Tl Rheinland-Pfdalzische
Technische Universitat

R P Kaiserslautern
Landau

Bachlor’s Thesis

Code Generation for Rust from
Dataflow Process Networks

Omar Bihi

University of Kaiserslautern-Landau
Department of Computer Science
67663 Kaiserslautern
Germany

Examiner:
Prof. Dr. Klaus Schneider
M.Sc. Florian Krebs

September 10, 2025

Eigenstandigkeitserklarung

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema
,Code Generation for Rust fromDataflow Process Networks" selbststandig verfasst
habe, dass ich die verwendeten Quellen und Hilfsmittel vollstdndig angegeben
habe und dass ich die Stellen der Arbeit — einschliefslich Tabellen und Abbil-
dungen —, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Kaiserslautern, den 10.09.2025

Omar Bihi

i

Abstract

This thesis presents a method for automatically generating Rust code from actor-
based dataflow networks written in the RVC-CAL language. Actor-based dataflow
programming allows complex systems, such as signal processing or embedded ap-
plications, to be modeled as networks of independent computational units called
actors. To make these networks executable, many tools were developed that con-
verts RVC-CAL applications into programs that use languages such as C or C++,
that support multi-threaded execution. This work integrated the a Rust-backend
into one of these code generators.

Two execution approaches were studied. The first uses Tokio with async/await,
allowing actors to run asynchronously without blocking each other. The second
uses Rayon with Crossbeam channels to run actors in parallel while communicat-
ing through fast, lock-free channels. Both approaches were designed to support
round-robin and non-preemptive scheduling.

The generated Rust code provides a single interface to manage all actors in
the same way, regardless of their specific behavior. The two execution schemes
were tested on benchmark networks to measure execution time, performance, and
reliability. Results show that the Tokio async approach is flexible and easy to
use, while Rayon combined with Crossbeam approach gives higher performance
and avoids deadlocks in cyclic networks.

In summary, this thesis demonstrates that it is possible to automatically gener-
ate efficient, multi-threaded Rust programs from high-level RVC-CAL networks.
It provides insights into the advantages and limitations of language. The proposed
framework contributes to the automation of dataflow application deployment and
establishes a foundation for future extensions.

11

Zusammenfassung

Diese Arbeit stellt eine Methode zur automatischen Generierung von Rust-Code
aus Actor-based Dataflow Networks vor, die in der RVC-CAL-Sprache geschrieben
sind. Die Actor-based Dataflow programmierung erméglicht es, komplexe Sys-
teme, wie Signalverarbeitung oder eingebettete Anwendungen, als Netzwerke un-
abhéngiger Recheneinheiten, sogenannter Akteure, zu modellieren. Um diese
Netzwerke ausfithrbar zu machen, wurden bisher viele Werkzeuge entwickelt, die
RVC-CAL-Anwendungen in Programme in Sprachen wie C oder C++ umwan-
deln und die Multi-Threading unterstiitzen. Diese Arbeit integriert einen Rust-
Backend in einen dieser Codegeneratoren.

Es wurden zwei Schema untersucht. Der erste verwendet Tokio mit async/await,
wodurch Actors asynchron ausgefiihrt werden konnen, ohne einander zu block-
ieren. Der zweite Ansatz verwendet Rayon mit Crossbeam-Kanélen, um Actors
parallel auszufiihren und gleichzeitig iiber schnelle, sperrfreie Kanéle zu kommu-
nizieren. Beide Ansédtze wurden so gestaltet, dass sie Round-Robin- und Non-
Preemptive Scheduling unterstiitzen.

Der generierte Rust-Code stellt eine einheitliche Schnittstelle bereit, um alle
Actors auf die gleiche Weise zu verwalten, unabhéngig von ihrem spezifischen
Verhalten. Beide Schema wurden auf Benchmark-Netzwerken getestet, um Aus-
fiihrungszeit, Leistung und Zuverldssigkeit zu messen. Die Ergebnisse zeigen,
dass der Tokio-Async-Ansatz flexibel und einfach zu verwenden ist, wahrend die
Kombination aus Rayon und Crossbeam hohere Leistung bietet und Deadlocks
in zyklischen Netzwerken verhindert.

Zusammenfassend zeigt diese Arbeit, dass es moglich ist, effiziente, multi-
threaded Rust-Programme automatisch aus hochrangigen RVC-CAL-Netzwerken
zu generieren. Sie liefert Einblicke in die Vorteile und Grenzen der Sprache.
Das vorgeschlagene Framework tragt zur Automatisierung der Bereitstellung von
Dataflow anwendungen bei und bildet eine Grundlage fiir zukiinftige Erweiterun-
gen.

v

Contents

Contents
(1__Introductionl 1
2 Background| 3
2.1 _Dataflow Process Networks 3
[2.2 The CAL Actor Language| 4
2.3 The RVC-CAL Actor Language, 6
[2.3.1 Open RVC-CAL Compiler| 6
2.3.2 Network Structurel 7
2.3.3 RVC-CAL Syntax|. 8
2.4 Code Generatorl oo 13
[2.5 The Rust Programming Languagel 15
[2.5.1 Rust’s ownership model and borrowing rules| 15
[2.5.2 Concurrency and Thread Safety| 17
[2.5.3 Rust’'s Syntax|o 17
[2.5.4 Tokio with Async/Await| 21
[2.5.5 Rayon and Crossbeam| 22
[2.5.6 Rust’s Cargo| 22
[3 Methodology and Implementation| 25
[3.1 Methodology| 25
(3.2 Scheme 1: Tokio with async/await|. 30
[3.3 Scheme 2: Rayon with Crossbeam|. 38
[3.4 Rust’s Syntax Sensitivity and Type Strictness| 44
4__Evaluation| 47
[4.1 Benchmarking| 47
[4.1.1 ZigBee Multitoken Transmitter| 47
[4.1.2 Digital Predistortion DPD} 49
[4.1.3 Digital Filter FIR} 50
[4.1.4 Digital Filter LMS| 52
415 Discussion of Results 54
5 Related Workl 57
6 Conclusionl 59

Contents

61

vi

Listings

2.1 CAL Actor Example]
2.2 Top Network|,

2.4 Actor Example|o oo
2.5 Loop Examplel.o
[2.6 Iteration Examplel.o 00000
[2.7 List Comprehension Example|
[2.8 Procedure - Function Example,
[2.9 Native Functions Example]
[2.10 Priority Order Example]
2.11 FSM Examplelo oo
[2.12 Imports Examplel o oo
[2.13 Example of some Data T'ypes declaration
[2.14 Example of String mutability]
[2.15 Example of match|.o
[2.16 Example of matchl.o o000
[2.17 Example of Function| o000
[2.18 Error Handling Examplel
[2.19 Cargo.toml Example,

[3.6 Code Organization|
[3.7 Build Integration| o
[3.8 Example Extern Cin Rust|
[3.9 Async Channell
[3.10 Async Actor Trait|.
[3.11 Actorl.rs Tokiol

[3.13 Scheme 1 Local Scheduler Examplef
[3.14 Non-Preemtive Schedulingl
[3.15 Round-Robin Schedulingl
[3.16 Crossbeam Channel Struetl

© 00 00 O

10
11
11
12
12
13
18
18
19
19
20
20
23

26
26
26
27
27
28
29
30
31
32
33
34
35
36
37
38

vii

[3.17 Actor trait Rayon| 40

[3.18 Actorl.rs Rayon|. 40
.19 main.rs Scheme 20o 41
[3.20 Local scheduler Scheme 2. 42
[3.21 Global Scheduler Scheme 2/o 43
[3.22 Implicit Conversions in C++{. 44
[3.23 Implicit Conversions in Rust| 44
[3.24 Rsut Dynamic Collection Examplel 45
[3.25 Mixing Array and Vector kExample, 45
[3.26 List Comprehension in FIFO bufter RVC-CAL| 45
[3.27 Handling List Comprehension in FIFO buffer for Rust|. 46
[4.1 Configure Rayon to use 10 threads Example] o1

List of Figures

2.1 Code Generator Design|. 13
(4.1 ZigBee Graphl o 48
[4.2 Digital Predistortion DPD Graphl 49
[4.3 Digital Filtering FIR Graph[. 51
[4.4 Execution time of Rayon with varying number of threads.|. 52
[4.5 Digital Filtering LMS Graphf. 53

List of Tables

viil

[2.1 ~Categories of Rust Data Types 18
4.1 ZigBee Multitoken Transmitter Results| 48
[4.2 Digital Predistortion Results| 50
[4.3 Digital Filter FIR Results 50
[4.4 Digital Filter LMS Results| 53

1 Introduction

The increasing complexity of embedded systems and the growing demand for con-
current and parallel applications have made dataflow process networks (DPNs)
a popular model of computation for stream-based and signal-processing applica-
tions. DPNs offer an intuitive and modular abstraction for describing concurrent
systems, where actors communicate asynchronously through channels without
shared memory. Their well-defined semantics enable high-level reasoning about
system behavior and facilitate formal verification. In this context, the RVC-CAL
language (specialized profile of CAL) provides a platform for specifying DPN ap-
plications through actors, actions, ports, and firing rules. The language is widely
adopted in academic and industrial environments, with toolchains like Orcc sup-
porting simulation and C/C-++ code generation.

Beyond research, DPNs and RVC-CAL have proven valuable in practical do-
mains. In digital signal processing, they are used to model streaming pipelines
such as filters, transforms, and codecs, where predictable throughput and low la-
tency are essential [1]. In complex heterogeneous systems, dataflow semantics help
orchestrate computations across diverse processing units, including CPUs, GPUs,
DSPs, and FPGAs, enabling efficient execution on multi-processor systems-on-
chip (MPSoCs) [2] [3].

However, the current mainstream backends for RVC-CAL target C and C++,
which, despite their performance and maturity, pose several challenges in terms of
memory safety, thread management, and integration with modern asynchronous
systems. Rust emerges as a compelling alternative due to its strong type system,
ownership model, and support for asynchronous and concurrent programming
paradigms. While the RVC-CAL language is well-supported by C/C+-+-based
code generators, there is no robust Rust-based backend available for generating
efficient and safe actor code. This limits the adoption of RVC-CAL in mod-
ern, safety-critical, or performance-sensitive environments that increasingly prefer
Rust due to its guarantees against data races and undefined behavior. Moreover,
supporting modern concurrency models like async/await, or thread-pooling re-
quires a language that provides compile-time guarantees on resource usage and
thread safety — a gap that C++ cannot fill easily.

This thesis aims to bridge this gap by designing and implementing a Rust
code generation backend for RVC-CAL applications, capable of simulating and
executing actor networks in an asynchronous and safe manner. The key objectives
include, designing a Rust code generator that can interpret actor constructs from
parsed RVC-CAL specifications , supporting fundamental control structures such

1 Introduction

as conditionals, loops, and list comprehensions, generating lock-free, bounded
FIFO channels with controlled token flow, supporting both rayon-based multi-
threaded execution and tokio-based async simulation, and lastly benchmarking
the performance against existing C/C++ backends using an actor-based network
application.

We start in with an introduction of the theoretical and technical
background of dataflow models, RVC-CAL, Rust and the Code-Generator which
we going to intergrate the Rust-backends into. In[chapter 3|the two Rust schemes
- Tokio + async/await and Rayon + Crossbeam - are pressented with the imple-
mentation in detail, including channel systems, scheduler, and actor code gener-
ation. The evaluation of the generator using test applications and comparesion
of its performance will be conducted in [chapter 4 The present related
frameworks that support code generation targeting languages like C and tools for
dataflow programming implemented in Rust. At the end of the thesis the results
of the work is summarized and an overview of possible future work is given in

ehapter G,

2 Background

2.1 Dataflow Process Networks

Dataflow Process Networks (DPNs) are a formal computational model widely
used for describing and executing concurrent systems such as streaming appli-
cations, multimedia processing, and signal processing pipelines. They were in-
troduced and formalized by Edward A. Lee and Thomas M. Parks in 1995 as a
refinement of the more general Kahn Process Networks (KPNs) [4] [5]. The key
idea is to model a system as a network of independent actors that communicate
through stream of data.

A DPN can be represented as a directed graph, with nodes represent computa-
tional entities (actors) that consume input tokens, perform some processing, and
produce output tokens, where edges represent streams that carry data tokens
from one actor to another [6]. This graph-based representation makes the flow
of data between components explicit. Each actor in the graph executes indepen-
dently and only interacts with other actors via token exchange, never through
shared memory. Actor execution is based on firing rules, where it can only fire if
the rules are met.

The communication between actors is achieved through streams that act like
FIFO (First-In-First-Out) buffers, which is an ordered sequence of values. The
ordering of tokens in each stream is preserved. This is important because the
first token sent will be the first token received, ensuring temporal consistency in
data processing.

From a practical perspective, streams abstract away the timing of token pro-
duction and consumption, an actor processes tokens when they are available, and
the stream preserves their sequence regardless of the order in which different ac-
tors are executed. Additonally they are one-way data paths that allow tokens to
flow only from a single producer actor to a single consumer actor.

