data
flemor Data Transport Network

6/17

SCAD Architecture

FIFO buffers Program
. Memory

~~ scale with O(n) Commlu -
N

move Instructions Move Instruction Bus

~ out buf — inp buf
~~ direct instr communication

Data
flemor Data Transport Network

6/17

SCAD Architecture

FIFO buffers —
. Memory
~ scale with O(n) Comml Unlt

move Instructions Move Instruction Bus

~~» out buf — inp buf
~~ direct instr communication
buffers connected to control unit

~~ move instruction bus

Data
flemor Data Transport Network

6/17

SCAD Architecture

FIFO buffers —
. Memory
~ scale with O(n) Comml Umt

move Instructions | Move Instruction Bus

~ out buf — inp buf
~~ direct instr communication
buffers connected to control unit

~~ move instruction bus

outputs connected to inputs
Data

lemor Data Transport Network

~~ data transport network

6/17

SCAD Architecture

FIFO buffers Program
. Memory
~ scale with O(n) -
Control Unit
. . 9 9
move Instructions | Move Instruction Bus
~~» out buf — inp buf T = T T T T
~~ direct instr communication
buffers connected to control unit
~~ move instruction bus § 3 i i J
outputs connected to inputs Data
lemor Data Transport Network

~~ data transport network

application-specific PUs

~~ embedded systems

6/17

\V
v
B o

v

2

O.

\/

V LR

~ yl =x1 — x2
y2 = x3 — x4

program

et
-H g -
et

7/17

N\ N\

v v v
program <3
o o o1 !%oz !gos
y2 = x3 — x4
v

move program E .é

v

FH

v

7/17

program

~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 = 11

7/17

Execution in SCAD

v v
program =<3
1z[<1 ©? =3 92 xa ©3

~ yl =x1 — x2

y2 = x3 — x4 ! ! !
move program ' L| L| 12
~ 01 — 11 ed | led |

02 = 12 v

7/17

B
Execution in SCAD

v v
program =3
o1 oz o3
~ yl =x1 — x2 Elvx EZVXZ EVX
y2 = x3 — x4
move b v
program T . 1 -
~ 01 — 11 ©e1 | ed |

02— I2
01 = I1

7/17

B
Execution in SCAD

v v
program <3 o2 on o
~ oyl =x1 — x2 EJVX Ezvxz va
y2 = x3 — x4
move v Y
program 2 = _| _| i
~ 01 — 11 ©e1 | ed |
02 — I2 . .
01 — 11
03 = I2 v

7/17

B
Execution in SCAD

¥ v
pigrj/T: x1 — x2 Eff ! Ex2 . EX <7
y2 = x3 — x4 ! ' !
move program . B L| L| 12
~ 01 — 11 ©e1 | ed |
02 = I2 . .
01 — 11 v
03 = I2 :

Sync (sequential) Control

7/17

B
Execution in SCAD

¥ v
pigrj/T: x1 — x2 E:E) ! Ex2 . EX <7
y2 = x3 — x4 ! ' !
move program . B L| L| 12
~ 01 — 11 ©e1 | ed |
02 = I2 . .
01 — 11 v
03 = I2 :

Sync (sequential) Control

7/17

Execution in SCAD

program
~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 — 11
02— I2

01 - 11

03 — I2

Y N\ A\

113 o1

O1,x1

Sync (sequential) Control

Exz

v

o2

12 |x< o3

v

2

7/17

B
Execution in SCAD

¥ v
pigrj/T: x1 — x2 EXB ! Ex2 . EX <7
y2 = x3 — x4 ! ' !
move program . B L| L| 12
~ 01 = 11V e1a g |
02 = I2 . .
01 — 11 v
03 = I2 :

Sync (sequential) Control

7/17

B
Execution in SCAD

¥ v
pigrj/T: x1 — x2 EXB ! Ex2 . EX <7
y2 = x3 — x4 ! ' !
move program . B L| L| 12
~ 01 = 11V e1a g |
02 = I2 . .
01 — 11 v
03 = I2 :

