
A Distributed Memetic Algorithm for the

Routing and Wavelength Assignment Problem

Thomas Fischer, Kerstin Bauer, and Peter Merz

Department of Computer Science, University of Kaiserslautern, Germany
{fischer,k bauer,pmerz}@cs.uni-kl.de

Abstract. The Routing and Wavelength Assignment Problem deals
with the routing of telecommunication traffic in all-optical networks. Ex-
tending existing algorithms, we present a memetic algorithm (MA) for
the static RWA by introducing a recombination operator and a scheme
for distributing the computation. Compared to previously achieved re-
sults for this problem, our MA significantly improves the solution qual-
ity. We find provably optimal results for previously unsolved problem
instances. The distributed variant using epidemic algorithms allows to
find solutions of quality comparable to the MA in less real-time.

1 Introduction

The Routing and Wavelength Assignment problem (RWA), an NP-complete [1]
graph-theoretical problem, deals with Wavelength Division Multiplexed (WDM)
optical networks, where communication requests between nodes in a network
have to be fulfilled by routing them on optical fiber links with given capacities.

A problem instance of the RWA is a physical network represented by a graph
G = (V, E, W ) with nodes V , edges E, and wavelengths W . The optical fiber
links in the physical network are represented by E (here undirected) and on each
links each wavelength in W is available. A node in V can be starting point ur

or end point vr of a connection request r = (ur, vr, dr) ∈ R with a demand of
dr ∈ N

+. For each unit of demand a lightpath has to be established. A lightpath
is a path between two nodes in the physical network utilizing one wavelength
on each link. The wavelength continuity constraint requires the path to use the
same wavelength on every link, the wavelength conflict constraint states that no
wavelength on a link may be used by more than one lightpath at the same time.

In the RWA’s static variant, a set of requests is given and one can either mini-
mize the number of wavelengths to route all requests or maximize the number of
routed requests for a given set of wavelengths. In the dynamic variant, requests
turn up over time and one has to maximize the number of routed requests. Here,
we focus on minimizing the number of used wavelengths in the static case.

Next, related work and a previous publication is discussed. We present our MA
and the recombination operator in Sec. 2. The transformation into a distributed
MA is described in Sec. 3. After motivating our experimental setup in Sec. 4, we
present our results in Sec. 5.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 879–888, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



880 T. Fischer, K. Bauer, and P. Merz

1.1 Related Work

Early papers were due to Bala et al . [2] and Chlamtac et al . [3], where both
wavelength constraints were defined and algorithms for the dynamic RWA were
presented. A popular approach for the RWA is to split the solution finding pro-
cess into solving the subproblems of routing and wavelength assignment inde-
pendently. For the static RWA, Banerjee and Mukherjee [4] used this approach,
where the routing part is solved by relaxing the wavelength continuity constraint,
solving a fractional multicommodity flow problem, and using randomized round-
ing to find paths in the graph. For the wavelength assignment a graph coloring
problem is solved, where the nodes represent the paths and the edges state
whether the incident paths share a common physical link. Another approach for
solving the wavelength assignment part was given by Manohar and Shevgaonkar
[5], who defined it as an instance of the maximum edge disjoint paths problem,
where a maximum-sized subset of all paths in a graph is wanted holding that
no two paths share a common link. Iteratively, among the paths with no wave-
length assigned, the maximum subset is determined the next unused wavelength
assigned to that path set, which is then removed from subsequent iterations.
A general overview and classification of algorithms solving both subproblems
independently is provided in [6] by Zang et al . and in [7] by Choi et al.

Sinclair [8] presented a memetic algorithm for the static RWA. Its intricate
cost function does not match any of the RWA’s objectives as stated above. The
algorithm features mutation, recombination, and two local search operations
which are applied with varying probabilities. The mutation reroutes a given
request on a path randomly chosen from the set of k-shortest paths between
the endpoints using the first available wavelength. The recombination performs
a crossover where the set of requests is split and both offsprings contain paths
and wavelength assignments from one of the halves while the other half only
provides the paths using new wavelength assignments. The first local search
tries to reroute a request in a wavelength from a high index in a lower-indexed
wavelength using a k-shortest path. The second local search operates similarly,
but here a target wavelength is chosen first and all conflicting paths are rerouted
before rerouting the path from the high-indexed wavelength. Given that the
algorithm uses problem-specific operators, the large population size (500) and
the vast number of generations (100 000) question its efficiency.