While KPNs assume unbounded FIFO channels, real systems have finite mem-
ory . If token production exceeds consumption for a sustained period, buffers
will grow without bound, leading to memory exhaustion. In DPNs, boundedness
refers to the property that all channels can operate within a fixed, finite capacity
while still preserving determinism and avoiding deadlocks [7] [8]. Determinism
means that, given the same sequence of input tokens, the network will always
produce the same sequence of output tokens, regardless of the execution order or
relative speeds of individual actors. This guarantee holds as long as the semantics
of the actors are functional and communication is through unidirectional FIFO

2 Background

channels.

Lee and Parks examined bounded scheduling strategies that allow DPNs to run
correctly with limited buffer sizes. Some networks are naturally bounded, while
others require careful execution order or additional constraints to ensure bounded
execution.

Scheduling is a critical aspect of DPNs; as it determines how and when actors
execute within the network. An important specialization of DPNs - Synchronous
Dataflow (SDF)- touchs this aspect. In SDF, each actor consumes and pro-
duces a fixed number of tokens per firing on each channel. This allows for static
scheduling, where the firing order of actors and the minimum buffer sizes can be
computed before execution [9)].

Another extension is Cyclo-Static Dataflow (CSDF). It builds on SDF by let-
ting the number of tokens produced and used change in a repeating pattern. This
makes the model more flexible but still allows scheduling to be done before run-
ning the program. Parks, Pino, and Lee compared SDF and CSDF, highlighting
that CSDF keeps many of SDF’s advantages while supporting more complex and
realistic dataflow behaviors [10].

Generally for DPNs, in which actors can consume and generate tokens at chang-
ing rates, there needs to be dynamic scheduling. This approach must keep up
with the changing availability of tokens so that actors may run as soon as their in-
put data is ready. While dynamic scheduling enables the model to accommodate
more flexible, dynamic systems where constant consumption/production rates are
not feasible, it increases runtime overhead and often requires runtime deadlock
avoidance and buffer management, making it more complex to implement and
analyze than static or quasi-static approaches [11].

2.2 The CAL Actor Language

The CAL Actor Language (often referred to simply as CAL) is a domain-specific,
high-level programming language designed for modeling and implementing dataflow
actors in DPN-based systems [12]. CAL was introduced in the early 2000s as part
of the Ptolemy II project at the University of California, Berkeley, to provide a
structured way to describe actor-based computations |13]. CAL is designed to be
platform-agnostic, meaning the same actor description can be used for simula-
tion, and code generation to multiple target languages such as C. The philosophy
behind this design was to focus solely on actor behavior specification, that is to
describe how an actor reacts to incoming data tokens, manipulates its internal
state, and produces output tokens while leaving all aspects of execution control,
resource management, and runtime services to the host environment.
The CAL syntax consists of several key elements [14]:

e Actor Declaration: Each actor in CAL is defined using the keyword actor.
The definition specifies the name of the actor, input and output ports,

2.2 The CAL Actor Language

internal state variables, and computation actions. The syntax ensures that
each actor is a self-contained unit.

Data types: The CAL type system is host-dependent, meaning that while
CAL can define and use types like integers, strings, and lists, their actual
implementation and operations come from the execution environment. It
supports composite data types such as lists and records, but their imple-
mentation depends on the execution platform.

Input and Output Ports: CAL actors pass data through ports. Input ports
are used to accept data tokens, and output ports are used to emit processed
data. Actors are connected by means of these ports to form a network based
on dataflow, where execution order of the actors is based on data flow.

State Variables: Each actor can have variables that hold it’s internal state
across firings. These state variables allow actors to perform stateful compu-
tations. They are either assignable, or mutable. Assignable state variables
can be set exactly once and then remain constant throughout execution.
Mutable state variables can be updated multiple times during the actor’s
lifetime, allowing the actor to change its internal state as it processes data.

Actions define how an actor processes incoming data and generates output.
An action is executed every time its input patterns match with the tokens
in hand. Guards are also a possibility for actions, which are preconditions
to be satisfied prior to the invocation of the action.

Functions and Procedures: Functions are pure, side-effect-free constructs
that return a value and are used within expressions. Their syntax includes
typed parameters and a return type, using the function keyword. Pro-
cedures, on the other hand, are impure, may cause side effects, and do
not return a value; they are declared with the procedure keyword and
are called as complete statements, not as part of an expression. Both are
defined within actors but are not first-class entities.

Loops and iteration: CAL supports structured iteration using foreach and
while loops. The foreach loop allows iteration over collections like lists and
records, the while loop executes a block of code repeatedly as long as a
specified condition holds.

Priorities define the order in which an actor’s actions are considered for exe-
cution, resolving conflicts when multiple actions are enabled simultaneously.
They help control which action takes precedence.

State machines (FSM): model an actor’s control flow by organizing actions
into states with transitions based on conditions. The FSM defines how the
actor moves between states, controlling which actions are active and how
the actor’s behavior evolves over time.

2 Background

The following [Listing 2.1| shows an example of a CAL actor, with two actions and
a FSM.

actor IncVal () Inputl, Input2 ==> QOutput:

count := 0;
A: action Inputl: [x] ==> [x]
do
count := count + 1;
X := count;
end
end
B: action Input2: [x] ==> [x] end

schedule fsm si:
sl (A) --> s2;
s2 (B) --> si1;
end

end

Listing 2.1: CAL Actor Example

2.3 The RVC-CAL Actor Language

RVC-CAL is a specialized profile of CAL defined by ISO/IEC as part of the
MPEG Reconfigurable Video Coding (RVC) framework [2] [15]. While CAL in
its original form was general-purpose for dataflow actor specification, RVC-CAL
was streamlined for the needs of modular, reconfigurable video codec design.
Its design draws on the CAL actor language, but adapts and extends it for the
constraints and modularity requirements of the MPEG standard.

2.3.1 Open RVC-CAL Compiler

The Open RVC-CAL Compiler (Orce) is an open-source framework designed to
compile and execute applications written in RVC-CAL [16] [17]. It offers a com-
plete toolchain for transforming dataflow network descriptions into executable
code for multiple target platforms. Orcc is developed as part of the MPEG RVC
standardization effort, but it is general enough to support a wide range of appli-
cations beyond video processing.

One of Orcc’s key contributions is the ability to take RVC-CAL actor defini-
tions and combine them with XDF (XML Dataflow Format) network descrip-
tions. Together, they define a Dataflow Process Network that can be optimized
and mapped to software or hardware targets.

2.3 The RVC-CAL Actor Language

Orcc is not just a compiler but also a development environment. It integrates
with Eclipse, providing project management tools, syntax highlighting for RVC-
CAL, and a graphical editor for XDF networks. The graphical editor is particu-
larly useful for visualizing the dataflow graph, including the actors, their ports,
and the channels between them.

The RVC-CAL applications, from the repository [18], used in this thesis follow
the Orcc toolchain conventions, to ensure compatibility with both the standard
backends (C/C++) and the newly developed Rust backend.

2.3.2 Network Structure

The XDF format is an XML-based representation of dataflow networks. It builds
on the Functional Unit Network Language (FNL), which was originally created
to describe dataflow programs in a structured, machine-readable way [2] [19).

An XDF network specifies the set of actor instantiations, the channels that
connect actor ports together, and the connections that define the overall structure
of the dataflow graph. It supports hierarchical network descriptions, meaning that
an actor instantiation can be derived from an actor definition or a child network.
These sub-networks act like composite actors that can contain their own actors,
channels, and even deeper levels of nested networks.

Connections in XDF are unidirectional FIFOs that preserve the order of tokens,
maintaining the deterministic behavior expected from DPNs, where each one
defines the source and destination ports.

In the example of [Listing 2.2] line 1 declares XML version and encoding, line
2 the start of the XDF network named Top_Network. Lines 3-11 define three
instances: Child_Network, Source, and Sink. Lines 13-14 specify the connec-
tions, where data flows from the Source actor to the Child_Network, and then
from the Child_Network to the Sink.

At the network level, XDF defines external ports, which form the interface
between the network and its environment. External input ports provide data
from outside the network to internal actors, while external output ports deliver
processed data back to the outside world. The provides an example
of external ports. Lines 1-8 define an input port named Source, which accepts
integer data with a buffer size of 32. Lines 9-16 define an output port named
Sink, also handling integers with a buffer of same size.

N

9

10

11

13

14

15

2 Background

<?xml version="1.0" encoding="UTF-8"7?>
<XDF name="Top_Network">
<Instance id="Child_Network">
<Class name="CN.Child_Network"/>
</Instance>
<Instance id="Source'">
<Class name="CN.Source"/>
</Instance>
<Instance id="Sink">
<Class name="CN.Sink"/>
</Instance>

<Connection dst="Child_Network" dst-port="Source"
src="Source" src-port="0Out"/>
<Connection dst="Sink" dst-port="In"
src="Child_Network" src-port="Sink"/>
</XDF >

Listing 2.2: Top Network

<Port kind="Input" name="Source">
<Type name="int'">
<Entry kind="Expr" name="size">
<Expr kind="Literal" literal-kind="Integer"
value="32"/>
</Entry>
</Type>
</Port>
<Port kind="Output" name="Sink">
<Type name="int">
<Entry kind="Expr" name="size">
<Expr kind="Literal" literal -kind="Integer"
value="32"/>
</Entry>
</Type>
</Port>

Listing 2.3: External Port

2.3.3 RVC-CAL Syntax

RVC-CAL inherits the fundamental structure of CAL but introduces syntactic
constraints and simplifications tailored for video codec specification and stan-
dardization . In this section, we explore the key syntactic elements of
RVC-CAL.

2.3 The RVC-CAL Actor Language

Data Type

The biggest difference between CAl and RVC-CAL, is that the later imposes
type and size definition, on all variables including lists as well, example in listing.
Additionally type parameter T, such as generic in C-++ or Rust, is prohibited in
type expressions such as List[T]. Lastly it supports only six data types: bool,
float, int, uint, String, List.

Actor Structure and Ports

To illustrate the structure of an RVC-CAL actor more concretely, consider the
following example of a simple Add actor, which defines input ports
Inputl and Input?2 of type int with size of 8, Output port of same type and size,
and a single action, which fires when tokens are available in both input ports and
produces only one to the output.

actor Add () int(size=8) Inputl, int(size=8) Input2 ==>
int (size=8) Output:

A: action Imputl: [al, Input2: [b] ==> Output: [a + bl
end

end

Listing 2.4: Actor Example

Assignment

There are two assignment operators, = is used for binding values to variables
in a way that does not overwrite mutable state, in other words, it introduces a
constant within the scope. The := operator is used when updating an existing
variable, which overwrites the current value.

Loop and Iteration Statement

Loop statements are used to repeatedly execute a sequence of code, as long as
the boolean condition is true. RVC-CAL supports the traditional loop construct
while.

while /*conditionx*/ do

/x. .. x/

3| end

Listing 2.5: Loop Example

2 Background

[teration statements, which is used for executing a block of code repeatedly.
RVC-CALI uses foreach to iterate over elements of a list, without explicitly han-
dling indices, and for is typically used for numeric iteration over a specified
range.

foreach value in myList do

/* ... x/

3l end

sifor i in 0 .. 9 do
/* ... %/

7| end

Listing 2.6: Iteration Example

List Comprehension

List comprehensions provide a concise way to generate and manipulate collections
of values. They allow actors to create new lists by applying an expression to each
element of an input list, optionally filtering elements using conditions.

Here’s a simple example of a list comprehension that declares myList
of 256 elements where each element is of type int size 9 and all elements to 0.

List(type: int(size=9), size=256) myList := [O : for int i
in 0 .. 255 1;

Listing 2.7: List Comprehension Example

Procedures and Functions

Both constructs help separate reusable computation logic from the main actor
behavior, but they differ in purpose and semantics.

A function takes input parameters and returns a value. It is side-effect free,
meaning that it does not modify the actor state or global variables. Functions
are typically used for computations such as arithmetic operations, comparisons,
or transformations that always produce the same output for the same input.

On the other hand, a procedure encapsulates a sequence of statements that
can perform side effects, such as updating actor state variables or calling other
procedures. Unlike functions, procedures do not return values directly but instead
influence the behavior of the actor.

illustrates an example of both constructs. The square function
computes the square of an integer, whereas the increment procedure modifies
the actor’s internal counter variable. Inside action B, the procedure updates the
counter, and then both the squared input value and the updated counter are
produced on the output ports.

10

N

2.3 The RVC-CAL Actor Language

function square(int(size=8) z) --> int(size=8)
zZ * z
end

s|procedure increment ()

do
counter := square(counter);
end

B: action Input: [x] ==> Output: [y, c]

| do
increment () ;
y := square(x);
¢ := counter;
end

Listing 2.8: Procedure - Function Example

Native Functions

RVC-CAL supports native functions and native procedures to integrate
functionality written in external programming languages (e.g., C or Java) di-
rectly into an actor’s behavior. These constructs are declared in RVC-CAL using
the @native keyword but implemented externally. The actual implementation
must then be provided in the target language during integration.

isting 2.9 shows an example of such declarations.

