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Correctness proofs for parallel programs

Parallel computing
Performance
Efficiency

Correctness proofs
Tests are incomplete
Complexity
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Hoare Calculus

Significant impact
One of the first
Basis for a variety of approaches
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Overview of approaches based on the Hoare Calculus

Common ground
Similar intentions
Based upon each other
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Hoare Calculus
Towards a theory of parallel programming

Basis

1 Hoare Calculus
2 Towards a theory of parallel programming
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Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Notation
a
b
means if a is true then b is true, too.
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Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Hoare triple
The relation between a program Q, a precondition P and the result
R of the program’s execution build a Hoare triple:
P{Q}R
It is also denoted as:
{P}S{Q}
where P is the precondition and Q the postcondition of statement
S .
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Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Axiom of Assignment

{P [E\x ]}x := E{P}

Rules of Consequence

{P}S{Q} Q ⊃ R
{P}S{R}

{P}S{Q} R ⊃ P
{R}S{Q}

Rule of Composition

{P}S1{Q1} {Q1}S2{Q}
{P}S1; S2{Q}

Jens Frömmer Hoare calculi for parallel programs
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Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Rule of Iteration
{P&B}S{P}

{P} while B do S {P&¬B}

Rule of Nothing

{P} skip {P}

Rule of Alternation
{P&B}S1{Q} {P&¬B}S2{Q}
{P} if B then S1 else S2 {Q}

Jens Frömmer Hoare calculi for parallel programs
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Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Arbitrary interleaving of single units of action
E.g. disjoint processes’ instructions

A critical region C is a single unit of action
1 Exclusive access to shared resource
2 Execution of C
3 Free shared resource

Limited resources
Arbitrary initial values
Final values are lost

Shared resources for communication
Changes to shared resources have to be visible
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Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Parallel statement
{Q1‖Q2‖ . . . ‖Qn}

Shared resource
{resource r ; Q1‖Q2‖ . . . ‖Qn}

Critical region
with r do C

Critical region with condition
with r when B do C

Jens Frömmer Hoare calculi for parallel programs
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Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Rule for Simultaneity

r inv I, P1{Q1}R1, P2{Q2}R2, . . . ,Pn{Qn}Rn

I&P1& . . .&Pn {resource r; Q1// . . . //Qn}I&R1& . . .&Rn

Rule for Criticality

r inv I, B&I&P{C}R&I
P{with r when B do C}R

Jens Frömmer Hoare calculi for parallel programs
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Proof techniques

1 Parallel Programming: An Axiomatic Approach
2 An Axiomatic Proof Technique for Parallel Programs I
3 The ’Hoare Logic’ of Concurrent Programs
4 A Generalization of Owicki-Gries’s Hoare Logic for a

Concurrent While Language
5 Owicki-Gries Reasoning for Weak Memory Models
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Parallel Programming: An Axiomatic Approach

Obtain a shared resource by declaration
Use existing scope rules
Blocks claiming shared resources are single units of action

Cooperating processes
Commutativity principle

Communicating processes
Semi-commutativity

Colluding processes
Possibly non-terminating head
Protected tail
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
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Parallel Programming: An Axiomatic Approach

Relation
Q1 v Q2 means Q1 has the identical effects as Q2 if Q1 terminates
Q1 ≡ Q2 means (Q1 v Q2)&(Q2 v Q1)

Disjoint processes

Q1//Q2 ≡ Q1; Q2

Asymmetric parallel rule

P{Q1}S S{Q2}R
P{Q1//Q2}R

Symmetric parallel rule

P1{Q1}R1 P2{Q2}R2

P1&P2{Q1//Q2}R1&R2
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Parallel Programming: An Axiomatic Approach

Semi-commute
Given action q1 of Q1 and action q2 of Q2, these actions are
semi-commute if q2; q1 v q1; q2

Communicating processes
If all q1 and q2 are semi-commute then Q1 is a producer for the
consumer Q2 and the two processes are communicating.

