

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

# Interactive Verification of Synchronous Systems

Manuel Gesell

[gesell@cs.uni-kl.de](mailto:gesell@cs.uni-kl.de)

Embedded Systems Group

University of Kaiserslautern

November 7<sup>th</sup>, 2014

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

## Hypothesis

The synchronous Model of Computation (MoC) does not prohibit the application or adoption of verification techniques and tools developed for other MoCs.

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- 1 What is a Model of Computation

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- ① What is a Model of Computation
- ② Why interactive verification

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- ① What is a Model of Computation
- ② Why interactive verification
- ③ Interactive Verification on Source-Code Level

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- ① What is a Model of Computation
- ② Why interactive verification
- ③ Interactive Verification on Source-Code Level
- ④ Interactive Verification on Guarded-Action Level

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- ① What is a Model of Computation
- ② Why interactive verification
- ③ Interactive Verification on Source-Code Level
- ④ Interactive Verification on Guarded-Action Level
- ⑤ Representation of Synchronous Systems for Verification

## Hypothesis

The **synchronous Model of Computation (MoC)** does not prohibit the application or adoption of **verification techniques** and **tools** developed for other MoCs.

## Outline

- ➊ What is a Model of Computation
- ➋ Why interactive verification
- ➌ Interactive Verification on Source-Code Level
- ➍ Interactive Verification on Guarded-Action Level
- ➎ Representation of Synchronous Systems for Verification
- ➏ Conclusion

# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 Interactive Verification on Guarded-Action Level
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

## Definition: Guarded Action

A **guarded action**  $(\gamma \Rightarrow \alpha)$  consists of

- a Boolean **guard**  $\gamma$  and
- an **atomic** action  $\alpha$ .

## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$

# Sequential Model of Computation

## Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action  $(\gamma \Rightarrow \alpha)$  consists of

- a Boolean guard  $\gamma$  and
- a set of atomic assignments  $\alpha$ .

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of a single enabled guarded actions

# Sequential Model of Computation

## Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action  $(\gamma \Rightarrow \alpha)$  consists of

- a Boolean guard  $\gamma$  and
- a set of atomic assignments  $\alpha$ .

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of a single enabled guarded actions
- ? What happens if more than one guarded action is enabled

# Sequential Model of Computation

## Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action  $(\gamma \Rightarrow \alpha)$  consists of

- a Boolean guard  $\gamma$  and
- a set of atomic assignments  $\alpha$ .

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of a single enabled guarded actions

? What happens if more than one guarded action is enabled

- the first (found) is taken
- use alphabetic order
- choose one non-deterministically

⋮

# Sequential Model of Computation

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of a **single** enabled guarded actions

### Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$

x=f  
y=f  
z=0

x=t  
y=f  
z=0

x=f  
y=f  
z=1

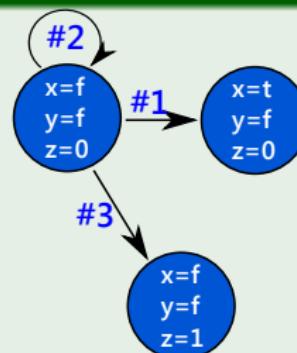
# Sequential Model of Computation

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of a **single** enabled guarded actions

### Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$



# Concurrent Model of Computation

## Definition: Asynchronous Guarded Actions (AGAs)

An **asynchronous guarded action** ( $\gamma \Rightarrow \alpha$ ) consists of

- a Boolean guard  $\gamma$  and
- a **set** of atomic assignments  $\alpha$ .

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

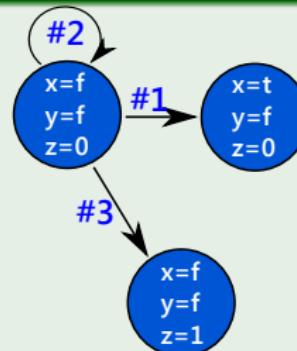
# Concurrent Model of Computation

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$



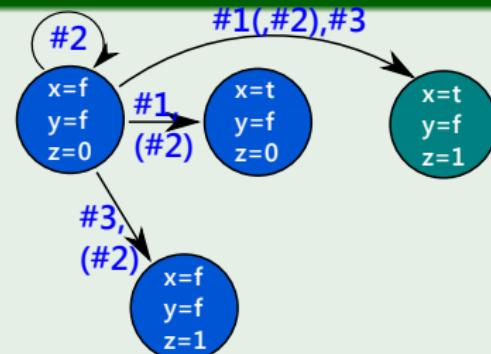
# Concurrent Model of Computation

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$



# Synchronous Model of Computation

## Definition: Synchronous Guarded Actions (SGAs)

A **synchronous guarded action** ( $\gamma \Rightarrow \alpha$ ) consists of

- a Boolean guard  $\gamma$  and
- a **single atomic immediate/delayed assignment**  $\alpha$ .

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

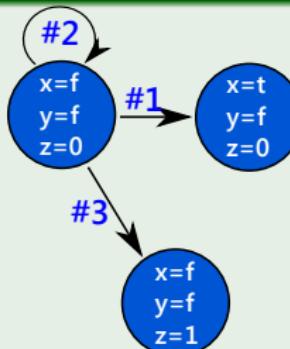
# Synchronous Model of Computation

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$



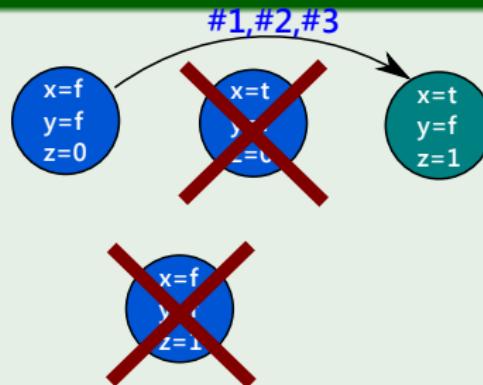
# Synchronous Model of Computation

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow \text{next}(z) = z + 1 \end{array} \right\}$$



## Synchronous Model of Computation

- execution is divided into a sequence of reactions steps
- computation of WCRT
- deterministic behavior
- formal verification techniques available (i.e. model checking)
- languages: [Quartz](#), Esterel, Signal, Lustre, etc.

# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 Interactive Verification on Guarded-Action Level
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

# Why Interactive Verification?

## Model Checking

- available for synchronous languages
- fully automatic
- suffers from state-space explosion problem

## Interactive Verification

- semi-automatic
- requires additional information (like invariants)
- allows abstraction from data structures and data-types
- decomposes proof goals

Combining interactive techniques with model checking is desired.

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form

Contribution

# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 Interactive Verification on Guarded-Action Level
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form

Contribution

# Hoare Calculus

nothing :

$$\frac{}{\{\Phi\} \text{ nothing } \{\Phi\}}$$

assign :

$$\frac{}{\{[\Phi]_x^\tau\} x = \tau \{\Phi\}}$$

sequence :

$$\frac{\{\Phi_1\} S_1 \{\Phi_2\} \quad \{\Phi_2\} S_2 \{\Phi_3\}}{\{\Phi_1\} S_1; S_2 \{\Phi_3\}}$$

conditional :

$$\frac{\{\sigma \wedge \Phi\} S_1 \{\Psi\} \quad \{\neg\sigma \wedge \Phi\} S_2 \{\Psi\}}{\{\Phi\} \text{ if}(\sigma) S_1 \text{ else } S_2 \{\Psi\}}$$

loop :

$$\frac{\{\sigma \wedge \Phi\} S \{\Phi\}}{\{\Phi\} \text{ while}(\sigma) S \{\neg\sigma \wedge \Phi\}}$$

weaken :

$$\frac{\models \Phi_1 \rightarrow \Phi_2 \quad \{\Phi_2\} S \{\Phi_3\} \quad \models \Phi_3 \rightarrow \Phi_4}{\{\Phi_1\} S \{\Phi_4\}}$$