@native procedure native_proc (int ind)
end

@native function native_func(int ind) --> int(size=8)

5| end

Listing 2.9: Native Functions Example

Priority Order

In RVC-CAL, an actor may define multiple actions that can be triggered when
their input availability conditions (guards) are satisfied. If more than one action
is enabled at the same time, the priority order determines which action should
be executed first.

The priority is specified within the actor definition using the priority keyword.
Actions are listed in descending order, meaning that actions appearing earlier in
the list take precedence over those appearing later.

11

2 Background

priority
actionA > actionB > actionC;
end

Listing 2.10: Priority Order Example

In this example, if both actionA and actionB are enabled, actionA fires first.
If actionA is not enabled but actionB and actionC are, then actionB is selected.

Finite State Machine

More complex actors can include a finite state machine, defined using the fsm
keyword. It specifies a set of states and transitions, where each transition is
guarded by conditions and linked to an action. After action firing, the FSM
moves to the target state specified by that transition.

shows that this mechanism allows actors to exhibit structured
behavior across multiple modes of operation, such as initialization, execution,
and termination.

schedule fsm s_init:
s_init (initAction) --> s_run;
s_run (runAction) --> s_done;

s_done; // No actions terminal state

end

Listing 2.11: FSM Example

Imports

In RVC-CAL, actors, type definitions, constants, and utility functions can be
organized into packages, which allows multiple actors to share common resources.

A package is a named collection of related components grouped under a names-
pace. The package declaration at the top of a file defines its namespace. This
means that all components defined in this file belong to that namespace. Other
files can then access these components from this namespace using the import
statement.

RVC-CAL supports two forms of imports. A single import makes a spe-
cific entity available and a group import that brings all entities from a sub-
namespace into the global environment. For example, the following
shows a package named common that imports all components from the subpackage
common. constants using the asterisk (*), and on line 5 it imports the square
function from the subpackage common.utils.

12

2.4 Code Generator

package common;

import common.constants.x*;

5| import common.utils.square;

Listing 2.12: Imports Example

2.4 Code Generator

The goal of this thesis is to extend an existing Dataflow Code Generator by in-
tegrating a Rust backend capable of producing, multi-threaded implementations
of Dataflow Process Networks. This generator, originally designed for C/C++
output [20], provides a framework for reading, analyzing, optimizing, and emit-
ting executable code from RVC-CAL actor descriptions and their XDF network
definitions. By incorporating the Rust backend, the same high-level model can
be translated into Rust.

The underlying architecture of the generator ([Figure 2.1)) follows a multi-phase
pipeline. Each phase transforms the model into a progressively more optimized
and lower-level representation, preparing it for final code emission. While the
original implementation targets C/C+-, the integration of Rust generation fits
naturally into this modular structure.

Network Reader * IR Transformation » Dataflow Analysis

Optimization Phase 1

Code Generation Optimization Phase 2 i Actor Mapping

Figure 2.1: Code Generator Design

Network Reader

The pipeline begins with the Network Reader, which parses CAL actor definitions
and XDF network files. This step handles hierarchical networks, where networks
can contain child networks, by flattening them into a single, non-hierarchical rep-
resentation. During flattening, network instances are replaced with their internal

13

2 Background

actors, and ports are replaced with explicit channel connections. The result is a
fully expanded, standardized network structure that is ready for further process-
ing.

Intermediate Representation Transformation

After reading, the network is transformed into an Intermediate Representation
(IR). This IR captures both the topology of the network and the behavior of its
actors in a format optimized for analysis and transformation. Preprocessing is
applied here to simplify subsequent phases, including normalizing port connec-
tions, resolving constants, and preparing guard expressions. The IR serves as the
central data structure for all later steps.

Dataflow Analysis

The Dataflow Analysis phase examines the IR to classify actors according to their
token consumption and production behavior. It detects sources, sinks, feedback
loops, and distinguishes between static and dynamic actors. This classification is
crucial for determining how actors will be scheduled and optimized later in the
process.

Optimization Phase 1

The first optimization phase is applied before mapping. It focuses on eliminat-
ing redundant actors (e.g., pass-through actors) and removing unused channels.
This structural simplification reduces computational overhead and ensures that
mapping operates on the minimal required graph.

Actor Mapping

This step maps actor instances to processor cores. The mapping process assigns
actors to execution units, ensuring that the software generated is multi-threaded.
In the absence of an this mapping, actors may require atomic synchronization to
avoid concurrent execution on shared state, which can reduce performance.

Optimization Phase 2

Once the mapping is established, a second optimization phase can be applied.
Currently left empty but can be set for future use (e.g., actor mergin).

Code Generation

This phase is the final step of the pipeline, transforming the intermediate rep-
resentation into a complete C/C++ implementation, with actors, channels, and

14

2.5 The Rust Programming Language

scheduling logic, and producing all necessary files and build configuration to com-
pile and execute the application.

It starts by iterating over the actor variants. Each variant represents a distinct
behavioral implementation that may be reused by multiple actor instances. To
avoid code duplication, the generator produces one class per variant rather than
for each instance. Actor names are derived from their IR identifiers, and gener-
ated files are organized into headers. Each generated actor class contains: state
variables, actions implementations, and a local scheduler that determines which
action to fire next based on token availability and guards.

For channels, which model the FIFO buffers between actors, they are imple-
mented as templates to support various token types, with functions for reading,
writing, checking capacity, size bounds, and determining whether the channel is
full or empty.

Next is the generation of the main program. It includes instantiating channels,
one for each connection in the network, and actor instances with the appropriate
input/output channel references, initial parameters and state. This part involves
as well executing the global scheduler, which invokes each actor’s local scheduler
in the proper sequence until completion.

The final step is optional depending on the provided inputs, the generator
produces a CMakeLists.txt file, listing all generated source files and setting up
the required build options.

2.5 The Rust Programming Language

Rust is a relatively young but rapidly maturing systems programming language
developed by Mozilla Research and first released in 2010 [21] [22]. Its design goal
was to combine the raw performance and control of low-level languages like C and
C-++ with modern safety guarantees, especially around memory management and
concurrency. Since its initial release, Rust has grown into one of the most popular
languages for building robust and high-performance software, with a thriving
ecosystem and adoption in domains as varied as embedded systems, networking,
cryptography, web services, and data processing.

At the heart of Rust’s appeal lies its ability to eliminate entire classes of bugs
at compile time — including memory corruption, dangling pointers, and data
races — while producing native machine code with performance comparable to
optimized C. This is achieved through a unique combination of ownership seman-
tics, a strong static type system, zero-cost abstractions, and explicit concurrency
control.

2.5.1 Rust’s ownership model and borrowing rules

Many programming languages use garbage collector in controlling memory like
java, which is a runtime component that has the role of reserving the data in the

15

2 Background

memory [23] and when the data is no longer in use, it releases this part of the
memory. This operation has certain drawbacks because it occurs at runtime in the
background, if it wants to clean up the memory it can temporarily pause program
execution (also known as freezing that happens for several milliseconds or even
seconds). These pauses can slow performance and lead to inefficient outcomes.

In contrast, languages like C++ rely on manual memory management, givings
full control over allocation and deallocation through constructs like new or modern
abstractions such as smart pointers [24]. However this approach makes programs
prone to memory leaks, dangling pointers, and other errors .

Rust solves these issues with the concept Ownership. This model works at a
compile time to enforce memory safety without the need for a garbage collector.
Each value in Rust is "owned" by a variable, and the compiler makes sure that
ownership rules are followed. When the owner of a value goes out of scope, the
value is automatically dropped. This helps prevent memory leaks and ensures
that memory is freed in a predictable way. Ownership rules can be summarized
as follows:

e Each value has an owner.
e There can be only one owner at a time.
e When the owner goes out of scope, the value will be dropped.

Rust also allows values to be "borrowed" rather than moved. Borrowing lets
code access data without taking ownership, subject to certain constraints. There
can be either one mutable reference or multiple immutable references to a value,
but not both at the same time. All references must be valid, meaning they must
not outlive the data they point to. Rust distinguishes between two types of
borrowing:

e Immutable borrowing (&T): allows multiple read-only references.

e Mutable borrowing (&mut T): allows exactly one reference with write access
at any given time.

This model helps prevent common bugs like use-after-free, double-free, or data
races, all at compile time. In the context of RVC-CAL actor networks, these rules
ensure that token buffers, actor state, and communication channels are shared or
modified safely without risking undefined behavior.

Additionally, Rust uses lifetimes to track how long references remain valid.
Lifetimes make the relationships between variables and references explicit, which
is especially helpful in complex scenarios with nested scopes or function calls.
While lifetimes add some complexity, they can play an essential role for ensuring
correctness in systems that generate or manipulate code involving deeply nested
actor interactions.

16

2.5 The Rust Programming Language

2.5.2 Concurrency and Thread Safety

Rust was built with concurrency in mind [25|. Its ownership model and type
system allow developers to write concurrent code without worrying about com-
mon bugs like data races or unpredictable behavior. These safety guarantees are
enforced at compile time, rather than at runtime.

When data needs to be shared across threads, Rust requires the use of safe
mechanisms such as:

e Channels for sending messages (and transferring ownership of data) between
threads.

e Locks like Mutex<T> for safely sharing and modifying data.
e Atomic types for lock-free shared state in specialized cases.

Rust also uses traits like Send and Sync to make sure that only data which is
safe to share or move across threads can be used that way. If the data isn’t safe,
the compiler will reject the program before it

e Send indicates that a type’s ownership can be transferred safely between
threads.

e Sync indicates that a type can be safely accessed between threads through
immutable references.

While concurrency is about structuring a program so that tasks can be in
progress at the same time, parallelism is about running them literally at the
same time, often on multiple CPU cores. Rust supports both, and its safety
rules apply whether threads run concurrently or in parallel. Libraries like Tokio
(for async tasks) and Rayon (for parallel iterators) make it easy to use multiple
threads effectively while keeping the program safe.

2.5.3 Rust’s Syntax

Rust is designed to be both safe and expressive, and its syntax reflects these goals.
While it borrows familiar elements from languages like C++-, Java, and Python,
Rust introduces new features that support safety and performance. This section
provides an overview of Rust’s core syntax, using simple examples to illustrate
common usage.

Variables and Mutability

By default, variables in Rust are immutable, meaning their values cannot be
changed after they are assigned.

17

N

2 Background

X = 6; // This would cause a compile-time error

To allow a variable to be changed, the mut keyword is used:

let mut y = 10;
y =y +1

Data Types

Rust is a statically typed language, so every variable has a type. Types can often
be inferred, but they can also be declared explicitly. Rust allows to work with a
wide variety of values by categorizing them into different types, each with specific
purposes, rules, and capabilities.

Category Example Types Purpose

Scalar types i32, f64, bool, char simple values

Compound types (132, f64), [i32; 3] Group multiple values

String types String, &str Growable String, String Slice
Custom types struct, enum Define own data structures
Pointer types \&T, \&mut T References (borrowed data)
Option/Result Option<T>, Result<T, E> | Nullable values, error handling

Table 2.1: Categories of Rust Data Types

s|let arr: [i32; 4] = [1, 2, 3, 4];

let a: 132 = 42; // 32-bit signed integer
let d: char = g // Character

// Fixed-size collection of elements of the same type

Listing 2.13: Example of some Data Types declaration

The following illustrates more on the ownership-borrowing rules,
through the use of String (Mutable and growable, allocated on the heap) and
&str (Immutable, borrowed view of a string.) types .

let s1 = String::from()
let s2 = sl1; // ownership moves from sl to s2
println!(, s1); // Error: sl is no longer valid
i|let message = String::from()
my_function(&message); // message is borrowed, not moved

Listing 2.14: Example of String mutability

18

2.5 The Rust Programming Language

Control Flow

Rust supports all common control flow constructs such as if, else, loop, while,
and for, similar to those found in C and C++. These constructs allow developers
to express conditions, iterations, and infinite loops in a familiar way. However,
Rust extends these with additional safety and expressiveness. For instance, the
loop construct is often used in combination with the break keyword that can
return a value, a feature not present in most traditional languages. Taking an
example from the Rust documentation [22], in a value is assigned to

result the counter is equal to 10.

fn main() {
let mut counter = 0;

let result = loop {
counter += 1;

if counter == 10 {
break counter * 2;
}
};
println!() 5

Listing 2.15: Example of match

The most powerful control flow operator in Rust is the match expression, which
works similary to switch in C++, the difference is that it can match complex
patterns. Instead of being limited to constant values, match can destructure
data types, bind variables, and even apply guards (works as an if condition) to
patterns. This makes it an essential tool for working with Rust’s data types, such
as enum, and for writing complex and safe logic.

