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Abstract

We consider the problem of integrating different systems biology formalisms, namely, the process
calculi based formalism, the modeling approach based on systems of differential equations, and the
one relying on automata-like descriptions (and model checking).

Specifically, we define automatic procedures for translating stochastic π-calculus descriptions
of gene regulatory networks to S-systems differential equations. Tools for extracting and reasoning
on (approximate) solutions of S-systems have been recently developed in the literature, and can be
exploited to establish a link with automata-based systems biology and model checking techniques.
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1 Introduction

The attempt to face the many challenges coming from the Biology Realm (with its intrinsic complexity)
have recently produced a number of promising converging points of apparently different sciences.
Systems Biology [11] is probably one of the most important emerging research fields in this context,
having as a major objective that of developing adherent formal methods to describe, reason, and
predict on the evolution of general biological systems. First steps in this direction resulted in the
attempt of applying, with some success, existing formalisms originated within various subfields of
mathematics, logic, and computer science. In this paper we focus on the problem of both interfacing
and integrating some of these formalisms. In particular, we deal with three major modeling approaches:
the traditional approach, suggested by mathematicians, based on systems of differential equations, the
recently developed approach [17, 18] relying on process calculi, and methods concerning the use of
model checking and (hybrid) automata theory [1, 2, 4].

Each of the above mentioned approaches has its own merits and, in our opinion, no one represents
the solution. The mathematical depth underlying quantitative descriptions based on systems of dif-
ferential equations, the naturalness of process calculi in describing the behavior of complex systems of
communicating objects, and the ability to describe and querying time evolving systems provided by
automata, are the basic motivations for our attempt at integrating the three approaches.

Here we begin our work building a (preliminary) link relating the formalisms discussed, by devel-
oping procedures to translate, automatically, stochastic π-calculus [14] descriptions of gene regulation
networks (as described in [6]) to/from S-systems differential equations systems. S-systems are specific
kinds of differential equations systems having a simple canonical form, largely used in the context of
extracting gene networks models from time-series experiments [16, 19, 21], and suitable to adherently
describe biological pathways and networks [21]. On the other hand, S-system are at the ground of
the development of (hybrid) XS-systems [2, 4], which are a kind of (hybrid) automata built from
S-systems approximate solutions. Tools for reasoning and querying (hybrid) XS-systems have been
realized in [2, 4]: thus, automatic procedures converting S-systems to process calculi descriptions es-
tablish, as a byproduct, a further link with automata-theory based formalisms. Motivations similar to
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ours pursued the recent work in [10], dealing with translation of process algebra models of signalling
pathways to ODE.

The rest of the paper is organized as follows: in Section 2 we introduce the systems biology
formalisms that we would like to interface. In Section 3 we define automatic procedures to mutually
translate and integrate such formalisms; the latter are applied to the repressilator network [8] in
Section 4. Finally, we conclude the paper discussing, in Section 5, further motivations underlying our
work.

2 Systems Biology Formalisms

2.1 ODE and S-Systems

Traditionally, the effort of mathematicians approaching the field of biological research, has been
primely focused on designing formal models to assist biologists in endowing experimental data of
some mathematical interpretation. Systems of differential equations are considered, in this context,
a very suitable formal tool to accomplish the task of capturing the nature of biological phenom-
ena. To date, the joint work of biologists and mathematicians effectively resulted in deeply adherent
ordinary differential equations (ODE) systems, describing many complex pathways and biological pro-
cesses [5]; on the other hand, a similar effort pursued the problem of providing formal tools both
more flexible and suitable for interacting with the user, as well as being readily understandable for
the biologists’community.

The development and study of S-systems [15, 20] goes exactly in the direction of developing classes
of (dynamical) models for biochemical pathways characterized by a good compromise between accuracy
and mathematical flexibility.

Definition 2.1 ([15]) An S-system is a system of differential equations of the form

Ẋi = V +
i − V −

i = αi

n+m∏

j=1

X
gij

j − βi

n+m∏

j=1

X
hij

j (i = 1 . . . n)

where DV = {X1, . . . , Xn} are the dependent variables, IV = {Xn+1, . . . , Xn+m} are the independent
variables, {αi} and {βi} are the production and degradation rate constants, and {gij}, {hij} are the
apparent kinetic orders.

