
Published in Workshop on Heuristic Methods for the Design, Deployment, and Reliability
of Networks and Network Applications (HEUNET 2008)

A Multilevel Approach for the Routing and Wavelength Assignment Problem

Thomas Fischer
Distributed Algorithms Group
University of Kaiserslautern

Germany

Kerstin Bauer
Embedded Systems Group

University of Kaiserslautern
Germany

Peter Merz
Distributed Algorithms Group
University of Kaiserslautern

Germany

Abstract

In this paper we present a multilevel approach for the
static Routing and Wavelength Assignment (RWA) prob-
lem. The RWA deals with the problem of assigning paths
and wavelengths to requests in optical communication net-
works. The multilevel approach is a general solution strat-
egy involving stepwise coarsening the original problem in-
stance, solving a simplified instance and expanding the so-
lution back to the original size.

We propose both a multilevel-inspired construction
heuristic and a multilevel algorithm using iterated local
search for refinement. These algorithms significantly im-
prove previous approaches regarding time consumption and
solution quality for large instances.

1. Introduction

The NP-complete [2] Routing and Wavelength Assign-
ment problem (RWA) deals with Wavelength Division Mul-
tiplexed (WDM) optical networks, where communication
requests between nodes are routed on optical fiber links.

Given is a graph G(V,E,W) with nodes V , arcs E and
wavelengths W . In the physical network, each edge e ∈ E
represents an optical fiber link where each wavelength λ ∈
W is eligible. A request r = (ur,vr,dr) ∈ R consists of the
nodes ur and vr and a demand of dr ∈ N+ many units. For
each unit of demand, a lightpath (optical path created by
allocating the same wavelength throughout a path of links)
between these two nodes has to be established (wavelength
continuity constraint, see Fig. 1). The wavelength conflict
constraint states that each wavelength on a physical link
may be used by at most one lightpath. The RWA can either
be defined as a static or a dynamic problem and different
types of cost functions can be considered. In this paper we
focus on the static RWA, where a set of given requests has
to be routed minimizing the number of wavelengths needed.

In [5] a Linear Programming (LP) approach is proposed,
where the RWA is represented as a multicommodity network

1

2 3

4
5 Figure 1: Example for the RWA, using two

wavelengths (black, gray) to route requests
{(1,5,2),(1,4,1),(2,4,1)}. The first re-
quest uses the black dotted lightpath 〈1,3,5〉
and black solid path 〈1,2,4,5〉, the second
request the gray solid path 〈1,3,4〉. The last
request uses the gray dotted path 〈2,4〉.

flow problem with additional constraints. In [6] a memetic
algorithm including a mutation operator, a recombination
operator and two local search operators is considered. An
alternative approach is splitting the problem into the two
subproblems of routing and wavelength assignment. An
overview on this approach is provided in [3, 9]. A pro-
posal for a construction algorithm is given by Skorin-Kapov
[7]. Requests are processed iteratively by assigning each
unit of demand a wavelength and a path depending on bin-
packing inspired strategies. Experimental results imply the
best strategy is Best Fit Decreasing (BFD), where requests
are sorted non-increasingly by length (shortest paths in G)
and routed in the wavelength with the shortest feasible path.

In [1] we presented an iterated local search (ILS) algo-
rithm for the static RWA. The ILS consists of a local search
(LS), which move requests from less used wavelength to
highly used wavelengths with the intention to clear already
sparse wavelengths, and a mutation operator, which reroutes
path by forcefully clearing the designated links in the target
wavelength first. Based on these findings, we developed a
multilevel refinement algorithm as promoted by Walshaw
[8]. In a multilevel approach, a problem instance is coars-
ened in multiple steps until a solution can easily be found
for this instance. Stepwise extension and refinement of in-
termediate solutions (e. g. by local search) lead to a solu-
tion for the original instance. As the refinement operates
on smaller instances (except for the last step), this approach
is expected to find acceptable solutions faster than an algo-
rithm operating on the original instance only.