Skorin-Kapov [9] introduced a construction heuristic called BFD RWA based
on bin-packing algorithms. Requests are sorted non-increasingly by length of
their shortest paths and routed in the wavelength with shortest available path.

In [10], we presented a new set of benchmark instances, on which an iterated
local search (ILS) algorithm was applied. The ILS consists of a local search
(LS) and a mutation operator. The LS’s idea is to move requests from less used
wavelength to highly used wavelengths with the intention to clear already sparse
wavelengths. The mutation operator randomly selects two wavelengths λ1 and
λ2 where w. l. o. g. the load of λ2 is smaller than λ1. A path routed in λ2 is
randomly chosen and moved to λ1 by using the shortest path between both
endpoints. Any conflicting path in λ1 is forcefully removed and later reinserted



A Distributed Memetic Algorithm for the RWA Problem 881

1: function InitializePopulation(Graph G, Requests R)
2: S ← ∅
3: for i← 1, . . . , n do
4: s← BFD RWA(G, R)
5: S ← S ∪ {s}
6: return S

1: function MemeticAlgorithmRWA(Graph G, Requests R)
2: S ← InitializePopulation(G, R)
3: while !TerminationReached do
4: S′ ← ∅
5: for all s ∈ S do
6: if Random() ≤P[recomb] then
7: s← ChooseIndividual(S, s)
8: s′ ← Recombinator(G, s, s, R)
9: else

10: s′ ←Mutate(s, R, strength)

11: s′′ ← LocalSearch(s′, R)
12: if s′′ < s then
13: S′ ← S′ ∪ {s′′}
14: else
15: S′ ← S′ ∪ {s}
16: S ← S′

17: return S

Fig. 1. Memetic algorithm for the RWA

by the construction heuristic’s approach. The ILS provides solutions near the
lower bound (determined by relaxing the wavelength continuity constraint and
solving the resulting multicommodity flow problem) and, for some instances even
optimal solutions can be achieved.

It is equivalent having between any node pair either at most one request with
demand ≥ 1 or multiple requests with demand = 1 each. We use the latter
definition to simplify the notation of algorithms presented in this paper.

2 Algorithms

In this paper, we present a recombination operator (Fig. 1) which is used to
create a population-based memetic algorithm (MA) for the static RWA. Based
on the ILS presented in [10], the MA adds the feature to handle populations of
solutions and to recombine two solutions to one offspring solution.

The population is initialized by using the BFD RWA construction heuristic
for each individual. Although this heuristic orders requests by the length of
their shortest path, requests are inserted in random order within each subset of
equal shortest path lengths, thus resulting in different solutions. Until reaching
some termination criterion the MA iterates over the population. Our termination
criterion is an instance-dependent time limit allowing to compare different setups



882 T. Fischer, K. Bauer, and P. Merz

1: function Recombinator(Graph G, Solution a, Solution b, Requests R)
2: s← a, R′ ← ∅, Pb ←

⋃
r∈R pG,b(r)

3: for λ ∈ {λ1, . . . , λ|W | : u(λi) ≥ u(λi+1)} do
4: for r ∈ R : λs(r) = λ do
5: if pG,s(r) ∈ Pb then
6: Pb ← Pb \ {pG,s(r)}
7: else
8: s← s \ r, R′ ← R′ ∪ {r}
9: for all r ∈ R′ do � for all currently unrouted paths

10: λs(r)← arg minλ∈W ΨG,s(r, λ) �= ∅
11: pG,s(r)← ΨG,s(r, λs) � route request on the first possible wavelength

12: return s

Fig. 2. Recombination operator for the RWA

for the same instance. In each iteration, for each individual the same steps are
performed: First, with given probabilities (Sec. 4) either a recombination (s.b.)
or a mutation step as introduced in [10] is performed. The mutation strength
can be varied, the actually used strategy is 10%↓2% (starting with mutation
strength 10 % and decreasing in each iteration by 2 % until reaching the fixed
minimum of 1 %) as in [11]. Once a provisional offspring has been created, this
individual is improved by the LS used in [10].