In [Listing 2.16] the match expression checks the value of the tuple point. Each
arm of the match corresponds to a different pattern (e.g. the first arm checks for
the origin). The final arm _ acts as a catch-all, ensuring that all possible cases are
handled. This requirement is one of Rust’s safety features, preventing unhandled
cases at compile time.

match point {

(0, 0) => { /% ... %/ }
(x, 0) => { / ... %/ }
(0, x) => { /x ... %/ }

_ => { /x fallback */ }

Listing 2.16: Example of match

19

N

2 Background

Functions

Functions in Rust are declared using the fn keyword and always include explicit
type annotations for parameters and return values. Functions in Rust allow im-
plicit return statements as well, the last expression in a function (written without
a trailing semicolon) is automatically returned. Functions can also return tuples
or custom data types, which allows multiple values to be returned without the
need for out parameters or references.

As shown in [Listing 2.17] the add function returns the sum of two integers.
Because the last expression is not terminated with a semicolon, its value becomes
the return value of the function.

fn add(a: i32, b: i32) -> i32 {
a + b

.5}

let result = add(3, 4);

Listing 2.17: Example of Function

Error Handling

Rust does not use exceptions for error handling. Instead, it uses the Result
and Option types for recoverable errors and panic! macro for unrecoverable
errors, which immediately terminates the program when a critical error occurs,
and returns an error message.

The Option<T> type represents values that may or may not exist, and the
Result<T, E> type represents either success (Ok) or failure (Err), carrying addi-
tional information about the error. Instead of throwing an exception, functions
return one of these types, and the caller must explicitly handle both success and
failure cases.

The [Listing 2.18 demonstrates Rust’s approach to safe error handling.

fn safe_divide(a: f64, b: f64) -> Option<f64> {

if b == 0.0 {
None
} else {
Some (a / b)
}
}
fn checked_divide(a: f64, b: f64) -> Result<f64, String> {
if b == 0.0 {
Err (String::from())
} else {
Ok(a / b)
}

20

2.5 The Rust Programming Language

3

i|fn main() {

// Using Option
match safe_divide (10.0, 2.0) {

Some (result) => println!(,
result),
None => println!(e

3

// Using Result

match checked_divide (10.0, 0.0) {
Ok (result) => println!(, result),
Err(e) => println!(, e),

Listing 2.18: Error Handling Example

The safe divide function returns an Option, providing Some(value) for valid

division and None otherwise. In contrast, checked divide returns a Result, al-
lowing the function to convey specific error messages through Err. The match
expressions show how to handle both cases explicitly.

2.5.4 Tokio with Async/Await

Tokio is a popular, asynchronous runtime for Rust that provides the necessary
infrastructure to execute async/await code safely on one or more CPU cores [26].
Tokio offers several core capabilities essential for RVC-CAL execution:

e Multi-threaded async runtime: a default work-stealing thread pool sched-
ules and runs asynchronous tasks.

e Synchronization primitives: Tokio includes primitives such as mpsc chan-
nels, async Mutex, and barriers, that provide safe communication and co-
ordination between actor tasks.

e Blocking thread pool: for actors that perform CPU-intensive or blocking
operations, a separate blocking thread pool that preventes synchronous code
from stalling the async runtime is provided via
tokio: :task: :spawn_blocking().

The async/await syntax enables writing asynchronous code. Instead of block-

ing a thread while waiting for an operation to complete, async functions allow
tasks to pause and resume without wasting resources. The async keyword marks
a function as asynchronous, and await is used to pause execution until the result

21

2 Background

is ready. Under the hood, Rust uses futures to represent these pending compu-
tations.

When targeting RVC-CAL actor networks, Tokio combined with async/await
will allow generated actor code to concurrently run as lightweight, non-blocking
tasks that share execution resources without thread-per-actor overhead.

2.5.5 Rayon and Crossbeam

Rayon is a data-parallelism library that focuses on making multi-threaded exe-
cution simple for workloads that can be expressed as operations over collections
[27]. Instead of manually spawning and managing threads, with Rayon, develop-
ers can convert an iterator into a parallel iterator (par iter(), par iter mut(),
map(), and for each()), and the library automatically distribute work across a
global thread pool. Rayon’s main advantages include:

e Work-stealing scheduler: Threads dynamically balance workloads by “steal-
ing” tasks from other threads’ queues, to balance load across available CPU
cores.

e Implicit parallelism: The programmer expresses what should run in parallel,
not how to distribute it.

e Fork—join model: Parallel tasks are spawned, executed, and then joined
back before continuing.

Crossbeam is a library that extends Rust’s concurrency capabilities, deliver-
ing high-performance and low-latency communication primitives [28]. One of its
most important features is the type queue ArrayQueue. It avoid traditional locks
to reduce contention between threads and has a fixed-size FIFO buffer, which
helps prevent uncontrolled memory growth. Another key aspect of Crossbeam
is thread-safe communication, where multiple producers-consumers can interact
without unsafe manual synchronization, and it uses atomic operations internally
to ensure correctness without locking.

Crossbeam supports unbounded channels as well, but only in the module
crossbeam-channel, not in the crossbeam: : queue API. In the case RVC-CAL
dataflow network bounded channels are preferred, since boundedness is tied to
determinism and memory safety in FIFO semantics.

Combining these two libraries, Rayon drives the computation, and Crossbeam
moves the data, they form a robust backend for executing RVC-CAL networks in
parallel on multicore systems.

2.5.6 Rust’s Cargo

Cargo is Rust’s official package manager and build system. It is a central part of
the development workflow, providing tools to build code, manage dependencies,

22

N

~

0

N

2.5 The Rust Programming Language

run tests, and organize projects. Cargo simplifies the process of compiling Rust
programs by handling the details of how code is built and linked behind the
scenes.

Every Cargo project follows a standard structure, typically consisting of a
src/ directory for source code and a Cargo.toml file that defines the project’s
metadata. This metadata includes the package name, version, dependencies,
compiler settings, and more.

One of Cargo’s key features is dependency management. Developers can easily
include external libraries (called crates) from the online registry crates|29| simply
by listing them in the Cargo.toml. Cargo automatically downloads, compiles,
and links these libraries during the build process. An example is shown in the
following listing:

[package]

name = "my_project"
slversion = "0.1.0"

edition = "2021"

[dependencies]
tokio = { version = "1", features = ["full"] }
async-trait = "0.1"

Listing 2.19: Cargo.toml Example

There are different types and categories of dependencies that Cargo can manage
other then libraries:

Dev-dependencies used only during development or testing. These crates are
not included in the final build if they aren’t needed at runtime.

[dev-dependencies]
rand = "0.8" # in tests or benchmarks

Build-dependencies used only during the build process, usually for custom build
scripts (build.rs).

[build -dependencies]
cc = "1.0" # For compiling C code during build

Target-specific dependencies that only apply to a certain OS, architecture, or
platform (e.g. only on Windows or only for wasm32).

[target.’cfg(windows) ’.dependencies]
winapi = "0.3"

In the context of RVC-CAL application code generation, Cargo provides a
convenient environment for organizing and compiling the generated Rust code.
Once the code is generated, it can be placed into a Cargo project, which handles
compilation, dependency resolution, and execution.

23

3 Methodology and
Implementation

This chapter begins by explaining how a Rust backend is integrated to the existing
dataflow code generator, and explores how Rust can be used to run actor-based
Dataflow Process Networks, focusing on RVC-CAL actor networks.

Followed by presenting two distinct execution schemes, each showing a different
way to apply Rust’s features for this purpose, describing their design, concurrency
models, and scheduling strategies. These schemes serve both as practical imple-
mentations and as case studies for evaluating different models in Rust.

The chapter concludes with an examination of the structure of the generated
Rust code, explaining the role of its main modules and how they work together
to manage actors, channels, and scheduling.

3.1 Methodology

The main goal of this work is to extend an existing C/C++-based dataflow code
generator with a new backend that produces Rust code. This generator takes
RVC-CAL actor definitions and XDF network descriptions, transforms them into
an intermediate representation (IR), applies optimizations, and then outputs exe-
cutable code. While the original backend targeted C and C++, the Rust backend
follows a similar process to maintain compatibility and reuse much of the existing
parsing and analysis logic.

The integration process began by examining the structure of the existing C/C- -+
backend. The goal was to understand how actors, channels, and schedulers were
represented and generated. The Rust backend was then designed to mirror this
structure, ensuring that equivalent functionality existed for actor instantiation,
token communication, and scheduling. This approach simplified the transition,
as the same high-level dataflow analysis and mapping phases could be reused
without major changes.

Actor Generation

The C/C++-backend produces each actor variants as a distinct class. In Rust
does not have classes or a built-in concept of class-based inheritance in the tradi-
tional object-oriented sense. Instead, it provides alternatives that support many

25

3 Methodology and Implementation

of the same principles as OOP, through a combination of structs, traits, and
impl blocks (implementation blocks).

In place of classes, Rust uses structs (short for "structures") to define custom
data types. A struct holds related data together, similar to fields in a class.

struct Actorl {

actor_mname: String,
operand_1: Channel<i64>,
operand_2: Channel<i64>,
result: Channel<i64>,

Listing 3.1: Actor struct

The struct in defines an Actor type with a name and input-output
channels. However, on its own, a struct contains only data and no methods. To
associate methods with a struct, Rust uses implementation blocks. These are
similar to class methods in other languages, allowing methods to be defined on a
struct.

impl Actorl {
fn print_action(&self) {
println!(, self.actor_name) ;

}

Listing 3.2: Implementation block

In this example [Listing 3.2] the print _action method uses self to access the data
inside the Actor struct, much like the this keyword in C++-.

Rust replaces traditional class inheritance with traits, which are similar to
interfaces in languages like Java. A trait defines a set of required methods that
can be implemented by any type.

pub trait Actor {
fn initialize (&mut self) ;
fn schedule (&mut self);
fn is_done (&self) -> bool;

Listing 3.3: Actor Trait

Traits support polymorphism by allowing different types to implement the same

interface in their own way (Listing 3.3|), without relying on inheritance hierar-
chies. This allows each actor variant to have its own initialize and local schedule

implementation ([Listing 3.4]).

26

3.1 Methodology

impl Actor for Actorl {
fn initialize (&mut self){
/*x ... *x/
}
fn schedule (&mut self){
/* ... x/

Listing 3.4: Actor variant impl block

Additionally, while Rust does not use private, protected, or public modifiers,
it offers similar control using the pub keyword. Fields and functions are private
by default and must be explicitly marked as pub to be accessible from outside
the module. This enable to implement a constructor that can be used outside its
actor module. A constructor will be implemented as a new() function inside of

the impl block that returns an instance of the struct (Listing 3.5)).

impl Actorl {
pub fn new(
name: &str,
operand_1: Channel<i64>,
operand_2: Channel<i64>,
result: Channel<i64>,
) -> Self {

Actorl {
actor_name: name.to_string(),
operand_1: operand_1,
operand_2: operand_2,
result: result,

by

/* Actor actions */

¥

Listing 3.5: Actor Constructor

Channel Generation

Communication channels between actors are implemented as bounded FIFO chan-
nels. These are generated using Rust’s libraries (Crossbeam, Tokio mpsc) depend-
ing on the chosen execution scheme.

It uses a struct with impl blocks as well for its methods.

27

V)

3 Methodology and Implementation

Scheduler Generation

The backend produces a global scheduler in main.rs and local schedulers in-
side each actor. These are adapted from the C/C++ backend’s scheduling logic
but implemented using Rust’s concurrency mechanisms (Tokio’s async runtime,
Rayon’s parallel iterators).

Deeper description on Channel and Scheduler Generation will be at the scheme
sections.

Project Structure

The generated Rust project is organized into a modular structure that reflects
both Rust’s conventional project layout and the requirements of actor-based
dataflow execution. This organization will allow the code generator to produce
consistent output regardless of the size or complexity of the RVC-CAL network
being translated.

Cargo.toml // metadata, dependencies, build config
build.rs // script integrating native code
native.dir // dir for native files

src.dir/

- main.rs

- channel.rs // Channel structs and token handling

- actor.rs // Actor trait and shared logic

- actorl.rs // Actor-specific implementation

- actor2.rs
= wooo // Rest of actors

Listing 3.6: Code Organization

At the top level, the Cargo.toml file defines the project’s metadata, depen-
dencies, and build configuration. It specifies the external crates used by the
generated code, such as tokio, rayon, or crossbeam, depending on the selected
execution scheme.

The build.rs script provides an integration point for compiling native C
code when the generated Rust program depends on external native libraries or
performance-critical routines.

For projects requiring low-level native routines, these C source files are placed in
a native/ directory. This separation ensures that platform-specific code remains
isolated from the Rust source files, avoiding accidental mixing of build systems
or language boundaries.