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form

Contribution

# Hoare Calculus

nothing :

$$\frac{}{\{\Phi\} \text{ nothing } \{\Phi\}}$$

assign :

$$\frac{}{\{[\Phi]_x^\tau\} x = \tau \{\Phi\}}$$

sequence :

$$\frac{\{\Phi_1\} S_1 \{\Phi_2\} \quad \{\Phi_2\} S_2 \{\Phi_3\}}{\{\Phi_1\} S_1; S_2 \{\Phi_3\}}$$

conditional :

$$\frac{\{\sigma \wedge \Phi\} S_1 \{\Psi\} \quad \{\neg\sigma \wedge \Phi\} S_2 \{\Psi\}}{\{\Phi\} \text{ if } (\sigma) \text{ } S_1 \text{ else } S_2 \{\Psi\}}$$

loop :

$$\frac{\{\sigma \wedge \Phi\} S \{\Phi\}}{\{\Phi\} \text{ while } (\sigma) \text{ } S \{\neg\sigma \wedge \Phi\}}$$

weaken :

$$\frac{\models \Phi_1 \rightarrow \Phi_2 \quad \{\Phi_2\} S \{\Phi_3\} \quad \models \Phi_3 \rightarrow \Phi_4}{\{\Phi_1\} S \{\Phi_4\}}$$

# A Hoare calculus for Quartz - Naive Approach



- ➊ synthesis to sequential code to use the classical Hoare calculus
  - ➌ destroys syntax
  - ➌ merges control and data flow
  - ➌ combines all loops to a single one
- ➋ defining Hoare rules for each statement
- ➌ split the verification process into two stages

# A Hoare calculus for Quartz - Naive Approach



- ➊ synthesis to sequential code to use the classical Hoare calculus
  - ➌ destroys syntax
  - ➌ merges control and data flow
  - ➌ combines all loops to a single one
- ➋ defining Hoare rules for each statement
- ➌ split the verification process into two stages

# A Hoare calculus for Quartz - Idea 1



- ① synthesis to sequential code to use the classical Hoare calculus
- ① defining Hoare rules for each statement
  - local reasoning not possible  
⇒ rules collect assignments/identify macro step
  - using two-stage Hoare-like rules
  - default reaction (and other Quartz specific issues)
- ② split the verification process into two stages

# A Hoare calculus for Quartz - Idea 1



- ① synthesis to sequential code to use the classical Hoare calculus
- ① defining Hoare rules for each statement
  - local reasoning not possible  
⇒ rules collect assignments/identify macro step
  - using two-stage Hoare-like rules
  - default reaction (and other Quartz specific issues)
- ② split the verification process into two stages

# A Hoare calculus for Quartz - Idea 2



- ① synthesis to sequential code to use the classical Hoare calculus
- ① defining Hoare rules for each statement
- ② split the verification process into two stages
  - ① transformation that concentrates the macro-step behavior
  - ② reason about code in SSTA normal form

# Defining a Hoare Calculus for Quartz - Idea 2



## STA Rule

$$\frac{}{\{ \left[ \dots \left[ [\Phi]_{y'_1, \dots, y'_n}^{\pi_1, \dots, \pi_n} \right]_{x_n}^{\tau_n} \dots \right]_{x_1}^{\tau_1} \} (x_1, \dots, x_m). (y_1, \dots, y_n) = (\tau_1, \dots, \tau_m). (\pi_1, \dots, \pi_n) \{ \Phi \}}$$

## Pause Rule

$$\frac{}{\{ \left[ [\dots \Phi \dots]_{i'_1, \dots, i_n}^{\tau_1 \dots \tau_n} \right]_{y_1 \dots y_n}^{y'_1 \dots y'_n} \} \text{pause} \{ \Phi \}}$$

# Defining a Hoare Calculus for Quartz - Idea 2



## STA Rule

$$\frac{}{\{ \left[ \dots \left[ [\Phi]_{y'_1, \dots, y'_n}^{\pi_1, \dots, \pi_n} \right]_{x_n}^{\tau_n} \dots \right]_{x_1}^{\tau_1} \} (x_1, \dots, x_m). (y_1, \dots, y_n) = (\tau_1, \dots, \tau_m). (\pi_1, \dots, \pi_n) \{ \Phi \}}$$

## Pause Rule

$$\frac{}{\{ \left[ [\dots \Phi \dots]_{i'_1, \dots, i_n}^{\tau_1 \dots \tau_n} \right]_{y_1 \dots y_n}^{y'_1 \dots y'_n} \} \text{pause} \{ \Phi \}}$$



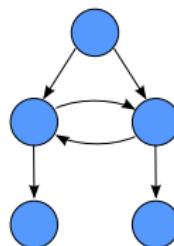
### source-code transformation

- all assignment collected in a synchronous tuple assignment
- must not invent additional variables
- parallel operator must be removed



## removing the parallel operator

- similar to eliminating gotos in sequential programs
- proved the impossibility without adding additional variables
- problem: representing two parallel loops may introduce an irreducible sub graph



Quartz

transformation

SSTA form

Hoare verification

Hoare

```
module AshcroftManna(nat{3} ?i, nat{2} !o){
```

```

    bool x; o = 1;
    while(!x){
        while(i==0&!x){
            w1: pause;
            o = 1;
        }
        w2: pause;
        o = 1;
        if(!x){
            while(i==1 & !x){
                w3: pause;
                o = 0;
            }
            w4: pause;
            o = 0;
        }
    }
} || {
    do {
        w5: pause;
    } while(i!=2);
    w6: pause;
    w7: pause;
    x = true;
}
```



```
module CounterExample (){
```

```

    {
        while(...){
            pause;
            pause;
            pause;
        }
    } || {
        while (...){
            pause;
            pause;
        }
        pause;
    }
}
```

What is a Model of Computation?

Why Interactive Verification

**Interactive Verification on Source-Code Level**

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form

**Contribution**

# Contribution

## Interactive Verification on Source-Code Level

- negative result: no Hoare rules for Quartz
- verification of SSTA programs [GS12a]
- Theorem 'Ashcroft Manna'  $\Rightarrow$  transformation not possible

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

**Interactive Verification on Guarded-Action Level**

Representation of Synchronous Systems for Verification

Conclusions

Approach

Advantages

Proof Rules for Assertions and Assumptions

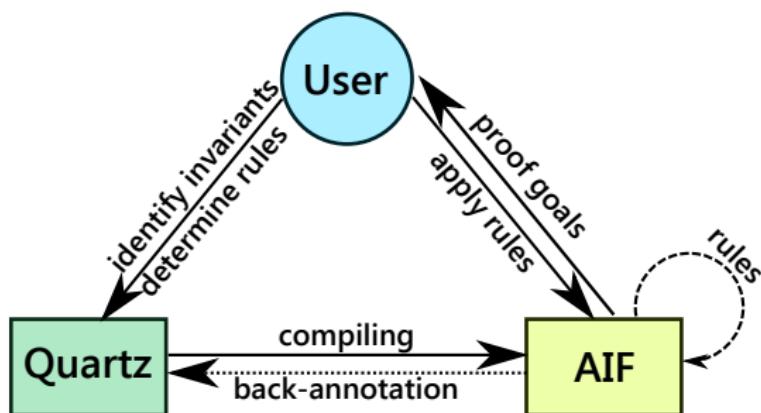
The AIFProver

Contribution

# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 **Interactive Verification on Guarded-Action Level**
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

