Clock Refinement in
Imperative Synchronous Languages

Mike Geminde

October 18th, 2013

Mike Geminde Clock Refinement in Imperative Synchronous Languages 1

Model-Based Design and Models of Computation

o (parallel, distributed) models of computation (MoC)

@ abstract special properties, focus on relevant attributes (e.g.
communication)

@ e.g. discrete event, data-flow process networks, synchronous model

Mike Geminde Clock Refinement in Imperative Synchronous Languages 2

Synchronous Model of Computation

Ideal World (Development)

@ produce the outputs synchronously with the inputs

@ abstract from delay of computation (micro steps)

@ (logical) time is consumed between reactions (macro steps)
@ compose very well

@ focus on logic of reaction

Real World (Execution)

@ challenges compilers

@ requirements of application must be met

Various Languages

Data-Flow: Lustre, Signal Control-Flow: Esterel, Quartz, Statecharts

Mike Geminde Clock Refinement in Imperative Synchronous Languages E)

Introduction

Quartz Example P1

@ pause marks end of a (macro) step

module P1 (nat ?i1,?i2,01,02) @ inputs: it,i2 outputs: o1, 02

{ local variable: x
nat x; . .
°
oo 4 new inputs/outputs in each step
ol = il + 1i2; @ execution follows data dependencies
x = il;
pause; ‘ 12 3 4 5
ol = 02 + il + x;
9 = A it|1 2 3 4 5
N i2/2 4 6 8 0
pause; x [1 2 2 4 2
if (i1 > 4)
ol = il; ol 3 8 8 12 7
02 = il + ol; o2 |0 4 11 11 0
pause;
} i1 o1
C321 ——> p—— 388, ..
; P1
’ i2 02
o642 —> p——— 0,4,112,. . .

Mike Geminde Clock Refinement in Imperative Synchronous Languages 4

Introduction

Quartz Statements

assignments: x=q, next (x)=«

end of step: pause

conditional execution: i £(y) ... else
loops: while(y){ ... }, loop{ ... }
waiting: await ()

e also time consuming

@ abortion: abort ... when(vy)
@ various variants
@ aborts execution when condition « holds
@ suspension: suspend ... when(y)
@ various variants
@ suspens execution when condition «y holds
@ concurrentexecution: { ... } Il { ... }
Q.

Mike Geminde Clock Refinement in Imperative Synchronous Languages 5

Introduction
Contribution

Extension to define Substeps for Imperative

Synchronous Languages

@ introduce temporal refinement @ stay in the same model

@ not limited to structural @ showed for QUARTZ
abstraction

@ more possibilities for re-use

Mike Geminde Clock Refinement in Imperative Synchronous Languages 6

Introduction
Outline

Introduction of the Extension

e Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Geminde Clock Refinement in Imperative Synchronous Languages 7

Extension

Outline

e Introduction of the Extension
(]

Mike Geminde Clock Refinement in Imperative Synchronous Languages 8

Extension

Example (Greatest Common Divisior)

module GCD(nat 7a,?b, !gcd) @ Euclidean Algorithm in Quartz

{ @ dynamic number of steps needed for

computation
nat x = a; y = b;

o
o
o
o
o
[Ty

while(x > 0) { @ resultis not directly available
S y)_ . @ calling module must take care of time
next(x) = x-y;
else consumption
next(y) = y-x;
}pause; ‘1 2 3 4 5 6
ged = y; a |7 7 7 7 7 7
pause; b |3 3 3 3 3 3
} X 7 4 1 1 1 o0
v
y 33 3 2 1 1

Mike Geminde Clock Refinement in Imperative Synchronous Languages 9

Extension

Example (Greatest Common Divisior)

module GCD(nat 7a,?b, !gcd) @ Euclidean Algorithm in Quartz

{ @ dynamic number of steps needed for

computation
nat x = a; y = b;

while(x > 0) { @ resultis not directly available
if(x >= . .
i y)_ @ calling module must take care of time
next(x) = x-y;
else consumption
next(y) = y-x;
pause; a
} 77,7 — ged
gcd = v; . GCD b 0...,1
pause; 1333 —>

Mike Geminde Clock Refinement in Imperative Synchronous Languages 10

Extension

Example (GCD) - Idea of Refined Clocks

module GCD(nat ?a,?b,!gcd) @ add declaration of clock C1

{ @ C1lisnotvisible to outside
clock(C1) {

e m o oap T oo B @ calling module just sees one step as

while(x > 0) { whole computation
if(x >= y)
next(x) = x-y;
else co 1
next(y) = y-x; C1 1 2 3 4 5 6
Cl);
. pause (C1) a 7
ged = y; b 3
pause; % 7 4 1
}
} y 3 3 11
v
ged ‘ 1

