
Code Generation for Synchronous Control
Asynchronous Dataflow (SCAD) Architectures

Anoop Bhagyanath

Embedded Systems Group
Technische Universität Kaiserslautern

31 January 2020

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Processor Trend

frequency wall (2005 on)

 increasing power

dissipation

transistor density grows

 silicon technology

transistors to performance

frequency (MHz)

power (W)

1 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Processor Trend

frequency wall (2005 on)

 increasing power

dissipation

transistor density grows

 silicon technology

transistors to performance

frequency (MHz)

power (W)

transistors
(thousands)

1 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Processor Trend

frequency wall (2005 on)

 increasing power

dissipation

transistor density grows

 silicon technology

transistors to performance

frequency (MHz)

power (W)

transistors
(thousands)

1 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Parallel Computing

thread-level parallelism

 programming difficulty

 timing analysis difficulty

in embedded systems

instr-level parallelism (ILP)

 various techniques such

as OOO execution, loop

unrolling etc

 still limited utilization

frequency (MHz)

power (W)

core count

transistors
(thousands)

2 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Parallel Computing

thread-level parallelism

 programming difficulty

 timing analysis difficulty

in embedded systems

instr-level parallelism (ILP)

 various techniques such

as OOO execution, loop

unrolling etc

 still limited utilization

frequency (MHz)

power (W)

core count

transistors
(thousands)

2 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Parallel Computing

thread-level parallelism

 programming difficulty

 timing analysis difficulty

in embedded systems

instr-level parallelism (ILP)

 various techniques such

as OOO execution, loop

unrolling etc

 still limited utilization

frequency (MHz)

power (W)

core count

single-thread
performance
(SPECint x 10)

3

transistors
(thousands)

2 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Commercial Architectures

memory wall

 memory hierarchy registers closest to processor

 register-register architectures

ILP bottleneck irrespective of number of processing units (PU)

register file

 limited registers scale with O(n2)

 limited register file ports

area and power scale with k3, access time scale with k3/2

3 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Commercial Architectures

memory wall

 memory hierarchy registers closest to processor

 register-register architectures

ILP bottleneck irrespective of number of processing units (PU)

register file

 limited registers scale with O(n2)

 limited register file ports

area and power scale with k3, access time scale with k3/2

3 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Commercial Architectures

memory wall

 memory hierarchy registers closest to processor

 register-register architectures

ILP bottleneck irrespective of number of processing units (PU)

register file

 limited registers scale with O(n2)

 limited register file ports

area and power scale with k3, access time scale with k3/2

3 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Limited ILP Utilization: An Example

expression tree 2W port reg file 2 regs

x1 x2 x3 x4

− /

×

x1 x2

x3 x4

− /

×
x1 x2 x3 x4

− /

st

ld

×

3 steps 4 steps 5 steps

4 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Limited ILP Utilization: An Example

expression tree 2W port reg file 2 regs

x1 x2 x3 x4

− /

×

x1 x2

x3 x4

− /

×
x1 x2 x3 x4

− /

st

ld

×

3 steps 4 steps 5 steps

4 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Limited ILP Utilization: An Example

expression tree 2W port reg file 2 regs

x1 x2 x3 x4

− /

×

x1 x2

x3 x4

− /

×
x1 x2 x3 x4

− /

st

ld

×

3 steps 4 steps 5 steps

4 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

State of the Art

communicate values directly from producer PU to consumer PU

 direct instruction communication

exposed datapath architectures

 compiler move values directly between PUs

TTA registers at PU output and inputs

 still require central register file

TRIPS instruction buffers at PU inputs

 block oriented

 register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc

 still use registers due to
 execution paradigm and/or code generator drawback

5 / 17

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SCAD Architecture

FIFO buffers

 scale with O(n)

move instructions

 out buf → inp buf

 direct instr communication

buffers connected to control unit

 move instruction bus

outputs connected to inputs

 data transport network

application-specific PUs

 embedded systems

Move Instruction Bus

Data Transport Network

Control Unit

Program
Memory

Data
Memory

6 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SCAD Architecture

FIFO buffers

 scale with O(n)

