
Motivation
Basis

Proof techniques
Conclusions
References

Hoare calculi for parallel programs

Jens Frömmer

University of Kaiserslautern, Embedded Systems Group

froemmer@rhrk.uni-kl.de

8. September 2015

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Overview

1 Motivation
2 Basis

Hoare Calculus
Towards a theory of parallel programming

3 Proof techniques
Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

4 Conclusions
5 References

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Correctness proofs for parallel programs

Parallel computing
Performance
Efficiency

Correctness proofs
Tests are incomplete
Complexity

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus

Significant impact
One of the first
Basis for a variety of approaches

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Overview of approaches based on the Hoare Calculus

Common ground
Similar intentions
Based upon each other

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Basis

1 Hoare Calculus
2 Towards a theory of parallel programming

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Notation
a
b
means if a is true then b is true, too.

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Hoare triple
The relation between a program Q, a precondition P and the result
R of the program’s execution build a Hoare triple:
P{Q}R
It is also denoted as:
{P}S{Q}
where P is the precondition and Q the postcondition of statement
S .

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Axiom of Assignment

{P [E\x]}x := E{P}

Rules of Consequence

{P}S{Q} Q ⊃ R
{P}S{R}

{P}S{Q} R ⊃ P
{R}S{Q}

Rule of Composition

{P}S1{Q1} {Q1}S2{Q}
{P}S1; S2{Q}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Hoare Calculus

Rule of Iteration
{P&B}S{P}

{P} while B do S {P&¬B}

Rule of Nothing

{P} skip {P}

Rule of Alternation
{P&B}S1{Q} {P&¬B}S2{Q}
{P} if B then S1 else S2 {Q}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Arbitrary interleaving of single units of action
E.g. disjoint processes’ instructions

A critical region C is a single unit of action
1 Exclusive access to shared resource
2 Execution of C
3 Free shared resource

Limited resources
Arbitrary initial values
Final values are lost

Shared resources for communication
Changes to shared resources have to be visible

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Parallel statement
{Q1‖Q2‖ . . . ‖Qn}

Shared resource
{resource r ; Q1‖Q2‖ . . . ‖Qn}

Critical region
with r do C

Critical region with condition
with r when B do C

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Hoare Calculus
Towards a theory of parallel programming

Towards a theory of parallel programming

Rule for Simultaneity

r inv I, P1{Q1}R1, P2{Q2}R2, . . . ,Pn{Qn}Rn

I&P1& . . .&Pn {resource r; Q1// . . . //Qn}I&R1& . . .&Rn

Rule for Criticality

r inv I, B&I&P{C}R&I
P{with r when B do C}R

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Proof techniques

1 Parallel Programming: An Axiomatic Approach
2 An Axiomatic Proof Technique for Parallel Programs I
3 The ’Hoare Logic’ of Concurrent Programs
4 A Generalization of Owicki-Gries’s Hoare Logic for a

Concurrent While Language
5 Owicki-Gries Reasoning for Weak Memory Models

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Parallel Programming: An Axiomatic Approach

Obtain a shared resource by declaration
Use existing scope rules
Blocks claiming shared resources are single units of action

Cooperating processes
Commutativity principle

Communicating processes
Semi-commutativity

Colluding processes
Possibly non-terminating head
Protected tail

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Parallel Programming: An Axiomatic Approach

Relation
Q1 v Q2 means Q1 has the identical effects as Q2 if Q1 terminates
Q1 ≡ Q2 means (Q1 v Q2)&(Q2 v Q1)

Disjoint processes

Q1//Q2 ≡ Q1; Q2

Asymmetric parallel rule

P{Q1}S S{Q2}R
P{Q1//Q2}R

Symmetric parallel rule

P1{Q1}R1 P2{Q2}R2

P1&P2{Q1//Q2}R1&R2

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Parallel Programming: An Axiomatic Approach

Semi-commute
Given action q1 of Q1 and action q2 of Q2, these actions are
semi-commute if q2; q1 v q1; q2

Communicating processes
If all q1 and q2 are semi-commute then Q1 is a producer for the
consumer Q2 and the two processes are communicating.