@ COis considered as module clock

Mike Geminde Clock Refinement in Imperative Synchronous Languages 11

Extension

Example (GCD) - Idea of Refined Clocks

module GCD(nat ?a,?b,!gcd) @ add declaration of clock C1

{ @ Clisnotvisible to outside
clock(C1) { X .
e m o oap T oo B @ calling module just sees one step as
while(x > 0) { whole computation
if(x >= y)
next(x) = x-y; a
else 7> ged
next(y) = y-x; b GCD P— 2
pause(C1) ; s 3 —>
}
gecd = y;
pause; @ results available in same step
} .
} @ same language used for computation

Mike Geminde Clock Refinement in Imperative Synchronous Languages 12

Refined Clocks

@ not only structural abstraction, but also of timing behavior
@ local acceleration of steps (logically)

@ steps are divided by sub-steps of lower clocks

@ variables of lower clocks can change more often

Refined Clocks/Steps

Mike Geminde Clock Refinement in Imperative Synchronous Languages 13

Extension

Synchronization on Parallel Threads

module paralleli(...) @ parallel threads synchronize on

{ pause statements

@ synchronous composition
pause; <- - {{ -> pause; @ assignments in between are
executed in the same step

pause; < - - f| -> pause;

Mike Geminde Clock Refinement in Imperative Synchronous Languages 14

Synchronization on Parallel Threads

module paralleli(...) @ parallel threads synchronize on

{ pause statements of same clock
@EEl(ER) €| Eleesiea) @ synchronization on C1 is not
pause(C1) ;
pause; < - - | -» pausa; possible, because C1 is just visible
pause(C1); pause (C2) ; in one thread
pause(C1); @ between two pause statements,
pause; < - - 1 —> pause; . .
pause (C2) ; arbitrarily many steps related to
¥ 3 lower clocks can be done (e.g.
¥) GCD computation)

@ execution of substeps until
synchronization point on next
common pause

Mike Geminde Clock Refinement in Imperative Synchronous Languages 15

More Synchronization on Parallel Threads

module parallel2(...) @ parallel threads synchronize on

{ common clocks
Cl;:t;:t();lg @ synchronization is possible on CO
pause; <- . -» pause; and C1
pause(C1); 1 > pause(C1); e if one thread already reached the
g:ﬁ::;(cji : e pause statement of a higher
pause(C1); clock, it waits for the other one
3 d 5 @ consequence: the same step

Mike Geminde Clock Refinement in Imperative Synchronous Languages 16

Clock Tree is Determined by Declarations

{
clock(C1) {
clock(C2) {
y @ declaration determines scope
} / \ @ clock tree can be directly

clock(C3) { derived from syntax
clock(C4) {

@ COis considered as module

AR B

clock(C5) { o G5 €2 @ again: lower clocks are faster

}
}
}

Mike Geminde Clock Refinement in Imperative Synchronous Languages 17

Semantics

Outline

[+]
e Definition of Semantics

Mike Geminde Clock Refinement in Imperative Synchronous Languages 18

Semantics

(Traditional) SOS Rules

Plotkin’s Approach

define behavior of programs

@ each statement updates store and/or residual statement
@ behavior is completely defined by store

@ store is for each statement defined by previous statements
@ statements influence only following statements

SOS Rules (Plotkin)

(e,o) =°* (m, o) (b,o) —* (true, o)

(x :=e,0) = o[m/x] (1f b then c else d,o) — (c,0)

. 4

—
update store =
select if-branch

Assignment Conditional

Mike Geminde Clock Refinement in Imperative Synchronous Languages 19

Semantics

SOS Rules for Quartz

@ value of variable is constant for whole step

@ all assignments are executed synchronously {

@ Default Reaction

o define value of variable if it is not set o
o different for memorized and event variables vz }1{

~~ divide step into two stages ¥
e Reaction Rules

@ determine environment £ iteratively
@ model unknown values with: | &

e Transition Rules x

@ step transition y

==
Frro|lw
orols

SOS Rules for Quartz

(E,1,8) Bog (I, AP, A™ tean, tmust) (E,1,8) g (W, 8, A™ t)
Reaction Rules Transition Rules

