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Commercial Architectures

memory wall
~+ memory hierarchy ~> registers closest to processor

~= register-register architectures

ILP bottleneck ~~ irrespective of number of processing units (PU)

register file
~~ limited registers ~ scale with O(n?)
~~ limited register file ports

area and power scale with k3, access time scale with k3/2
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Limited ILP Utilization: An Example
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State of the Art

communicate values directly from producer PU to consumer PU

~ direct instruction communication

exposed datapath architectures
~~ compiler move values directly between PUs
TTA  ~ registers at PU output and inputs
~ still require central register file
TRIPS ~~ instruction buffers at PU inputs
~+ block oriented
~ register file for communicating across blocks

RAW, STA, MOVE-PRO, FlexCore, DySER, Tartan etc
~> still use registers due to

~+ execution paradigm and/or code generator drawback
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SCAD Architecture

FIFO buffers Program
. Memory
~ scale with O(n) -
Control Unit
. . 9 9
move Instructions | Move Instruction Bus
~~» out buf — inp buf T = T T T T
~~ direct instr communication
buffers connected to control unit
~~ move instruction bus § 3 i i J
outputs connected to inputs Data
lemor Data Transport Network

~~ data transport network

application-specific PUs

~~ embedded systems
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Overhead in Multiple PU SCAD

executed x1,x2

less access restrictions ~ less overhead !
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Optimal Code Generation

determine if a given program can be executed on a given SCAD machine
with p PUs, without any overhead

~~» NP-hard < reduction from graph coloring

mapping to SAT
o relations
~~ variable ordering xi < xj
xi must be consumed before xj
~> PU assignment «; ;

xi is assigned to PU j

11/17
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SAT Constraints - ldea

unique PU assignment constraint
data dependency constraint

buffer constraint
~~ avoid cycles in consumption order

x1

Ve

x1 x3 x1 x3

PN ~ ~ ~ ~
x2 x2 x4 x2 x4

SAT mapping is complete

~~ necessary and sufficient
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Optimal Code Generation: An Example
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heuristic

~» compile real benchmarks
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variable ordering

~~ fixed to program order

PU assignment
~= buffer interference graph

~~ graph coloring heuristic
~~ data flow analysis
cover control flow
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commercial architectures

~~ register file bottleneck ~~ restricted use of ILP

state-of-the-art exposed datapath architectures
~ bypass registers by direct instruction communication

~ still require registers to execute programs

SCAD architecture
~> uses FIFO buffers ~~ scalable

~~ register-less code generation

~> optimal code by SAT solver
~~ heuristic for real benchmarks
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SCAD with mesh network
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SCAD with fat tree network

| Move Instruction Bus
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number of PUs
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number of PUs
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Optimal code generation feasibility

compile time (in seconds)
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. to MIB

stall on branch predict branch
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Predicated execution in SCAD

Xout
merge

(o switch 1 J¢-~ =L switch 0)

o + + Y

sequential ite

Xout

0 select 1 J¢-=--=--------. .
\
]

parallel ite

if (z) then {x=f(x,y);} else {x = g(x); }

12/24



unbalanced program

X4 ...

N

X4 ... L X

L X

~N 7

L X

max copies
X4 ...
N
_dx +— x
_dx +— x
_dx +— x
X4 ... L X
Lo X
\\\\, «////
L X

min copies

X4 ...

N

X< X X< X
X4— ... L X

L X

~N 7

Lo X
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X4 ...
L X L X
X4 ... L X

X4 ...

~N 7

L X

non-SSA

XL — ...

N

Lo X1 L X1

Xp &— ... L X

X3 4— ...

~ 7

x4 +— P(x2,x3)

e

SSA

Xp — ...

N

L X1 Lo X1

X2 & ... X
X3 4— ...

X4 <— X2

~N

X4 < X3

after elimination
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X4 ...
L X L X
X4 ... L X

X4 ...

B

non-SSI

XL — ...

o(xs5,x6) <— x1

N

L X5 L Xp
X — ... L Xp
X3 4 ...

~

xq < B(x2,%3)

SSl

X1 — ...
X5 <— X1 Xo < X1
L. X L. Xp
Xp — ... L Xe
X3 ...
X4 <— X2 X4 < X3

after elimination
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Benchmarks
Program Label Input
factorial fact {1,...,12}
fibonacci fib {1,...,20}
sumup sumup add numbers {1,...,500} in a loop
euclid euclid compute ged of pairs {101,1001},...,{150,1050}
heron heron compute square root of first 20 perfect squares
daxpy daxpy vector length 100
eratosthenes sieve  sieve determine prime numbers in {1,...,100}
insertion sort insort reverse sorted array [15,...,1]
bubble sort bbsort reverse sorted array [15,...,1]
matrix multiply matmul 4 X 6 and 6 x 8 matrices
image convolution imgconv 6 x 6 image and 3 x 3 kernel
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Execution time using minimal buffer size
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Execution time using maximal buffer size
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Number of PU firings

PU firings / 1000

B NORMAL

@ ssl
O REG

o
T,

n_
‘o, [
oo, [

o, [

G%%
gy

19/24



Resource usage
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Number of data transmissions
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Number of data transmissions by PUs

PU data transmissions / 1000
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Xout
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