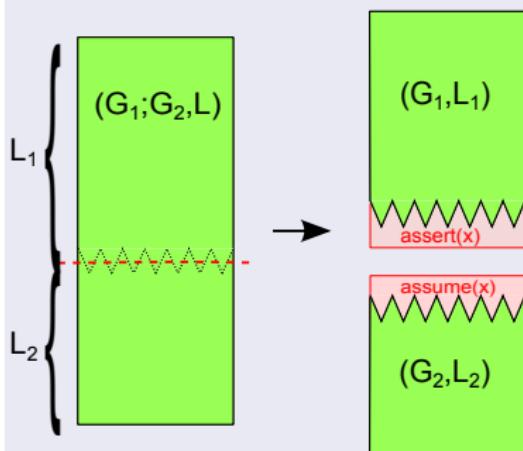
# Approach



## Advantage of two Representations

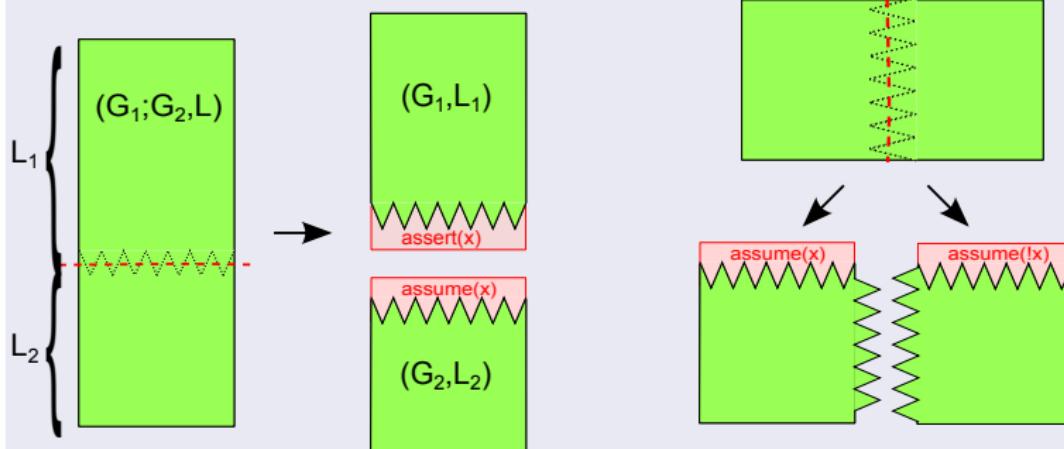
- implicit usage of SSTA normal form
- Quartz is better human readable
- AIF format is better machine-readable
- just a few simple rules are required
- schizophrenia and causality are dealt with at compile time
- flexible decompositions of proof goals (independent of syntax)
- compilation to guarded actions is verified
- AIF file contains assumption and assertions  $\Rightarrow$  proof goal

## Idea for the Rules

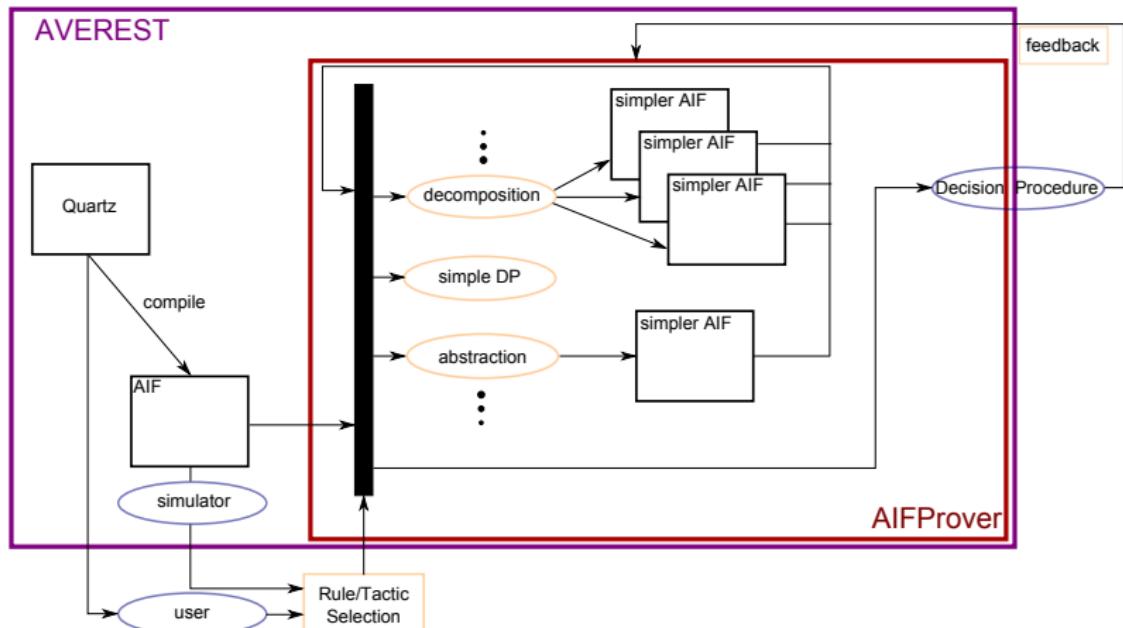


- decomposition of a sequence
- rules decompose proof goals  
⇒ rules split AIF files
- rules insert assumptions and assertions into AIF files

## Idea for the Rules



# Interactive Verification Framework - AIFProver



# Contribution

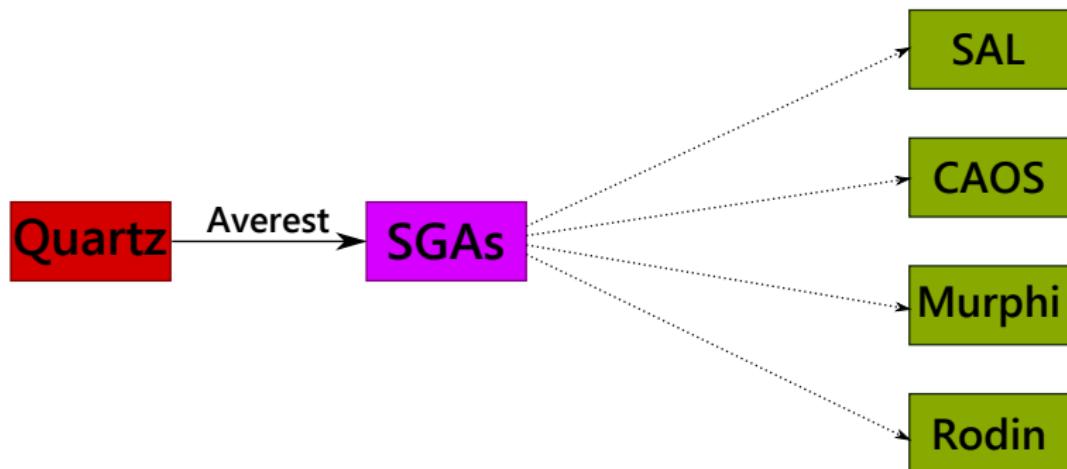
## Interactive Verification on Guarded-Action Level

- interactive verification rules [GS12b]
- extension for temporal logic LTL
- rules for module calls [GS13b]
- rules for preemption context [GMS13]
- the AIFProver tool [GS12b, GS13b, GS13a]

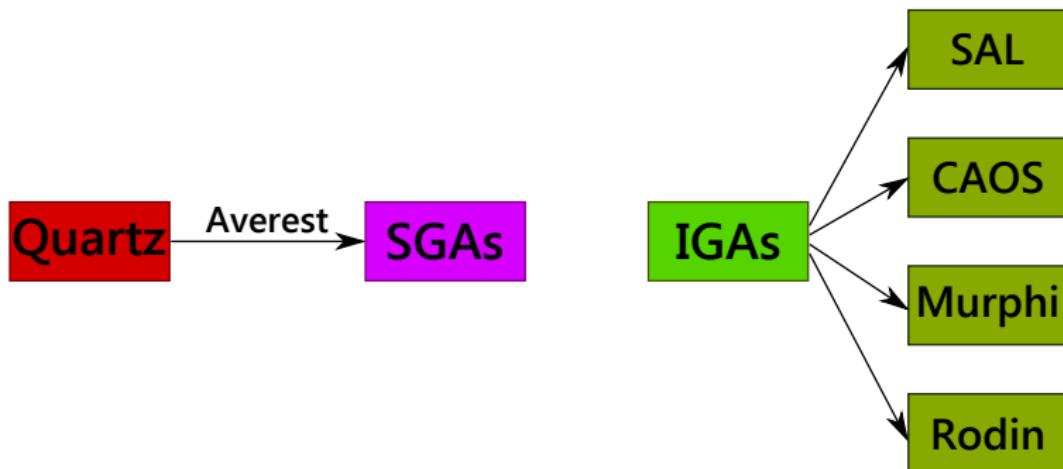
# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 Interactive Verification on Guarded-Action Level
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