The generated Rust source code resides in the src/ directory, following Rust’s
standard layout. This directory contains the main program entry point, actor
definitions, and channel abstractions.

main.rs acts as the orchestration hub of the program. It initializes all ac-
tors, channels, and schedulers, connects actors according to the parsed network

28

3.1 Methodology

topology, and starts the execution process. The implementation of main.rs differs
between Scheme 1 and Scheme 2.

actor.rs defines the shared Actor trait and common logic used by all actors.
This includes the interface for starting execution, managing ports, and handling
termination signals. By keeping this trait in a separate file, the generator ensures
that all actors stick to a consistent interface, making it easier to integrate them
into different scheduling environments.

actorl.rs, actor2.rs, ... contain the concrete implementations of specific
actors from the original RVC-CAL specification. Each file declares a Rust struct
to hold the actor’s state variables and ports, followed by method implementa-
tions that encode the actor’s finite state machine (FSM) and firing rules. These
modules are automatically generated, with naming conventions that correspond
to the original actor identifiers in the CAL source.

channel .rs implements the communication abstraction used by actors to ex-
change tokens. The exact implementation depends on the selected scheme: for
Tokio, channels are built on top of tokio::sync::mpsc and support asynchronous
send /receive operations, while in the second scheme, with Crossbeam they are
implemented using a lock-free bounded queue (ArrayQueue) and atomic termi-
nation flags.

Build Integration

For systems that combine generated Rust code with existing optimized C code,
integration is achieved using Rust’s Foreign Function Interface (FFI). FFI allows
Rust to call functions defined in external C libraries, enabling interoperability
between the two languages.

A key part of this integration is the build script (Listing 3.7), which runs
automatically before Rust compilation. The script works in three steps. First,
it initializes a compilation context using the cc crate, then it discovers all C
source files in the native directory, and it compiles these files into a static library
(libnative_code.a) and links it with the Rust binary.

fn main() {
let mut build = cc::Build::new();
let mut found_c = false;
for entry in fs::read_dir() .unwrap () {
let path = entry.unwrap().path();
if path.extension().unwrap_or_default () == {
build.file (path);
found_c = true;
}
}
if found_c { build.compile())

Listing 3.7: Build Integration

29

3 Methodology and Implementation

The Rust code then declares the C functions using extern "C" blocks, which
inform the compiler that the function symbols follow the C ABI and should not
undergo Rust name mangling. For example:

extern {
fn source_read_i(buffer: *mut f32, offset: i32, len:
i32);

Listing 3.8: Example Extern C in Rust

In this project, only .c files are included in this FFI integration, excluding
C-++ sources or other languages. This is because the C ABI is standardized and
predictable across compilers, whereas C++ introduces name mangling, exception
handling, and compiler-specific variations.

3.2 Scheme 1: Tokio with async/await

Tokio provides an asynchronous runtime for executing tasks without blocking
threads. In this scheme, each actor is represented as an asynchronous function
(async fn) that awaits input tokens from its inbound channels, processes them
according to its actions, and sends results through outbound channels.

Key characteristics of this scheme:

e Concurrency Model: Cooperative multitasking — tasks yield control using
.await when waiting for input or performing I/0.

e Channels: Implemented with tokio::sync::mpsc, allowing bounded or un-
bounded queues with non-blocking send /receive.

e Scheduling: The Tokio runtime maintains a pool of worker threads, multi-
plexing tasks onto them.

e Termination Handling: Uses Option<T> messages to signal actor shut-
down, ensuring upstream and downstream actors terminate cleanly.

Async Channel

In this scheme communication between actors is handled via bounded async chan-
nels provided by the tokio::sync::mpsc module (Listing 3.9). Each Channel con-
nects one producer (sender) to one consumer (receiver) with a fixed maximum
capacity, ensuring that producers do not overwhelm consumers and that memory
usage remains predictable. Each actor uses these channels to send and receive
tokens wrapped in an Option<T> which is a clean way to signal end-of-stream
without needing a special data value.

A new channel is created using the new channel() function, which returns a
sender and a receiver wrapped in the custom ChannelSender and ChannelReceiver

30

3.2 Scheme 1: Tokio with async/await

structs. ChannelSender exposes an asynchronous write() method that sends a
value into the channel, awaiting until space becomes available or logging a failure
if the channel is closed, in practice this should not happen as the size of free slots
is checked before writing (with the free() method Line-24). ChannelReceiver
provides an asynchronous read() method for retrieving tokens, as well as utility
functions (size(), max_size()) to query available capacity and checking channel
termination (is_terminated(), is_empty()).

use tokio::sync::mpsc::{self, Receiver, Sender};

pub struct ChannelSender<T> {
sender: Sender<T>,
max_size: usize,

pub struct ChannelReceiver <T> {
receiver: Receiver<T>,
max_size: usize,
}
pub fn new_channel<T>(max_size: usize) ->
(ChannelSender <T>, ChannelReceiver<T>) {
let (sender, receiver) = mpsc::channel (max_size);
(
ChannelSender { sender, max_size 1},
ChannelReceiver { receiver, max_size },

impl<T> ChannelSender <T> {
pub async fn write(&self, value: T) {
if let Err(_) = self.sender.send(value).await {
println!()

pub fn free(&self) -> usize {
self .sender.capacity ()

27| }

impl<T> ChannelReceiver<T> {
pub async fn read(&mut self) -> Option<T> {
self .receiver.recv() .await

pub fn size(&self) -> usize {
self .receiver.len()

pub fn max_size (&self) -> usize {
self .max_size

31

3 Methodology and Implementation

pub fn is_terminated(&self) -> bool {
self .receiver.is_closed ()

}
pub fn is_empty (&self) -> bool {
self .receiver.len() == 0
}
}
Listing 3.9: Async Channel
Actors

Actors in both Schemes are expressed as Rust structs that implement a shared
trait, Actor, defined in actor.rs. This trait prescribes three essential methods
. The initialize(&mut self) method performs any one-time setup
needed before execution begins, such as configuring state variables or calling
external initialization routines. The schedule(&mut self) method, declared as
asynchronous, represents the actor’s execution body and is repeatedly invoked
until the actor reports completion. The final method, is_done(&self), indicates
whether the actor has finished processing and no longer requires scheduling. By
adhering to this trait, all actors—regardless of their specific behavior—can be
managed by the same scheduling and control logic generated by the backend.

In case of Tokio the schedule(&mut self) method is declared as async because
the entire execution model is built on top of Tokio’s asynchronous runtime, which
expects tasks to be Futures that can yield control back to the runtime while
waiting.

pub trait Actor {
fn initialize (&mut self);
async fn schedule (&mut self);
fn is_done (&self) -> bool;

5| ¥

Listing 3.10: Async Actor Trait

A representative example of a generated actor can be illustrated in[Listing 3.11]
This actor generalizes the concept of a stateful dataflow component with input
and output channels, an internal state machine, and the ability to call native
functions.

The first block pub struct Actoril{...} represent everything the actor needs
to do its work, from parameters (initial_sample, actor_name), internal work-
ing variables (Counter, current_state, done), to the communication channels
it reads from and writes to (operand_1, result).

The impl Actori{...} block is where the methods or actions that belong only
to this actor are defined. The new() function here is a constructor-style function
that initializes all fields and returns an actor ready for use. Rust has no special

32

3.2 Scheme 1: Tokio with async/await

constructor keyword, so we just make a regular public function new that returns
Self. The action() method represents part of the actor’s computation logic. It
does some processing (e.g., calling native function or computations), and writes
the result to the output channel. The input channel (operand 1) is been read
during local scheduling and the token is passed as a parameter to the action, in
this example x. The final block impl Actor for Actori{...} is like a public
interface implementation so the runtime can schedule and manage the actors.

use crate::actor::Actor;
use crate::channel::{ChannelReceiver, ChannelSender};
// Native function
extern {
fn native_function(ind: i32) -> i64;

}

// FSM

pub enum FSM {
s_init,
s_run,

}

pub struct Actorl {
// Actor Parameters
initial_sample: 132,
Counter: i32,
actor_name: String,
done_fla: bool,
// FSM
current_state: FSM,
// Input Channels
operand_1: ChannelReceiver<i64>,
// QOutput Channels
result: Option<ChannelSender<i64>>,

}

5|impl Actorl {

// Constructor to create a new instance
pub fn new(
name: &str,
initial_sample: 132,
operand_1: ChannelReceiver<i64>,
result: ChannelSender<i64>,
) -> Self {
Actorl {
Counter: O,
actor_name: name.to_string(),
done_fla: false,
current_state: FSM::s_init,
initial_sample: initial_sample,

33

3 Methodology and Implementation

N

10

operand_1: operand_1,
result: Some(result),,

}
}
pub async fn start(&mut self) {
/* L. %/
}
pub async fn run(&mut self, x: i32) {
/* .. %/
if let Some(sender) = &self.result {
sender .write((res).try_into () .unwrap()).await;
}
}

}
impl Actor for Actorl {
fn initialize (&mut self) {

println!(, self.actor_name);
}
async fn schedule (&mut self) {

/* .. %/
}

fn is_done (&self) -> bool {
self .done

Listing 3.11: Actorl.rs Tokio

Initialization in Main

main.rs is responsible for creating all channels according to the network topol-
ogy, instantiating each actor with the appropriate parameters, invoking their
initialize() methods and calling the appropriate global scheduling.

/ *
* Creates a thread pool (default: number of CPU cores)
* Async tasks are scheduled across multiple 0S threads
* /
#[tokio::main(flavor =)]
async fn main() {
// Initialize channels
let (Actor_1_sourcel, Add_array_Inputl)
new_channel::<i8>(CHANNEL_SIZE) ;
let (Actor_2_source2, Add_array_Input2)
new_channel ::<i8>(CHANNEL_SIZE) ;
let (Add_array_Output, Actor_3_result) =

new_channel::<i8>(CHANNEL_SIZE) ;

34

3.2 Scheme 1: Tokio with async/await

// Initialize actors

let mut Actor_1 = Actorl::new(, Actor_1_sourcel);
Actor_1.initialize();
let mut Actor_2 = Actor2::new(, Actor_2_source?2);
Actor_2.initialize () ;
let mut Actor_3 = Actor3::new(, Actor_3_result);

Actor_3.initialize () ;

let mut Add_array = Add::new(,
Add_array_Inputl, Add_array_Input2, Add_array_QOutput);

Add_array.initialize();

Listing 3.12: Channels and Actor Instances Initialization

Scheduling

Scheduling operates on two distinct but complementary levels: local scheduling
within each actor and global scheduling at the network level. Together, they
ensure that actors execute their logic in the correct order, exchange tokens effi-
ciently, and terminate cleanly once the computation is complete and no token are
left in it. Within each actor, local scheduling is implemented in the schedule ()
method defined by the Actor trait [Listing 3.13|

This method acts as the actor’s private runtime, examines its current FSM
state to decide which computational action to perform, checks ports readiness by
querying the input channels to determine if enough tokens are available, and if
there is enough space to fire an action, executes the action (such as run()) only
if all preconditions are satisfied, ensuring compliance with RVC-CAL firing rules,
and updates internal state — this might mean changing the FSM state (e.g.,
from s _init to s run) or setting the done flag if the actor detects that all inputs
are terminated and no more tokens will arrive. The loop is only invoke during
Non-Preemptive scheduling to let the actors fire as long as they can.

async fn schedule (&mut self) A
loop {
FSM::s_run => {
// if token is available in channel
if (self.operand_1.size() >= 1) {
// check action guard
if (self.Counter < 10)) {
if let Some(ref sender) = self.result {
// check free space in output channel
if sender.free() >= 1 {
match (self.operand_1.read().await) {
(Some (operand_1_param)) => {
self .run(operand_1_param) .await;
self.current_state = FSM::s_run;

35

3 Methodology and Implementation

}

_ =>4 // this should never happend
as we already check for token
availability

break;
}
} else {
break; // break from current loop

}

+
} else {

break;

}
// if channel is empty and the producer
his work
} else if self.operand_1.is_terminated() &&
self .operand_1.is_empty () {

self .result = None;
self .done_flag = true;
break;

}

}

finished

Listing 3.13: Scheme 1 Local Scheduler Example

While local scheduling governs what happens inside an actor, global schedul-
ing coordinates when each actor is given CPU time in the network. The Code
generator gives the possibiblity for two scheduling strategies, Non-Preemotive
scheduling and Round-Robin Scheduling.

The default scheduling strategy is Non-Preemptive, where actor instances ex-
ecute as long as they can fire, only after all possible firings are done they return
to global scheduling . Here, each actor is wrapped inside a Tokio
spawn__blocking task, which allows blocking code to run on a dedicated thread
pool without freezing the async runtime. Each of these tasks runs the actor’s
schedule() loop until the actor signals completion.

Once all actor tasks have been spawned, the program waits for their completion
using taskl.await.unwrap().

.await pauses execution until the corresponding task finishes, ensuring that all
actors complete their work before the program continues. This prevent premature
termination — without it, the main function could return before all actors have
processed their remaining tokens. The .unwrap() call then checks the result of
the task: if the actor’s task panicked or was cancelled, .unwrap() will trigger a
panic in main, making the error visible rather than silently ignored.