Sync (sequential) Control

7/17

Execution in SCAD

T B o Eﬂ o2 3 o3

y2 = x3 — x4 ! O3,x4 V}
move program L| —

s 01 5 11 v " l6aa b3 2
02 = I2 - .
01 — 11 v
03 — 12 :

Sync (sequential) Control

7/17

Execution in SCAD

v
program
Exa o1 Exz oz Ea o3

~ yl =x1 — x2

y2 = x3 — x4 ! ' !
move program ., B L| €7X—4| i
~ 01 =11V ©e1x1 Jo

02— I2
01 - 11 v
03 =12V

K -

Sync (sequential) Control

7/17

Execution in SCAD

v
program
E’G o1 Exz oz Ea o3

~ yl =x1 — x2

y2 = x3 — x4 ! ' !
move program . B L| i(_41| i
~ 01 =11V ©e1x1 Jo

02— I2
01 - 11 v
03 =12V

K -

Sync (sequential) Control

7/17

L
vvv

Execution in SCAD

program
~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 - 11V
02— I2
01 - 11
03 =12V

Sync (sequential) Control

><3

o1

302

o2,x2

E|os

v

7/17

L
N\ A\

Execution in SCAD

program

~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 - 11V
02— 12v

01 - 11
03 =12V

v

11|x 3

v

Sync (sequential) Control

o1

v

0 -

v

X 4

x2)|

==

v

2

7/17

Execution in SCAD

program P Eé os

~ yl =x1 — x2

y2 = x3 — x4 ! ' !
move program ' L| |—J7—| 1>
~ 01 = 11V o1 | o3x

02 =12V

01 — 11

03 =12 v v
HA

Sync (sequential) Control

7/17

Execution in SCAD

program P Eé os

~ yl =x1 — x2

y2 = x3 — x4 ! ' !
move program ' L| |—J7—| 1>
~ 01 = 11V o1 | o3x

02 =12V

01 — 11

03 =12 v v
HA

Sync (sequential) Control

7/17

L
Y N\ A\

Execution in SCAD

program
~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 - 11V
02— 12v

01 - 11
03 =12V

301

Sync (sequential) Control

E| oz 303

7/17

Execution in SCAD

51 B3 B3~

~ yl =x1 — x2

y2 = x3 — x4 ! ' !
move program ' L| |—J7—| 1>
~ 01 =11V SEEE Q=T

02 =12V

01 - 11 v

03 = 12 v v
=

Sync (sequential) Control

7/17

Execution in SCAD

51 B3 B3~

~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 = 11 v |

02 =12V

01 - 11 v

03 = 12 v v
=3

Sync (sequential) Control
7/17

Execution in SCAD

B B~ -

~ yl =x1 — x2
y2 = x3 — x4

move program
~ 01 =11V |

o2 —=12v
O1=11v
v
03— 12v
=4

Sync (sequential) Control Async (parallel) Dataflow
7/17

Execution in SCAD

program

v v v

~ yl =x1 — x2
y2 = x3 — x4

v v

11 E‘ _l 2
move program ? By |
Vv Vv
v

Sync (sequential) Control Async (parallel) Dataflow

7/17

Execution in SCAD

program Y
~ oyl =x1 — x2 X3 o1 EI oz EEI o3

y2 = x3 — x4 4 Y v

move program ? y o
11 E‘ _l 2
[IEET |

compilation for SCAD Y Y
~ (1) variable ordering W
~+ (2) PU assignment 7

Sync (sequential) Control Async (parallel) Dataflow

7/17

Code Generation Idea: Expression Tree

breadth-first ordering

program e
yl =x1 — x2 e @

y2 = x3 — x4

z1 =yl +y2 @ @ @ @

executed x1,x2,x3,x4

=4

8/17

Code Generation Idea: Expression Tree

breadth-first ordering ‘gﬁ
()