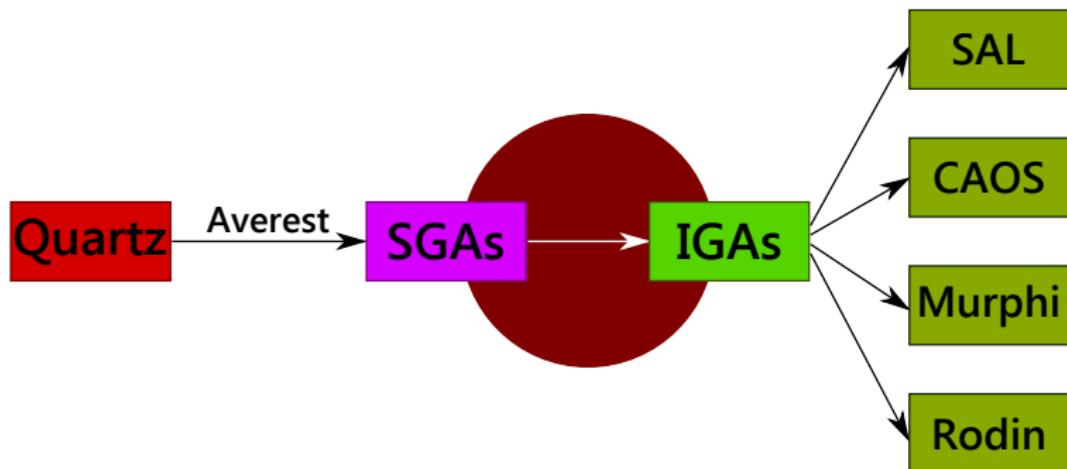
# Representing Quartz in other MoCs



# Representing Quartz in other MoCs



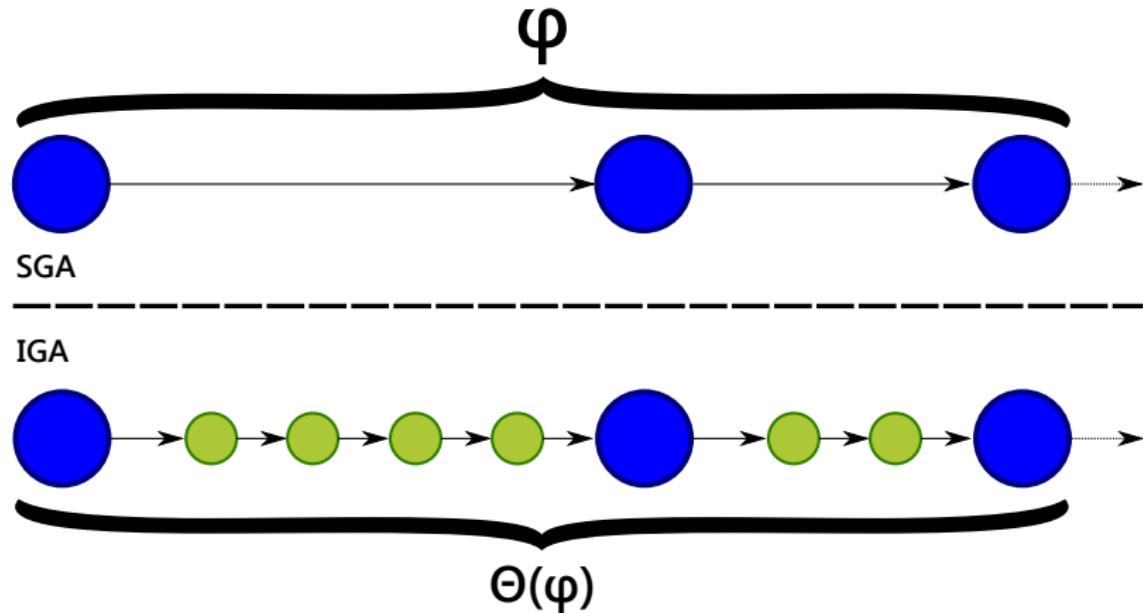
# Representing Quartz in other MoCs



# Summary of Identified Problems

## Problems to Solve

- assignment behavior
- preservation of determinism
- execution order
- no serialization
- reaction step behavior
- temporal behavior



## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow \mathbf{next}(z) = z + 1 \end{array} \right\}$$

## Example

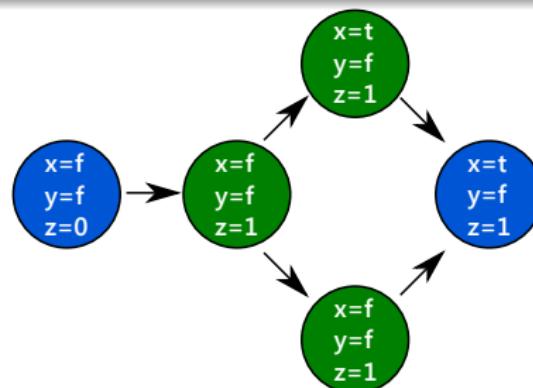
$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow \mathbf{next}(z) = z + 1 \end{array} \right\}$$

$$\left\{ \begin{array}{l} \neg x_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{true} \\ y_v = z > 0 \\ y_v = \text{true} \end{array} \right. \\ \neg y_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{false} \\ y_v = \text{false} \\ z = z + 1 \end{array} \right. \\ x_v \wedge y_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{false} \\ y_v = \text{false} \\ z = z + 1 \end{array} \right. \end{array} \right\}$$

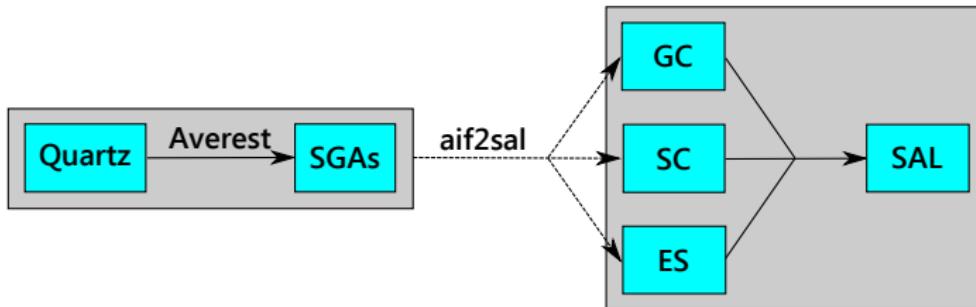
## Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow \mathbf{next}(z) = z + 1 \end{array} \right\}$$

$$\left\{ \begin{array}{l} \neg x_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{true} \\ y_v = z > 0 \\ y_v = \text{true} \end{array} \right. \\ \neg y_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{false} \\ y_v = \text{false} \\ z = z + 1 \end{array} \right. \\ x_v \wedge y_v \Rightarrow \left\{ \begin{array}{l} x_v = \text{false} \\ y_v = \text{false} \\ z = z + 1 \end{array} \right. \end{array} \right\}$$



# Evaluation



| <i>P</i>             | #SGA | <i>GC</i>   | <i>SC</i>   | <i>ES</i>   |
|----------------------|------|-------------|-------------|-------------|
| ABRO                 | 7    | 0.11        | 0.06        | <b>0.05</b> |
| ABROM[M=13]          | 29   | 4.27        | 7.92        | <b>3.27</b> |
| AuntAgatha           | 2    | 0.12        | <b>0.07</b> | 0.09        |
| VendingMachine       | 23   | 1.14        | 0.15        | <b>0.07</b> |
| LightControl         | 36   | 1.79        | 0.44        | <b>0.40</b> |
| MinePumpController   | 42   | 7.60        | 0.22        | <b>0.09</b> |
| RSFlipFlop           | 7    | 53.51       | <b>1.18</b> | <b>1.18</b> |
| MemoryController     | 41   | 407.95      | 42.93       | <b>3.42</b> |
| IslandTrafficControl | 83   | 504.64      | 62.40       | <b>1.94</b> |
| FischerMutex         | 60   | 0.14        | 0.22        | <b>0.09</b> |
| Dekker               | 28   | 0.63        | 0.21        | <b>0.17</b> |
| SingleRowNIM         | 15   | 0.06        | <b>0.04</b> | <b>0.04</b> |
| PigeonHole           | 1    | <b>0.01</b> | 0.05        | 0.05        |
| Queens               | 1    | 0.29        | <b>0.19</b> | 0.20        |
| MagicSquare          | 29   | <b>1.83</b> | 65.67       | 9638.84     |

# Contribution

## Representation of Synchronous Systems for Verification

- by interleaved guarded actions [GS13c]
- reuse of algorithms presented in [GMS13]
- in SRI's Symbolic Analysis Laboratory [GBS14]
- The tool aif2sal [GS13c, GBS14]