Rule of two-way communication

P1&S2{Q1}S1&R1 P2&S1{Q2}S2&R2

P1&P2{Q1//Q2}R1&R2
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Parallel Programming: An Axiomatic Approach

Colluding processes

P1{Q1}R1 P2{Q2}R2

P1&P2{Q1or Q2}R1 ∨ R2

Possibly non-terminating head and protected tail

P1{Q1}R1 R1{Q ′
1}R

P2{Q2}R2 R2{Q ′
2}R

P1&P2{Q1 then Q ′
1 or Q2 then Q ′

2}R
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Based on Towards a Theory of Parallel Programming
Different from Parallel Programming: An Axiomatic Approach

E.g. globally defined variables, idea of interference-free
processes
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An Axiomatic Proof Technique for Parallel Programs I

Rule of Await
{P&B}S{Q}

{P} await B then S{Q}

Rule of Cobegin

{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are interference-free
{P1& . . .&Pn}cobegin S1// . . . //Sn coend{Q1& . . .&Qn}
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Interference-free (1)

Statement T with precondition pre(T ) does not interfere with
{P}S{Q} if:
{Q&pre(T )}T{Q} and
if S ′ in S then {pre(S ′)&pre(T )}T{pre(S ′)}

Interference-free (2)

{P1}S1{Q1}, {P2}S2{Q2}, . . . , {Pn}Sn{Qn} are interference-free
if:
For all await or assignment statements T of process Si , T does not
interfere with {Pj}Sj{Qj} for all j 6= i .
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Reasons for non-termination:
1 Deadlock
2 Infinite Loop
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An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Deadlock-free
Let S be a statement with proof {P}S{Q}.
Let the awaits of S which do not occur within cobegins of S be
Aj : await Bj then . . .
Let the cobegins of S which do not occur within other cobegins of
S be Tk : cobegin Sk

1 //S
k
2 // . . . //S

k
nk

coend

D(S) =

[∨
j

(pre(Aj) ∧ ¬Bj)

]
∨
[∨

k
D1(Tk)

]
D1(Tk) =

[∧
i

(post(Sk
i ) ∨ D(Sk

i ))

]
∧
[∨

i
D(Sk

i )

]
Then D(S) = false implies that in no execution of S can S be
blocked.
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An Axiomatic Proof Technique for Parallel Programs I

Rule of Iteration with Termination
{P&B}S{P}, t >= 0, {P&B &t = c}S{t < c}

{P} while B do S{P&¬B}

Adaption of interference-free (1)

A statement T with precondition pre(T ) does not interfere with
{P}S{Q} if:
{Q&pre(T )}T{Q} and
if S ′ in S then {pre(S ′)&pre(T )}T{pre(S ′} and
if t is the integer function used in a proof of correctness of a loop
within S , then {t = c&pre(T )}T{t ≤ c}
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Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
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An Axiomatic Proof Technique for Parallel Programs I

Adapted Rule of Cobegin

{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are interference-free
{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are deadlock-free

{P1& . . .&Pn}cobegin S1// . . . //Sn coend{Q1& . . .&Qn}

allows to prove termination!
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Parallel Programming: An Axiomatic Approach
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The ’Hoare Logic’ of Concurrent Programs

Includes proof method of Owicki and Gries

Redefined Hoare triple

The meaning of the triple {P}S{Q} is redefined. If P is true and
execution starts at any point in S then P stays true until S
terminates and Q becomes true on termination of S .

Atomic action
〈x := x + 1〉

Control locations
〈x〉 := 〈x + 1〉

Jens Frömmer Hoare calculi for parallel programs
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The ’Hoare Logic’ of Concurrent Programs

Value-variables
Uniquely identifier for each occurrence of a statement or
expression
Class of value-variables

〈e〉 → 〈value(′〈e〉′) := e〉

Hoare triple

P{S}Q
{P}〈S〉{Q}

Rule of Consequence

{P}S{Q}, Q ⊃ R
{P}S{R}

(weakening postcondition)
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The ’Hoare Logic’ of Concurrent Programs

Program locations

at(′S ′) = true iff. control is at the beginning of S
in(′S ′) = true iff. control is somewhere in S
after(′S ′) = true iff. control is at the point immediately following S

Rule of Composition

{P}S{Q} {R}T{U} Q ∧ at(′T ′) ⊃ R
{[in(′S ′) ⊃ P] ∧ [in(′T ′) ⊃ R]} [S ; T ] {U}

′ [S ; T ]′ = ′S ′ ⊕′ T ′

at(′[S ; T ]′) ≡ at(′S ′)
after(′[S ; T ]′) ≡ after(′T ′)
after(′S ′) ≡ at(′T ′)

