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De�nition: Synchronous Guarded Actions (SGAs)

A synchronous guarded action (γ ⇒ α) consists of

a Boolean guard γ and

a single atomic immediate/delayed assignment α.

Behavior of SGAs

execution of all enabled guarded actions in parallel
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Why Interactive Veri�cation?

Model Checking

available for synchronous languages

fully automatic

su�ers from state-space explosion problem

Interactive Veri�cation

semi-automatic

requires additional information (like invariants)

allows abstraction from data structures and data-types

decomposes proof goals

Combining interactive techniques with model checking is desired.
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Hoare Calculus

nothing : {Φ} nothing {Φ}

assign : {[Φ]τx} x = τ {Φ}

sequence :
{Φ1} S1 {Φ2} {Φ2} S2 {Φ3}

{Φ1} S1;S2 {Φ3}

conditional :
{σ ∧ Φ} S1 {Ψ} {¬σ ∧ Φ} S2 {Ψ}
{Φ} if(σ) S1 else S2 {Ψ}

loop :
{σ ∧ Φ} S {Φ}

{Φ} while(σ) S {¬σ ∧ Φ}

weaken :
|= Φ1 → Φ2 {Φ2} S {Φ3} |= Φ3 → Φ4

{Φ1} S {Φ4}
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SSTA form

Sequential Code Hoare

transformation Hoare veri�cation

synthesis Hoare rules

0 synthesis to sequential code to use the classical Hoare calculus

destroys syntax
merges control and data �ow
combines all loops to a single one

1 de�ning Hoare rules for each statement

2 split the veri�cation process into two stages
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A Hoare calculus for Quartz - Idea 2

Quartz SSTA form Hoare
transformation Hoare veri�cation

0 synthesis to sequential code to use the classical Hoare calculus

1 de�ning Hoare rules for each statement
2 split the veri�cation process into two stages

1 transformation that concentrates the macro-step behavior
2 reason about code in SSTA normal form
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De�ning a Hoare Calculus for Quartz - Idea 2

Quartz SSTA form Hoare
transformation Hoare veri�cation

STA Rule

{
[
. . .
[
[Φ]π1,...,πn

y′
1
,...,y′n

]τn
xn
. . .

]τ1
x1

} (x1, . . . , xm).(y1, . . . , yn) = (τ1, . . . , τm).(π1, . . . , πn) {Φ}

Pause Rule

{
[
[. . .Φ . . .]τ1...τni1,...in

]y′
1
...y′n

y1...yn
} pause {Φ}
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Contribution

Quartz SSTA form Hoare
transformation Hoare veri�cation�

source-code transformation

all assignment collected in a synchronous tuple assignment

must not invent additional variables

parallel operator must be removed

removing the parallel operator

similar to eliminating gotos in sequential programs

proved the impossibility without adding additional variables

problem: representing two parallel loops may introduce an
irreducible sub graph
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Contribution

Quartz SSTA form Hoare
transformation Hoare veri�cation �

module AshcroftManna(nat{3} ?i, nat{2} !o){

bool x;o = 1;

while(!x){
while(i==0&!x){

w1: pause;
o = 1;

}
w2: pause;
o = 1;

if(!x){
while(i==1 & !x){

w3: pause;
o = 0;

} w4: pause;
o = 0;

}}



||



do {

w5: pause;
} while(i!=2);
w6: pause;
w7: pause;
x = true;



}
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A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form
Contribution

Quartz SSTA form Hoare
transformation Hoare veri�cation �

module CounterExample (){
while(...){
pause;
pause;
pause;

}

 ||


while (...){

pause;
pause;

}

pause;


}
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A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form
Contribution

Contribution

Interactive Veri�cation on Source-Code Level

negative result: no Hoare rules for Quartz

veri�cation of SSTA programs [GS12a]

Theorem 'Ashcroft Manna' ⇒ transformation not possible
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Advantage of two Representations

implicit usage of SSTA normal form

Quartz is better human readable

AIF format is better machine-readable

just a few simple rules are required

schizophrenia and causality are dealt with at compile time

�exible decompositions of proof goals (independent of syntax)

compilation to guarded actions is veri�ed

AIF �le contains assumption and assertions ⇒ proof goal
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Idea for the Rules