# Outline

- 1 What is a Model of Computation?
- 2 Why Interactive Verification
- 3 Interactive Verification on Source-Code Level
- 4 Interactive Verification on Guarded-Action Level
- 5 Representation of Synchronous Systems for Verification
- 6 Conclusions

# Contribution

## Interactive Verification of Synchronous Systems

- interactive verification techniques on source-code level:
  - verification of SSTA programs [GS12a]
  - Theorem 'Ashcroft Manna'  $\Rightarrow$  transformation not possible
- interactive verification techniques on guarded-action level:
  - interactive verification rules [GS12b]
  - extension for temporal logic LTL
  - rules for module calls [GS13b]
  - rules for preemption context [GMS13]
  - the AIFProver tool [GS12b, GS13b, GS13a]
- representation of synchronous systems for verification
  - by interleaved guarded actions [GS13c]
  - in SRI's Symbolic Analysis Laboratory [GBS14]
  - The tool aif2sal [GS13c, GBS14]

# Bibliography I

-  Gesell, M., F. Bichued, and K. Schneider: Using different representations of synchronous systems in SAL.  
In [MBMV](#), 2014.
-  Gesell, M., A. Morgenstern, and K. Schneider: Lifting verification results for preemption statements.  
In [SEFM](#), 2013.
-  Gesell, M. and K. Schneider: A Hoare calculus for the verification of synchronous languages.  
In [PLPV](#), 2012.
-  Gesell, M. and K. Schneider: Interactive verification of synchronous systems.  
In [MEMOCODE](#), 2012.

## Bibliography II

-  Gesell, M. and K. Schneider: An interactive verification tool for synchronous/reactive systems.  
In MBMV, 2013.
-  Gesell, M. and K. Schneider: Modular verification of synchronous programs.  
In ACSD, 2013.
-  Gesell, M. and K. Schneider: Translating synchronous guarded actions to interleaved guarded actions.  
In MEMOCODE, 2013.

What is a Model of Computation?

Why Interactive Verification

Interactive Verification on Source-Code Level

Interactive Verification on Guarded-Action Level

Representation of Synchronous Systems for Verification

Conclusions

Thank you for the attention! Any Questions?

# Proof Rules

Given the AIF file ( $\mathcal{G}$ ) and the labels ( $\mathcal{L}$ ) of a Quartz program

## Overall Task

- decompose proof goal  $(\mathcal{G}, \mathcal{L})$  to  $(\mathcal{G}_1, \mathcal{L}_1) \dots (\mathcal{G}_n, \mathcal{L}_n)$
- insert assumptions and assertions representing the execution history and the user's knowledge of the program

# Proof Rules

Given the AIF file ( $\mathcal{G}$ ) and the labels ( $\mathcal{L}$ ) of a Quartz program

## Overall Task

- decompose proof goal  $(\mathcal{G}, \mathcal{L})$  to  $(\mathcal{G}_1, \mathcal{L}_1) \dots (\mathcal{G}_n, \mathcal{L}_n)$
- insert assumptions and assertions representing the execution history and the user's knowledge of the program

## Rule Example

$$\text{Case Distinction} \quad \frac{(\mathcal{G} \cup \{\text{enter } (\mathcal{G}, \mathcal{L}) \Rightarrow \text{assume}(\sigma)\}, \mathcal{L}) \quad (\mathcal{G} \cup \{\text{enter } (\mathcal{G}, \mathcal{L}) \Rightarrow \text{assume}(\neg\sigma)\}, \mathcal{L})}{(\mathcal{G}, \mathcal{L}) \Leftarrow \text{BoolCases}(\sigma)}$$

# Rules for Temporal Logic

Given the AIF file ( $\mathcal{G}$ ) and the labels ( $\mathcal{L}$ ) of a Quartz program

## Overall Task

- extending proof goal with specification
- decompose  $(\mathcal{G}, \mathcal{L}) \models \varphi$  to  $(\mathcal{G}_1, \mathcal{L}_1) \models \varphi_1 \dots (\mathcal{G}_n, \mathcal{L}_n) \models \varphi_n$
- insert assumptions and assertions representing the execution history and the user's knowledge of the program

# Rules for Temporal Logic

## Idea

$$(\{(\gamma \Rightarrow \mathbf{assert}(\alpha))\} \cup \mathcal{G}, \mathcal{L}) \equiv (\mathcal{G}, \mathcal{L}) \models G(\gamma \rightarrow \alpha)$$

## Rule Example

$$\text{UnrollAlways} \quad \frac{(\mathcal{G}, \mathcal{L}) \models \varphi \wedge XG\varphi}{(\mathcal{G}, \mathcal{L}) \models G\varphi \Leftarrow \text{UnrollAlways}()}$$

## Other Rules

$$\frac{(\mathcal{G}, \mathcal{L}) \models \psi}{(\mathcal{G}, \mathcal{L}) \models [\varphi \mathsf{U} \psi]} \quad \frac{(\mathcal{G}, \mathcal{L}) \models \psi}{(\mathcal{G}, \mathcal{L}) \models [\varphi \mathsf{U} \underline{\psi}]}$$

$$\frac{(\mathcal{G}, \mathcal{L}) \models \gamma \vee \psi \wedge \mathsf{X}[\psi \mathsf{U} \gamma]}{(\mathcal{G}, \mathcal{L}) \models [\psi \mathsf{U} \gamma] \Leftarrow \text{NextWUntil}()}$$

$$\frac{(\mathcal{G}, \mathcal{L}) \models \gamma \vee \psi \wedge \mathsf{X}[\psi \mathsf{U} \underline{\gamma}]}{(\mathcal{G}, \mathcal{L}) \models [\psi \mathsf{U} \underline{\gamma}] \Leftarrow \text{NextSUntil}()}$$

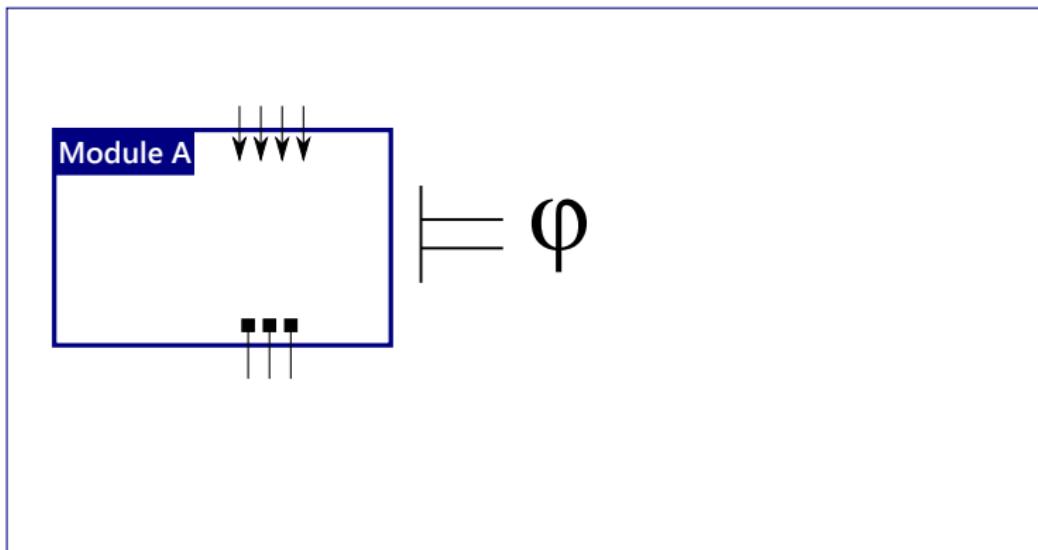
$$\frac{(\mathcal{G}, \mathcal{L}) \models \varphi \wedge (\mathcal{G}, \mathcal{L}) \models \varphi \rightarrow \mathsf{X}\varphi}{(\mathcal{G}, \mathcal{L}) \models \mathsf{G}\varphi \Leftarrow \text{Induction}()}$$