S-systems1 are at the ground of the approaches proposed in [2, 4, 21], all aiming at setting tools
for the computational analysis and the prediction of biochemical systems dynamics. In particular,
Voit extensively discusses in [21] how S-systems are canonical dynamical systems suitable to describe
with accuracy a large class of biochemical pathways: the development of techniques for automatically
defining S-systems from biochemical maps is addressed (see example 2.2, below) and a tool for deriving
(approximate) solutions of S-systems is developed.

Example 2.2 Consider the (toy) biochemical map depicted below. In such an example (see [21],
Chapter 3), X2 represents the product of a reaction that uses X4 as a substrate, is positively activated
by X1 and inhibited by X3 (feedback dotted arrows). In turn, product X2 is converted into product X1

and its degradation is inhibited by X3. Hence, the corresponding S-system has two dependent variables
(DV = (X1, X2)) and two independent variables (IV = (X3, X4)). The differential equations for
dependent variables are:

1In [2, 4, 21] S-systems are augmented also with a set of algebraic constraints expressing conditions that must be
additionally satisfied for the system to obey conservation of mass, stochiometric relations, etc.
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where g12, g21, h11, g24, h22 > 0 and h13, g23 < 0

In fact, variable X3 affects (negatively) both degradation of
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product X1 and production of X2 (hence it appears in the terms
V −

1 and V −
1 with a negative kinetic order). In turn, X1 en-

hance production of X2 (hence, it appears with positive kinetic
order in V +

2 term). We refer to [21] for an insight discussion
on both suitability of “power-laws” forms of terms V +, V − in

S-systems, and adherence of S-systems derived from maps with the above sketched procedure.

2.2 Automata-Based Systems Biology

In [3, 4] the issue of reasoning, querying, and predicting on the dynamics of biological pathways is
addressed, combining automata theory and S-systems descriptions. The basic idea underlying the work
in [3, 4] is to associate an S-system, S, with a finite automata obtained by suitably encoding a set of
S traces2. Fixed a time-step, ∆, each set of dependent variable values, corresponding to a given trace
of S after k steps (i.e. at time k∆), is encoded in a state of the final automaton. Model Checking [7]
techniques are then exploited to automatically analyze, in silico, the automata encoded traces. Hence,
qualitative queries as Is it possible to reach a steady-state?, but also quantitative ones, are formulated
using a suitable temporal logic language, and their truth on the built automaton is checked. The
same big picture is used in [2], where hybrid automata, in place of classical ones, are employed to
encode traces. Hybrid automata formalism allows to model systems in which continuous and discrete
dynamics interact and have been recently used for systems biology purposes also in [1, 2, 9].

2.3 Process Calculi

Process calculi have been originally introduced in Computer Science as a theoretical framework to
model and analyze communicating and mobile systems [12]: they are essentially programming lan-
guages target to describe concurrent and interacting systems. Recently, the use of Process Calculi
within systems biology, as a formal tool to study biomolecular processes, was proposed in [17, 18].
In [13, 17] a variant of stochastic π-calculus [14] (see Table 1, below3) is implemented and applied to
the simulation of a number of chemical and biological processes, showing evidence of high accuracy,
intuitiveness and visibility of process-calculi based system biology.

Table 1: Syntax of the stochastic π-calculus, as implemented within SPiM machine in [13]

P, Q ::= new x P Restriction Σ ::= 0 Null
| P |Q Parallel | π.P + Σ Action
| Σ Choice π ::=! x(n) Output
| ∗π.P Replication | ? x(n) Input

| τr Delay

2a trace of S is simply an approximate solution of S computed, given an initial value for variables, over a time window
[0 . . . t]

3We adopt here the same notation used in [6, 13]. We refer to [6, 13] for a detailed description of the abstract machine
underlying SPiM simulator for the execution of stochastic π-calculus
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The big picture underlying each example developed in [13, 17, 18] is that of associating biological
networks with networks of communicating processes; while in molecular realm interactions depend on
structural and chemical complementarity of specific portions or motifs, within networks of processes
the role of motifs is played by global channels. Each channel x is opportunely endowed of a reaction
rate, rate(x), to describe the quantitative behavior of biochemical systems. If present, compartments
and modules within molecules are represented as private channels in processes, and biochemical mod-
ifications caused by interactions are mapped to channel transmissions for new communications.