In Sec. 2 we describe both our new construction heuris-
tic and the multilevel ILS approach. Section 3 presents the
experimental setup and our results.

2. Algorithms

For the ILS as described in [1], the following
implementation-independent estimations on the run-time
can be made. We define n = |V | and D = ∑r∈R dr as the
sum of demand of all requests. In the local search opera-
tion, for each unit of demand (O(D)) and each wavelength
(O(D)) a shortest path is determined (O(

n2)) resulting in
a time complexity of O(

D2n2). Each mutation has com-
plexity O(

D2n3), as it reallocates O(n) paths requiring to
search in each wavelength a shortest path. The BFD con-
struction costs O(

D2n2) performing a shortest path search
for each unit of demand in each available wavelength.

The impact of D on the time complexity of all algorithms
above motivate a multilevel approach using the requests’
demand. We define a coarsening step by dividing the de-
mand of each request by the same scaling factor. Expanding
a solution to the coarsened instance, the set of paths for each
demand in the coarsened instance’s solution is copied multi-
ple times (detemined by the scaling factor) in the expanded
instance. The strength of the scaling operation is motivated
by the experimental findings from [1]: For small instances
with D < 104 the ILS was able to produce (near-)optimal
solutions in short time. Therefore, the Scaling Construc-
tor (SC) and the multilevel (ML) approach discussed below
will scale down a problem instance by a factor of ak so that
the sum of its demand is below this threshold. The ML per-
forms k expansion operations each multiplying the demand
with a∈N, whereas the SC expands to the original instance
directly. Scaling step a has to be supplied, k will be derived
from the experimental setup. Both approaches are expected
to considerably reduce the run-time due to the reduced D.

2.1. Scaling Constructor

The SC (Fig. 3c) is a simplified multilevel algorithm as
it performs only one level of coarsening and no refinement
is applied to the intermediate solution. The algorithm starts
with scaling the demand of the original instance’s requests
Rorig down to Rscaled using a scaling factor f = ak to get
D < 104 (Fig. 3c, line 2). For the scaled instance, an ini-
tial solution is constructed using the BFD algorithm. When
expanding the scaled instance’s solution sscaled to a solu-
tion for the original instance (Fig. 3b), paths from sscaled
are copied multiple times to the original instance’s solution
sorig, but a conflict-free wavelength has to be assigned to
each path copy. Here, we use a rather straightforward ap-
proach and leave finding better assignments to an improve-
ment algorithm applied later. Assuming the number of used
wavelengths in sscaled is |W (sscaled)| and for a given request
r the j-th path’s wavelength is λ (sscaled,r, j), the wavelength
λ ′ assigned to the i-th copy for this path in sorig is

λ ′ = i · |W (sscaled)|+ λ (sscaled,r, j) (1)

Scaled
Path 1 2 3 4

Wavelength 3 1 1 2

ExpandedPath 1 2 3 4 5 6 7
Wavelength 3 1 1 2 8 6 6

Figure 2: Example for the multiplication of paths for a
single request during an expansion step. In this example,
dr

scaled = 4, dr
expanded = 7, and |W (sscaled)|= 5.

For each unit of demand 1≤ d ≤ dr
orig quotient and remain-

der of dr
scaled/d determine the copy’s number i and path index

j, respectively (Fig. 3b, line 6). SCALEREQUESTS guar-
antees that there exists at least one path in sscaled for each
r ∈ Rorig.