For each individual of the next generation, offspring and parent are compared
and the better one is kept. Thus, the only interaction between individuals of
the same generation is the recombination operator. Setting the recombination
probability to 0.0, the memetic algorithm equals to as many independent ILS
runs as there are individuals in the population.

The recombination operator allows to combine common features of two parent
individuals to one offspring. The offspring only keeps paths existing in both
parents using the wavelength assignments from the better one. The remaining
requests are later inserted using a construction heuristic. To determine the set
of paths common to both parents, a matching problem between paths from both
parents has to be solved. Two paths can be matched iff they use the same set of
links regardless of the wavelengths assigned to the paths.

Details of the recombination operator are given in Fig. 2. W. l. o. g. parent
solution a is better than b as defined by the length-lex ordering from [10]. The
offspring solution s is initialized as a copy of a. To determine a matching between
paths from a and b, b’s set of paths is stored in the multiset Pb. In the recom-
bination’s first phase the algorithm iterates on the set of wavelengths sorted
non-increasingly by usage. For each request using the current wavelength, it is
checked whether the request’s path pG,s(r) is element of Pb. If the test holds, a
match has been found and the path is removed from Pb to prevent future match-
ings. Otherwise, the request is removed from s (removed requests are collected
in R′). The sorting of wavelengths here keeps paths in already highly used wave-
lengths more likely than paths in less often used wavelengths. We argued that
introducing a gap in already highly used wavelengths by not matching paths in



A Distributed Memetic Algorithm for the RWA Problem 883

1: function DistributedMemeticAlgorithmRWA(Graph G, Requests R)
2: s← InitializeIndividual(G, R)
3: while ¬TerminationReached do
4: if {q1, . . . , qk} = Q �= ∅ then
5: s← q1, Q← {q2, . . . , qk}
6: s′ ← Recombinator(G, s, s, R)
7: else
8: s′ ← Mutate(s, R, strength)

9: s′′ ← LocalSearch(s′, R)
10: if s′′ < s then
11: s← s′′

12: if Random≤P[recomb] then
13: SendToRandomNeighbor(s)

14: return s

Fig. 3. Distributed memetic algorithm for the RWA

those wavelengths can be less likely exploited for future improvements compared
to paths in less often used wavelengths. Finally, the removed requests R′ have
to be reinserted into s using the concept of the BFD RWA construction heuris-
tic, where the request is routed in the first wavelength where a feasible path
connecting both endpoints is available.

3 Distribution

The MA has been enhanced to a distributed memetic algorithm (DMA), differing
from the MA by using populations of n individuals in one algorithm instance, n
algorithm instances with one individual each operate independently. Resembling
the MA, the DMA’s instances exchange individuals regularly over the network
using an epidemic algorithm [12].

The DMA is shown in detail in Fig. 3 is similar to the MA (Fig. 1), as the
main differences are (a) the DMA operates on a single individual per algorithm
instance (b) the exchange and recombination between algorithm instances is
managed differently. Each algorithm instance has a receiving queue Q where
incoming individuals are stored temporarily (realized by using an asynchronous
thread). At the beginning of each iteration it is checked if the queue contains at
least one element. If the test holds, the queue’s top element is removed and used
in a recombination operation. Otherwise, the current solution is mutated. After
the obligatory local search and selection, with a given probability the current
solution is sent to one randomly selected neighboring algorithm instance. The
probability for sending an individual equals to the recombination probability in
the original MA. Due to the asynchronous nature of the DMA and the queuing
effects, the actual recombination probability may differ.

To build a neighborhood relation between algorithm instances (nodes) in dis-
tributed setups, we use an epidemic algorithm [12,13], where each node maintains
a list of neighboring algorithm instances. For the node neighbor lists’ initialization,



884 T. Fischer, K. Bauer, and P. Merz

one node is selected and its contact information is provided to other nodes. Dur-
ing the execution of the algorithm, from time to time each node chooses a neighbor
andbothnodes exchanges their neighbor lists.Any received listwill bemergedwith
the receivingnode’s list.The epidemic algorithm’smembershipprotocol settled the
neighbor list for each node in less than 5 s in each case providing a stable neighbor
list. The receiving queue Q for incoming solutions was limited to 16 elements (twice
the largest population size) and any solution received at a node with full queue was
discarded.