Example 2.3 As a simple example, consider the chemical reaction:

Na + Cl → Na+ + Cl− (1)

To model by process calculi the chemical reaction 1 we need to establish a connection between the given
chemical system and a system of communicating processes. Hence, chemical species Na and Cl will
correspond to processes Na and Cl. The reaction capability associated to the system composed by Na
and Cl should correspond to a communication capability associated to the system of processes composed
by Na and Cl. Further, a communication involving Na and Cl should result in a system composed by
Nap and Clm processes, representing Na+ and Cl−, respectively. Hence, using the sintax given in
Table 1, we declare:

Na::=?e().Nap
Cl::=!e().Clm

were e is the channel allowing communication between Na and Cl processes. Then, the system is
constituted by parallel composition, Na | Cl, which can yield to Nap | Clm.

A more challenging example, namely the process calculi description of gene regulatory network
in [6], is reported in Section 3, as preliminary to the work developed in such a section.

3 Toward Integration of Biological Systems Models

In [21] Voit credits as one of the outstanding features of S-systems the possibility of developing simple
algorithms to automatically extract equations from metabolic maps (see example 2.2). Here, we extend
the picture discussing how S-systems can be automatically derived from π-calculus based descriptions
of biological processes.

More precisely, our (preliminary) work focuses on π-calculus descriptions of gene regulatory net-
works and on their (automatic) translation to/from S-systems. We start from [6], where the authors
defined a compositional approach for process calculi descriptions of simple systems of genes, in which
the translation of each gene can be inhibited/enhanced by the expression of other genes in the network.
Hence, the elementary (primitive) elements composing gene networks π-calculi models in [6] are three
kinds of processes:

• the neg gate process (neg(ai, aj)), involving communication onto channels ai, aj and defined as:

neg(ai, aj) =?ai.τν .neg(ai, aj) + τε.(tr(aj)|neg(ai, aj))
tr(aj) =!aj .tr(aj) + τδ.0

neg(ai, aj) represents the expression of a gene, whose transcription is inhibited by the expression
of some other gene in the network. Hence, the neg gate process makes a stochastic choice between
constitutive transcription (τε.(tr(aj)|neg(ai, aj))) and inhibitory stimulation (?ai.τν .neg(ai, aj)).
If an (input) communication is established on the channel ai, then the process enters a stochastic
delay (τν) during which transcription is inhibited, and then returns to the initial state. The
process tr(aj), simply defines the action of expression of a gene into a protein production: the
process makes a stochastic choice between either binding to an available binding site or delaying
with rate δ (i.e. being degraded). We address the reader to [6] for further details.
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• the pos gate process (pos(ai, aj)), involving communication onto channels ai, aj and defined as:

pos(ai, aj) =?ai.τν .(tr(aj)|pos(ai, aj)) + τε.(tr(aj)|pos(ai, aj))

pos(ai, aj) represents the expression of a gene, whose transcription is enhanced by the expression
of some other gene in the network.

• the nullary input gate process (null(ai)) involving (output) communication on channel ai and
defined as:

null(ai) = τε.(tr(ai)|null(ai))

null(ai) describes a gene with constitutive transcription but neither positive nor negative regu-
lation.

A π-calculus model of genes’network is represented by parallel composition of a set of the above
described elementary processes:

Net = G1|G2| . . . |Gn

where each Gi is a positive, negative or nullary gate.

3.1 Automatic Translation of S-systems and π-Calculus Based Models of Gene
Regulation Networks

Given the above premises, we are now ready to set a translation procedure from gene networks π-
calculus descriptions4 to S-systems. Consider a general process calculi networks of genes, as above
described:

Net = G1| . . . |Gn

We define size(Net) as the number of different channels involved in at least one gate process of the
network i.e.

size(Net) = |{ai | channel ai is involved in at least one gate process of Net}|

Our translation algorithm uses the value size(Net), as well as the kind of communication estab-
lished on each channel (i.e. the kind of gates composing the network) to determine the topology of
the S-system corresponding to Net. The number of channels onto which communication is estab-
lished, size(Net), determines the number of dependent and independent variables in the resulting
S-systems. In our context, dependent variables act for mRNA/proteins concentrations, whereas each
independent variable represents an expressed gene DNA concentration. Hence, the number of both
dependent and independent variables is set to be equal to size(Net) i.e. to the number of genes being
transcribed and translated in the network. On the other hand, the kinds of gates allow to set the
signs of apparent kinetic orders in the system. Intuitively, pos (neg) gates correspond to positive
(negative) kinetic orders. More precisely, the S-systems associated to a given Net = G1| . . . |Gn, say
SNet = (IVnet, DVNet, DENet), can be built by applying the 4 steps procedure depicted in Figure 1.