(G1,L1)

assert(x)

assume(x)

(G2,L2)

(G1;G2,L){
{

L1

L2

decomposition of a sequence

rules decompose proof goals
⇒ rules split AIF �les

rules insert assumptions and
assertions into AIF �les

21 / 36



What is a Model of Computation?
Why Interactive Veri�cation

Interactive Veri�cation on Source-Code Level
Interactive Veri�cation on Guarded-Action Level

Representation of Synchronous Systems for Veri�cation
Conclusions

Approach
Advantages
Proof Rules for Assertions and Assumptions
The AIFProver
Contribution

Idea for the Rules

(G1,L1)

assert(x)

assume(x)

(G2,L2)

(G1;G2,L){
{

L1

L2

assume(x) assume(!x)
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Interactive Veri�cation Framework - AIFProver

abstraction

decomposition

simpler AIF

simpler AIF

simpler AIF

simpler AIF

Decision  Procedure

AIFProver

AIF

 
Quartz

compile

simulator

user
Rule/Tactic
Selection

AVEREST

simple DP

feedback
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Contribution

Interactive Veri�cation on Guarded-Action Level

interactive veri�cation rules [GS12b]

extension for temporal logic LTL

rules for module calls [GS13b]

rules for preemption context [GMS13]

the AIFProver tool [GS12b, GS13b, GS13a]
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Summary of Identi�ed Problems

Problems to Solve

assignment behavior

preservation of determinism

execution order

no serialization

reaction step behavior

temporal behavior
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Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ next(z)=z+1





¬xv ⇒
{

x=(z==0)

xv = true

¬yv ⇒
{

y=z>0

yv = true

xv ∧ yv ⇒


xv = false
yv = false
z = z+1



x=f
y=f
z=0

x=t
y=f
z=1

x=f
y=f
z=1

x=t
y=f
z=1

x=f
y=f
z=1

x=f
y=f
z=1
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Averest
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P #SGA GC SC ES

ABRO 7 0.11 0.06 0.05

ABROM[M=13] 29 4.27 7.92 3.27

AuntAgatha 2 0.12 0.07 0.09
VendingMachine 23 1.14 0.15 0.07

LightControl 36 1.79 0.44 0.40

MinePumpController 42 7.60 0.22 0.09

RSFlipFlop 7 53.51 1.18 1.18

MemoryController 41 407.95 42.93 3.42

IslandTra�cControl 83 504.64 62.40 1.94

FischerMutex 60 0.14 0.22 0.09

Dekker 28 0.63 0.21 0.17

SingleRowNIM 15 0.06 0.04 0.04

PigeonHole 1 0.01 0.05 0.05
Queens 1 0.29 0.19 0.20

MagicSquare 29 1.83 65.67 9638.84
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Contribution

Representation of Synchronous Systems for Veri�cation

by interleaved guarded actions [GS13c]

reuse of algorithms presented in [GMS13]

in SRI's Symbolic Analysis Laboratory [GBS14]

The tool aif2sal [GS13c, GBS14]
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Contribution

Interactive Veri�cation of Synchronous Systems

interactive veri�cation techniques on source-code level:

veri�cation of SSTA programs [GS12a]
Theorem 'Ashcroft Manna' ⇒ transformation not possible

interactive veri�cation techniques on guarded-action level:

interactive veri�cation rules [GS12b]
extension for temporal logic LTL
rules for module calls [GS13b]
rules for preemption context [GMS13]
the AIFProver tool [GS12b, GS13b, GS13a]

representation of synchronous systems for veri�cation

by interleaved guarded actions [GS13c]
in SRI's Symbolic Analysis Laboratory [GBS14]
The tool aif2sal [GS13c, GBS14]
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Proof Rules

Given the AIF �le (G) and the labels (L) of a Quartz program

Overall Task

decompose proof goal (G,L) to (G1,L1) . . . (Gn,Ln)

insert assumptions and assertions representing the execution
history and the user's knowledge of the program

Rule Example

CaseDistinction

(G ∪ {enter (G,L)⇒ assume(σ)},L)
(G ∪ {enter (G,L)⇒ assume(¬σ)},L)