T

36

3.2 Scheme 1: Tokio with async/await

// Non-Preemtive Scheduling
let taskl = tokio::task::spawn_blocking(move || {
tokio::runtime::Runtime::new () .unwrap().block_on(async {
while !Actor_1.is_done() {
Actor_1.schedule () .await;
}
3);
1) 8
let task2 = tokio::task::spawn_blocking(move || {
tokio::runtime::Runtime::new () .unwrap().block_on(async {
while !Actor_2.is_done () {
Actor_2.schedule () .await;
}
1)
1) 5

taskl.await.unwrap();
task2.await.unwrap () ;

Listing 3.14: Non-Preemtive Scheduling

The second scheduling approach uses Round-Robin strategy, where each actor
gets to fire once, and the scheduler moves on to the next iteration ([Listing 3.15]).
This is achieved using tokio::join!, which allows multiple asynchronous tasks to
be executed concurrently and waited on as a group. In each iteration of the loop,
every actor is checked: if it is not yet finished, its schedule().await method is called
exactly once. The actor then yields control back to the scheduler, regardless of
whether it still has work to do. This ensures that all actors are treated fairly and
that no single actor monopolizes execution time.

The tokio::task::yield now().await at the end of the loop explicitly yields back
to the Tokio runtime, allowing other tasks (including internal runtime tasks such
as actor message passing) to proceed before the next scheduling cycle.

loop {
let (al_done, a2_done) = tokio::join!(
async {
if tactorl.is_done() {
actorl.schedule () .await;

}
actorl.is_done ()
},
async {
if lactor2.is_done() {
actor2.schedule () .await;
}
actor2.is_done ()
},

37

3 Methodology and Implementation

);

if al_done && a2_done {
break;

3

tokio::task::yield_now() .await;

Listing 3.15: Round-Robin Scheduling

3.3 Scheme 2: Rayon with Crossbeam

Scheme 2 implements the generated actor network using a thread-pool, work-
stealing execution model provided by the Rayon library and Crossbeams lock-free
queues. This approach targets CPU-bound workloads and aims to maximize core
utilization by running actors as synchronous tasks on a global thread pool.

Crossbeam Channel

Channels are implemented using the crossbeam::queue::ArrayQueue data struc-
ture, which is a bounded, lock-free FIFO queue. The choice of ArrayQueue is
motivated by its low overhead and predictable performance under high contention,
to be suitable for real-time dataflow execution.

The Channel struct is a thin wrapper around ArrayQueue that also main-
tains metadata about capacity, termination state, and queue statistics. Wrap-
ping the queue in Arc permits safe shared ownership between multiple actors
across threads without copying the buffer itself. The AtomicBool termination
flag provides a lightweight, race-free way for producers to announce that no fur-
ther tokens will be created, and readers can observe this flag and decide to shut
down when the queue is empty.

By encapsulating both queue operations and termination logic in a single struct,
the Channel type provides a clean abstraction that is easy for the code generator
to target. Generated actors only need to depend on this structure, without direct
knowledge of Crossbeam’s internals.

use crossbeam::queue::ArrayQueue;
use std::sync::{atomic::{AtomicBool, Orderingl},Arc,};

#[derive (Clone)]
s|lpub struct Channel<T> {

queue: Arc<ArrayQueue<T>>,
max_size: usize,
terminated: Arc<AtomicBool>,

38

3.3 Scheme 2: Rayon with Crossbeam

impl<T>
pub

pub

pub

pub

pub

Channel <T> {

fn new(max_size: usize) -> Self {

Channel {
queue: Arc::new(ArrayQueue::new(max_size)),
max_size,
terminated: Arc::new(AtomicBool::new(false)),

fn write(&self, value: T) -> Result<(), T> {
self .queue.push(value)

fn read(&self) -> Option<T> {
self.queue.pop ()

fn terminate (&self) {
self.terminated.store(true, Ordering::Release);

fn is_terminated (&self) -> bool {
self.terminated.load (Ordering::Acquire)

fn size(&self) -> usize {
self.queue.len ()

fn free(&self) -> usize {
self .max_size - self.size()

fn is_empty (&self) -> bool {
self.queue.is_empty ()

fn is_full(&self) -> bool {
self.queue.is_full ()

fn max_size (&self) -> usize {
self .max_size

Listing 3.16: Crossbeam Channel Struct

The channels methods can be defined as such:

e new: create a new channel with the requested bounded capacity.

e write: attempts to push a token into the queue and returns the token back
on failure (e.g., if the queue is full).

e read: pops a token if available and returns None when empty.

39

3 Methodology and Implementation

terminate: sets the termination flag so that subsequent readers can see
both the flag and prior writes.

is_terminated: returns the termination flag.

size: returns current number of elements in the buffer.
free: return number of free slots.

is_empty: checks if the channel is empty.

is_full: checks if the channel is full.

max_size: returns total channel capacity.

Actor

Unlike with Tokio, Rayon requires Send + Sync, which is important to ensure
that actor instances can be shared across threads (or referenced safely) and that
the runtime can call actor methods from the Rayon thread pool. Requiring Send
+ Sync at the trait level forces generated actor types to satisfy Rust’s concurrency
guarantees at compile time; if an actor contains a non-Send resource, the code
will not compile, surfacing concurrency issues early.

pub

trait Actor: Send + Sync {
fn initialize (&mut self);
fn schedule (&mut self);

fn is_done (&self) -> bool;

Listing 3.17: Actor trait Rayon

A generated actor will have the same structure as from schemel,
the difference lies in the type of channels, input token are read from inside the
action and not passed as parameters, how channel method are dealt with, and
the local scheduling structure.

use
use
/ *

pub

crate::actor::Actor;

crate::channel::Channel;
* /

struct Actoril {

VA T

// Input Channels

operand_1: Channel<i64>,

// QOutput Channels

result: Channel<i64>,

impl Actorl {

40

3.3 Scheme 2: Rayon with Crossbeam

VA T Y/
pub fn run(&mut self) {
let x = self.operand_1.read() .unwrap();
/* oo %/
self .result.write((res).try_into () .unwrap());
}
}
impl Actor for Actorl {
/x . %/
}

Listing 3.18: Actorl.rs Rayon

Initialization in Main

In Scheme 2 (Rayon + Crossbeam), to be able to pass a channel to more than
one actor it has to be cloned. The reason has to do with shared ownership of
the same FIFO between multiple actors, and the fact that in Rust, only one
owner can hold a value at a time unless it is wraped in a smart pointer like Arc.
Because the channel struct derives Clone, calling .clone() does not duplicate the
underlying queue; instead, it increments the reference count and makes another
handle pointing to the same shared buffer and termination flag. This means that
all cloned Channels refer to exactly the same FIFO — if one actor writes to it,
another actor with a cloned reference can read from it.

After calling initialize() on all actor instances, the program organizes them into
a collection Vec<&mut dyn Actor> that will be passed to the global scheduler.

fn main() {

// Initialize channels

let Actor_1_sourcel_Add_array_Inputl
Channel ::new (CHANNEL_SIZE) ;

let Actor_2_source2_Add_array_Input2
Channel ::new (CHANNEL_SIZE) ;

let Add_array_Output_Actor_3_result =
Channel ::new (CHANNEL_SIZE) ;

// Initialize actors

let mut Actor_1 = Actorl::new(s
Actor_1_sourcel_Add_array_Inputl.clone());

Actor_1.initialize();

let mut Actor_2 = Actor2::new(s
Actor_2_source2_Add_array_Input2.clone());

Actor_2.initialize () ;

let mut Actor_3 = Actor3::new(,
Add_array_QOutput_Actor_3_result.clone());

Actor_3.initialize();

41

3 Methodology and Implementation

let mut Add_array = Add::new(
Actor_1_sourcel_Add_array_Inputl.clone(),
Actor_2_source2_Add_array_Input2.clone (),
Add_array_Output_Actor_3_result.clone(),
)

Add_array.initialize () ;
let mut actors: Vec<&mut dyn Actor> =
vec ! [&mut Actor_1, &mut Actor_2, &mut Actor_3, &mut
Add_array];

glonal_scheduler (&mut actors) ;

Listing 3.19: main.rs Scheme 2

Scheduling

As mentioned before, here the local scheduler differs from previous scheme in the
semantics of dealing with channels reads and termination conditions.

schedule (&mut self) {
loop {
FSM::s_run => {
if (self.operand_1.size() >= 1) {
if (self.Counter < 10)) {
if (self.result.free() >= 1) {
self .run () ;
self.current_state = FSM::s_run;
} else {
break;
}
} else {
break;
}
} else if self.operand_1.is_terminated () &&
self.operand_1.is_empty () {
self .result.terminate () ;
self .done_flag = true;
} else {
break;

Listing 3.20: Local scheduler Scheme 2

42

N

w

3.3 Scheme 2: Rayon with Crossbeam

For the global scheduler, Rayon uses as well an internal thread pool to man-
age work distribution, so CPU cores are fully utilized, additionally scheduling
overhead of constantly creating and destroying threads is avoided.

Rayon allows to use .par_iter mut(), wich automatically runs schedule() in
parallel across available CPU cores, with no manual thread spawning, locking, or
task management.

It ensures data race safety via Rust’s ownership model. We can only call
.par_iter mut() if the borrow checker confirms no two threads can access the
same data mutably at the same time. When the actors are independent, each
with their own internal state and references to channels. Rayon can run their
schedule() methods in parallel without issues, as long as shared resources (like
channels) are thread-safe (which are, via Arc and AtomicBool).

// Non-preemptive Scheduling
fn glonal_scheduler (actors: &mut [&mut dyn Actor]) {
loop {
if actors.iter().all(lactor| actor.is_done()) {
break;
}
// each actor gets to fire as long as it can
actors.par_iter_mut () .for_each(lactor| {
while !actor.is_done() {
actor.schedule () ;

P

j|// Round-Robin Scheduling

fn glonal_scheduler (actors: &mut [&mut dyn Actor]) {
loop {
if actors.iter().all(lal a.is_done()) {
break;
}
// each actor gets to fire once per round
actors.par_iter_mut () .for_each(|lactor| {
if tactor.is_done() {
actor.schedule () ;

P

Listing 3.21: Global Scheduler Scheme 2

43

3 Methodology and Implementation

3.4 Rust’s Syntax Sensitivity and Type Strictness

An important aspect of implemention in Rust is dealing with the language’s strict
type system and syntax rules. Unlike more permissive languages such as C or
C++, Rust enforces precision in how values are declared, transformed, and used.
This strictness plays a central role in preventing bugs, but it also means that
small mismatches in types or syntax leads to compilation errors.

For example, Rust differentiates carefully between integer types like i8, 132, and
i64. While in C or C++ implicit type promotion often occurs without explicit
casting, even if narrowing may introduce subtle bugs since it can lose data silently.

// implicit widening
signed char a = -5;

3signed int b = a;

5| // implicit narrowing

signed int a = 300;
signed char b = a;

Listing 3.22: Implicit Conversions in C+-+

In this example during widening conversion, signed char (range -128 to 127)
is implicitly converted to int (range -2,147,483,648 to 2,147,483,647). No data
is lost, because the destination type can represent the full range of char. In the
other hand with narrowing conversion, even though it will compile, the behavior
may not be what it was expected, because the char type cannot represent all
possible values of int. The value 300 does not fit in a signed 8-bit char, so on
most compilers b becomes 44 (300 mod 256 = 44)

Rust requires explicit conversions. A variable of type 132 cannot be directly
assigned to a variable of type i8 without using methods such as .try_into() or
as. This strictness ensures that narrowing conversions, which could otherwise
cause data loss or overflow, are made intentional.

let a: i8 = -5;
let b: 132 = a as i32; // widening
let a: i32 = 300;
s|let b: i8 = a as 1i8; // narrowing, result = 44

Listing 3.23: Implicit Conversions in Rust

When sending tokens into a channel, the try_into() method is used to ensure
that the value being written has the correct type. This is necessary because actors
may operate with different integer precisions.

channel .write((b).try_into () .unwrap());

The try_into() method attempts to convert the value into the target type,
returning a Result that must then be unwrapped or handled. The unwrap()

44

3.4 Rust’s Syntax Sensitivity and Type Strictness

is used to directly extract the converted value, under the assumption that the
conversion will succeed within the expected token ranges.

However, using unwrap () is risky, if the conversion fails (e.g., when converting
an 132 value outside the range of i8), the program will panic at runtime. In
practice, this risk is considered acceptable in the generated code because the
actor definitions and network semantics typically guarantee that token values
stay within valid bounds. This approach intends to avoid cluttering the generated
code with unnecessary error-handling logic, while still benefiting from Rust’s type
safety during development.

