
Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Clock Refinement in

Imperative Synchronous Languages

Mike Gemünde

October 18th, 2013

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 1

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Model-Based Design andModels of Computation

(parallel, distributed) models of computation (MoC)

abstract special properties, focus on relevant attributes (e.g.

communication)

e.g. discrete event, data-flow process networks, synchronous model

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 2

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Synchronous Model of Computation

Ideal World (Development)

produce the outputs synchronously with the inputs

abstract from delay of computation (micro steps)

(logical) time is consumed between reactions (macro steps)

compose very well

focus on logic of reaction

Real World (Execution)

challenges compilers

requirements of application must be met

Various Languages

Data-Flow: Lustre, Signal Control-Flow: Esterel,Quartz, Statecharts

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 3

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Quartz Example P1

module P1 (nat ?i1,?i2,o1,o2)

{
nat x;
loop {

o1 = i1 + i2;
x = i1;
pause;
o1 = o2 + i1 + x;
o2 = i2;
x = 2;
pause;
if (i1 > 4)

o1 = i1;
o2 = i1 + o1;
pause;

}
}

pausemarks end of a (macro) step

inputs: i1, i2 outputs: o1, o2
local variable: x

new inputs/outputs in each step

execution follows data dependencies

1 2 3 4 5

i1 1 2 3 4 5
i2 2 4 6 8 0

x 1 2 2 4 2

o1 3 8 8 12 7
o2 0 4 11 11 0

P1

i1
. . . ,3,2,1

i2
. . . ,6,4,2

o1
3,8,8,. . .

o2
0,4,11,. . .

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 4

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Quartz Statements

assignments: x=α, next(x)=α
end of step: pause

conditional execution: if(γ)... else ...
loops: while(γ){ ... }, loop{ ... }
waiting: await(γ)

also time consuming

abortion: abort ... when(γ)
various variants

aborts execution when condition γ holds

suspension: suspend ... when(γ)
various variants

suspens execution when condition γ holds

concurrent execution: { ... } || { ... }
…

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 5

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Contribution

Extension to define Substeps for Imperative

Synchronous Languages

introduce temporal refinement

not limited to structural

abstraction

more possibilities for re-use

stay in the samemodel

showed for QUARTZ

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 6

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Outline

Introduction of the Extension

Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 7

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Outline

Introduction of the Extension

Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 8

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Example (Greatest Common Divisior)

module GCD(nat ?a,?b,!gcd)

{

nat x = a; y = b;
while(x > 0) {
if(x >= y)
next(x) = x-y;

else

next(y) = y-x;
pause;

}
gcd = y;
pause;

}

Euclidean Algorithm in Quartz

dynamic number of steps needed for

computation

result is not directly available

calling module must take care of time

consumption

1 2 3 4 5 6

a 7 7 7 7 7 7

b 3 3 3 3 3 3

x 7 4 1 1 1 0

y 3 3 3 2 1 1

gcd 0 0 0 0 0 1

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 9

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Example (Greatest Common Divisior)

module GCD(nat ?a,?b,!gcd)

{

nat x = a; y = b;
while(x > 0) {
if(x >= y)
next(x) = x-y;

else

next(y) = y-x;
pause;

}
gcd = y;
pause;

}

Euclidean Algorithm in Quartz

dynamic number of steps needed for

computation

result is not directly available

calling module must take care of time

consumption

GCD

a
. . . ,7,7,7

b
. . . ,3,3,3

gcd
0,. . . , 1

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 10

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Example (GCD) - Idea of Refined Clocks

module GCD(nat ?a,?b,!gcd)

{
clock(C1) {
nat x = a; y = b;
while(x > 0) {
if(x >= y)
next(x) = x-y;

else

next(y) = y-x;
pause(C1);

}
gcd = y;
pause;

}
}

add declaration of clock C1
C1 is not visible to outside

calling module just sees one step as

whole computation

C0 1

C1 1 2 3 4 5 6

a 7

b 3

x 7 4 1 1 1 0

y 3 3 3 2 1 1

gcd 1

C0 is considered as module clock

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 11

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Example (GCD) - Idea of Refined Clocks

module GCD(nat ?a,?b,!gcd)

