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Guarded Actions
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Definition: Guarded Action
A guarded action (7 = «) consists of

@ a Boolean guard v and

@ an atomic action a.

true = y=z>0
true = z=z+1
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Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action (v = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions
7 What happens if more than one guarded action is enabled

o the first (found) is taken
o use alphabetic order
o choose one non-deterministically
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What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
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Concurrent Model of Computation

Definition: Asynchronous Guarded Actions (AGAs)
An asynchronous guarded action (7 = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of AGAs

@ execution of a subset of enabled guarded actions
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What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

Definition: Synchronous Guarded Actions (SGAs)
A synchronous guarded action (7 = «) consists of
@ a Boolean guard v and

@ a single atomic immediate/delayed assignment «.

Behavior of SGAs

@ execution of all enabled guarded actions in parallel
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Guarded Actions
Sequential Model of Computation
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Synchronous Model of Computation

Behavior of SGAs
@ execution of all enabled guarded actions in parallel

true = x=(z==0) 2,7

true = y=z>0
true = next (z)=z+1
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What is a Model of Computation?
Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

@ execution is divided into a sequence of reactions steps
e computation of WCRT

@ deterministic behavior

o formal verification techniques available (i.e. model checking)

@ languages: Quartz, Esterel, Signal, Lustre, etc.
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Why Interactive Verification

Why Interactive Verification?

Model Checking
@ available for synchronous languages
o fully automatic

o suffers from state-space explosion problem

Interactive Verification

@ semi-automatic
@ requires additional information (like invariants)
@ allows abstraction from data structures and data-types

@ decomposes proof goals

Combining interactive techniques with model checking is desired.
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A Hoare calculus for Quartz in SSTA form
Contribution

nothing :

assign :

sequence :

conditional :

loop :

weaken :

{®} nothing {®}

{[*]} x =71 {o}
{1} S {P2}  {P2} 5 {P3}
{®1} S1; S {03}

{oAD} S {V} {-ocAd} S {V}
{®} if (o) S else S {V}
{oAnD} S {D}

[®] while(o) S {0 A B}

': ¢1 — ¢2 {Cbz} S {¢3} ): ¢3 — CD4

{1} S {4}
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A Hoare calculus for Quartz - Naive Approach

synthesis - Hoare rules
Quartz Sequential Code Hoare

O synthesis to sequential code to use the classical Hoare calculus

e destroys syntax
e merges control and data flow
e combines all loops to a single one

© defining Hoare rules for each statement

@ split the verification process into two stages
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A Hoare calculus for Quartz - Idea 1

Hoare-like rules
Quartz Hoare

O synthesis to sequential code to use the classical Hoare calculus
@ defining Hoare rules for each statement

o local reasoning not possible

= rules collect assignments/identify macro step
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Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Idea 2

transformation Hoare verification
Quartz SSTA form Hoare

O synthesis to sequential code to use the classical Hoare calculus

@ defining Hoare rules for each statement

@ split the verification process into two stages
@ transformation that concentrates the macro-step behavior
@ reason about code in SSTA normal form
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Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

Defining a Hoare Calculus for Quartz - ldea 2

transformation Hoare verification
STA Rule
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Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transformation Hoare verjfication
Quartz SSTA form Hoare

source-code transformation

o all assignment collected in a synchronous tuple assignment
@ must not invent additional variables

@ parallel operator must be removed
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Hoare Calculus
A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transformation Hoare verjfication
Quartz SSTA form Hoare

removing the parallel operator

Interactive Verification on Source-Code Level

@ similar to eliminating gotos in sequential programs

@ proved the impossibility without adding additional variables

@ problem: representing two parallel loops may introduce an
irreducible sub graph
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Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transﬂ/mation Hoare verjfication
H

module AshcroftManna(nat{3} ?i, nat{2} !o){

bool x;0 = 1;
while(!'x){
while(i==0&!'x){
wl: pause;
o =1;
}
w2: pause;
o =1; I
if(rx)q{
while(i==1 & !x){
w3: pause;
o= 0;
} w4: pause;
o=0;

do {

wb: pause;
} while(i!=2);
w6: pause;
w7: pause;
X = true;