Mike Geminde Clock Refinement in Imperative Synchronous Languages 20

Semantics

Semantics for the Extension: Default Reaction

@ value of x, y constant for whole step

)i{"‘j o ¥ @ value of z can change every substep
Cl?Ct(Ci) { ~~ only some of the variables are set to L for &€
int z;
pause; .) .
z = 1; @ xis maybe assigned in 3rd substep
pause(C1); . . .
A @ Isx known when it is not assigned in the 3rd step?
ause (C1) ; . -
Ef(z > 3) ~~ default reaction needs to ensure that it is also not
X = T1; assigned later in this step
pause(C1);
next(x) = 79;
o next(x) =7
3 pause; co 00 co
--- . . . -
e
X=T1
ox=1 x known ., xknown
step of CO

Mike Geminde Clock Refinement in Imperative Synchronous Languages 21

Semantics

Semantics for the Extension: Choose Clock

Execution Trace

{ CO c1 c2 c2 c1 CO
clock(C1) {
pause; - - @—eo—o—0o—o—@— ->
pause(C1); T T U
X = ... X=...
pause(C1);
pause; =2
}
a ° lue for x f dule) st
clock(C2) { one value for x for a (module) step
ey PN @ 2nd substep C2 needs value of x
pause(C2);
200 B £ @ step of C1 must be executed first
pause(C2) ;
; pause; @ then, order is independent since no other
3 dependencies exist
) @ generally:

e scheduling order can depend on values
e each proper scheduling lead to the same result

Mike Geminde Clock Refinement in Imperative Synchronous Languages 22

Summary Semantics

@ interpreter and SOS rules of Quartz - ChooseClock (C)

have been extended
o different approaches for SOS rules have
been considered

@ this final version explicitly covers two
major aspects

e choose the clock of the next step DoDefault (x)
o when is the default reaction triggered

@ DoDefault not needed for synthesis

@ scheduling independence obtained by
some restrictions

Mike Geminde Clock Refinement in Imperative Synchronous Languages 23

Compilation
Outline

"]
(*]
e Compilation to Intermediate Format

Mike Geminde Clock Refinement in Imperative Synchronous Languages 24

Compilation

Compilation of

@ Quartz compiler translates programs to guarded actions (AIF)

Guarded Actions

¥ = X=T7T (Immediate Action)
v = next(x) = 7 (Delayed Action)

keep synchronous semantics

abstract from complex control flow

action is evaluated in an instant when its guard is true
immediate assignment takes place in current instant

delayed assignment transfers value to next instant

Mike Geminde Clock Refinement in Imperative Synchronous Languages 25

Compilation

Compilation of Quartz Example

module P1 (nat ?7i1,7i2,01,02) Data Flow

{ st = ol = il +1i2
nat x; st = x = i2
loop { 11 = ol = x+il+ 02

ol = il + i2; 11 = 02 = i2
x = i1, 11 = x=2
11: pause; 12Ai1 >4 = ol = il
0ol = 02 + il + x; 12 = 02 = il+ol
02 = i2; 13 = ol = i1+ i2
x =2 13 = x = i2
12: pause;
if (i1 > 4)
ol = i1l;
02 = il + o1l;
13: pause; st = next(11) = true
} 11 = next(12) = true
} 12 = next(13) = true
o 13 = next(11) = true

Mike Geminde Clock Refinement in Imperative Synchronous Languages 26

Compilation

Compilation of Example for the Extension

Data Flow

10: pause;
clock(C1) {

clock(C2) {
11: pause(C2);

y = true;
12: pause(C1);
X = true;
if(y)
13: pause(C2);
z = true;
14: pause;
y = false;
¥
}
15: pause;

Mike Geminde

C2A11 =
C1A12 =
C2A13 =

CIA12A -y =
COA14 =

y = true
x = true
z = true
z = true
y = true

Control Flow

CO A st
CO A 10
C2A11
C1A12Ay
C1A12A -y
C2 A 13
COA14

R

next(10) = true
next(1l1) = true
next(12) = true
next(13) = true
next(14) = true
next(14) = true
next(15) = true

\

Clock Refinement in Imperative Synchronous Languages

Compilation

Compilation of Example with Abort

Data Flow

10: pause;
clock(C1) {
abort {
clock(C2) {
11: pause(C2);

y = true;
12: pause(C1);
X = true;
if(y)
13: pause(C2);
z = true;
14: pause;
y = false;
}
} when(o);
}
15: pause;