# Interactive Verification Framework - AlFProver

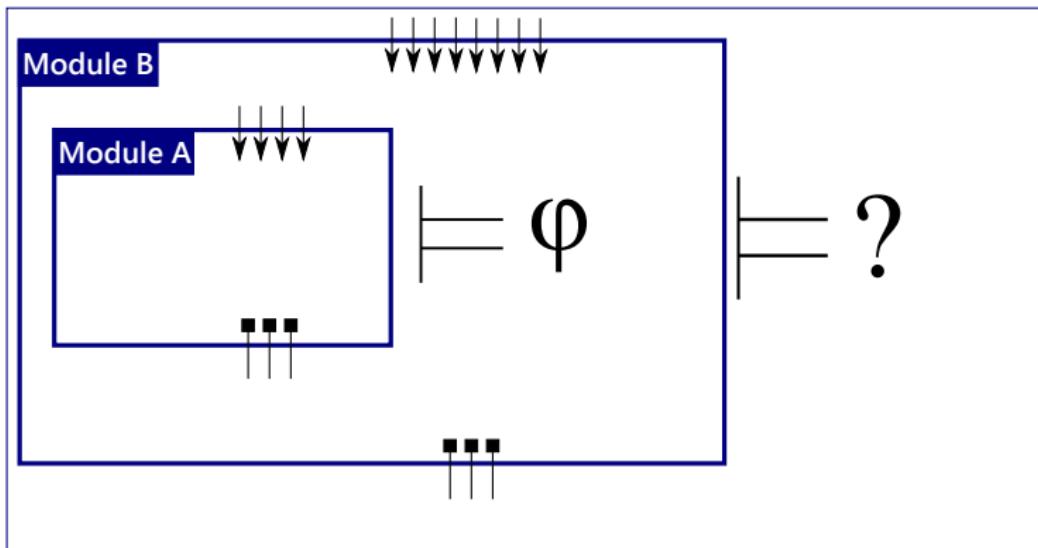
## Implementation Details

- Averest is implemented in F#
- AlFProver uses same code base and is implemented in F#
- proof rules are F# functions
- proofs are F# scripts/programs
- F# interactive console allows to generate proofs