1
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Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transﬂ;\[mation Hoare verjfication
module CounterExample (){

while(...){ while (...){
pause; pause;
pause; Il pause;
pause; }
} pause;
}
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Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

Interactive Verification on Source-Code Level

Contribution

Interactive Verification on Source-Code Level
@ negative result: no Hoare rules for Quartz
e verification of SSTA programs [GS12a]
@ Theorem 'Ashcroft Manna' = transformation not possible
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The AIFProver
Contribution

Interactive Verification on Guarded-Action Level
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Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Approach

compiling

< back-annotation
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Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Advantage of two Representations

e implicit usage of SSTA normal form

Quartz is better human readable

AIF format is better machine-readable

just a few simple rules are required

schizophrenia and causality are dealt with at compile time
flexible decompositions of proof goals (independent of syntax)

compilation to guarded actions is verified

AIF file contains assumption and assertions = proof goal
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Approach
Advantages
Proof Rules for Assertions and Assumptions

Interactive Verification on Guarded-Action Level The AIFProver

Contribution

Idea fo Rules

(Gy:G,L) (Gy,Ly) @ decomposition of a sequence
L, o rules decompose proof goals
= rules split AIF files

assert(x) ) )

N @ rules insert assumptions and
L assertions into AIF files
2

(GaLy)
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Contribution

Interactive Verification on Guarded-Action Level

(Gi;GaL) (G.Ly)

Ly
L_assert(x) | assume(x) assume(Ix)
[ assume(x), |
L,
(GzL2)

21/36



Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Interactive Verification Framework - AlFProver

AVEREST i

feedback

simpler AlF

— decomposition L simpler AIF @
e \

simple DP

Procedure

compile

simpler AIF

AIF

simulator
© AlFProver

> Rule/Tactic

user Selection
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Approach
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Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Contribution

Interactive Verification on Guarded-Action Level

@ interactive verification rules [GS12b]

@ extension for temporal logic LTL

o rules for module calls [GS13b]

o rules for preemption context [GMS13]

e the AlFProver tool [GS12b, GS13b, GS13a]
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Representation of Synchronous Systems for Verification

Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Summary of |dentified Problems

Problems to Solve

assignment behavior
preservation of determinism
execution order

no serialization

reaction step behavior

temporal behavior
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Example

Evaluation

Contribution
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Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Representation of Synchronous Systems for Verification

true = x=(z==0) x=(z==0) )
Xy =
true = y=z>0 x, = true
true = next (z)=z+1 y=2>0
V= —
y, = true
x, = false
xy Ay, = ¢ vy, = false
z =z+1 )
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Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

Evaluation

1 C€

Averest_| SGAs aif2sal e > SAL

Quartz
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Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Representation of Synchronous Systems for Verification

P #SGA| GC| sc| Es|
ABRO 7 0.11| 0.06 0.05
ABROM[M=13] 20| 427| 792 3.27
AuntAgatha 2 0.12 | 0.07 0.09
VendingMachine 23 1.14| 0.15 0.07
LightControl 36 1.79 | 0.44 0.40
MinePumpController 42 760 | 0.22 0.09
RSFlipFlop 7| 5351 1.18 1.18
MemoryController 41 | 407.95 | 42.93 3.42
IslandTrafficControl 83 | 504.64 | 62.40 1.94
FischerMutex 60 0.14 | 0.22 0.09
Dekker 28 0.63| 0.21 0.17
SingleRowNIM 15 0.06 | 0.04 0.04
PigeonHole 1 0.01 | 0.05 0.05
Queens 1 029 | 0.19 0.20
MagicSquare 29| 1.83 | 65.67 | 9638.84
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Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

Contribution

Representation of Synchronous Systems for Verification

by interleaved guarded actions [GS13c]
@ reuse of algorithms presented in [GMS13]
@ in SRI's Symbolic Analysis Laboratory [GBS14]
@ The tool aif2sal [GS13c, GBS14]
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Conclusions