move instructions

 out buf → inp buf

 direct instr communication

buffers connected to control unit

 move instruction bus

outputs connected to inputs

 data transport network

application-specific PUs

 embedded systems

Move Instruction Bus

Data Transport Network

Control Unit

Program
Memory

Data
Memory

6 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SCAD Architecture

FIFO buffers

 scale with O(n)

move instructions

 out buf → inp buf

 direct instr communication

buffers connected to control unit

 move instruction bus

outputs connected to inputs

 data transport network

application-specific PUs

 embedded systems

Move Instruction Bus

Data Transport Network

Control Unit

Program
Memory

Data
Memory

6 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SCAD Architecture

FIFO buffers

 scale with O(n)

move instructions

 out buf → inp buf

 direct instr communication

buffers connected to control unit

 move instruction bus

outputs connected to inputs

 data transport network

application-specific PUs

 embedded systems

Move Instruction Bus

Data Transport Network

Control Unit

Program
Memory

Data
Memory

6 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SCAD Architecture

FIFO buffers

 scale with O(n)

move instructions

 out buf → inp buf

 direct instr communication

buffers connected to control unit

 move instruction bus

outputs connected to inputs

 data transport network

application-specific PUs

 embedded systems

Move Instruction Bus

Data Transport Network

Control Unit

Program
Memory

Data
Memory

6 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1
x3

x2 x4O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1
x3

x2 x4O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1

I1

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1

I1

O3

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1

I1

O3

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x1

x3
x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1

I1

O3

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1

O2 → I2

O1 → I1

O3 → I2

x3 x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

I2

O1,x1

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2

x3

x1

x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2

x3

x1

x2 x4O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2

x3

x1

x2
O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

O3,x4

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2 X

x3

x1
x4

x2
O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2 X

x3

x1
x4

x2
O1 O2 O3

I1 I2

I1

O1 O2

I2

O1 O3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2

O1 → I1

O3 → I2 X

x3

x1
x4

O1 O2 O3

I1 I2

I1

O1 O2

O1 O3

O2,x2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1

O3 → I2 X

x3

x1
x4

x2

O1 O2 O3

I1 I2

I1

O1 O2

O1 O3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1

O3 → I2 X

x3

x4

y1

O1 O2 O3

I1 I2

I1

O1 O3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1

O3 → I2 X

x3

x4

y1

O1 O2 O3

I1 I2

I1

O1 O3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1

O3 → I2 X

x4

y1

O1 O2 O3

I1 I2
O1 O3

O1,x3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1 X

O3 → I2 X

x4

y1

O1 O2 O3

I1 I2
O1 O3x3

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1 X

O3 → I2 X y2

y1

O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program

 O1 → I1 X

O2 → I2 X

O1 → I1 X

O3 → I2 X y2

y1

O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program ?

x3
x1

x1

x3

O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Execution in SCAD

program

 y1 = x1 − x2
y2 = x3 − x4

move program ?

compilation for SCAD

 (1) variable ordering

 (2) PU assignment

x3
x1

x1

x3

O1 O2 O3

I1 I2

-

Sync (sequential) Control Async (parallel) Dataflow

7 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression Tree

program

y1 = x1 − x2

y2 = x3 − x4

z1 = y1 + y2

breadth-first ordering

x1 x2 x3 x4

y1 y2

z1

executed x1,x2,x3,x4

x1
x2
x3

x4

8 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression Tree

breadth-first ordering

x1 x2 x3 x4

y1 y2

z1

executed y1

x3
x4
y1

8 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression Tree

breadth-first ordering

x1 x2 x3 x4

y1 y2

z1

executed y2

y1
y2

8 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression Tree

breadth-first ordering

x1 x2 x3 x4

y1 y2

z1

executed z1

z1

8 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

program

y1 = x1 / x2

y2 = x2 − x1

z1 = y1 + y2 x1 x2

y1 y2

z1

executed x1,x2

x1
x1
x2

x2

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

reordering overhead !

x1
x1
x2

x2

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

executed D1 duplicate

x1
x2
x2

x1

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

executed S swap

x2
x1
x2

x1

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

executed D2 duplicate

x1
x2
x1

x2

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

executed y1,y2

y1
y2

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

executed z1

z1

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Code Generation Idea: Expression DAG

x1 x2

y1 y2

z1

D1 S D2

overhead D1,S ,D2 performance loss

z1

9 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Overhead in Multiple PU SCAD

x1 x2

y1 y2

z1

executed x1,x2

x1

x1

x2

x2

less access restrictions less overhead !