# Rule for Module Calls



# Rule for Module Calls



# Rule for Module Calls

## The Goal

interactive proof rule for module calls in synchronous programs

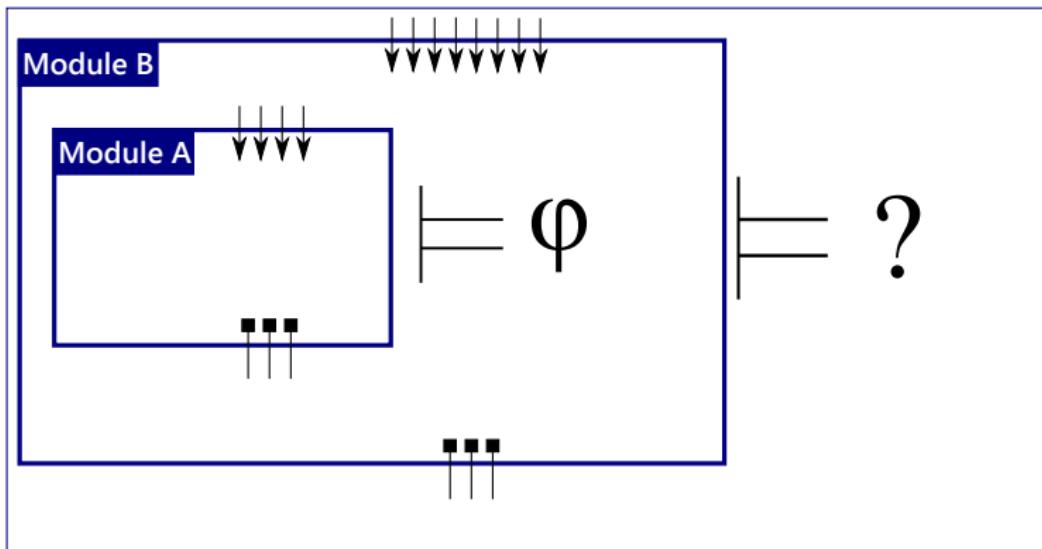
## Problems Induced by Calling a Module

specific: default reaction

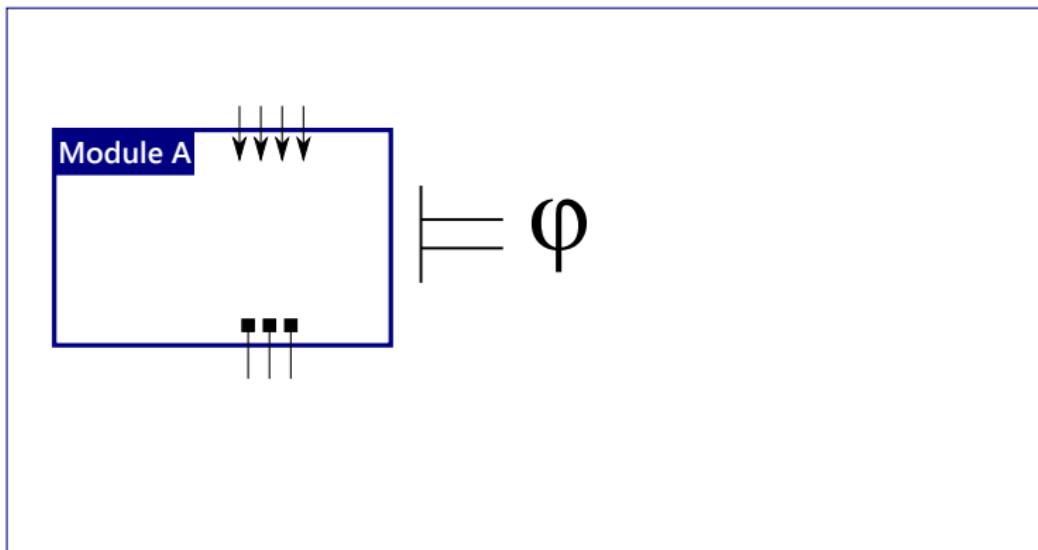
general: substituted behavior

specific: preemption and delayed start

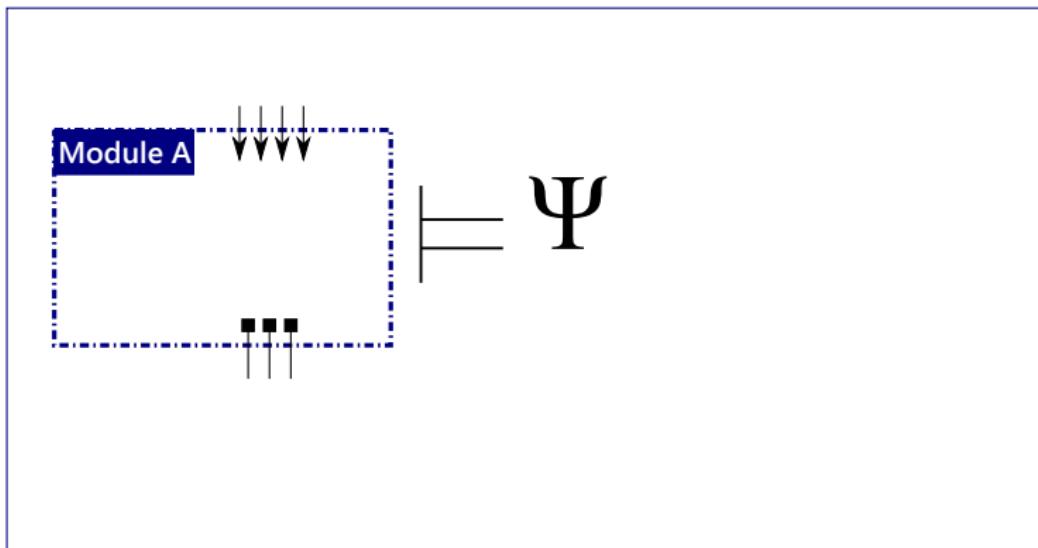
# Rule for Module Calls



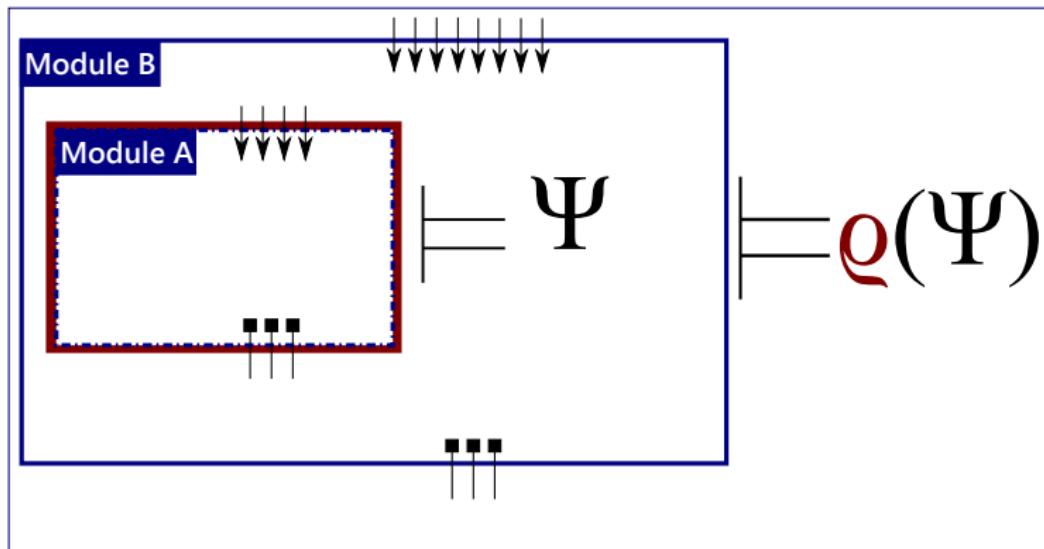
# Rule for Module Calls



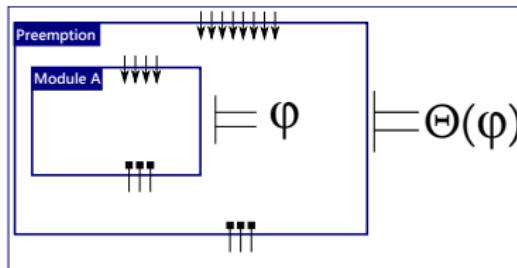
# Rule for Module Calls



# Rule for Module Calls



# Rules for Preemption



## Approach

- restriction to preemption specific behavior
- step wise application possible
- preemption-specific  $\Theta$
- specification should preserved 'as much as possible'
- correct by construction

# Fibonacci Numbers

```
module Fib(nat ?i,f,event !r)

nat k,g,n;
n = i;
if(n <= 0)
  f=0;
else {
  k = 1;
  g = 0;
  f = 1;
  while(k != n) {
    next(g) = f;
    next(f) = f+g;
    next(k) = k+1;
    l: pause;
  }
}
emit(r);
```

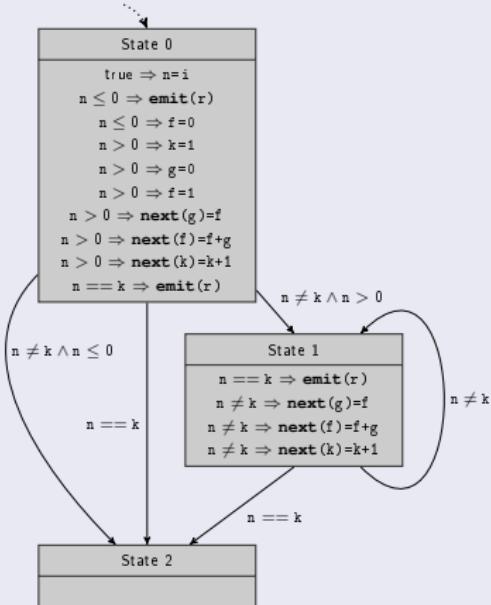
- computes Fibonacci numbers in quartz
- $r \rightarrow f == \text{FIB } (i_0)$

# Fibonacci Numbers

```
module Fib(nat ?i,f,event !r)

nat k,g,n;
n = i;
if(n <= 0)
  f=0;
else {
  k = 1;
  g = 0;
  f = 1;
  while(k != n) {
    next(g) = f;
    next(f) = f+g;
    next(k) = k+1;
    l: pause;
  }
  emit(r);
}
```

## EFSM for Modul Fib



## Fib in STA form (automatic-version)

```
module FSA(nat ?i,f,event r)

nat k,g,n,l;
do {
  case
    (l==0) do //State 0
      (n,r,k,g,f).(g,f,k,l) =
        (i,n<=0,1,0,(n>0?1:0)).
        (f,f+g,k+1,(n>0&n!=k?1:2));
    (l==1) do //State 1
      (r).(g,f,k,l) =
        (n==k).
        (f,f+g,k+1,(n!=k?1:2));
  default
    nothing;
  pause;
} while (l!=2);
```

- structure completely destroyed
- code contains only a single loop
- same drawbacks as synthesising sequential code

## Fib in STA form (handwritten-version)

```
module Fib(nat ?i,f,event !r)

nat k,g,n;
n = i;
if(n <= 0)
  f=0;
else {
  k = 1;
  g = 0;
  f = 1;
  while(k != n) {
    next(g) = f;
    next(f) = f+g;
    next(k) = k+1;
    l: pause;
  }
}
emit(r);
```

```
module FSH(nat ?i,f,event !r)

nat k,g,n;
if(n<=0) {
  (n,f,r).(.) = (i,0,true).(.) ;
} else {
  (n,k,g,f,r).(g,f,k) =
    (i,1,0,1,k==n).(f,f+g,k+1);
  while(k!=n) {
    pause;
    (r).(g,f,k) = (k==n).
      (f,f+g,k+1);
  }
}
```

## Fib in STA form (handwritten-version)

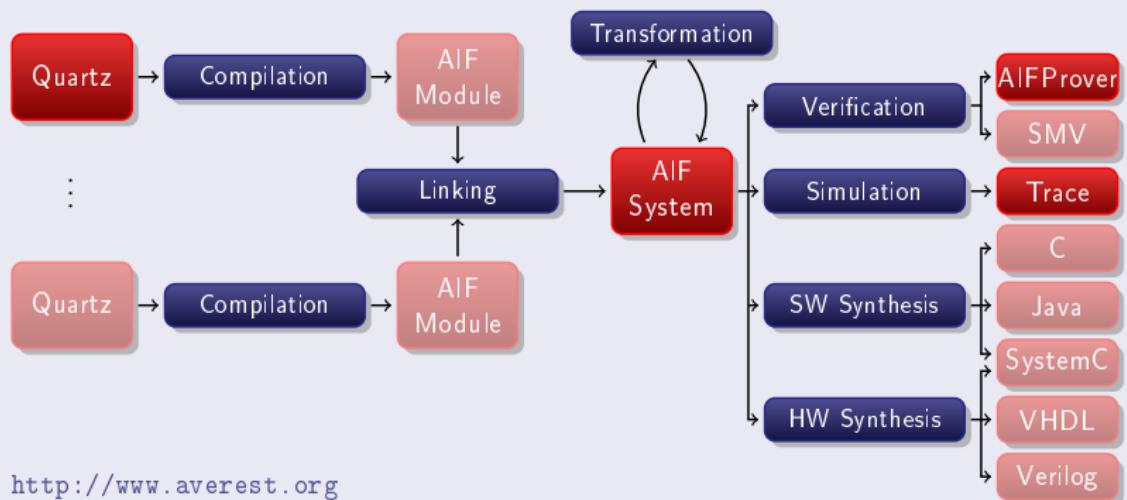
```
module FSH(nat ?i,f,event !r)

nat k,g,n;
if(n<=0) {
  (n,f,r).() = (i,0,true).();
} else {
  (n,k,g,f,r).(g,f,k) =
    (i,1,0,1,k==n).(f,f+g,k+1);
  while(k!=n) {
    pause;
    (r).(g,f,k) = (k==n).
      (f,f+g,k+1);
  }
}
```

- structure is preserved
- assignment are shifted and/or duplicated
- same invariants are usable

# Averest

## Averest Design Flow



# Further Work

## basis for new work

- extension of rule set
- application to HybridQuartz
- improvement of the AIFProver
  - embedding in a theorem prover
  - deeper integration of existing decision procedures
  - using information from counterexamples

# Sequential Model of Computation

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of **a single** enabled guarded actions