2.2. Multilevel Approach

Compared to the SC, the ML is more sophisticated as it
performs several steps of expanding, each refining its inter-
mediate solution using ILS. Initially, one large coarsening
step is performed scaling the original instance to an instance
with D < 104 by ak, where a is the scaling factor applied in
each iteration step and k =

⌈
loga

D
10000

⌉
the number of it-

erations with a scaled instance. Starting from the deepest
coarsening step, the multilevel algorithms iterates through
the expansion steps until the original instance is restored.
In each iteration 0 ≤ i ≤ k, the original requests Rorig are
scaled to Rnew by the iteration’s scaling factor f = ak−i. In
the initial step, the solution is constructed using the BFD
algorithm, all later steps create a new solution based on a
scaled version of the previous step’s solution. Then, the
ILS algorithm described in [1] is applied to this solution
until no improvement can be found for c iterations (con-
vergence criterion) or a global time limit t is reached. For
the last iteration operating on the original instance only the
global time limit t is used. We limit the ILS for all but the
last iteration as we are not interested in optimal solutions
for the scaled instances, but to get acceptable solutions for
later expansion steps in short time. The global time limit is
instance-dependent and must be provided a priori; we chose
the time limits to be reasonable allowing the algorithms to
show some convergence.

3. Experimental Setup

Benchmark instances for the RWA based on the SNDlib
library [4] were presented in [1]. Here, we add new in-
stances with higher demand D (Tab. 1). Whereas scaled
variants of atlanta and france were used before, in this
paper we use the original size. Instance janos-us-ca was
used both in a scaled (factor 10, marked with ‘H’, to run

1: function SCALEREQUESTS(Requests R, scaling factor f)
2: Rscaled = R
3: for all r ∈ R do
4: dr

scaled←
⌈

dr

f

⌉
5: return Rscaled

(a) Function SCALEREQUESTS

1: function SCALESOLUTION(Solution sold, Requests
Rold = {(ur ,vr ,dr

old)}, Requests Rnew = {(ur ,vr ,dr
new)})

2: snew← /0
3: for all r ∈ Rnew do
4: for d← 1, . . . ,dr

new do
5: p← PATH(sold,r,d mod dr

old)

6: λ ←
⌊

d
dr

old

⌋
· |W (sold)|+λ(sold,r,d mod dr

old)
7: ADDPATH(snew,r,d, p,λ)
8: return snew

(b) Function SCALESOLUTION

1: function SCALINGCONSTRUCTOR(Graph G, Requests Rorig =
{(ur ,vr ,dr

orig)}, Scaling a)

2: k←
⌈

loga
∑r∈R dr

10000

⌉
, f ← ak

3: Rscaled← SCALEREQUESTS(Rorig, f)
4: sscaled← CREATEINITIALSOLUTION(G,Rscaled)
5: return SCALESOLUTION(sold, Rscaled , Rorig)

(c) Function SCALINGCONSTRUCTOR

1: function MULTILEVELSEARCH(Graph G, Requests
Rorig = {(ur,vr ,dr

orig)}, Scaling a, Time t)
2: s,Rnew,Rold← /0
3: k←

⌈
loga

∑r∈R dr

10000

⌉
4: for i← 0,1, . . . ,k−1,k do
5: f ← ak−i

6: Rold← Rnew, Rnew← SCALEREQUESTS(Rorig, f)
7: if i = 0 then ⊲ First Iteration, strongest scaling
8: s← BFD(G,Rnew)
9: else

10: s← SCALESOLUTION(s,Rold,Rnew)
11: if i < k then ⊲ ILS on scaled instance
12: s← ILS(s,TIME(t)∨CONV(c))
13: else ⊲ ILS on original instance
14: s← ILS(s,TIME(t))
15: return s

(d) Function MULTILEVELSEARCH

Figure 3: Functions

comparative experiments with BFD followed by ILS) and
in the unscaled variant (to show the capability of our new
approaches). To study the influence of multiplying an in-
stance’s demand, we use instance nobel-usN which is en-
larged by factor 50. New instances are ta1H and ta2H, both
scaled down by a factor of 100 due to a demand of≥ 106. To
show that the ML is applicable to smaller instances, too, we
include the largest instance from [1] (zib54). Time limits
as termination criterion are given in Tab. 1 allowing com-
parisons between algorithms. For our experiments, we set
a = 4 (scaling) and c = 5 (convergence). Our experiments
were conducted on a Pentium 4 3.0 GHz system running