10 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Overhead in Multiple PU SCAD

x1 x2

y1 y2

z1

executed x1,x2

x1

x1

x2

x2

less access restrictions less overhead !

10 / 17

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j

11 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j

11 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j

11 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j

11 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation

determine if a given program can be executed on a given SCAD machine

with p PUs, without any overhead

 NP-hard ⇐ reduction from graph coloring

mapping to SAT

relations

 variable ordering xi ≺ xj

xi must be consumed before xj

 PU assignment αi,j

xi is assigned to PU j

11 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

SAT Constraints - Idea

unique PU assignment constraint

data dependency constraint

buffer constraint

 avoid cycles in consumption order

x2

x1

x2

x1

x4

x3

. . .

x2

x1

x4

x3

xn

SAT mapping is complete

 necessary and sufficient

12 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation: An Example

program constraints solution move program

x4 = x0 + x1
x5 = x2 ∗ x3
x6 = x4 / x5
x7 = x5 − x4
x8 = x6 + x7

(∧
xi∈V

∨2
k=0 αi ,k

)
∧(∧

xi∈V
∧2

k=0 αi ,k ⇒
∧2

j=0,j 6=k ¬αi ,j

)
βi ,j :⇔

∨2
k=0 αi ,k ∧ αj ,k∧

xi ,xj∈V βi ,j ⇒

 xi ≺ xj ⇒ ¬xj ≺d xi
∧

xj ≺ xi ⇒ ¬xi ≺d xj


∧

xi ,xj ,xk∈V xi ≺ xj ∧ xj ≺ xk ⇒ xi ≺ xk∧
xi∈V ¬xi ≺ xi

γi ,j ,k :⇔ βj ,k ∧ xj ≺ xk ⇒ xi ≺ xk

∧
xi ,xj∈V

∧
xk∈V βi ,j ⇒



 xi ≺ xj
∧

γL(i),L(j),k ∧ γR(i),R(j),k


∨ xj ≺ xi
∧

γL(j),L(i),k ∧ γR(j),R(i),k





0 1 2

x3 x5 x4
x2 x6 x8
x0 x7
x1

3 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
2 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
0 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
1 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
lsu@out → pu0@in1
lsu@out → pu0@in0
(*,2) → pu0@opc
pu0@out → pu0@in1
lsu@out → pu1@in0
lsu@out → pu1@in1
(+,2) → pu1@opc

13 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation: An Example

program constraints solution move program

x4 = x0 + x1
x5 = x2 ∗ x3
x6 = x4 / x5
x7 = x5 − x4
x8 = x6 + x7

(∧
xi∈V

∨2
k=0 αi ,k

)
∧(∧

xi∈V
∧2

k=0 αi ,k ⇒
∧2

j=0,j 6=k ¬αi ,j

)
βi ,j :⇔

∨2
k=0 αi ,k ∧ αj ,k∧

xi ,xj∈V βi ,j ⇒

 xi ≺ xj ⇒ ¬xj ≺d xi
∧

xj ≺ xi ⇒ ¬xi ≺d xj


∧

xi ,xj ,xk∈V xi ≺ xj ∧ xj ≺ xk ⇒ xi ≺ xk∧
xi∈V ¬xi ≺ xi

γi ,j ,k :⇔ βj ,k ∧ xj ≺ xk ⇒ xi ≺ xk

∧
xi ,xj∈V

∧
xk∈V βi ,j ⇒



 xi ≺ xj
∧

γL(i),L(j),k ∧ γR(i),R(j),k


∨ xj ≺ xi
∧

γL(j),L(i),k ∧ γR(j),R(i),k





0 1 2

x3 x5 x4
x2 x6 x8
x0 x7
x1

3 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
2 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
0 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
1 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
lsu@out → pu0@in1
lsu@out → pu0@in0
(*,2) → pu0@opc
pu0@out → pu0@in1
lsu@out → pu1@in0
lsu@out → pu1@in1
(+,2) → pu1@opc