Note that, within the network of genes defined by a compositional approach in [6], the production of
a protein following a gene transcription can only regulate the synthesis (either positively or negatively)
of other components in the network (i.e. it can affects only the V + terms in the differential equations
composing the S-system). There is no mutually regulation of degradation within the network (this
would result in having general products, involving all variables, within the V − term of each differential
equation). In other words, if we would first translate a gene network in a corresponding biochemical-
like map, we would obtain a map with only three kind of arrows:

4we can assume our gene networks are well defined, i.e. (by the very nature of the described problem) that, for each
couple of channels ai, aj , either neg(ai, aj) or pos(ai, aj) does not belong to the network.
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S-system Extraction(Net = G1| . . . |Gn)

Step1 —Define the set of dependent variables

(1) m ← size(Net) ← |{ai | ∃Gj ∈ Net, Gj uses channel ai}|
(2) Let DVNet = {X1, . . . , Xm}

Step2—Define the set of independent variables

(3) Let IVNet = {Y1, . . . , Ym}

Step3—Define the system of differential equations and set kinetic orders

(4) Let DENet be the set of m differential equations in which:

∀i = 1 . . . m : Ẋi = αiY
gii
i

∏m
j=1 X

gij

j − βiX
hii
i

where :

gii, hii are strictly positive constants,
gij > 0 if Net ≡ pos(aj , ai)|Net′

gij < 0 if Net ≡ neg(aj , ai)|Net′′

gij = 0 otherwise

Step4— Return SNet = (IVnet, DVNet, DENet)

Figure 1: Automatic translation procedure from π-calculus gene networks to S-systems.

1. arrows that link an independent variable to a dependent one;

2. feedback arrows positively influencing the synthesis of dependent variables, in correspondence
to pos gates processes.

3. feedback arrows negatively influencing the synthesis of dependent variables, in correspondence
to neg gates processes.

The above considerations establish the correctness of the automatic translation procedure outlined in
Figure 1. Indeed, such a procedure determines precisely only the sign of each parameter in the output
S-system. However, since S-systems can be studied (for example with respect to their steady-state) in
a complete symbolic way [21], this information is far from being useless. Moreover, in case a precise
numeric form of S-system models need to be determined, the output of the above procedure can be
used to speed up the final model determination, as we discuss in the next subsection.

3.2 Parameter Estimation

In the literature, a major technique to infer S-system models (with explicit values for all parameters)
from time series data relies on the use of evolutionary algorithms [16, 19, 21]. Evolutionary algorithms
are stochastic search techniques that mimic the natural evolution as proposed by Charles Darwin. In
the context of S-systems extraction, the rôle of individual which is the unit elements of populations
and generations, is played exactly by a set of S-system parameters. Recently, in particular, the
authors of [19] combine two subfamilies of such algorithms, namely genetic algorithms and evolutionary
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strategies, to define an efficient two steps search procedure. In a first stage a genetic algorithm is
used to find a suitable topology of the target S-system i.e. to find the non-zero parameters among
{gij}, {hij}. In the second phase, an evolutionary strategy is used, which is suited for optimizing
problems based on real values. The task of the second phase in [19], is precisely that of optimizing
the (non-zero) parameters in the S-system topology previously suggested. The evolutionary strategy
process faces the problem of minimizing the fitness value f :

f =
N∑

i=1

T∑

k=1

(
x̂i(tk)− xi(tk)

xi(tk)

)2

where N is the total number of genes in the regulatory system, T is the number of sampling points
taken from the time-series data, and x̂ and x distinguish between estimated and experimental data.
Interfacing the two phases in [19], allow to avoid incurring in local minimum within the overall pro-
cedure; in general [16, 19], disposing of a topology significatively speed up the convergence of this
minimization process.

With these premises, observe the procedure in Figure 1 exactly extract the topology of the genetic
network modeled with process calculi: as above argued (see [16, 19]), complete topology information
allow faster convergence of evolutionary algorithms to good fitness values. In the case of π-calculus, the
series of data to fit can be obtain simply by executing the process calculi network using a simulator5

as, for example, the recently developed SpiM simulator [13]. Hence, by combining the translation
routine in Figure 1 and genetic algorithms, it is possible to infer a precise S-system from a π-calculus
gene network description.