Rule of two-way communication

P1&S2{Q1}S1&R1 P2&S1{Q2}S2&R2

P1&P2{Q1//Q2}R1&R2

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Parallel Programming: An Axiomatic Approach

Colluding processes

P1{Q1}R1 P2{Q2}R2

P1&P2{Q1or Q2}R1 ∨ R2

Possibly non-terminating head and protected tail

P1{Q1}R1 R1{Q ′
1}R

P2{Q2}R2 R2{Q ′
2}R

P1&P2{Q1 then Q ′
1 or Q2 then Q ′

2}R

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Based on Towards a Theory of Parallel Programming
Different from Parallel Programming: An Axiomatic Approach

E.g. globally defined variables, idea of interference-free
processes

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Rule of Await
{P&B}S{Q}

{P} await B then S{Q}

Rule of Cobegin

{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are interference-free
{P1& . . .&Pn}cobegin S1// . . . //Sn coend{Q1& . . .&Qn}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Interference-free (1)

Statement T with precondition pre(T) does not interfere with
{P}S{Q} if:
{Q&pre(T)}T{Q} and
if S ′ in S then {pre(S ′)&pre(T)}T{pre(S ′)}

Interference-free (2)

{P1}S1{Q1}, {P2}S2{Q2}, . . . , {Pn}Sn{Qn} are interference-free
if:
For all await or assignment statements T of process Si , T does not
interfere with {Pj}Sj{Qj} for all j 6= i .

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Reasons for non-termination:
1 Deadlock
2 Infinite Loop

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Deadlock-free
Let S be a statement with proof {P}S{Q}.
Let the awaits of S which do not occur within cobegins of S be
Aj : await Bj then . . .
Let the cobegins of S which do not occur within other cobegins of
S be Tk : cobegin Sk

1 //S
k
2 // . . . //S

k
nk

coend

D(S) =

[∨
j

(pre(Aj) ∧ ¬Bj)

]
∨
[∨

k
D1(Tk)

]
D1(Tk) =

[∧
i

(post(Sk
i) ∨ D(Sk

i))

]
∧
[∨

i
D(Sk

i)

]
Then D(S) = false implies that in no execution of S can S be
blocked.

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Rule of Iteration with Termination
{P&B}S{P}, t >= 0, {P&B &t = c}S{t < c}

{P} while B do S{P&¬B}

Adaption of interference-free (1)

A statement T with precondition pre(T) does not interfere with
{P}S{Q} if:
{Q&pre(T)}T{Q} and
if S ′ in S then {pre(S ′)&pre(T)}T{pre(S ′} and
if t is the integer function used in a proof of correctness of a loop
within S , then {t = c&pre(T)}T{t ≤ c}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

An Axiomatic Proof Technique for Parallel Programs I

Adapted Rule of Cobegin

{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are interference-free
{P1}S1{Q1}, . . . , {Pn}Sn{Qn} are deadlock-free

{P1& . . .&Pn}cobegin S1// . . . //Sn coend{Q1& . . .&Qn}

allows to prove termination!

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Includes proof method of Owicki and Gries

Redefined Hoare triple

The meaning of the triple {P}S{Q} is redefined. If P is true and
execution starts at any point in S then P stays true until S
terminates and Q becomes true on termination of S .

Atomic action
〈x := x + 1〉

Control locations
〈x〉 := 〈x + 1〉

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Value-variables
Uniquely identifier for each occurrence of a statement or
expression
Class of value-variables

〈e〉 → 〈value(′〈e〉′) := e〉

Hoare triple

P{S}Q
{P}〈S〉{Q}

Rule of Consequence

{P}S{Q}, Q ⊃ R
{P}S{R}

(weakening postcondition)

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Program locations

at(′S ′) = true iff. control is at the beginning of S
in(′S ′) = true iff. control is somewhere in S
after(′S ′) = true iff. control is at the point immediately following S

Rule of Composition

{P}S{Q} {R}T{U} Q ∧ at(′T ′) ⊃ R
{[in(′S ′) ⊃ P] ∧ [in(′T ′) ⊃ R]} [S ; T] {U}

′ [S ; T]′ = ′S ′ ⊕′ T ′

at(′[S ; T]′) ≡ at(′S ′)
after(′[S ; T]′) ≡ after(′T ′)
after(′S ′) ≡ at(′T ′)

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Rule of Iteration
{P}b{Q} {R}S{P} [Q ∧ at(′S ′) ∧ value(′b′) = true ⊃ R]

{[in(′b′) ⊃ P] ∧ [in(′S ′) ⊃ R]}while b do S{Q ∧ value(′b′) = false}
′W ′ =′ b′ ⊕′ S ′

at(′W ′) ≡ at(′b′)
after(′b′) ≡ at(′S ′)⊕ after(′W ′)
after(′S ′) ≡ at(′b′)

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Rule of Cobegin

B denotes cobegin S1‖ . . . ‖Sn coend
{P}S1{P}, . . . , {P}Sn{P}

{P}B{P}
in(′B′) ≡

[[
in(′S′

1) ∨ after(′S′
1)