4 Experimental Setup

In [10], problem instances based on network data from the SNDlib collection [14]
were presented. As all but four of these instances have been optimally solved
(lower bound reached) and for one the difference between best known solution
and the lower bound is only one wavelength, we use the remaining instances
janos-us-ca, nobel-us, and zib54 for the experiments in this paper. For the
SND problem, Atamtürk and Rajan [15] recently presented new benchmark in-
stances, which we converted to RWA instances, too. As the authors use fractional
demands in their data, we multiplied them by 100. Using the concept of undi-
rected edges, we added the demands with different directions between the same
nodes. For each instance size, the authors provide three networks: (a) average
node degree 4 (b) average node degree 8 (c) edge density 75 %. We performed
experiments with problem instances of size 15 and 20. The properties of all
instances used in our experiments are summarized in Tab. 1.

We considered population sizes of 2, 4 and 8 and recombination rates of 0.2,
0.4, 0.6, 0.8, and 1.0 (recombination only). For comparison, the original ILS
was reimplemented by using population size 1 and a recombination rate of 0.0

Table 1. Properties of instances used in our experiments ‘Pairs’ describes the number
of node pairs communicating with each other, ‘Requests’ summarizes the demand (sum
of paths to be established). ‘LB’ designates the known lower bound from [10] and ‘UB’
the best result found in any setup in this paper.

Instance Nodes Edges Pairs Requests LB UB Time [s]

janos-us-ca† 39 122 1482 10173 1288 1288 1200
nobel-us 14 21 91 5420 670 670 300
zib54 54 81 1501 12230 705 705 600

15.50.75 15 90 72 9500 – 155 1500
15.50.deg4 15 48 72 9500 – 366 450
15.50.deg8 15 68 72 9500 – 258 450
20.50.75 20 150 137 18210 – 188 3000
20.50.deg4 20 82 137 18210 – 439 1000
20.50.deg8 20 106 137 18210 – 294 2000

† Instance has been modified, see text for details.



A Distributed Memetic Algorithm for the RWA Problem 885

(no recombination). All experiments were repeated 30 times with different seeds.
We used up to eight identical cluster PCs (Pentium4 with 3GHz running Linux)
connected in a switched 100MBit network. All software was written in Java.

Furthermore, to guarantee comparability between DMA and MA, both algo-
rithms are given the same total time per instance (see Tab. 1) by dividing the
time limit per CPU by the population size in the distributed case.

5 Experimental Results

Experiments using the MA and DMA were conducted as described above. In
Fig. 4 the performance of both the distributed and non-distributed MA variants
operating on 8 individuals for every benchmark instance is visualized. Except
for instance zib54 and a pathological case for nobel-us (discussed below), both
variants of our MA find significantly better results compared to the original ILS.
For the three instances already discussed in [10], our memetic algorithm was
able to find optimal solutions for janos-us-ca in 4 MA setups and 93 DMA
setups, for nobel-us in 28 and 402 setups, respectively, and for zib54 in 36 and
82 setups, respectively, out of 450 runs each.

Regarding population size, small sizes are less capable of maintaining suffi-
cient diversity within the population than larger populations. Interestingly, this
effect is stronger for non-distributed than for distributed setups. The DMA’s
population stays more diverse, as the DMA’s queue Q (see Fig. 3) provides a
memory of older and thus more different solutions. E. g. for 20.50.deg4, the
percentage of paths with the same edges regardless of used wavelengths (relative
similarity between two solutions) of both parents for a recombination in the MA
is on average over time and all repetitions > 98.5 % for all recombination rates,
whereas for the corresponding DMA setup the similarity is < 95.0 %. For recom-
bination rate 1.0 in the non-distributed case, the relative similarity decreases
from 99.9 % to 95.5 % and 91.2 % for population sizes of 2, 4, and 8, respectively.

Regarding recombination rates, three different patterns can be observed: (a)
all rates perform similarly (b) recombination rate 1.0 performs significantly worse
(c) recombination rate 0.2 performs significantly worse. Case (b) occurs most
often for the MA, whereas case (c) is more common for the DMA.