() () :

) @ © ® <

x3

executed y1

8/17

Code Generation Idea: Expression Tree

breadth-first ordering

2 Vv
o Y

@ @ @ ® 72

vyl

__ J

executed y2

8/17

Code Generation Idea: Expression Tree
breadth-first ordering
. Y/
o ()
ORNONNONNO

executed z1

8/17

Code Generation Idea: Expression DAG

program
yl =x1/ x2
y2 =x2 — x1
z1 =yl +y2

executed x1,x2

X X[x| X%
mm«@

9/17

Code Generation Idea: Expression DAG

£
o S

reordering overhead

9/17

Code Generation Idea: Expression DAG

£
7O g

executed D; duplicate

9/17

Code Generation Idea: Expression DAG

£
o S

executed S swap

9/17

Code Generation Idea: Expression DAG

executed D, duplicate

9/17

Code Generation Idea: Expression DAG

executed y1,y2

9/17

Code Generation Idea: Expression DAG

Y

executed z1

z1l

9/17

Code Generation Idea: Expression DAG

%y

overhead Dy, S, D, ~~ performance loss

z1l

. J

9/17

Overhead in Multiple PU SCAD

()
@ @ Jz\/éz 47\/47
oo o =

executed x1,x2

10/17

Overhead in Multiple PU SCAD

executed x1,x2

less access restrictions ~ less overhead !

10/17

1) Motivation

2) SCAD Fundamentals
(3 Optimal Code Generation
4) Heuristic

5) Summary

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

11/17

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

~+ NP-hard < reduction from graph coloring

mapping to SAT

11/17

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

~+ NP-hard < reduction from graph coloring

mapping to SAT

o relations

11/17

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

~~» NP-hard < reduction from graph coloring

mapping to SAT
o relations
~~ variable ordering xi < xj

xi must be consumed before xj

11/17

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

~~» NP-hard < reduction from graph coloring

mapping to SAT
o relations
~~ variable ordering xi < xj
xi must be consumed before xj
~> PU assignment «; ;

xi is assigned to PU j

11/17

unique PU assignment constraint

12/17

unique PU assignment constraint

data dependency constraint

12/17

unique PU assignment constraint

data dependency constraint

buffer constraint
~~ avoid cycles in consumption order

x1
Py

x2

12/17

unique PU assignment constraint

data dependency constraint

buffer constraint

~~ avoid cycles in consumption order

Xemed

x3

~
[
]
[

[

]