]
∧ . . . ∧

[
int(′S′

n) ∨ after(′S′
n)

]
∧ ¬

[
after(′S′

1) ∧ . . . ∧ after(′S′
n)

]]
at(′B ′) ≡ at(′S ′

1) ∧ . . . ∧ at(′S ′
n)

after(′B ′) ≡ after(′S ′
1) ∧ . . . ∧ after(′S ′

n)
∀i :′ S ′

i part of ′B ′

∀i 6= j :′ S ′
i ‖′S ′

j

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

The ’Hoare Logic’ of Concurrent Programs

Safety property
A safety property for a program S demands that a certain predicate
Q is always true. Given that Q is true after S terminates, Q is
always true if some predicate P satisfies:

The initial condition implies that P is true. (1)
{P}S{true} (2)

P ⊃ Q (3)

The proof of the second property requires to prove that each
sub-statement Si of cobegin-statement S is correct and to prove
∀j 6= i : {Pi ∧ Pj}Si{true}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Interpret program by its potential computations
Actions of environment
Actions of program
Invariant properties

Labelled transition relation

〈p, s〉 l−→ 〈q, s ′〉

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Relations describing the programming language’s meaning

〈p, s〉 E−→ 〈p, s ′〉
〈x := t, s〉 P−→ 〈ε, s [t/x]〉
. . .
〈await D then p, s〉 P−→ 〈ε, s ′〉 if s |= D and p = ε or ∃n ≥ 1.
∀i with 1 ≤ i ≤ n.p0 = p, pn = ε, s0 = s, sn = s ′ implies
〈pi−1, si−1〉

P−→ 〈pi , si 〉
. . .
〈p‖q, s〉 P−→ 〈p′‖q, s ′〉 if 〈p, s〉 P−→ 〈p′, s ′〉
〈p‖q, s〉 P−→ 〈p‖q′, s ′〉 if 〈q, s〉 P−→ 〈q′, s ′〉

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Potential computation

A potential computation (pc) from p0 is any finite or infinite

sequence 〈pi , si 〉
li−→ 〈pi+1, si+1〉 for each defined i , li ∈ {P,E}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Redefined Hoare triple

{Γ,A}p{B,∆} with
|= {Γ,A}p{B,∆} iff E [Γ] ∩ O [A] ∩ JPK ⊆ Λ [B] ∩ P [∆] where
E [Γ] set of all pcs which only include Γ-invariant environment
changes
P[Γ] set of all pcs which only include Γ-invariant program changes
O [A] set of all pcs which initial state satisfy A
Λ [A] set of all pcs that either do not terminate or satisfy A in the
first termination state
JpK set of all actual computations of p

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

A Generalization of Owicki-Gries’s Hoare Logic for a
Concurrent While Language

Rule of ‖
Γ→ C {Γ,A}p{C ,Σ ∪∆} {Σ,B}q{E , Γ ∪∆} Σ→ E

{Γ ∪ Σ,A ∧ B}p‖q{C ∧ E ,∆}

Setting Γ = L and ∆ = ∅ one obtains the usual Hoare rules
Rule of ‖ ensures that the environment invariants of the one
are program invariants of the other proof
Freedom of interference in the sense of Owicki-Gries

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Stronger definition of non-interference that is sound under
C11’s release/acquire and TSO
Program’s semantic is given by its set of consistent executions

Execution
An execution G is a triple 〈A, L,E 〉 where A is a finite set of nodes
that does identify G , L labels each node and E is a set of edges.

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Labels
〈S〉 (skip), 〈R, x , vr 〉 (read), 〈W , x , vw 〉 (write),
〈U, x , vr , vw 〉 (update)

Edges

For every triple 〈a, b, x〉 ∈ E ⊆ (A× A) ∪ (A× A× Loc) there is
a ∈ G .Wx ∪ G .Ux , b ∈ G .S ∪ G .Rx ∪ G .Ux and
G .valw (a) = G .valr (b) (for b /∈ G .S).

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Composition

If G = 〈A, L,E 〉 and G ′ = 〈A′, L′,E ′〉 are two executions with
disjoint sets of nodes then

G‖G ′ is given by 〈A ∪ A′, L ∪ L′,E ∪ E ′〉
G ; G ′ is given by (G‖G ′) ∪ (O × I)

with the terminal nodes O of G and the initial nodes I of G ′

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Gadgets

A read gadget is an execution like 〈{a}, {a 7→ 〈R, x , v〉}, ∅〉. write,
update and skip gadgets are defined in the same way. RG(x , v),
WG(x , v), UG(x , vr , vw) and SG denote the sets of all read, write,
update and skip gadgets.