We discuss the setup with 15.50.75 (Fig. 5) with population size 8 in detail.
The two plots show the run-time behavior of the non-distributed and distributed
setup, respectively, for selected recombination rates in comparison to the original
ILS and the best known solution. Furthermore, instance 15.50.75 represents
recombination patterns (b) and (c), respectively. For each setup, the average
number of generations, the effective recombination rate, and the average simi-
larity of recombination partners are summarized below the plots. The number of
generations decreases with increasing recombination rate as a recombination op-
eration requires more computation time than a mutation operation. The effective
recombination rate determined by counting the number of recombinations is ex-
actly the expected value for the non-distributed case. For the DMA, the effective
rates are lower as recombinations are only performed if an individual’s queue Q



886 T. Fischer, K. Bauer, and P. Merz

MA for nobel-us

660

680

700

720

740 10

0 100 200 300

MA for zib54

700

720

740

710

730

200 400 600

MA� for janos-us-ca

1275

1300

1325

1350

1375

400 800 1200

DMA for nobel-us

660

680

700

720

740 10

100 200 300

DMA for zib54

700

720

740

710

730

200 400 600

DMA for janos-us-ca

1275

1300

1325

1350

1375

400 800 1200

MA for 15.50.deg4

370

380

390

400 10

150 300 450

MA for 15.50.deg8

260

270

150 300 450

MA for 15.50.75

160

170

180

10

15

500 1000 1500

DMA for 15.50.deg4

370

380

390

400 10

150 300 450

DMA for 15.50.deg8

260

270

150 300 450

DMA for 15.50.75

160

170

180

10

15

500 1000 1500

MA for 20.50.deg4

440
450
460
470
480 10

500 1000

MA for 20.50.deg8

290
300
310
320
330
340

10

15

1000 2000

DMA for 20.50.75

190
195
200
205
210

10

1000 2000 3000

DMA for 20.50.deg4

440
450
460
470
480 10

500 1000

DMA for 20.50.deg8

290
300
310
320
330
340

10

15

1000 2000

DMA for 20.50.75

190
195
200
205
210

10

1000 2000 3000

Line type represents the ILS, types , , and represent recombination rates
. , . , and . , respectively. The horizontal line at each plot’s bottom is the best

found solution’s quality. 99% confidence intervals are given.
000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

1

1

1

2

22

22

2
2

2
2

2
2

2

2
2

2

3

3

4

44

44

4

4

4

4

4
4

4

4
4

4

5

5

5

5

66

66

6

6

6

6

6

6

6

6

88

88

8

8

8

8

Fig. 4. Overview on the performance for each instance both for the non-distributed
and distributed variant operating on 8 individuals. Axis labels are the same as in Fig. 5.
� Setups with 1.0 recombination rate are out of scale.



A Distributed Memetic Algorithm for the RWA Problem 887

Time [s]

N
u
m

b
er

o
f
W

av
el

en
g
th

s

E
x
ce

ss
[%

]

ILS
Precomb = 0.2
Precomb = 0.4

Precomb = 0.6
Precomb = 1.0

155

160

165

170

175

180

0

5

10

15

0 500 1000 1500

(a) non-distributed MA

Time [s]

N
u
m

b
er

o
f
W

av
el

en
g
th

s

E
x
ce

ss
[%

]

ILS
Precomb = 0.2
Precomb = 0.4

Precomb = 0.6
Precomb = 1.0

155

160

165

170

175

180

0

5

10

15

0 500 1000 1500

(b) Distributed MA

Non-distributed Distributed
0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

# Gen. 2214.3 2317.6 2189.4 1959.8 1812.6 1619.6 1414.7 1151.2

Peff
recomb 0.200 0.400 0.600 1.000 0.196 0.391 0.582 0.886

sim [%] 94.4 % 96.9 % 97.2 % 97.6 % 91.1 % 93.8 % 94.4 % 94.6 %

Fig. 5. Detailed analysis of experimental results for setups with instance 15.50.75

with 8 individuals. The horizontal line at each plot’s bottom is the best found solution’s
quality. 99 % confidence intervals are given.

is non-empty. Due to varying time requirements for mutation and recombination
and short-time effects, queues may be filled beyond the capacity limit for a few
generations and thus incoming solutions get discarded. For high recombination
rates, this effect is stronger explaining the lower effective recombination rates.
Due to this effect pattern (b) does not occur for distributed setups.