(G,L) W BoolCases(σ)
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Rules for Temporal Logic

Given the AIF �le (G) and the labels (L) of a Quartz program

Overall Task

extending proof goal with speci�cation

decompose (G,L) |= ϕ to (G1,L1) |= ϕ1 . . . (Gn,Ln) |= ϕn

insert assumptions and assertions representing the execution
history and the user's knowledge of the program

Rule Example

UnrollAlways
(G,L) |= ϕ ∧ XGϕ

(G,L) |= GϕW UnrollAlways()
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Rules for Temporal Logic

Idea

({(γ ⇒ assert(α))} ∪ G,L) ≡ (G,L) |= G(γ → α)

Rule Example

UnrollAlways
(G,L) |= ϕ ∧ XGϕ

(G,L) |= GϕW UnrollAlways()
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Other Rules

(G,L) |= ψ

(G,L) |= [ϕ U ψ]

(G,L) |= ψ

(G,L) |= [ϕ U ψ]

(G,L) |= γ ∨ ψ ∧ X [ψ U γ]

(G,L) |= [ψ U γ] W NextWUntil()

(G,L) |= γ ∨ ψ ∧ X [ψ U γ]

(G,L) |= [ψ U γ] W NextSUntil()

(G,L) |= ϕ ∧ (G,L) |= ϕ→ Xϕ

(G,L) |= GϕW Induction()
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Interactive Veri�cation Framework - AIFProver

Implementation Details

Averest is implemented in F#

AIFProver uses same code base and is implemented in F#

proof rules are F# functions

proofs are F# scripts/programs

F# interactive console allows to generate proofs
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Module A

BlackBox φ
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Rule for Module Calls

The Goal

interactive proof rule for module calls in synchronous programs

Problems Induced by Calling a Module

speci�c: default reaction
general: substituted behavior
speci�c: preemption and delayed start
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Rule for Module Calls

Module B

Module A

BlackBox Ψ ϱ(Ψ)
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Rules for Preemption

Module A

BlackBox φ

Preemption

Θ(φ)

Approach

restriction to preemption speci�c behavior

step wise application possible

preemption-speci�c Θ

speci�cation should preserved 'as much as possible'

correct by construction
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Fibonacci Numbers

module Fib(nat ?i,f,event !r)

nat k,g,n;

n = i;

if(n <= 0)

f=0;

else {

k = 1;

g = 0;

f = 1;

while(k != n) {

next(g) = f;

next(f) = f+g;

next(k) = k+1;

l: pause;
}

}

emit(r);

computes Fibonacci numbers
in quartz

r→ f == FIB (i0)
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Fibonacci Numbers

module Fib(nat ?i,f,event !r)

nat k,g,n;

n = i;

if(n <= 0)

f=0;

else {

k = 1;

g = 0;

f = 1;

while(k != n) {

next(g) = f;

next(f) = f+g;

next(k) = k+1;

l: pause;
}

}

emit(r);

EFSM for Modul Fib

State 0

true ⇒ n=i

n ≤ 0 ⇒ emit(r)

n ≤ 0 ⇒ f=0

n > 0 ⇒ k=1

n > 0 ⇒ g=0

n > 0 ⇒ f=1

n > 0 ⇒ next(g)=f

n > 0 ⇒ next(f)=f+g

n > 0 ⇒ next(k)=k+1

n == k ⇒ emit(r)

State 1

n == k ⇒ emit(r)

n 6= k ⇒ next(g)=f

n 6= k ⇒ next(f)=f+g

n 6= k ⇒ next(k)=k+1

State 2

n 6= k ∧ n > 0

n == k

n == k

n 6= k ∧ n ≤ 0

n 6= k
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Fib in STA form (automatic-version)

module FSA(nat ?i,f,event r)

nat k,g,n,l;

do {

case
(l==0) do //State 0

(n,r,k,g,f).(g,f,k,l) =

(i,n<=0,1,0,(n >0?1:0)).

(f,f+g,k+1,(n>0&n!=k?1:2));

(l==1) do //State 1

(r).(g,f,k,l) =

(n==k).