Map instructions to sets of executions

JskipK = SG
Jif e(x) then c1 else c2K =

⋃
{RG(x , v); JciK|value v , i ∈

{1, 2}, JeK(v) = 0 iff i = 2}
. . .

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Consistent executions
An execution G = 〈A, L,E 〉 is complete if for every read or update
there is a previous write or update. It is coherent if Eall is acyclic
and there is a modification order for each location. It is consistent
if it becomes complete and consistent by adding some edges.

Redefined Hoare triple

A Hoare triple {P}c{Q} is valid if Q holds at the terminal edge of
complete and coherent execution G ∪ E ′ in G ∪ E ′ for every
execution G in WG(P); JcK;SG where WG(P) denotes all possible
initializations with respect to P .

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries judgement

R;G |= {P}c{Q} where the rely component R consists of
assertions that are required to be stable under parallel execution.
The guarantee component G consists of guarded assignments.

Rule of Parallel

R1;G1 |= {P1}c1{Q1} R2;G2 |= {P2}c2{Q2}
Q1 ∧ Q2 ` Q R1;G1 and R2;G2 are non-interfering

R1 ∪R2 ∪ {Q ↗ (RR
1 ∨RR

2 ∨ Q)};G1 ∪ G2 |= {P1 ∧ P2}c1‖c2{Q}

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Parallel Programming: An Axiomatic Approach
An Axiomatic Proof Technique for Parallel Programs I
The ’Hoare Logic’ of Concurrent Programs
A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
Owicki-Gries Reasoning for Weak Memory Models

Owicki-Gries Reasoning for Weak Memory Models

Non-interfering
R1;G1 and R2;G2 are non-interfering if every R ↗ C ∈ Ri is
stable under every {P}c ∈ Gj for i 6= j . If applied to atomic
assignments or assignments of values, the new non-interference
check coincides with the one of Owicki and Gries.

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Conclusions

Hoare’s proposal in Parallel Programming: An Axiomatic
Approach is not of importance for later ones
Owicki-Gries’s system is either the basis of or included in the
other reviewed approaches
Crucial point: non-interference
Owicki-Gries’s rule for the parallel-statement is considered to
be non-compositional

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

Conclusions

Adding the concept of control locations yields in a system that
does include the one of Owicki-Gries, but is compositional
Stirling’s proposal applies Jones’ idea of rely and guarantee
conditions
Lahav and Vafeiadis presume a weak memory model instead of
sequential consistency

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

References

Stephen D Brookes, Charles AR Hoare & Andrew W Roscoe (1984)
A theory of communicating sequential processes
Journal of the ACM 31(3), pp. 560–599

CAR Hoare (1976)
Parallel programming: an axiomatic approach
Springer

CAR Hoare (1969)
An axiomatic basis for computer programming
Communications of the ACM12(10), pp. 576–580

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

References

CAR Hoare (2002 (1971))
Towards a theory of parallel programming
The origin of concurrent programming, Springer pp. 231–244

2011
Information technology – Programming languages – C++
International Organization for Standardization, Geneva, CH

Cliff B Jones (1981)
Development methods for computer programs including a notion of
interference
Oxford University Computing Laboratory

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

References

Thomas Kleymann (1999)
Hoare logic and auxiliary variables
Formal Aspects of Computing 11(5), pp. 541–566

Ori Lahav & Viktor Vafeiadis (2015)
Owicki-Gries Reasoning for Weak Memory Models

Leslie Lamport (1980)
The ‘Hoare logic’of concurrent programs
Acta Informatica 14(1), pp. 21–37

Jens Frömmer Hoare calculi for parallel programs

Motivation
Basis

Proof techniques
Conclusions
References

References

Susan Owicki & David Gries (1976)
An axiomatic proof technique for parallel programs I
Acta informatica 6(4), pp. 319–340

Colin Stirling (1988)
A generalization of Owicki-Gries’s Hoare logic for a concurrent while
language
Theoretical Computer Science 58(1), pp. 347–359

Jens Frömmer Hoare calculi for parallel programs

	Motivation
	Basis
	Hoare Calculus
	Towards a theory of parallel programming

	Proof techniques
	Parallel Programming: An Axiomatic Approach
	An Axiomatic Proof Technique for Parallel Programs I
	The ’Hoare Logic’ of Concurrent Programs
	A Generalization of Owicki-Gries’s Hoare Logic for a Concurrent While Language
	Owicki-Gries Reasoning for Weak Memory Models

	Conclusions
	References