Instance |V | |E| D UB Time

atlanta 15 22 136726 25167 2 h
france 25 45 99830 10610 2 h
janos-us-ca 39 122 2032274 262400 6 h
janos-us-caH 39 122 203222 26181 6 h
nobel-usN 14 21 271000 34680 6 h
ta1H 24 51 101271 6017 1 h
ta2H 65 108 314207 19054 6 h
zib54 54 81 12230 707 5 min

Instances with H or N have been modified, see text for details.
janos-us-caH’s demand is not 203227 as each request is scaled independently.

Table 1: Properties of our benchmark instances. ‘UB’ is
the best found (either here or from [1]) solution’s cost and
‘Time’ is the time limit for each instance.

(1) (2) (3)

0 20 40 60 80 100 120
25000

26000

27000

28000

29000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
um

be
ro

fW
av

el
en

gt
hs

Time [min]

E
xc

es
s

[%
]

Figure 4: Comparing three setups applied to atlanta:
(1) Multilevel approach with ILS in each step,
(2) Scaling Constructor and optimizing with ILS,
(3) BFD constructor and optimizing with ILS (cILS).
Plot includes 99% confidence intervals.

Linux Kernel 2.6. Algorithms were implemented in Java 6.
Each setup was repeated 15 times with different seeds, av-
erage values were used for the following discussion.

4. Experimental Results

The results from our experiments are summarized in
Tab. 2, where for each instance and both approaches and
the conventional ILS (cILS) the elapsed time [s] and excess
[%] (above the best known solution) is shown. Results are
grouped in snapshot events at the points in time (a) when
the BFD constructs its solution (‘BFD initialized’), (b) after
half of the time (‘Half Time’) and (c) at reaching the time
limit (‘Termination’).

The general behavior of the three approaches is shown
in Fig. 4. Comparing to the two new approaches, the BFD
constructor requires the most time to initialize a feasible so-
lution. E. g. for france, the BFD takes about 240 ≈ 162

(a) BFD initialized (b) Half Time (c) Termination
Instance Time cILS SC ML Time cILS SC ML Time cILS SC ML

atlanta 2365.7 16.49 2.54 0.22 3600.0 3.53 1.75 0.19 7200.0 1.25 0.71 0.15
france 1426.2 5.42 0.50 0.25 3600.0 0.38 0.18 0.12 7200.0 0.12 0.07 0.05
janos-us-ca –1 – – – 10800.0 – 38.72 – 21600.0 – 38.72 –
janos-us-caH 9473.5 36.33 1.88 0.34 10800.0 28.40 1.77 0.32 21600.0 1.16 1.29 0.29
nobel-usN 7228.2 31.25 4.44 0.72 10800.0 9.16 3.27 0.71 21600.0 3.23 1.28 0.71
ta1H 1020.6 25.41 1.91 1.17 1800.0 2.60 1.13 0.99 3600.0 1.34 0.55 0.81
ta2H –1 – – – 10800.0 – 2.05 0.44 21600.0 – 1.06 0.29
zib54 25.5 26.45 1.60 1.15 150.0 0.62 0.41 0.46 300.0 0.37 0.23 0.36

Instances with H or N have been modified, see text for details. 1 No result within time limit.

Table 2: Overview on solution quality (elapsed time [s] and excess [%] above best known solution for three snapshot events).

times longer than the SC approach, where ak = 16 for
this instance supporting our estimations from Sec. 2, but
the BFD finds better initial solutions. However, investing
the SC’s saved time in the ILS results in superior solu-
tions at the point in time where the BFD finds its initial
one. The more sophisticated ML approach significantly
amplifies the SC’s behavior. Due to the expansion and in-
termediate ILS steps, this approach takes longer to find a
feasible solution for the original instance compared to the
SC, but is still much faster than the BFD. Nevertheless,
the solution quality significantly outperforms both other ap-
proaches. E. g. for janos-us-caH, the initial feasible solu-
tion of ML (ca. 15 min) is not reached by either SC or BFD
within the time limit of 6 hours.