x4

12/17

SAT Constraints - ldea

unique PU assignment constraint
data dependency constraint

buffer constraint
~~ avoid cycles in consumption order

x1

Ve

x1 x3 x1 x3

PN ~ ~ ~ ~
x2 x2 x4 x2 x4

12/17

SAT Constraints - ldea

unique PU assignment constraint
data dependency constraint

buffer constraint
~~ avoid cycles in consumption order

x1

Ve

x1 x3 x1 x3

PN ~ ~ ~ ~
x2 x2 x4 x2 x4

SAT mapping is complete

~~ necessary and sufficient

12/17

program

x4 = x0 + x1
x5 =x2 x x3
x6 = x4 / x5
X7 = x5 — x4
x8 = x6 + x7

13/17

Optimal Code Generation: An Example

program constraints

2
Asev Vio ai,k) A
2 2
Nsev Nimo @ik = Njo 2k ﬁaiu‘)
]
Bij 4 Viemo @ik N ik
Xi = Xj = 2Xj <d Xi)

Neev Bij = A
Xj = Xi = X <d Xj

x4 = x0 + x1

x5 = x2 % X3 Nsiogieev Xi =< X N Xj =< Xie = Xi < X
x6 = x4 / x5 /\x;ev X =X

X7 = x5 — x4

x8 = x6 + x7 Vigk 4 Bk NXj < X = X < Xk

Xi =< X;
A
L()LG) K A TRG),RG)
\

/\x;,)gev /\xkev ﬂix/ =
Xj =< X
A
ML)k N TRG)R() b

13/17

Optimal Code Generation: An Example

program constraints solution

2
Nsev Vio Déi,k) A
2 2
Nsev Nimo @ik = Njo 2k ﬁaiu‘)
Bij 19 Vo ik A
Xi = Xj = 7Xj <d Xi
Neev Bij = A
Xj = Xi = X <d Xj

4 = x0 1 0o 1 2
e a | Dmme S T
X6 = x4 | x5 /\x,'EV X =X x2 x6 x8
x7 = x5 — x4 x0 x7
X8 = x6 + x7 'y,-,,-,k:(:»,(i’j,k/\>g<xk=>x;<xk X1

Xi =< X;
A
L()LG) K A TRG),RG)
\

/\x;,)gev /\xkev Bij =
Xj =< X
A
ML)k N TRG)R() b

13/17

Optimal Code Generation: An Example

program constraints solution move program
A VZ ‘) A 3 — Isu@in0
XV V k=0 Yik 0 — Isu@inl
Asoev Nomo @ik = Nomg j ﬁaia‘) (Id,1) = lsu@opc
Big & Vico @ik Aajx 3 - :Sugn?
Xi = X = % =<d Xi — Isu@in
- A (Id,1) — Isu@opc
Neev Bi = 0+ lsu@ind
4= x0 +x1 G 2N = X 2a 01 2 0 - lsu@inl
x4 = Xl X — Isu@in
=X AX < Xk = xi < —_—
X5 =x2 % X3 xx”xﬁx:iij_ %A =X 3 x5 x& | (1d1) - lsu@opc
x6 = x4 / x5 €V T x2 x6 x8 1 — Isu@in0
X7 = x5 — x4 x0 x7 0 — Isu@inl
x8 = x6 + x7 Vigoh 1 Bk A X =< X = X < X x1 (Id,1) — Isu@opc

Xi < X
A
YL().LG).k N TR(I).RG) b
Neiev Naev Bij = v

Xj < X;
A
MLG)LG)k AN TRG)R() K

)
)

Isu@out — pu0@inl
Isu@out — pu0@in0
(*,2) — pu0@opc

pu0@out — pu0@inl
Isu@out — pul@in0
Isu@out — pul@inl
(+,2) — pul@opc

13/17

Proof of Concept: Minimal PUs

o] Z3 SAT solver

® average

* worst ~ up to 26 instr programs
~~ timeout of 60 seconds

direct instr communication
~~ overhead-free
W.t"“” ~ only up to 4 PUs

number ot PUs
3
L

program size

14 /17

Proof of Concept: Minimal PUs

number ot PUs

Z3 SAT solver

~ up to 26 instr programs
~~ timeout of 60 seconds

direct instr communication
~~ overhead-free
~~ only up to 4 PUs

heuristic

~» compile real benchmarks

14 /17

(D Motivation

(@ SCAD Fundamentals

(3) Optimal Code Generation
@ Heuristic

(&) Summary

variable ordering

~~ fixed to program order

X — ...
y ...

Z<4— ...

L4 X
L/ X

Lz

15/17

variable ordering

~~ fixed to program order

PU assignment

X — ...
y— ...

zZ<— ...

L X
L X

Ly

L Z

Ly

— X X < < N<——

15/17

variable ordering

~~ fixed to program order

PU assignment

X — ...
y— ...

zZ<— ...

L X
L X

Ly

L Z

Ly

— < < N

15/17

variable ordering

~~ fixed to program order

PU assignment

X — ...
y— ...

zZ<— ...

L X

S x J

Ly

L Z

— <

Ly

15/17

variable ordering

~~ fixed to program order

PU assignment

X — ...
y— ...

zZ<— ...

11

— <

15/17

X ...

variable ordering

~~ fixed to program order Y&

Z<4— ...