{
clock(C1) {
nat x = a; y = b;
while(x > 0) {
if(x >= y)
next(x) = x-y;

else

next(y) = y-x;
pause(C1);

}
gcd = y;
pause;

}
}

add declaration of clock C1
C1 is not visible to outside

calling module just sees one step as

whole computation

GCD

a
. . . 7

b
. . . 3

gcd
1 . . .

results available in same step

same language used for computation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 12

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Refined Clocks

not only structural abstraction, but also of timing behavior

local acceleration of steps (logically)

steps are divided by sub-steps of lower clocks

variables of lower clocks can changemore often

Refined Clocks/Steps

C0
C1
C2

R0 R1 R2 R3

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 13

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Synchronization on Parallel Threads

module parallel1(. . .)

{

pause; pause;

pause; pause;

}

parallel threads synchronize on

pause statements

synchronous composition

assignments in between are

executed in the same step

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 14

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Synchronization on Parallel Threads

module parallel1(. . .)

{
clock(C1) { clock(C2) {
pause(C1);
pause; pause;
pause(C1); pause(C2);
pause(C1);
pause; pause;

pause(C2);
} }

}

parallel threads synchronize on

pause statements of same clock

synchronization on C1 is not

possible, because C1 is just visible

in one thread

between two pause statements,

arbitrarily many steps related to

lower clocks can be done (e.g.

GCD computation)

execution of substeps until

synchronization point on next

common pause

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 15

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

More Synchronization on Parallel Threads

module parallel2(. . .)

{
clock(C1) {
pause(C1);
pause; pause;
pause(C1); pause(C1);
pause(C1);
pause; pause;

pause(C1);
} }

}

parallel threads synchronize on

common clocks

synchronization is possible on C0
and C1
if one thread already reached the

pause statement of a higher

clock, it waits for the other one

consequence: the same step

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 16

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Clock Tree is Determined by Declarations

module clocktree(. . .)
{
clock(C1) {
clock(C2) {

. . .
}

}
clock(C3) {
clock(C4) {

. . .
}
||
clock(C5) {

. . .
}

}
}

⇒

C0

C3

C4 C5

C1

C2

declaration determines scope

clock tree can be directly

derived from syntax

C0 is considered as module

clock

again: lower clocks are faster

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 17

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Outline

Introduction of the Extension

Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 18

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

(Traditional) SOS Rules

Plotkin’s Approach

define behavior of programs

each statement updates store and/or residual statement

behavior is completely defined by store

store is for each statement defined by previous statements

statements influence only following statements

SOS Rules (Plotkin)

〈e, σ〉 →• 〈m, σ〉

〈x := e, σ〉 → σ[m/x]

〈b, σ〉 →• 〈true, σ〉

〈if b then c else d, σ〉 → 〈c, σ〉

Assignment Conditional

update store
select if-branch

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 19

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

SOS Rules for Quartz

value of variable is constant for whole step

all assignments are executed synchronously

Default Reaction

define value of variable if it is not set

different for memorized and event variables

 divide step into two stages
Reaction Rules

determine environment E iteratively

model unknown values with: ⊥
Transition Rules

step transition

Example

{
if(y > 2)

x = 1;
} || {

y = 1;
z = x;

}
pause;
. . .

E 1 2 3 4

x ⊥ ⊥ 0 0
y ⊥ 1 1 1
z ⊥ ⊥ ⊥ 0

SOS Rules for Quartz

〈E , ~,S〉#Q
〈
~′,Acan,Amust, tcan, tmust

〉
〈E , ~,S〉�Q

〈
~′,S ′,Anxt, t

〉
Reaction Rules Transition Rules

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 20

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Semantics for the Extension: Default Reaction

Example

int x, y;
x = 3;
clock(C1) {
int z;
pause;
z = 1;
pause(C1);
z = 2;
pause(C1);
if(z > 3)

x = τ1;
pause(C1);
next(x) = τ2;
. . .
pause;

}

value of x, y constant for whole step

value of z can change every substep

 only some of the variables are set to⊥ for E

x is maybe assigned in 3rd substep

Is x knownwhen it is not assigned in the 3rd step?