### Example

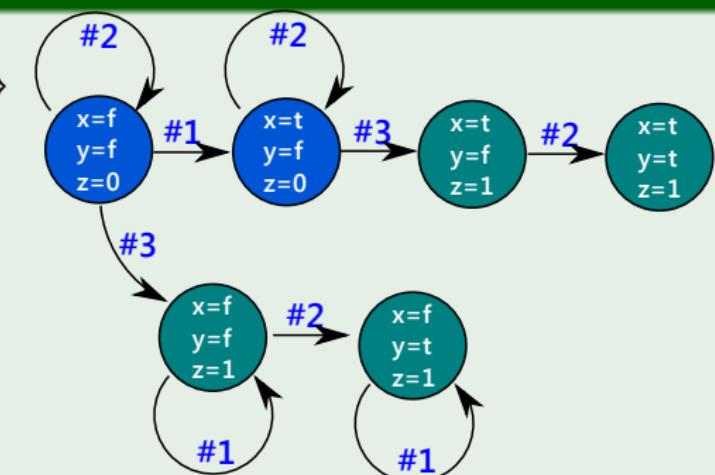
$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$

# Sequential Model of Computation

## Behavior of IGAs (subset of Dijkstra's Guarded Commands)

- execution of **a single** enabled guarded actions

### Example

$$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$$


# Concurrent Model of Computation

## Definition: Asynchronous Guarded Actions (AGAs)

An **asynchronous guarded action**  $(\gamma \Rightarrow \alpha)$  consists of

- a Boolean guard  $\gamma$  and
- a **set** of atomic assignments  $\alpha$ .

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

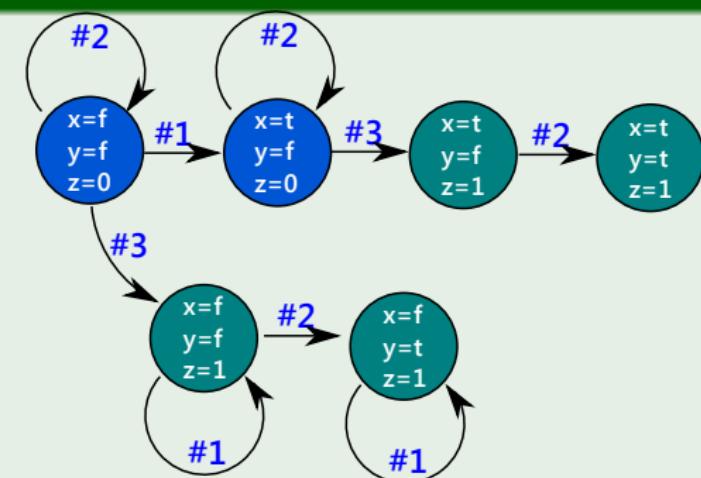
# Concurrent Model of Computation

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

### Example

$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$



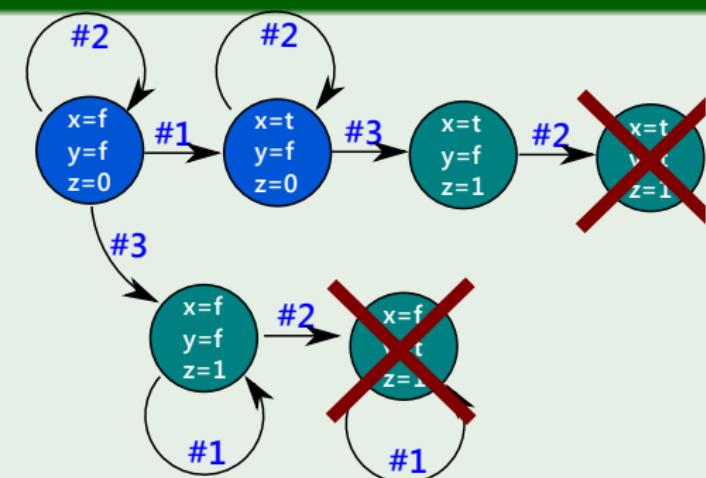
# Concurrent Model of Computation

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

### Example

$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$



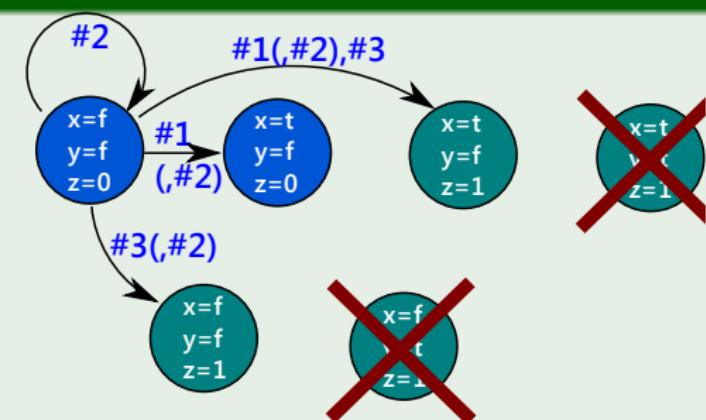
# Concurrent Model of Computation

## Behavior of AGAs

- execution of a **subset** of enabled guarded actions

### Example

$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$



# Synchronous Model of Computation

## Definition: Synchronous Guarded Actions (SGAs)

A **synchronous guarded action** ( $\gamma \Rightarrow \alpha$ ) consists of

- a Boolean guard  $\gamma$  and
- a **single atomic immediate/delayed assignment**  $\alpha$ .

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

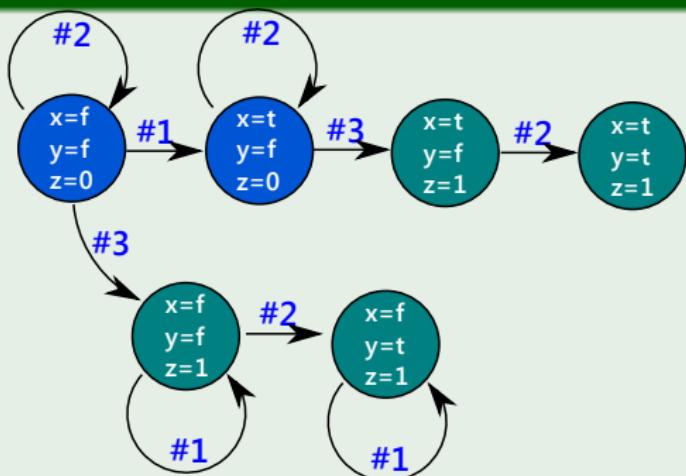
# Synchronous Model of Computation

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

### Example

$\left\{ \begin{array}{l} \text{true} \Rightarrow x = (z == 0) \\ \text{true} \Rightarrow y = z > 0 \\ \text{true} \Rightarrow z = z + 1 \end{array} \right\}$



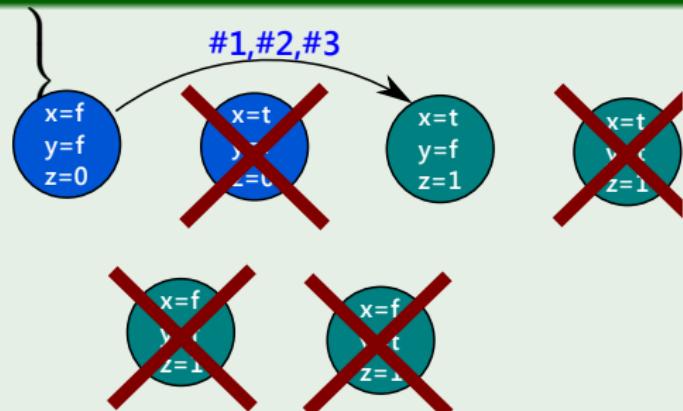
# Synchronous Model of Computation

## Behavior of SGAs

- execution of **all** enabled guarded actions **in parallel**

### Example

{  
true  $\Rightarrow$   $x = (z == 0)$   
true  $\Rightarrow$   $y = z > 0$   
true  $\Rightarrow$  **next**( $z$ ) =  $z + 1$



## Synchronous Model of Computation

- execution is divided into a sequence of reactions steps
- computation of WCRT
- supports hard- and software synthesis
- deterministic behavior
- formal verification techniques available (i.e. model checking)
- languages: [Quartz](#), Esterel, Signal, Lustre, etc.

## Macro Step Behavior

- [all](#) inputs are read
- [all](#) outputs are produced (instantaneously)
- new internal state is determined
- each variable has a [unique](#) value