Another example is array and vector handling. Rust requires array sizes to
be fixed at compile time, written as [T; N| (T is the element type and N is the
length), whereas dynamic collections are expressed using Vec<T> type, which is
heap-allocated and can grow or shrink at runtime.

let arr: [i32; 3] = [1, 2, 3]; // fixed-size of length 3

311let mut vec: Vec<i32> = Vec::new();

vec.push (10) ;
vec.push (20) ;

Listing 3.24: Rsut Dynamic Collection Example

Unlike in C/C++, where arrays and pointers can often be mixed freely, Rust
enforces a strict separation between [T; N| and Vec<T>. Mixing these two struc-
tures without explicit conversion is not allowed. For example, the following will
not compile:

let arr: [i32; 3]
let vec: Vec<i32>
found [i32; 3]

(1, 2, 31;
arr; // error: expected Vec<i32>,

Listing 3.25: Mixing Array and Vector Example

In the Rust backend, explicit conversions between arrays and collections were
not implemented. Instead, Vec<T> collections were preferred for handling cases
like list comprehensions that occur in FIFO buffers, they provide more flexibility
since their size does not have to be fixed.

For example of this case in RVC-CAL might be such as:

action input :[c_in] ==> output :[[n * n : for int n in
0 .. 31]] repeat 32
end

Listing 3.26: List Comprehension in FIFO buffer RVC-CAL

This action reads one token from c¢_in, generates a list of the squares of numbers
0 to 31, sends it to output, and repeats this process 32 times. In Rust, this is
naturally represented using Vec<T>:

45

3 Methodology and Implementation

pub fn actionl (&mut self) {

let c_in = self.input.read () .unwrap();

let mut symb_0: Vec<i8> = Vec::new();

for n in 0..=31 {
symb_O.push(n * n);

}

let mut _2 = 0;

while _2 < 32 {
self.output.write ((symb_0[_2]).try_into () .unwrap());
2 += 1;

Listing 3.27: Handling List Comprehension in FIFO buffer for Rust

The same principle applies to ownership and borrowing. A function expecting
an immutable reference &T will not accept a mutable one &mut T, and vice versa,
without an explicit design decision. These rules may initially appear restrictive
but guarantee that generated code is free of undefined behavior.

46

4 Ewvaluation

4.1 Benchmarking

To assess the performance of the resuling Rust code, we conducted a series of
benchmarks comparing both Rust versions with the original C++. Both backends
were used to generate executable code for the same set of RVC-CAL applications,
from the ORC-App [18|. The generated code was then compiled and executed
under identical conditions to ensure a fair comparison. For rigorous evaluation,
execution time was measured across multiple runs (100) to provide a reliable
estimate of typical performance. From these runs, we computed the average
execution time and standard deviation, which reflect both the central tendency
and the variability of the program’s performance.

Benchmark Setup
e Hardware: AMD Ryzen 5 5500U with Radeon Graphics (2.10 GHz)

e RAM: 16 GB

e Rust code compiled with release build (cargo build —release)
e C++ code compiled with Optimize Using MinGW -0O3 flag
e Benchmark with PowerShell, a skript that uses

(Measure-Command { .\app.exe }) for multiple runs

As of now the Rust backend does not handle type conversion in all cases. For
this reason, to be able to perform the benchmarking the files were manually
modified. Additonally, the code generator does not currently support multiple
reads from the same port, to avoid this, duplicator actors are integrated to the
network when needed. These actors take tokens and just resend them through
multiple output ports.

4.1.1 ZigBee Multitoken Transmitter

This project contains RVC-CAL descriptions of the IEEE 802.15.4 multitoken
transmitter. The network consists of six actor instances: a source that gener-
ates payload bits, actors that perform header addition, chip mapping, QPSK
modulation, and pulse shaping, connected sequentially, and a sink that collects

47

4 FEvaluation

the processed output and signals completion. The overall dataflow structure is

illustrated in the following [Figure 4.1}
headerAdd_inst
chipMapper_inst
pulseShape_inst

end

Figure 4.1: ZigBee Graph

For the inputs we used the already provided input signals (174 samples) in the
project, and a Non-Preemptive strategy for scheduling. To evaluate performance
for a larger batch of inputs we created additional input signals with 17,400 tokens.
The following table shows the results for this benchmark:

Rust-Rayon Rust-Tokio C++
Avg Time (ms) | 2452.95 2924.97 2040.97
Std Dev (ms) | 189.47 178.94 08.62

Table 4.1: ZigBee Multitoken Transmitter Results

The results indicate that the C++- backend outperforms both Rayon and Tokio.
This is mainly due to the scheduling strategies on a predominantly sequential
network, where the actor pipeline has limited opportunities for parallel execution.
Although Rayon and Tokio both provide efficient concurrency, they are designed
to handle arbitrary parallelism. Rayon’s work-stealing and Tokio’s task polling

48

4.1 Benchmarking

happen even when there is no parallel work, so their machinery adds overhead
that is not needed.

The C++ backend uses a general-purpose multithreaded scheduler. It spawns
multiple threads that continuously scan all actors and execute them whenever
possible. While this approach adds synchronization overhead, it remains rela-
tively efficient due to the lower runtime costs of raw C++ threads and lock-free
channels.

4.1.2 Digital Predistortion DPD

This system implements a digital predistortion block system based on polynomial
with FIR filtering. The network includes 9 actor instances: a source that reads
samples in batches, Poly instance that generates multiple nonlinear basis signals,
five FIR instances applie specific coefficients, adder instance combines the outputs
of all FIR branches into the final signals, and the sink instance writes the samples

into output files

Figure 4.2: Digital Predistortion DPD Graph

The provided two input files from this project were concatenated, resulting in
a total of 40,000 samples. Same as previously, Non-Preemptive strategy is used
for scheduling. The shows the results.

Unlike previous benchmark the DPD system has five FIR actors operating in
parallel. Tokio does not perform as well as Rayon because its model is primarily

49

4 FEvaluation

Rust-Rayon Rust-Tokio C++
Avg Time (ms) 90.62 128.99 74.12
Std Dev (ms) 34.54 42.33 13.73

Table 4.2: Digital Predistortion Results

designed for asynchronous I/0 rather than CPU-bound computations, and most
DPD actors execute many mathematical operations on large arrays.

Both Rayon and Tokio introduce some overhead due to safety checks, owner-
ship rules, and abstractions for parallelism (like work-stealing queues and bounds
checking). Additionally, data conversion between channels and actor inputs/out-
puts may add extra copying or synchronization that C+-+ avoids. These points
can explain why Rayon execution time is slightly higher than C++.

4.1.3 Digital Filter FIR

This project contains RVC-CAL descriptions of the FIR (Finite Impulse Re-
sponse) filter. The network contains 16 actor instances, including delays, multi-
pliers, adders, and shift operations, with a source generating input samples and
a sink collecting the filtered output .

The provided inputs from this project are concatenated (163400 samples).

For FIR Non-Preemptive scheduling is a poor choice in case of Rayon, due to
actors monopolizing the worker threads. Rayon’s thread pool is based on work
stealing, meaning a fixed number of threads are created once and reused. Each
thread owns a local queue of tasks, and when it runs out of from, it tries to steal
tasks from other threads. When each thread has an idle actor (local scheduler
is continuasly invoked but no action is fired and no change of internal state) it
cannot run other tasks assigned to it, and the execution of the system does not
terminate properly.

The others avoid this hogging problem, where Tokio uses blocking thread pool
that can spawn more threads if some threads are blocked. In opposition, C+-+’s
global scheduler runs every thread continuously over all actors.

Round-robin scheduling enforces a switch after each actor fires once, even if it
could keep firing, and that makes it more suitable for this case.

Rust-Rayon Rust-Tokio C++
Avg Time (ms) | 2079.63 309.79 268.59
Std Dev (ms) 74.67 9.419 39.30

Table 4.3: Digital Filter FIR Results

The results from show that C++ implementation achieves the fastest
execution, Rust-Tokio version slightly slower than C+-+ yet still reasonably effi-
cient, but Rayon performs the worst.

20

4.1 Benchmarking

Figure 4.3: Digital Filtering FIR Graph

Although Rayon parallelizes actor execution across threads, the fixed thread
pool may contribute to the high overhead. To investigate this, we repeated the
benchmarking of Rayon with different numbesr of worker threads using
rayon: :ThreadPoolBuilder.

ThreadPoolBuilder::new ()
.num_threads (10)
.build_global ()
.expect () g

Listing 4.1: Configure Rayon to use 10 threads Example

o1

4 FEvaluation

2,000 - :

—_
(SN
=}
)

I
|

1,000 :

Execution Time (ms)

200 :

—— Average Time (ms)
| | | | I I I

1 2 4 6 8 10 12
Number of Threads

Figure 4.4: Execution time of Rayon with varying number of threads.

The shows that increasing the number of working threads leads to
worse performance. With a single thread, execution time is the lowest (due to
the network been mostly sequential), but as more threads are added, the runtime
increases steadily. In the first benchmark Rayon used 12 threads by default (AMD
Ryzen 5 5500U is a 6-core, 12-thread CPU). This happens because larger number
of threads leads to more pooling and work-stealing between the them.

4.1.4 Digital Filter LMS

This project contains RVC-CAL descriptions of the adaptive LMS(Least Mean
Squares) filter and uses actors from same packege as FIR. The network consists
of 68 edges and 49 actor instances: two sources that generate the inputs, a sink
that writes the outputs, and the rest of the instances perform operations such as
addition, subtraction, multiplication, and bitwise shifts. The dataflow structure
is illustrated at the end of this section (Figure [4.1]).

The Round-Robin scheduling strategy was used here as well for the same rea-
sons as previous benchmark and additionally because there is cycles in the net-
work. The original inputs (two files with 16340 token each) were multiplied ten
times for a larger batch of inputs. For Rayon we test it with 4-threads as well
because C++ backends uses 4-threads by default.

The results in are similar to the FIR case but with an even larger
execution gap between Rayon and the other backends. Reducing Rayon’s thread
count to 4 improves its performance, yet it still remains slower. This again
highlights the overhead of Rayon’s work-stealing thread pool when applied to
dataflow networks with large sequential dependencies.

52

4.1 Benchmarking

Rust- Rust- Rust- C++
Rayon Rayon Tokio
12-threads | 4-threads

Avg Time (ms) 17573.85 4254.19 2504.95 1934.50

Std Dev (ms) 471.23 284.60 75.54 464.61

Table 4.4: Digital Filter LMS Results

Figure 4.5: Digital Filtering LMS Graph

93

4 FEvaluation

4.1.5 Discussion of Results

The results of the benchmarking show relative performance between Rust back-
ends and C++, which can be explained by the way the languages are designed,
how the compilers optimize code, and how each language handles memory and
concurrency.

For C++ we used the -O3 option [30], which tells the compiler to perform
many aggressive optimizations that include things like combining multiple in-
structions into one, resulting in removing repeated calculations, predicting loops
ahead of time, and rearranging code to make better use of the memory. In Rust,
cargo build -release passes -C opt-level=3 to LLVM, which almost works as
an equivalent to -O3 in C++. This also enables the compiler to apply many
optimizations but the key difference is that Rust prioritizes safety, so it includes
extra checks to prevent mistakes such as causing data races and dealing with
type conversions [31]. These safety checks stay most of the time in the compiled
code in contrast, to C++ optimization that allows for more freedom and often
removes these checks entirely. This means that, even though both cargo build
—release and g++ -O3 enable optimization, C++ code can run slightly faster
because it skips certain instructions, while Rust code might run a little slower to
ensure it is memory-safe and free of common errors.

Type conversion adds a slight overhead as well. Taking the following example
if type conversion is performed on z and ¢ we can distinguish between three cases.

let x: i32 = (z as _) + (c as _) ;

e all 3 variables have the type 132, the conversion makes no difference to the
performance. LLVM optimizes away the redundant casts of conversion as
if it was not set.

e 7 or ¢ have different integer type (e.g., i8, u64) it adds a single instruction
for conversion.

e 7 or ¢ have float type (e.g., £32) float to integer conversion, which is more
expensive than integer widening/truncation because it involves multiple
low-level steps such as rounding the float to the nearest integer.

Using FFI, Rust and C code are able to work together, but it can decrease the
performance. Calling C functions from Rust through extern "C" adds a small
overhead because Rust must follow the C ABI for argument passing and return
values. This cost is usually negligible for operations like reading or writing data
blocks, but it can become noticeable in very small, frequent tasks, like calling a
C function during every single firing.

However, C and Rust are different languages, therefore not all C operations
map directly to Rust syntax or semantics. For example, some C functions may

o4

4.1 Benchmarking

use pointers or memory operations that Rust handles differently. This means it
is often needed to adjust the C code so that it aligns with Rust.

Threading and scheduling strategies may further amplify these differences. As
mentioned before, with Rayon idle threads steal tasks from busy ones to balance
the load, this should help performance but depending on the structure it may
instead introduce overhead, as previously seen with predominantly sequential
networks.