 default reaction needs to ensure that it is also not

assigned later in this step

C0 C0 C0

next(x) = τ2

x = τ1
x = ⊥ x known

step of C0
x known

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 21

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Semantics for the Extension: Choose Clock

module P7(nat x)

{
clock(C1) {
pause;
pause(C1);
x = ...;
pause(C1);
pause;

}
||
clock(C2) {
pause;
pause(C2);
... = x;
pause(C2);
pause;

}
}

Execution Trace

C0 C0C1 C2 C2 C1

x=...
...=x

one value for x for a (module) step

2nd substep C2 needs value of x
step of C1 must be executed first

then, order is independent since no other

dependencies exist

generally:

scheduling order can depend on values

each proper scheduling lead to the same result

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 22

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Summary Semantics

interpreter and SOS rules of Quartz

have been extended

different approaches for SOS rules have

been considered

this final version explicitly covers two
major aspects

choose the clock of the next step

when is the default reaction triggered

DoDefault not needed for synthesis

scheduling independence obtained by

some restrictions

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 23

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Outline

Introduction of the Extension

Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 24

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Compilation of Quartz

Quartz compiler translates programs to guarded actions (AIF)

Guarded Actions

γ ⇒ x = τ (Immediate Action)

γ ⇒ next(x) = τ (Delayed Action)

keep synchronous semantics

abstract from complex control flow

action is evaluated in an instant when its guard is true

immediate assignment takes place in current instant

delayed assignment transfers value to next instant

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 25

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Compilation of Quartz Example

module P1 (nat ?i1,?i2,o1,o2)

{
nat x;
loop {

o1 = i1 + i2;
x = i1;
l1: pause;
o1 = o2 + i1 + x;
o2 = i2;
x = 2;
l2: pause;
if (i1 > 4)

o1 = i1;
o2 = i1 + o1;
l3: pause;

}
}

Data Flow

st ⇒ o1 = i1 + i2
st ⇒ x = i2

l1 ⇒ o1 = x + i1 + o2
l1 ⇒ o2 = i2
l1 ⇒ x = 2

l2 ∧ i1 > 4 ⇒ o1 = i1
l2 ⇒ o2 = i1 + o1
l3 ⇒ o1 = i1 + i2
l3 ⇒ x = i2

Control Flow

st ⇒ next(l1) = true

l1 ⇒ next(l2) = true

l2 ⇒ next(l3) = true

l3 ⇒ next(l1) = true

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 26

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Compilation of Example for the Extension

module P (...)

l0: pause;
clock(C1) {

clock(C2) {
l1: pause(C2);
y = true;
l2: pause(C1);
x = true;
if(y)

l3: pause(C2);
z = true;
l4: pause;
y = false;

}

}
l5: pause;

Data Flow

C2 ∧ l1 ⇒ y = true

C1 ∧ l2 ⇒ x = true

C2 ∧ l3 ⇒ z = true

C1 ∧ l2 ∧ ¬y ⇒ z = true

C0 ∧ l4 ⇒ y = true

Control Flow

C0 ∧ st ⇒ next(l0) = true

C0 ∧ l0 ⇒ next(l1) = true

C2 ∧ l1 ⇒ next(l2) = true

C1 ∧ l2 ∧ y ⇒ next(l3) = true

C1 ∧ l2 ∧ ¬y ⇒ next(l4) = true

C2 ∧ l3 ⇒ next(l4) = true

C0 ∧ l4 ⇒ next(l5) = true

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 27

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Compilation of Example with Abort

module P (...)

l0: pause;
clock(C1) {
abort {
clock(C2) {

l1: pause(C2);
y = true;
l2: pause(C1);
x = true;
if(y)

l3: pause(C2);
z = true;
l4: pause;
y = false;

}
} when(σ);

}
l5: pause;