PU assignment e L.
L X

Lz

15/17

X ...

variable ordering

~~ fixed to program order Y&

Z<4— ...

PU assignment e "

¢ X
~~ buffer interference graph AR u @
ey

L Z

Ay

15/17

variable ordering

~~ fixed to program order

PU assignment
~= buffer interference graph

~~ graph coloring heuristic

X ...

y ...

Z<4— ...

L X
L X

Ly

L Z

Ay

15/17

variable ordering

~~ fixed to program order

PU assignment
~= buffer interference graph

~~ graph coloring heuristic
~~ data flow analysis
cover control flow

X4 ...

y ...

Z<4— ...

L X
L X

oy

L Z

Ay

15/17

Motivation SCAD Fundamentals Optimal Code Generation
00000 00000 0000

Experiments: Performance

Heuristic Summary
oce o]

m DIRECT

40 60 80

cycles / 1000

20

16/17

Experiments: Performance

®m DIRECT

8 7 m REG MAX

8_

g

i III I

o) e HW IIII IIIII IIII IIIII IIIII IIII
5 £ & & @ ¥ & 3 §
LA R Y A A

16 /17

Experiments: Performance

m DIRECT

8 7 m REG MAX
W REG MIN
8 -
i I I I II| I| I|
o) mmm lll III II lll II III II

é-‘
$ g ¢ §,§

cycles / 1000

16 /17

1) Motivation

N

SCAD Fundamentals

w

Optimal Code Generation

4) Heuristic

& Summary

commercial architectures

~~ register file bottleneck ~~ restricted use of ILP

17/17

Summary

commercial architectures

~~ register file bottleneck ~~ restricted use of ILP

state-of-the-art exposed datapath architectures
~~ bypass registers by direct instruction communication

~~ still require registers to execute programs

17/17

Summary

commercial architectures

~~ register file bottleneck ~~ restricted use of ILP

state-of-the-art exposed datapath architectures
~ bypass registers by direct instruction communication

~ still require registers to execute programs

SCAD architecture

~> uses FIFO buffers ~~ scalable

17/17

Summary

commercial architectures

~~ register file bottleneck ~~ restricted use of ILP

state-of-the-art exposed datapath architectures
~ bypass registers by direct instruction communication

~ still require registers to execute programs

SCAD architecture
~> uses FIFO buffers ~~ scalable

~~ register-less code generation

~> optimal code by SAT solver
~~ heuristic for real benchmarks

17/17

Thank You!

Forward Reference Table

l

il

Reservation Stati

)

ion

££L£££|

=

VVVVVVVY
Reorder Buffe |

<;_| corder Buffer
ttttttttrttttittt

2/24

VVVVVVYY

SCAD with mesh network

?‘

.
I

.

1}

LALA

.

A

A

@
L

O
]

[CR

17

17

[OF8
]

RAL

RALY

.

N

5/24

SCAD with fat tree network

| Move Instruction Bus
Split 2x2 : Split 2x2 Split 2x2 Split 2x2
i i I i i i i i
’ Split 4x4 ‘ ’ Split 4x4 ‘
b b I b b b ! b
’ Split 8x8 ‘

6/24

7/24

number of PUs

10

° SCAD
A SO-SCADI
v SO-SCADp

N

AAAA

o

-0-0
X .5-0000
-0-0-007°

N Aoﬁﬁﬁﬂ'o'o
0-00

T T T T T

5 10 15 20 25

program size
average

number of PUs

10

e SCAD

< | & SO-SCADI

v SO-SCADp

0-0-0-0-0°0-0

“0°0°0°0°0°0-0-0-0-0-0-0

T
15

program size

worst

20 25

8/24

number of PUs

10

o, 0-0-0

.
' g -0
B o.pvo-o-o-o"’