13 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation: An Example

program constraints solution move program

x4 = x0 + x1
x5 = x2 ∗ x3
x6 = x4 / x5
x7 = x5 − x4
x8 = x6 + x7

(∧
xi∈V

∨2
k=0 αi ,k

)
∧(∧

xi∈V
∧2

k=0 αi ,k ⇒
∧2

j=0,j 6=k ¬αi ,j

)
βi ,j :⇔

∨2
k=0 αi ,k ∧ αj ,k∧

xi ,xj∈V βi ,j ⇒

 xi ≺ xj ⇒ ¬xj ≺d xi
∧

xj ≺ xi ⇒ ¬xi ≺d xj


∧

xi ,xj ,xk∈V xi ≺ xj ∧ xj ≺ xk ⇒ xi ≺ xk∧
xi∈V ¬xi ≺ xi

γi ,j ,k :⇔ βj ,k ∧ xj ≺ xk ⇒ xi ≺ xk

∧
xi ,xj∈V

∧
xk∈V βi ,j ⇒



 xi ≺ xj
∧

γL(i),L(j),k ∧ γR(i),R(j),k


∨ xj ≺ xi
∧

γL(j),L(i),k ∧ γR(j),R(i),k





0 1 2

x3 x5 x4
x2 x6 x8
x0 x7
x1

3 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
2 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
0 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
1 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
lsu@out → pu0@in1
lsu@out → pu0@in0
(*,2) → pu0@opc
pu0@out → pu0@in1
lsu@out → pu1@in0
lsu@out → pu1@in1
(+,2) → pu1@opc

13 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Optimal Code Generation: An Example

program constraints solution move program

x4 = x0 + x1
x5 = x2 ∗ x3
x6 = x4 / x5
x7 = x5 − x4
x8 = x6 + x7

(∧
xi∈V

∨2
k=0 αi ,k

)
∧(∧

xi∈V
∧2

k=0 αi ,k ⇒
∧2

j=0,j 6=k ¬αi ,j

)
βi ,j :⇔

∨2
k=0 αi ,k ∧ αj ,k∧

xi ,xj∈V βi ,j ⇒

 xi ≺ xj ⇒ ¬xj ≺d xi
∧

xj ≺ xi ⇒ ¬xi ≺d xj


∧

xi ,xj ,xk∈V xi ≺ xj ∧ xj ≺ xk ⇒ xi ≺ xk∧
xi∈V ¬xi ≺ xi

γi ,j ,k :⇔ βj ,k ∧ xj ≺ xk ⇒ xi ≺ xk

∧
xi ,xj∈V

∧
xk∈V βi ,j ⇒



 xi ≺ xj
∧

γL(i),L(j),k ∧ γR(i),R(j),k


∨ xj ≺ xi
∧

γL(j),L(i),k ∧ γR(j),R(i),k





0 1 2

x3 x5 x4
x2 x6 x8
x0 x7
x1

3 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
2 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
0 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
1 → lsu@in0
0 → lsu@in1
(ld,1) → lsu@opc
lsu@out → pu0@in1
lsu@out → pu0@in0
(*,2) → pu0@opc
pu0@out → pu0@in1
lsu@out → pu1@in0
lsu@out → pu1@in1
(+,2) → pu1@opc

13 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Proof of Concept: Minimal PUs

Z3 SAT solver

 up to 26 instr programs

 timeout of 60 seconds

direct instr communication

 overhead-free
 only up to 4 PUs

heuristic

 compile real benchmarks

14 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Proof of Concept: Minimal PUs

Z3 SAT solver

 up to 26 instr programs

 timeout of 60 seconds

direct instr communication

 overhead-free
 only up to 4 PUs

heuristic

 compile real benchmarks

14 / 17

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

x
x
y
y
z

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

y
y
z

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

y
z

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

y
z

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

x

y
z

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

x

y
z

y

z

x

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

x

y
z

y

z

x

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Heuristic

variable ordering

 fixed to program order

PU assignment

 buffer interference graph

 graph coloring heuristic

 data flow analysis

cover control flow
. . .←− y

. . .←− z

...