Jens Frömmer Hoare calculi for parallel programs
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The ’Hoare Logic’ of Concurrent Programs

Rule of Iteration
{P}b{Q} {R}S{P} [Q ∧ at(′S ′) ∧ value(′b′) = true ⊃ R]

{[in(′b′) ⊃ P] ∧ [in(′S ′) ⊃ R]}while b do S{Q ∧ value(′b′) = false}
′W ′ =′ b′ ⊕′ S ′

at(′W ′) ≡ at(′b′)
after(′b′) ≡ at(′S ′)⊕ after(′W ′)
after(′S ′) ≡ at(′b′)

Jens Frömmer Hoare calculi for parallel programs
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The ’Hoare Logic’ of Concurrent Programs

Rule of Cobegin

B denotes cobegin S1‖ . . . ‖Sn coend
{P}S1{P}, . . . , {P}Sn{P}

{P}B{P}
in(′B′) ≡

[[
in(′S′

1) ∨ after(′S′
1)

]
∧ . . . ∧

[
int(′S′

n) ∨ after(′S′
n)

]
∧ ¬

[
after(′S′

1) ∧ . . . ∧ after(′S′
n)

]]
at(′B ′) ≡ at(′S ′

1) ∧ . . . ∧ at(′S ′
n)

after(′B ′) ≡ after(′S ′
1) ∧ . . . ∧ after(′S ′

n)
∀i :′ S ′

i part of ′B ′

∀i 6= j :′ S ′
i ‖′S ′

j
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The ’Hoare Logic’ of Concurrent Programs

Safety property
A safety property for a program S demands that a certain predicate
Q is always true. Given that Q is true after S terminates, Q is
always true if some predicate P satisfies:

The initial condition implies that P is true. (1)
{P}S{true} (2)

P ⊃ Q (3)

The proof of the second property requires to prove that each
sub-statement Si of cobegin-statement S is correct and to prove
∀j 6= i : {Pi ∧ Pj}Si{true}

Jens Frömmer Hoare calculi for parallel programs
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A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Interpret program by its potential computations
Actions of environment
Actions of program
Invariant properties

Labelled transition relation

〈p, s〉 l−→ 〈q, s ′〉
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A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Relations describing the programming language’s meaning

〈p, s〉 E−→ 〈p, s ′〉
〈x := t, s〉 P−→ 〈ε, s [t/x ]〉
. . .
〈await D then p, s〉 P−→ 〈ε, s ′〉 if s |= D and p = ε or ∃n ≥ 1.
∀i with 1 ≤ i ≤ n.p0 = p, pn = ε, s0 = s, sn = s ′ implies
〈pi−1, si−1〉

P−→ 〈pi , si 〉
. . .
〈p‖q, s〉 P−→ 〈p′‖q, s ′〉 if 〈p, s〉 P−→ 〈p′, s ′〉
〈p‖q, s〉 P−→ 〈p‖q′, s ′〉 if 〈q, s〉 P−→ 〈q′, s ′〉
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A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Potential computation

A potential computation (pc) from p0 is any finite or infinite

sequence 〈pi , si 〉
li−→ 〈pi+1, si+1〉 for each defined i , li ∈ {P,E}
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A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Redefined Hoare triple

{Γ,A}p{B,∆} with
|= {Γ,A}p{B,∆} iff E [Γ] ∩ O [A] ∩ JPK ⊆ Λ [B] ∩ P [∆] where
E [Γ] set of all pcs which only include Γ-invariant environment
changes
P[Γ] set of all pcs which only include Γ-invariant program changes
O [A] set of all pcs which initial state satisfy A
Λ [A] set of all pcs that either do not terminate or satisfy A in the
first termination state
JpK set of all actual computations of p
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A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Rule of ‖
Γ→ C {Γ,A}p{C ,Σ ∪∆} {Σ,B}q{E , Γ ∪∆} Σ→ E