(f,f+g,k+1,(n!=k?1:2));

default
nothing;

pause;
} while (l!=2);

structure completely
destroyed

code contains only a
single loop

same drawbacks as
synthesising
sequential code
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Fib in STA form (handwritten-version)

module Fib(nat ?i,f,event !r)

nat k,g,n;

n = i;

if(n <= 0)

f=0;

else {

k = 1;

g = 0;

f = 1;

while(k != n) {

next(g) = f;

next(f) = f+g;

next(k) = k+1;

l: pause;
}

}

emit(r);

module FSH(nat ?i,f,event !r)

nat k,g,n;

if(n<=0) {

(n,f,r).() = (i,0,true).();
} else {

(n,k,g,f,r).(g,f,k) =

(i,1,0,1,k==n).(f,f+g,k+1);

while(k!=n) {

pause;
(r).(g,f,k) = (k==n).

(f,f+g,k+1);

}

}
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Fib in STA form (handwritten-version)

module FSH(nat ?i,f,event !r)

nat k,g,n;

if(n<=0) {

(n,f,r).() = (i,0,true).();
} else {

(n,k,g,f,r).(g,f,k) =

(i,1,0,1,k==n).(f,f+g,k+1);

while(k!=n) {

pause;
(r).(g,f,k) = (k==n).

(f,f+g,k+1);

}

}

structure is preserved

assignment are shifted
and/or duplicated

same invariants are
usable
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Averest

Averest Design Flow

Quartz

Quartz

..
.

AIF
Module

AIF
Module

Compilation

Compilation

AIF
System

Linking

Transformation

Trace

SMV

AIFProver

C

Java

SystemC

VHDL

Verilog

Simulation

Veri�cation

SW Synthesis

HW Synthesis

http://www.averest.org

47 / 36



Proof Rules for Assertions and Assumptions
Rules for Temporal Logic
AIFProver
Rule for Module Calls
Rules for Preemption
Further Work

Further Work

basis for new work

extension of rule set

application to HybridQuartz

improvement of the AIFProver

embedding in a theorem prover
deeper integration of existing decision procedures
using information from counterexamples
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Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra's Guarded Commands)

execution of a single enabled guarded actions

Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ z=z+1



#3

#2

#1 #3

#2

#1

#2 x=t
y=t
z=1

#1

x=f
y=f
z=0

x=t
y=f
z=0

x=f
y=f
z=1

x=t
y=f
z=1

x=f
y=t
z=1

x=f
y=f
z=1

#2
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Concurrent Model of Computation

De�nition: Asynchronous Guarded Actions (AGAs)

An asynchronous guarded action (γ ⇒ α) consists of

a Boolean guard γ and

a set of atomic assignments α.

Behavior of AGAs

execution of a subset of enabled guarded actions

Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ z=z+1


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Concurrent Model of Computation

Behavior of AGAs

execution of a subset of enabled guarded actions

Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ z=z+1


#3(,#2)

#2

#1
(,#2)

x=t
y=t
z=1

#1(,#2),#3

x=f
y=f
z=0

x=t
y=f
z=0
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z=1
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z=1

x=f
y=t
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Synchronous Model of Computation

De�nition: Synchronous Guarded Actions (SGAs)

A synchronous guarded action (γ ⇒ α) consists of

a Boolean guard γ and

a single atomic immediate/delayed assignment α.

Behavior of SGAs

execution of all enabled guarded actions in parallel

Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ z=z+1


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Synchronous Model of Computation

Behavior of SGAs

execution of all enabled guarded actions in parallel

Example
true⇒ x=(z==0)

true⇒ y=z>0

true⇒ next(z)=z+1

 x=t
y=t
z=1

#1,#2,#3

x=f
y=f
z=0

x=t
y=f
z=0

x=f
y=f
z=1

x=t
y=f
z=1

x=f
y=t
z=1

x=f
y=f
z=1
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Synchronous Model of Computation

execution is divided into a sequence of reactions steps

computation of WCRT

supports hard- and software synthesis

deterministic behavior

formal veri�cation techniques available (i.e. model checking)

languages: Quartz, Esterel, Signal, Lustre, etc.

Macro Step Behavior

all inputs are read

all outputs are produced (instantaneously)

new internal state is determined

each variable has a unique value
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