. . .←− y

. . .←− x

. . .←− x

...

z ←− . . .

y ←− . . .

x ←− . . .

x

y
z

y

z

x

15 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Experiments: Performance

16 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Experiments: Performance

16 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Experiments: Performance

16 / 17

Outline

1 Motivation

2 SCAD Fundamentals

3 Optimal Code Generation

4 Heuristic

5 Summary

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Summary

commercial architectures

 register file bottleneck restricted use of ILP

state-of-the-art exposed datapath architectures

 bypass registers by direct instruction communication

 still require registers to execute programs

SCAD architecture

 uses FIFO buffers scalable

 register-less code generation

 optimal code by SAT solver
 heuristic for real benchmarks

17 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Summary

commercial architectures

 register file bottleneck restricted use of ILP

state-of-the-art exposed datapath architectures

 bypass registers by direct instruction communication

 still require registers to execute programs

SCAD architecture

 uses FIFO buffers scalable

 register-less code generation

 optimal code by SAT solver
 heuristic for real benchmarks

17 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Summary

commercial architectures

 register file bottleneck restricted use of ILP

state-of-the-art exposed datapath architectures

 bypass registers by direct instruction communication

 still require registers to execute programs

SCAD architecture

 uses FIFO buffers scalable

 register-less code generation

 optimal code by SAT solver
 heuristic for real benchmarks

17 / 17

Motivation SCAD Fundamentals Optimal Code Generation Heuristic Summary

Summary

commercial architectures

 register file bottleneck restricted use of ILP

state-of-the-art exposed datapath architectures

 bypass registers by direct instruction communication

 still require registers to execute programs

SCAD architecture

 uses FIFO buffers scalable

 register-less code generation

 optimal code by SAT solver
 heuristic for real benchmarks

17 / 17

Thank You!

Superscalar design

Instruction Scheduler

Reservation Station

Reorder Buffer

C
om

m
on D

ata B
usR

eg
is

te
r

F
ile

F
or

w
a

rd
 R

ef
er

en
ce

 T
ab

le

1 / 24

VLIW design

Register File

Instruction Register

2 / 24

TTA design

Move Instruction Bus

Register File

3 / 24

TRIPS design

R
e
g
is

te
r

H
y
p
e
rb

lo
ck

 I
n
st

ru
ct

io
n
s

G
lo

b
a
l

C
o
n
tr

o
l

RF RF RF RF

4 / 24

SCAD with mesh network

5 / 24

SCAD with fat tree network

Move Instruction Bus

Split 2x2

Split 4x4

Split 2x2

Split 8x8

Split 4x4

Split 2x2 Split 2x2

6 / 24

SCAD, SO-SCAD, DO-SCAD PUs

PU

from MIB

from/to DTN

l r

o

op cp

PU

from MIB

from/to DTN

opl r

o

cp

PU

from MIB

from/to DTN

(op,t)(l,t) (r,t)

(o,t)

(cp,t)

7 / 24

Minimal PU: program size

● ●

5 10 15 20 25

2
4

6
8

10

program size

nu
m

be
r

of
 P

U
s

● SCAD
SO−SCADi
SO−SCADp

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

5 10 15 20 25

2
4

6
8

10

program size
nu

m
be

r
of

 P
U

s

● SCAD
SO−SCADi
SO−SCADp

average worst

8 / 24

Minimal PU: program level

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20 25

2
4

6
8

10

program level

nu
m

be
r

of
 P

U
s

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

avg
max

9 / 24

Optimal code generation feasibility

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●
●

●
●

●

●

5 10 15 20 25

0
10

20
30

40
50

60

program size

co
m

pi
le

 ti
m

e
(in

 s
ec

on
ds

)