Tokio, on the other hand, through spawning additional threads when needed, it
performs better than Rayon with sequential networks. However because it’s model
was designed for asynchronous I/O-bound tasks, it can worsen the perforamnce
when faced with heavy CPU-bound computations.

Nevertheless, the C+-+ backend outperformed both Rayon and Tokio across
all the benchmarks. This can be attributed to its lightweight multithreaded
scheduling, along with the use of raw threads and lock-free channels. These
features reduce synchronization costs, enabling efficient execution.

95

5 Related Work

Several frameworks have been developed to support code generation and dataflow
programming. Most of these tools primarily target languages like C, C++ or java,
particularly for parallel computing.

PREESM is an open-source framework for rapid prototyping of signal pro-
cessing applications [32]. It takes synchronous dataflow (PiSDF) models and
architecture descriptions as input and generates optimized parallel C or C++
code. Its main strength lies in automatically handling mapping and scheduling
on multicore Digital Signal Processors (DSPs) and CPUs, In a similar domain,
MAPS designed for modeling actor-based dataflow applications for heterogeneous
embedded platforms. It analyzes performance models and emits optimized C code
for multicore processors or DSP systems [33] [3].

StreamBlocks is another open-source compiler for heterogeneous dataflow com-
puting. It uses CAL dataflow specifications to generate C+-+ code for software
execution and hardware descriptions for FPGA deployment. [34].

All these tools focus on non-Rust targets. On the Rust side, frameworks like
Timely Dataflow provide a parallel and cyclic dataflow runtime written in Rust,
designed for low-latency and scalable execution [35]. Timely allows fine-grained
progress tracking and scales from single-threaded to cluster environments, but it
requires users to implement the graph by manully and does not compile external
model specifications.

Suki is an embedded Rust domain-specific language (DSL) [36]. It is designed
for distributed and choreographed dataflow, allowing users to explicitly place com-
putations and compile them into zero-overhead binaries. However, the dataflow
must still be written in Rust directly, as Suki does not translate external models.

Hydro is a Rust-based framework for building distributed and concurrent pro-
grams using a dataflow-inspired approach [37] [38]. It uses an internal interme-
diate representation called DFIR (Dataflow Intermediate Representation), which
allows the framework to represent computation as a graph of interconnected op-
erations. Hydro leverages DFIR to optimize and manage execution within Rust,
enabling efficient parallelism and task scheduling. However, Hydro is designed for
programs written directly in Rust and does not provide a backend to translate
external dataflow specifications.

In summary, although many frameworks exist for dataflow programming, there
is currently no tool that can automatically translate external dataflow specifica-
tions, such as RVC-CAL, directly into Rust code.

57

6 Conclusion

In this thesis, we have presented the design and implementation of a Rust backend
for a dataflow code generation framework targeting RVC-CAL applications. The
main goal was to explore whether Rust could serve as an efficient target language
for automatically generated dataflow programs, while preserving concurrency and
safety. By extending the existing C++ code generator, we were able to produce
Rust code using two different approaches, both capable of executing dataflow
networks with multiple actors, channels, and scheduling strategies.

We evaluated the Rust backends through benchmarks against the original C++
implementation. The results showed that both Rust versions performed poorly in
cases of networks dominated by sequential actors. This is because their schedul-
ing mechanisms are designed for arbitrary parallelism, which adds overhead by
trying to manage parallel execution even when the workload is mostly sequential.
Furthermore, Rayon outperformed Tokio on CPU-bound tasks, while Tokio was
more effective for I/O workloads.

From these results, we conclude that no single scheduling strategy is optimal
for all applications. The best choice depends on the network structure and the
type of computations executed by the actors.

Looking ahead, several directions could further improve the this work. First,
optimizations in the code generation process could improve runtime performance.
Techniques such as actor fusion, token batching, or zero-copy channel communi-
cation could reduce overhead and improve throughput, particularly for networks
with large numbers of tokens or frequent interactions between actors.

Another future work would be exploring alternative concurrency paradigms
that can improve performance for different types of networks. For example Hybrid
approaches combining asynchronous tasks and Parallel / CPU-bound Threading
(Tokio + Rayon Hybrid) may provide better performance, by combining the
strengths of both models. Finally, improving Rust backend by handling type
conversions automatically would reduce the need for manual modifications to
RVC-CAL files, making the system more accessible to developers.

99

References

[1] Endri Bezati, Marco Mattavelli, and Jorn W Janneck. “High-level synthesis
of dataflow programs for signal processing systems”. In: 2013 8th Interna-

tional Symposium on Image and Signal Processing and Analysis (ISPA).
[EEE. 2013, pp. 750-754.

[2] Shuvra S Bhattacharyya, Johan Eker, Jorn W Janneck, Christophe Lucarz,
Marco Mattavelli, and Mickaél Raulet. “Overview of the MPEG reconfig-
urable video coding framework”. In: Journal of Signal Processing Systems
63.2 (2011), pp. 251-263.

[3] Jeronimo Castrillon Mazo and Rainer Leupers. Programming Heterogeneous
MPSoCs. Springer, 2013.

[4] Edward A Lee and Thomas M Parks. “Dataflow process networks”. In: Pro-
ceedings of the IEEE 83.5 (1995), pp. 773-801.

[5] KAHN Gilles. “The semantics of a simple language for parallel program-
ming”. In: Information processing 74.471-475 (1974), pp. 15-28.

[6] Joseph Buck and Edward A Lee. “The token flow model”. In: Data Flow
Workshop. 1992, pp. 267-290.

[7] Thomas Martyn Parks. Bounded scheduling of process networks. University
of California, Berkeley, 1995.

[8] Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. “Synthesis
of embedded software from synchronous dataflow specifications”. In: Journal

of VLSI signal processing systems for signal, image and video technology
21.2 (1999), pp. 151-166.

[9] Edward Ashford Lee and David G Messerschmitt. “Static scheduling of
synchronous data flow programs for digital signal processing”. In: IEEE
Transactions on computers 100.1 (2009), pp. 24-35.

[10] Thomas M Parks, José Luis Pino, and Edward A Lee. “A comparison of syn-
chronous and cycle-static dataflow”. In: Conference Record of The Twenty-

Ninth Asilomar Conference on Signals, Systems and Computers. Vol. 1.
IEEE. 1995, pp. 204-210.

[11] Joseph T Buck. “Static scheduling and code generation from dynamic dataflow
graphs with integer-valued control streams”. In: Proceedings of 1994 28th
Asilomar Conference on Signals, Systems and Computers. Vol. 1. IEEE.
1994, pp. 508-513.

61

References

[12] Johan Eker and Jérn W Janneck. “An introduction to the Caltrop actor
language”. In: University of California at Berkeley (2001).

[13] J Davis II, Christopher Hylands, Bart Kienhuis, Edward A Lee, Jie Liu,
Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel,

et al. Heterogeneous concurrent modeling and design in java. Tech. rep.
Technical Memorandum UCB/ERL, 2001.

[14] Johan Eker and J Janneck. CAL language report: Specification of the CAL
actor language. December, 2003.

[15] Marco Mattavelli, Jorn W Janneck, and Mickaél Raulet. “MPEG reconfig-
urable video coding”. In: Handbook of signal processing systems. Springer,
2018, pp. 213-249.

[16] Open RVC-CAL Compiler. URL: http://orcc.sourceforge.net.

[17] Matthieu Wipliez, Ghislain Roquier, and Jean-Frangois Nezan. “Software
code generation for the RVC-CAL language”. In: Journal of Signal Process-
ing Systems 63.2 (2011), pp. 203-213.

[18] Open RVC-CAL Applications. URL: https://github.com/orcc/orc-apps.

[19] S Casale Brunet. “Analysis and optimization of dynamic dataflow pro-
grams”. In: Diss. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
(2015).

[20] Dataflow Code Generator. URL: https : // github . com/Florian233/
Dataflow_Code_Generator/tree/main.

[21] Nicholas D Matsakis and Felix S Klock. “The rust language”. In: Proceedings
of the 2014 ACM SIGAda annual conference on High integrity language
technology. 2014, pp. 103-104.

[22] Steve Klabnik and Carol Nichols. The Rust programming language. No
Starch Press, 2023.

[23] Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection
handbook: the art of automatic memory management. Chapman and Hal-

1/CRC, 2023.

[24] Bjarne Stroustrup. The C++ programming language. Pearson Education,
2013.

[25] Aaron Turon. “Fearless Concurrency with Rust”. In: The Official Rust Blog
(2015). URL: https://blog.rust-lang.org/2015/04/10/Fearless-
Concurrency.

[26] Tokio: Asynchronous runtime for Rust. URL: https://tokio.rs.

[27] Rayon: Data parallelism in Rust. URL: https ://github . com/rayon -
rs/rayon.

62

http://orcc.sourceforge.net
https://github.com/orcc/orc-apps
https://github.com/Florian233/Dataflow_Code_Generator/tree/main
https://github.com/Florian233/Dataflow_Code_Generator/tree/main
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency
https://tokio.rs
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon

References

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Crossbeam: Tools for concurrent programming in Rust. URL: https: //
crossbeam.rs.

The Rust community’s crate registry. URL: https://crates.io/.

Compiler Reference. URL: https://www.ibm.com/docs/en/x1-c-aix/13.
1.27topic=descriptions-qoptimizel

Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. “To-
wards understanding the runtime performance of rust”. In: Proceedings of
the 87th IEEE/ACM International Conference on Automated Software En-
gineering. 2022, pp. 1-6.

Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean-Francois
Nezan, and Slaheddine Aridhi. “Dataflow-based rapid prototyping for mul-
ticore DSP systems”. In: Informe técnico PREESM/2014-05TR01, IETR,
INSA-Rennes (2014).

Jianjiang Ceng, Jerénimo Castrillon, Weihua Sheng, Hanno Scharwéchter,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Tsuyoshi Isshiki, and Hi-
roaki Kunieda. “MAPS: an integrated framework for MPSoC application
parallelization”. In: Proceedings of the 45th annual Design Automation Con-
ference. 2008, pp. 754-759.

Endri Bezati, Mahyar Emami, Jorn Janneck, and James Larus. “Stream-
blocks: A compiler for heterogeneous dataflow computing (technical re-
port)”. In: arXiv preprint arXiv:2107.09333 (2021).

Timely Dataflow Repository. URL: https://github.com/TimelyDataflow/
timely-dataflow.

Shadaj Laddad, Alvin Cheung, and Joseph M Hellerstein. “Suki: Chore-
ographed Distributed Dataflow in Rust”. In: arXiv preprint arXiw:2406.14733
(2024).

Hydro Repository. URL: https://github.com/hydro-project/hydro?
utm_source=chatgpt . com.

Hydro Documentation. URL: https://hydro.run/docs/hydro/.

63

https://crossbeam.rs
https://crossbeam.rs
https://crates.io/
https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=descriptions-qoptimize
https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=descriptions-qoptimize
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/hydro-project/hydro?utm_source=chatgpt.com
https://github.com/hydro-project/hydro?utm_source=chatgpt.com
https://hydro.run/docs/hydro/

	1 Introduction
	2 Background
	2.1 Dataflow Process Networks
	2.2 The CAL Actor Language
	2.3 The RVC-CAL Actor Language
	2.3.1 Open RVC-CAL Compiler
	2.3.2 Network Structure
	2.3.3 RVC-CAL Syntax
	Data Type
	Actor Structure and Ports
	Assignment
	Loop and Iteration Statement
	List Comprehension
	Procedures and Functions
	Native Functions
	Priority Order
	Finite State Machine
	Imports

	2.4 Code Generator
	Network Reader
	Intermediate Representation Transformation
	Dataflow Analysis
	Optimization Phase 1
	Actor Mapping
	Optimization Phase 2
	Code Generation

	2.5 The Rust Programming Language
	2.5.1 Rust’s ownership model and borrowing rules
	2.5.2 Concurrency and Thread Safety
	2.5.3 Rust’s Syntax
	Variables and Mutability
	Data Types
	Control Flow
	Functions
	Error Handling

	2.5.4 Tokio with Async/Await
	2.5.5 Rayon and Crossbeam
	2.5.6 Rust’s Cargo

	3 Methodology and Implementation
	3.1 Methodology
	Actor Generation
	Channel Generation
	Scheduler Generation
	Project Structure
	Build Integration

	3.2 Scheme 1: Tokio with async/await
	Async Channel
	Actors
	Initialization in Main
	Scheduling

	3.3 Scheme 2: Rayon with Crossbeam
	Crossbeam Channel
	Actor
	Initialization in Main
	Scheduling

	3.4 Rust’s Syntax Sensitivity and Type Strictness

	4 Evaluation
	4.1 Benchmarking
	Benchmark Setup
	4.1.1 ZigBee Multitoken Transmitter
	4.1.2 Digital Predistortion DPD
	4.1.3 Digital Filter FIR
	4.1.4 Digital Filter LMS
	4.1.5 Discussion of Results

	5 Related Work
	6 Conclusion
	References