{Γ ∪ Σ,A ∧ B}p‖q{C ∧ E ,∆}

Setting Γ = L and ∆ = ∅ one obtains the usual Hoare rules
Rule of ‖ ensures that the environment invariants of the one
are program invariants of the other proof
Freedom of interference in the sense of Owicki-Gries
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Owicki-Gries Reasoning for Weak Memory Models

Stronger definition of non-interference that is sound under
C11’s release/acquire and TSO
Program’s semantic is given by its set of consistent executions

Execution
An execution G is a triple 〈A, L,E 〉 where A is a finite set of nodes
that does identify G , L labels each node and E is a set of edges.
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Owicki-Gries Reasoning for Weak Memory Models

Labels
〈S〉 (skip), 〈R, x , vr 〉 (read), 〈W , x , vw 〉 (write),
〈U, x , vr , vw 〉 (update)

Edges

For every triple 〈a, b, x〉 ∈ E ⊆ (A× A) ∪ (A× A× Loc) there is
a ∈ G .Wx ∪ G .Ux , b ∈ G .S ∪ G .Rx ∪ G .Ux and
G .valw (a) = G .valr (b) (for b /∈ G .S).
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Owicki-Gries Reasoning for Weak Memory Models

Composition

If G = 〈A, L,E 〉 and G ′ = 〈A′, L′,E ′〉 are two executions with
disjoint sets of nodes then

G‖G ′ is given by 〈A ∪ A′, L ∪ L′,E ∪ E ′〉
G ; G ′ is given by (G‖G ′) ∪ (O × I )

with the terminal nodes O of G and the initial nodes I of G ′
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Owicki-Gries Reasoning for Weak Memory Models

Gadgets

A read gadget is an execution like 〈{a}, {a 7→ 〈R, x , v〉}, ∅〉. write,
update and skip gadgets are defined in the same way. RG(x , v),
WG(x , v), UG(x , vr , vw ) and SG denote the sets of all read, write,
update and skip gadgets.

Map instructions to sets of executions

JskipK = SG
Jif e(x) then c1 else c2K =

⋃
{RG(x , v); JciK|value v , i ∈

{1, 2}, JeK(v) = 0 iff i = 2}
. . .
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Owicki-Gries Reasoning for Weak Memory Models

Consistent executions
An execution G = 〈A, L,E 〉 is complete if for every read or update
there is a previous write or update. It is coherent if Eall is acyclic
and there is a modification order for each location. It is consistent
if it becomes complete and consistent by adding some edges.

Redefined Hoare triple

A Hoare triple {P}c{Q} is valid if Q holds at the terminal edge of
complete and coherent execution G ∪ E ′ in G ∪ E ′ for every
execution G in WG(P); JcK;SG where WG(P) denotes all possible
initializations with respect to P .
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Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries judgement

R;G |= {P}c{Q} where the rely component R consists of
assertions that are required to be stable under parallel execution.
The guarantee component G consists of guarded assignments.

Rule of Parallel

R1;G1 |= {P1}c1{Q1} R2;G2 |= {P2}c2{Q2}
Q1 ∧ Q2 ` Q R1;G1 and R2;G2 are non-interfering

R1 ∪R2 ∪ {Q ↗ (RR
1 ∨RR

2 ∨ Q)};G1 ∪ G2 |= {P1 ∧ P2}c1‖c2{Q}
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Owicki-Gries Reasoning for Weak Memory Models

Non-interfering
R1;G1 and R2;G2 are non-interfering if every R ↗ C ∈ Ri is
stable under every {P}c ∈ Gj for i 6= j . If applied to atomic
assignments or assignments of values, the new non-interference
check coincides with the one of Owicki and Gries.
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Conclusions

Hoare’s proposal in Parallel Programming: An Axiomatic
Approach is not of importance for later ones
Owicki-Gries’s system is either the basis of or included in the
other reviewed approaches
Crucial point: non-interference
Owicki-Gries’s rule for the parallel-statement is considered to
be non-compositional

Jens Frömmer Hoare calculi for parallel programs



Motivation
Basis

Proof techniques
Conclusions
References

Conclusions

Adding the concept of control locations yields in a system that
does include the one of Owicki-Gries, but is compositional
Stirling’s proposal applies Jones’ idea of rely and guarantee
conditions
Lahav and Vafeiadis presume a weak memory model instead of
sequential consistency
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