Mike Geminde

C2A11 =
—oACLA12 =

C2A13 =
CIA12A -y =
—oACOA 14 =

V
X
z
z
y

true
true
true
true
true

Control Flow

CO A'st

COA10

C2A11
—o/AC1AN1I2Ay
—o/ACL A 12 N\ -y
C2A13

—o/\CO A 14

o ACLA12
o ACOA14

S A R

next(10) = true
next(1l1l) = true
next(12) = true
next(13) = true
next(14) = true
next(14) = true
next(15) = true
next(15) = true
next(15) = true

Clock Refinement in Imperative Synchronous Languages

Synthesis & Evaluation

Outline

e Synthesis from Intermediate Format & Evaluation

Mike Geminde Clock Refinement in Imperative Synchronous Languages 29

Synthesis & Evaluation
Hardware Synthesis

separate functional part and scheduler
each variable is translated separately
scheduler triggers clocks (ChooseClock)
hardware clock is provided from outside

CO is also an output
~ inform environment about finished step

Environment
A
tput. :
%‘é pULS, inputs
Y
c - state
unctiona
Part ~ Scheduler
JAN clocks A
T hardware T hardware
clock clock

Mike Geminde Clock Refinement in Imperative Synchronous Languages 30

Synthesis & Evaluation

Determining a Scheduler

@ clocks are not allowed to be arbitrarily triggered
@ scheduler needs to respect original semantics

e internal state (control flow)
o clock tree (relation of the clocks)
o data dependencies

@ semantics allows re-oder of independent substeps
~~ scheduler can also execute the substeps together

@ restrictions on original model makes scheduler straightforward

e e.g. noimmediate assignments between unrelated clock levels

e no dependencies between lower clocks
e scheduling restrictions are

@ internal state (control flow)
@ clock tree (relation of the clocks)

o data-dependencies
~ c.f. oversampling in Signal (one tick is required for data exchange)
e the following JPEG example will show that this is feasible

Mike Geminde Clock Refinement in Imperative Synchronous Languages 31

JPEG Decoding

JPEG Decoding

Synthesis & Evaluation

CO = Cblock

Cvalue Cvec

|

Cbit

CO =Cblock
Cvalue
Cbit
b, Binary De- alue q
Decoding Quantization r_) DAty
. it

Huffman Quantization
Table(s) Table(s)

@ Decoder: o to 28 Bits per value
@ DeZigZag: 64 values per MCU

@ IDCT: transform 8x8 matrix

Mike Geminde

@ per (macro) step, one MCU is procuded
@ refined clocks abstract data rates
@ substeps hide IDCT computation

@ 1/O only possible with CO, input must be
cached

Clock Refinement in Imperative Synchronous Languages

Experimental Results

Synthesis & Evaluation

QUARTZ Equations Circuit
Example #Clocks # LoC # Reg. #Wire #Reg. #LUTs Delay
IPEG single 1 ~ 1K 307 + 31 180 9,132 9,049 20.2ns
ext. 6 374 +29 191 11,208 11,812 26.0ns
single (1) 1 130 + 4 184 3,995 4,047 25.7ns
IDCT2 single (2) 1 ~ 350 148 + 18 144 4,973 6,780 11.4ns
ext. (1) 2 130+ 4 188 4,018 4,052 25.9ns
ext. (2) 4 150 + 18 152 4,606 6,233 12.9ns
. single 1 15 342 3 33 104 3.9ns
ext. 2 17 3+2 7 33 78 3.7ns
TRACE single 1 ~ 100 10+ 11 26 57 121 5.8ns
ext. 3 17+ 14 32 76 180 6.5ns

Mike Geminde

Clock Refinement in Imperative Synchronous Languages

Summary

Summary

@ extension of imperative synchronous languages with substeps
o different way of thinking for programmers
@ describe things in a different way (not more expressive)

@ new challenges to define semantics, compiler and synthesis tools

Mike Geminde Clock Refinement in Imperative Synchronous Languages 34

Summary
Summary

@ extension of imperative synchronous languages with substeps
o different way of thinking for programmers
@ describe things in a different way (not more expressive)

@ new challenges to define semantics, compiler and synthesis tools

Thank You for your Attention

Mike Geminde Clock Refinement in Imperative Synchronous Languages 34

	Introduction
	Extension
	Semantics
	Compilation
	Synthesis & Evaluation
	Summary