£:8:8:8:0%8

8

T T
10 15

program level

9/24

Optimal code generation feasibility

compile time (in seconds)
0
|

o 4

el
o
h /0/’
o0
007
0-970"°
/-0
aﬂﬁﬁ»
0:0-0:0-0-0-0:0°078
T T T T T
5 10 15 20 25

program size

program size

compile time (in seconds)

T T T
5 10 15 20 25

program level

program level

10/24

. to MIB

stall on branch predict branch

11/24

Predicated execution in SCAD

Xout
merge

(o switch 1 J¢-~ =L switch 0)

o + + Y

sequential ite

Xout

0 select 1 J¢-=--=--------. .
\
]

parallel ite

if (z) then {x=f(x,y);} else {x = g(x); }

12/24

unbalanced program

X4 ...

N

X4 ... L X

L X

~N 7

L X

max copies
X4 ...
N
_dx +— x
_dx +— x
_dx +— x
X4 ... L X
Lo X
\\\\, «////
L X

min copies

X4 ...

N

X< X X< X
X4— ... L X

L X

~N 7

Lo X

13/24

X4 ...
L X L X
X4 ... L X

X4 ...

~N 7

L X

non-SSA

XL — ...

N

Lo X1 L X1

Xp &— ... L X

X3 4— ...

~ 7

x4 +— P(x2,x3)

e

SSA

Xp — ...

N

L X1 Lo X1

X2 & ... X
X3 4— ...

X4 <— X2

~N

X4 < X3

after elimination

14 /24

X4 ...
L X L X
X4 ... L X

X4 ...

B

non-SSI

XL — ...

o(xs5,x6) <— x1

N

L X5 L Xp
X — ... L Xp
X3 4 ...

~

xq < B(x2,%3)

SSl

X1 — ...
X5 <— X1 Xo < X1
L. X L. Xp
Xp — ... L Xe
X3 ...
X4 <— X2 X4 < X3

after elimination

15 /24

Benchmarks
Program Label Input
factorial fact {1,...,12}
fibonacci fib {1,...,20}
sumup sumup add numbers {1,...,500} in a loop
euclid euclid compute ged of pairs {101,1001},...,{150,1050}
heron heron compute square root of first 20 perfect squares
daxpy daxpy vector length 100
eratosthenes sieve sieve determine prime numbers in {1,...,100}
insertion sort insort reverse sorted array [15,...,1]
bubble sort bbsort reverse sorted array [15,...,1]
matrix multiply matmul 4 X 6 and 6 x 8 matrices
image convolution imgconv 6 x 6 image and 3 x 3 kernel

16 /24

Execution time using minimal buffer size

B NORMAL

g - W ss|

B REGMIN

O REG MAX
8 .
g N
i ‘I I I “
o) =mE III lII lll II lI II

* §§ ;b & -s‘a‘o ‘gg

4 s & &

cycles / 1000

17/24

Execution time using maximal buffer size

B NORMAL

g m ssl
B REGMIN
O REG MAX
8 -
g 4
o oawdilannl

S Re o K
P A N A

cycles / 1000

18 /24

Number of PU firings

PU firings / 1000

B NORMAL

@ ssl
O REG

o
T,

n_
‘o, [
oo, [

o, [

G%%
gy

19/24

Resource usage

buf NORMAL

buf SSI |‘
reg
PU
ol
o
o
& > & o 5 & 3 §
Y A §

& ® £

OpEm

number of resources
6
|

£
@ éy

£

20/24

Number of data transmissions

12

B NORMAL

B SSI
o | O REG
g
o ©
.E‘D,
g
_oul
. s @ & e 5 0§ & &
¢ e &7 & F 5 P8 F ¢

-8

21/24

Number of data transmissions by PUs

PU data transmissions / 1000

12

10

B NORMAL

@ ssl

- O REG

22/24

23/24

Xout

24 /24

	Motivation
	SCAD Fundamentals
	Optimal Code Generation
	Heuristic
	Summary
	Appendix