Contribution

Interactive Verification of Synchronous Systems

@ interactive verification techniques on source-code level:

o verification of SSTA programs [GS12a]

o Theorem 'Ashcroft Manna' = transformation not possible
@ interactive verification techniques on guarded-action level:

interactive verification rules [GS12b]
extension for temporal logic LTL

rules for module calls [GS13b]

rules for preemption context [GMS13]

the AIFProver tool [GS12b, GS13b, GS13a]

@ representation of synchronous systems for verification

o by interleaved guarded actions [GS13c]
e in SRI's Symbolic Analysis Laboratory [GBS14]
o The tool aif2sal [GS13c, GBS14]
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Conclusions

Thank you for the attention! Any Questions? J
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Proof Rules

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

e decompose proof goal (G, L) to (G1,L1) ...(Gn, Ln)
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history and the user’s knowledge of the program
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Proof Rules

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

e decompose proof goal (G, L) to (G1,L1) ...(Gn, Ln)

@ insert assumptions and assertions representing the execution
history and the user’s knowledge of the program

Rule Example

(G U {enter (G, L) = assume(0)}, L)
CaseDistinction (G U {enter (G, £) = assume(—0)}, £)
(G, L) & BoolCases(o)




Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Temporal Logic

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

@ extending proof goal with specification

o decompose (G, £) k= to (G1, L£1) = 1 - (Gns La) E ¢n

@ insert assumptions and assertions representing the execution
history and the user's knowledge of the program
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Temporal Logic

({(y = assert(w))} UG, L) = (G, L) E G(y — «)

Rule Example

(9:£) = ¢ AXGyp
(G, L) E Ge < UnrollAlways()

UnrollAlways

A
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Further Work

Other Rules

G.L)EY (G, L) E v

G, L) Uyl (G, L) FlpUvl

(G, L)Y Ev VY AX[YUA]
(G, L)  [¢ U 4] & NextWUntil()

(G.L) EvVeAX[p U]
(G,£) = [¢ Un] < NextSUntil()

(G.L) Een(G.L) E =X
(G, L) = Gy < Induction()
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Interactive Verification Framework - AlFProver

Implementation Details

@ Averest is implemented in F#

AlFProver uses same code base and is implemented in F#
proof rules are F# functions

proofs are F# scripts/programs

e 6 o6 o

F# interactive console allows to generate proofs
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Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

Module A

—t.
—ta
—t.
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LIl
ARARRR
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

interactive proof rule for module calls in synchronous programs

Problems Induced by Calling a Module

specific:  default reaction
general:  substituted behavior
specific:  preemption and delayed start
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

LIl
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

LIl
ARARRR

=1 =oe(Y)

—a
—:
—:
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Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Preemption

=0 =o

Approach

@ restriction to preemption specific behavior
step wise application possible
preemption-specific ©

specification should preserved 'as much as possible’

correct by construction
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Fibonacci Numbers

module Fib(nat 7i,f,event !r)

nat k,g,n;
n = i;
if(n <= 0)
£=0;
else {
k = 1;
g = 0;
f = 1;
while(k != n) {
next(g) = £;
next(f) = f+g;
next (k) = k+1;
1: pause;
¥
}

emit (r);

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls
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@ computes Fibonacci numbers

in quartz
o r—f == FIB (ip)
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Fibonacci Numbers

: . EFSM for Modul Fib
_

%

State 0
nat k,g,n; true = n=i
n = i; n <0 = emit(r)
g n<0=£=0
if(n <= 0) n>0= k=t
£=0; n>0= g=0
> n>0= f=1
else { 0> 0 = next(g)=t
k = 1: n >0 = next(f)=f+g
’ n >0 = next (k)=k+1
g = 0; n=—k= emit(r) A ARASE
f = 1; \
while(k !'= n) { n#kAn<0 State 1