3.3 Inverse Translation

Concluding this section, we observe that the inverse translation (producing a qualitative process calculi
gene network description, given an S-system representation of a network of genes whose translation is
mutually regulated) can be also automatically obtained, by simply reversing the translation function
above developed.

4 The Repressilator Example

In this section we take into consideration the repressilator network [8] to show an application of the
automatic translation procedures above developed.

Such a gene regulatory network, originally described and
analyzed in [8], was considered for modeling purposes by sup-
porters of both process calculi based systems biology [6, 18]
and formal analysis of biological networks by means of systems
of differential equations and automata-like tools [1, 2, 4]. As
depicted in the figure on the right, a repressilator network [8]
basically contains three genes/proteins, namely IacI, TetR, and
λcI. These elements are (logically) arranged in a cyclic man-
ner so that the protein product of one gene is repressor for the
next gene. A process calculi model of the repressilator network
is built and simulated, using the SPiM simulator, in [6]. The
repressilator network consists simply of the three following pro-

cesses executing in parallel:

RepNet = neg(a1, a2)|neg(a2, a3)|neg(a3, a1)
5Note here how, exactly the application of process calculi to biological systems models pursued research community

to implement abstract machines for the π calculus execution.
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The corresponding S-system, built using the translation procedure developed in the previous sub-
section, is the S-system

SRepNet = (IVRepNet, DVRepNet, DERepNet)

in which size(RepNet) = 3 and:

• IVRepNet = {Y1, Y2, Y3};

• DVRepNet = {X1, X2, X3};

• DERepNet is a the following set of three differential equations:

Ẋ1 = α1Y
g11
1 Xg13

3 − β1X
h11
1

Ẋ2 = α2Y
g22
2 Xg21

1 − β2X
h22
2

Ẋ3 = α3Y
g33
3 Xg32

2 − β3X
h33
3

where g13 < 0, g21 < 0, g32 < 0 and all the other parameters are strictly positive.

The above built S-system has been recently computationally analyzed and “queried” by means of
model checking techniques in [3, 4], within Symphatica tool: the authors of [3, 4] show, in particular,
the possibility of testing automatically inquiries relative to the oscillatory dynamics of components.

5 Capturing Deterministic and Stochastic Behaviors of Biological
Systems within Hybrid XS-Systems

A major advantage claimed by researchers developing process calculi based systems biology, is the
capability of easily building models inherently considering stochastic effects. To date, there are in fact
many evidences about the importance of noise and stochasticity in the evolution of biological processes,
particularly when the number of molecules gets small. For these reasons, a very natural way of
integrating process calculi systems biology and the analysis of biological systems by means of S-system
(and automata theory) is that of building hybrid models, based on S-systems differential equations in
presence of massive numbers of molecules, relying instead on stochastic π-calculus when the number
of molecules gets small (see the figure above). Within biological processes analysis systems considering

High  Density

Low Density

Model
Calculus

Stochastic

Model
S−system

the above suggested hybrid models, procedures for automatically translating the interfacing formalisms
would be, of course, particularly useful. From a higher perspective, we conclude the paper claiming
again the many positive byproducts coming from a systems biology tool integrating process calculi,
S-systems, and automata-like modeling approaches, while inheriting much of the (complementary)
advantages.
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6 Conclusions and Future Work

In this paper we define automatic procedures for translating stochastic π-calculus descriptions of gene
regulatory networks to/from S-systems differential equations. Techniques as the one developed in [3, 4]
can be exploited to encode S-systems traces into an automata-like description, that can be further
in-silico inquired. Hence, our work stays also as a bridge linking S-systems and π-processes Systems
Biology formalisms, with automata-based modeling.

Some direction for future work are suggested from the following considerations. First, the fragment
of π-calculus needed to describe gene regulatory networks in [6] is a very simple one: basically, scope
extrusion and mobile connections are not considered. Second, our translation procedure is not really
carried out at the level of translating individual features of π-processes, such as choice or communica-
tion, but only at the rougher level of components connected by parallel composition and links. Hence,
a natural step extending the picture just outlined, consists in the definition of automatic translation
procedures from/to S-systems models applying to whole stochastic π-calculus, and defined at the level
of process language constructs.
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