In our recombination, parents pass on common path and wavelength assign-
ments to their offspring thus requiring to insert new path and assignments to get
a feasible solution (partial restart). Low similarity yields large partial restarts
which may degrade the offspring’s solution quality, for too high similarity the
restart is too small to escape local optima. This model is well supported by
our data as depicted in Fig. 5. In the non-distributed case, the final solution
quality decreases with increasing similarity of the parents. In the distributed
case, all recombination rates except rate 0.2 have the same parent similarity of
about 94 % and the same solution quality. Only the recombination rate 0.2 has
a significantly lower similarity and performs considerably worse.

6 Conclusions

In this paper we presented a memetic algorithm including a recombination opera-
tor for the static RWA which significantly improved former results. Furthermore,



888 T. Fischer, K. Bauer, and P. Merz

the MA can be efficiently distributed in a real network allowing to find results
similar to the single CPU variant given the same total time summed over all
participating CPUs. Future work will focus on combining our MA and DMA
with the multilevel approach [11] for large instances.

References

1. Chlamtac, I., Ganz, A., Karmi, G.: Lightnet: Lightpath Based Solutions for Wide
Bandwidth WANs. In: INFOCOM 1990, vol. 3, pp. 1014–1021 (1990)

2. Bala, K., Stern, T.E., Bala, K.: Algorithms for Routing in a Linear Lightwave
Network. In: IEEE INFOCOM, vol. 1, pp. 1–9 (1991)

3. Chlamtac, I., Ganz, A., Karmi, G.: Lightpath Communications: An Approach to
High Bandwidth Optical WANs. IEEE Trans. Comm. 40(7), 1171–1182 (1992)

4. Banerjee, D., Mukherjee, B.: A Practical Approach for Routing and Wavelength
Assignment in Large Wavelength-Routed Optical Networks. IEEE J. Sel. Areas
Comm. 14(5), 903–908 (1996)

5. Manohar, P., Manjunath, D., Shevgaonkar, R.K.: Routing and Wavelength Assign-
ment in Optical Networks From Edge Disjoint Path Algorithms. IEEE Communi-
cations Letters 6(5), 211–213 (2002)

6. Zang, H., Jue, J.P., Mukherjee, B.: A Review of Routing and Wavelength As-
signment Approaches for Wavelength-Routed Optical WDM Networks. Optical
Networks Magazine 1, 47–60 (2000)

7. Choi, J.S., Golmie, N., Lapeyrere, F., Mouveaux, F., Su, D.: A Functional Clas-
sification of Routing and Wavelength Assignment Schemes in DWDM networks:
Static Case. In: OPNET 2000, pp. 1109–1115 (2000)

8. Sinclair, M.C.: Minimum cost routing and wavelength allocation using a genetic-
algorithm/heuristic hybrid approach. In: Proc. 6th IEE Conf. Telecom. (1998)

9. Skorin-Kapov, N.: Routing and Wavelength Assignment in Optical Networks using
Bin Packing Based Algorithms. EJOR 177(2), 1167–1179 (2007)

10. Bauer, K., Fischer, T., Krumke, S.O., Gerhardt, K., Westphal, S., Merz, P.: Im-
proved Construction Heuristics and Iterated Local Search for the Routing and
Wavelength Assignment Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP
2008. LNCS, vol. 4972, pp. 158–169. Springer, Heidelberg (2008)

11. Fischer, T., Bauer, K., Merz, P.: A Multilevel Approach for the Routing and Wave-
length Assignment Problem. In: Köppen, M., Raidl, G. (eds.) HEUNET 2008. IEEE
Comp. Soc. Press, Los Alamitos (2008)

12. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. In: Schneider, F.B. (ed.) ACM PODC, pp. 1–12. ACM Press, New York
(1987)

13. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems 25(3) (2007)

14. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0–Survivable Net-
work Design Library. In: Proc. INOC 2007 (2007)

15. Atamtürk, A., Rajan, D.: Partition inequalities for capacitated survivable network
design based on directed p-cycles. Discrete Optimization 5(2), 415–433 (2008)


	A Distributed Memetic Algorithm for the Routing and Wavelength Assignment Problem
	Introduction
	Related Work

	Algorithms
	Distribution
	Experimental Setup
	Experimental Results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