= n ==k = emit(r)
next(g) = £f; n#k = next(g)=f n#k
next(f) = f+g; n==k n#k = next(f)=f+g
next (k) = k+1; B doer Glans
5
1l: pause;

}

n==k

}

emit (1) ;

State 2




Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Fib in STA form (automatic-version)

module FSA(nat 7i,f,event r)

nat k,g,n,1;
do {
case
(1==0) do //State 0
(n,r,k,g,f).(g,f,k,1) =

(i,n<=0,1,0,(n>071:0)).
(f,f+g,k+1,(n>0&n!=k?1:2));

(1==1) do //State 1
(r).(g,f,k,1) =
(n==k).
(f,f+g,k+1,(n!'=k?1:2));
default
nothing;
pause;
} while (1!=2);

@ structure completely
destroyed

@ code contains only a
single loop

@ same drawbacks as
synthesising
sequential code
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Fib in STA form (handwritten-version)

module Fib(nat 7i,f,event !r)

nat k,g,n;
n = ij; nat k,g,n;
if(n <= 0) if(n<=0) {
£=0; (n,f,r). () = (i,0,true).);
else { } else {
Lk = ig (n,k,g,f,r).(g,f,k) =
g = 0; (i,1,0,1,k==n).(f,f+g,k+1);
f=1; while(k!=n) {
while(k !'= n) { pause;
next(g) = f; (r).(g,f,k) = (k==n).
next(f) = f+g; ////////’» (f,f+g,k+1);
next (k) = k+1; }
1: pause; ¥
¥
}
emit (r);




Fib in STA form (handwritten-
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version)

module FSH(nat 7i,f,event !r)

nat k,g,n;
if(n<=0) {
(n,f,r).() = (i,0,true).();
} else {
(n,k,g,f,r).(g,f,k) =
(i,1,0,1,k==n).(f,f+g,k+1);
while(k!=n) {
pause;
(r).(g,f,k) = (k==n).
(f,f+g,k+1);

@ structure is preserved

@ assignment are shifted
and/or duplicated

@ same invariants are
usable

46 /36



Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Averest

Averest Design Flow

Quartz —>—> AIFProver,
L Vericsion I

—)—) d SW Synthesis
g HW Synthesis

http://www.averest.org
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Further Work

basis for new work

@ extension of rule set

@ application to HybridQuartz
@ improvement of the AlIFProver

e embedding in a theorem prover
o deeper integration of existing decision procedures
e using information from counterexamples
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Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

SEE
true = x=(z==0)
true = y=2>0
true = z=z+1
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Concurrent Model of Computation

Definition: Asynchronous Guarded Actions (AGAs)

An asynchronous guarded action (7 = «) consists of

@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of AGAs
@ execution of a subset of enabled guarded actions
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Concurrent Model of Computation

Behavior of AGAs

@ execution of a subset of enabled guarded actions

SEPE

true = x=(z==0)
true = y=z>0
true = z=z+1
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Concurrent Model of Computation

Behavior of AGAs

@ execution of a subset of enabled guarded actions

SEPE

true = x=(z==
true = y=z>0
true = z=z+1

ki(,#z)
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Synchronous Model of Computation

Definition: Synchronous Guarded Actions (SGAs)

A synchronous guarded action (7 = «) consists of

@ a Boolean guard v and

@ a single atomic immediate/delayed assignment «.

Behavior of SGAs

@ execution of all enabled guarded actions in parallel
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Synchronous Model of Computation

Behavior of SGAs

@ execution of all enabled guarded actions in parallel

SEPE

true = x=(z==0)
true = y=z>0
true = next (z)=z+1

#1,#2#3
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chronous Model of Computation

execution is divided into a sequence of reactions steps
computation of WCRT

supports hard- and software synthesis

°

°

°

@ deterministic behavior

e formal verification techniques available (i.e. model checking)
°

languages: Quartz, Esterel, Signal, Lustre, etc.

Macro Step Behavior

all inputs are read
all outputs are produced (instantaneously)

new internal state is determined

each variable has a unique value
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