For the ML approach, the computation times increase
with each expansion step: E. g. for instance ta1H and
ak = {64,16,4,1}, the average times increase from 9.95 s
to 57.9 s, 505.9 s, and 21882.6 s, respectively.

The inherent symmetries due to multiplying the same
(pre-optimized) solution can affect the performance of both
SC and ML. For nobel-usN we observe for initial feasible
solutions constructed by ML (< 15 min) virtually no im-
provement (< 0.1%) within the given time limit of 6 hours.
However, within our repetitions we observe a difference in
solution quality spanning about 2% excess. For ta1H, the
SC results in slightly better solutions compared to ML, as
the latter one is stronger affected by the symmetries.

Although both the SC and the ML are designed for large
instances, they can be applied to small instances without
affecting solution quality. As can be seen for zib54, the
performance of the three approaches is indistinguishable re-
sulting in an average excess between 0.23% and 0.37%.

Considering our largest instance janos-us-ca, only SC
is able to find a valid solution within the time limit. How-
ever, multiplying the number of wavelengths with its scaling
factor an ML’s intermediate solution yields far better results,
which were thus used as the best known results. These in-
termediate results were found after < 1 hour supporting the
ML’s advantage to both the SC and BFD.

5. Conclusions

We proposed both a multilevel-inspired construction
heuristic and a multilevel approach using ILS for refinement
for the RWA. Finding initial solutions for large instances in
comparably short time, the SC can be used as a replacement
for the BFD constructor. Due to initial optimization steps on
simplified instances, the multilevel approach already starts
in excellent time. Using ILS, the ML results in solutions far
better than the BFD constructor followed by ILS.

Future work will focus on the development of recombi-
nation operators and distributed algorithms for the RWA.

References

[1] K. Bauer, T. Fischer, S. O. Krumke, K. Gerhardt, S. Westphal,
and P. Merz. Improved Construction Heuristics and Local
Search for the Routing and Wavelength Assignment Problem.
In C. Cotta and J. van Hemert, editors, EvoCOP 2008, volume
4972 of LNCS. Springer, 2008.

[2] I. Chlamtac, A. Ganz, and G. Karmi. Lightnet: Lightpath
Based Solutions for Wide Bandwidth WANs. In INFOCOM
’90, volume 3, pages 1014–1021, 1990.

[3] J. S. Choi et al. A Functional Classification of Routing
and Wavelength Assignment Schemes in DWDM networks:
Static Case. In Proc. OPNET 2000, pages 1109–1115, 2000.

[4] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly.
SNDlib 1.0–Survivable Network Design Library. In Proc. of
INOC 2007, 2007.

[5] A. E. Ozdaglar and D. P. Bertsekas. Routing and Wavelength
Assignment in Optical Networks. IEEE/ACM Transactions
on Networking, 11(2), 2003.

[6] M. C. Sinclair. Minimum cost routing and wavelength alloca-
tion using a genetic-algorithm/heuristic hybrid approach. In
Proc. 6th IEE Conf. Telecom., 1998.

[7] N. Skorin-Kapov. Routing and Wavelength Assignment
in Optical Networks using Bin Packing Based Algorithms.
EJOR, 177(2):1167–1179, 2007.

[8] C. Walshaw. Multilevel Refinement for Combinatorial Opti-
misation Problems. Annals of Op. Res., 131:325–372, 2004.

[9] H. Zang et al. A Review of Routing and Wavelength As-
signment Approaches for Wavelength-Routed Optical WDM
Networks. Optical Networks Magazine, 1:47–60, 2000.