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●
●

●

●

●

●
avg
max

●

●

●
●

●

● ●
●

●
● ●

●
● ●

● ● ●
● ●

●
● ●

●
●

5 10 15 20 25

0
10

20
30

40
50

60

program level
co

m
pi

le
 ti

m
e

(in
 s

ec
on

ds
)

●

● ●

●

●

●

●
●

● ● ●
●

● ●
● ●

●
●

●
● ● ●

● ●avg
max

program size program level

10 / 24

Control unit in SCAD

c then else

Program Memory
CU

from DTN

to MIB

then

Program Memory
CU

from DTN

to MIB

c else p

stall on branch predict branch

11 / 24

Predicated execution in SCAD

ϕ

D

0 switch 1 1 switch 0

fg

merge

z

yxinp

xout

D

g f ϕ

0 select 1

xinp

y z

xout

sequential ite parallel ite

if ϕ(z) then {x = f (x , y); } else {x = g(x); }

12 / 24

Balancing Copies

unbalanced program

x ←− . . .

x ←−←− x

. . .←− x

. . .←− x

max copies

x ←− . . .

dx ←− x

dx ←− x

dx ←− x

x ←−←− x

. . .←− x

. . .←− x

min copies

x ←− . . .

x ←− x

x ←− . . .

x ←− x

. . .←− x

. . .←− x

. . .←− x

13 / 24

SSA

x ←− . . .

. . .←− x

x ←− . . .

. . .←− x

. . .←− x

x ←− . . .

. . .←− x

x1 ←− . . .

. . .←− x1

x2 ←− . . .

. . .←− x1

. . .←− x1

x3 ←− . . .

x4 ←− φ(x2, x3)

. . .←− x4

x1 ←− . . .

. . .←− x1

x2 ←− . . .

x4 ←− x2

. . .←− x1

. . .←− x1

x3 ←− . . .

x4 ←− x3

. . .←− x4

non-SSA SSA after elimination

14 / 24

SSI

x ←− . . .

. . .←− x

x ←− . . .

. . .←− x

. . .←− x

x ←− . . .

. . .←− x

x1 ←− . . .

σ(x5, x6)←− x1

. . .←− x5

x2 ←− . . .

. . .←− x6

. . .←− x6

x3 ←− . . .

x4 ←− φ(x2, x3)

. . .←− x4

x1 ←− . . .

x5 ←− x1

. . .←− x5

x2 ←− . . .

x4 ←− x2

x6 ←− x1

. . .←− x6

. . .←− x6

x3 ←− . . .

x4 ←− x3

. . .←− x4

non-SSI SSI after elimination

15 / 24

Benchmarks

Program Label Input

factorial fact {1, . . . , 12}
fibonacci fib {1, . . . , 20}
sumup sumup add numbers {1, . . . , 500} in a loop
euclid euclid compute gcd of pairs {101, 1001}, . . . , {150, 1050}
heron heron compute square root of first 20 perfect squares
daxpy daxpy vector length 100
eratosthenes sieve sieve determine prime numbers in {1, . . . , 100}
insertion sort insort reverse sorted array [15, . . . , 1]
bubble sort bbsort reverse sorted array [15, . . . , 1]
matrix multiply matmul 4× 6 and 6× 8 matrices
image convolution imgconv 6× 6 image and 3× 3 kernel

16 / 24

Execution time using minimal buffer size

17 / 24

Execution time using maximal buffer size

18 / 24

Number of PU firings

19 / 24

Resource usage

20 / 24

Number of data transmissions

21 / 24

Number of data transmissions by PUs

22 / 24

1-level programs on 1 PU, 1 LSU SCAD

23 / 24

Loop dataflow graph

f

D1

ϕ

0 switch 1

xinp

xout

24 / 24

	Motivation
	SCAD Fundamentals
	Optimal Code Generation
	Heuristic
	Summary
	Appendix