σ

σ

Data Flow

C2 ∧ l1 ⇒ y = true

¬σ∧C1 ∧ l2 ⇒ x = true

C2 ∧ l3 ⇒ z = true

C1 ∧ l2 ∧ ¬y ⇒ z = true

¬σ∧C0 ∧ l4 ⇒ y = true

Control Flow

C0 ∧ st ⇒ next(l0) = true

C0 ∧ l0 ⇒ next(l1) = true

C2 ∧ l1 ⇒ next(l2) = true

¬σ∧C1 ∧ l2 ∧ y ⇒ next(l3) = true

¬σ∧C1 ∧ l2 ∧ ¬y ⇒ next(l4) = true

C2 ∧ l3 ⇒ next(l4) = true

¬σ∧C0 ∧ l4 ⇒ next(l5) = true

σ ∧ C1 ∧ l2 ⇒ next(l5) = true

σ ∧ C0 ∧ l4 ⇒ next(l5) = true

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 28

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Outline

Introduction of the Extension

Definition of Semantics

Compilation to Intermediate Format

Synthesis from Intermediate Format & Evaluation

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 29

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Hardware Synthesis

separate functional part and scheduler

each variable is translated separately

scheduler triggers clocks (ChooseClock)
hardware clock is provided from outside

C0 is also an output

 inform environment about finished step

Synthesis

Functional

Part
Scheduler

Environment

state

clocks

hardware
clock

hardware
clock

outputs,
C0 inputs

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 30

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Determining a Scheduler

clocks are not allowed to be arbitrarily triggered

scheduler needs to respect original semantics

internal state (control flow)

clock tree (relation of the clocks)

data dependencies

semantics allows re-oder of independent substeps

 scheduler can also execute the substeps together

restrictions on original model makes scheduler straightforward

e.g. no immediate assignments between unrelated clock levels

no dependencies between lower clocks
scheduling restrictions are

internal state (control flow)

clock tree (relation of the clocks)

data dependencies

 c.f. oversampling in Signal (one tick is required for data exchange)

the following JPEG example will show that this is feasible

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 31

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

JPEG Decoding

JPEG Decoding

Cbit
Cvalue

Cvec

C0 = Cblock

Binary
Decoding

De-
Quantization

DeZigZag IDCT

Quantization
 Table(s)

Huffman
 Table(s)

bits values values 8x8 8x8

C0 = Cblock

Cvalue

Cbit

Cvec

Decoder: 0 to 28 Bits per value

DeZigZag: 64 values per MCU

IDCT: transform 8x8matrix

per (macro) step, one MCU is procuded

refined clocks abstract data rates

substeps hide IDCT computation

I/O only possible with C0, input must be

cached

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 32

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Experimental Results

QUARTZ Equations Circuit

Example # Clocks # LoC # Reg. #Wire # Reg. # LUTs Delay

JPEG
single 1 ∼ 1K

307 + 31 180 9, 132 9, 049 20.2ns

ext. 6 374 + 29 191 11, 208 11, 812 26.0ns

IDCT2

single (1) 1

∼ 350

130 + 4 184 3, 995 4, 047 25.7ns

single (2) 1 148 + 18 144 4, 973 6, 780 11.4ns

ext. (1) 2 130 + 4 188 4, 018 4, 052 25.9ns

ext. (2) 4 150 + 18 152 4, 606 6, 233 12.9ns

GCD
single 1 15 3 + 2 3 33 104 3.9ns

ext. 2 17 3 + 2 7 33 78 3.7ns

TRACE
single 1 ∼ 100

10 + 11 26 57 121 5.8ns

ext. 3 17 + 14 32 76 180 6.5ns

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 33

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Summary

extension of imperative synchronous languages with substeps

different way of thinking for programmers

describe things in a different way (not more expressive)

new challenges to define semantics, compiler and synthesis tools

Thank You for your Attention

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 34

Introduction Extension Semantics Compilation Synthesis & Evaluation Summary

Summary

extension of imperative synchronous languages with substeps

different way of thinking for programmers

describe things in a different way (not more expressive)

new challenges to define semantics, compiler and synthesis tools

Thank You for your Attention

Mike Gemünde Clock Refinement in Imperative Synchronous Languages 34

	Introduction
	Extension
	Semantics
	Compilation
	Synthesis & Evaluation
	Summary

