Interactive Verification of Synchronous Systems

Manuel Gesell
gesell@cs.uni-kl.de

Embedded Systems Group
University of Kaiserslautern

November 7" 2014

1/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

@ Why interactive verification

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

@ Why interactive verification

© Interactive Verification on Source-Code Level

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

@ Why interactive verification

© Interactive Verification on Source-Code Level

@ Interactive Verification on Guarded-Action Level

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

@ Why interactive verification

© Interactive Verification on Source-Code Level
@ Interactive Verification on Guarded-Action Level

© Representation of Synchronous Systems for Verification

2/36

The synchronous Model of Computation (MoC) does not prohibit
the application or adoption of verification techniques and tools
developed for other MoCs.

Outline
© What is a Model of Computation

@ Why interactive verification

© |Interactive Verification on Source-Code Level
Q |Interactive Verification on Guarded-Action Level
© Representation of Synchronous Systems for Verification

@ Conclusion

2/36

What is a Model of Computation?
Guarded Actions
Sequential Model of Computation
Concurrent Model of Computation
Synchronous Model of Computation

Outline

@ What is a Model of Computation?

3/36

What is a Model of Computation?

Guarded Actions

Sequential Model of Computation
Concurrent Model of Computation
Synchronous Model of Computation

Definition: Guarded Action
A guarded action (7 = «) consists of

@ a Boolean guard v and

@ an atomic action a.

true = y=z>0
true = z=z+1

4/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Sequential Model of Computation

Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action (v = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

5/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Sequential Model of Computation

Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action (v = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions
7 What happens if more than one guarded action is enabled

5/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Sequential Model of Computation

Definition: Interleaved Guarded Actions (IGAs)

An interleaved guarded action (v = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions
7 What happens if more than one guarded action is enabled

o the first (found) is taken
o use alphabetic order
o choose one non-deterministically

5/36

What is a Model of Computation?

Guarded Actions

Sequential Model of Computation
Concurrent Model of Computation
Synchronous Model of Computation

Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

true = x=(z==0)

true = y=z>0
true = z=z+1

6/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

true = x=(z==0) @

true = y=z>0 #

true = z=z+1 >
#&‘

6/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Concurrent Model of Computation

Definition: Asynchronous Guarded Actions (AGAs)
An asynchronous guarded action (7 = «) consists of
@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of AGAs

@ execution of a subset of enabled guarded actions

7/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Concurrent Model of Computation

Behavior of AGAs
@ execution of a subset of enabled guarded actions

SETIE
true = x=(z==0)

()
true = y=z>0
#1
true = z=z+1 3 @
#x

7/36

What is a Model of Computation?
Guarded Actions
Sequential Model of Computation
Concurrent Model of Computation
Synchronous Model of Computation

Concurrent Model of Computation

Behavior of AGAs
@ execution of a subset of enabled guarded actions

SETIE
true = x=(z==0)
true = y=z>0
true = z=z+1

7/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

Definition: Synchronous Guarded Actions (SGAs)
A synchronous guarded action (7 = «) consists of
@ a Boolean guard v and

@ a single atomic immediate/delayed assignment «.

Behavior of SGAs

@ execution of all enabled guarded actions in parallel

8/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

Behavior of SGAs
@ execution of all enabled guarded actions in parallel

SETIE
true = x=(z==0)
true = y=z>0
true = z=z+1

(),
O+
&

8/36

What is a Model of Computation?

Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

Behavior of SGAs
@ execution of all enabled guarded actions in parallel

true = x=(z==0) 2,7

true = y=z>0
true = next (z)=z+1

8/36

What is a Model of Computation?
Guarded Actions
Sequential Model of Computation

Concurrent Model of Computation
Synchronous Model of Computation

Synchronous Model of Computation

@ execution is divided into a sequence of reactions steps
e computation of WCRT

@ deterministic behavior

o formal verification techniques available (i.e. model checking)

@ languages: Quartz, Esterel, Signal, Lustre, etc.

9/36

Why Interactive Verification

Outline

© Why Interactive Verification

10/36

Why Interactive Verification

Why Interactive Verification?

Model Checking
@ available for synchronous languages
o fully automatic

o suffers from state-space explosion problem

Interactive Verification

@ semi-automatic
@ requires additional information (like invariants)
@ allows abstraction from data structures and data-types

@ decomposes proof goals

Combining interactive techniques with model checking is desired.

11/36

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

Interactive Verification on Source-Code Level

Outline

© Interactive Verification on Source-Code Level

12/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz

Hoare Calculus

A Hoare calculus for Quartz in SSTA form
Contribution

nothing :

assign :

sequence :

conditional :

loop :

weaken :

{®} nothing {®}

{[*]} x =71 {o}
{1} S {P2} {P2} 5 {P3}
{®1} S1; S {03}

{oAD} S {V} {-ocAd} S {V}
{®} if (o) S else S {V}
{oAnD} S {D}

[®] while(o) S {0 A B}

': ¢1 — ¢2 {Cbz} S {¢3}): ¢3 — CD4

{1} S {4}

13/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form
Contribution

Hoare Calculus

nothing : {d} nothing {d}
assign : T
g {[®L} x =7 {¢}
. {1} 51 {P2} {P2} S5 {®s}
sequence : {®1} S1; 5 {P3}

L {oA®} S {V) {0 A} S {V]
conditional : {®)if(0) S else S, {V}
oos - {oND} S {D}

: {®} while(o) S {-o A O}

| Ed1 o dr {9} S{Ps} 3 by
weaken : {P1} S {4}

13/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Naive Approach

synthesis - Hoare rules
Quartz Sequential Code Hoare

O synthesis to sequential code to use the classical Hoare calculus

e destroys syntax
e merges control and data flow
e combines all loops to a single one

© defining Hoare rules for each statement

@ split the verification process into two stages

14/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Naive Approach

synthesis - Hoar/rules
Sequential Code \z

O synthesis to sequential code to use the classical Hoare calculus

e destroys syntax
e merges control and data flow
e combines all loops to a single one

© defining Hoare rules for each statement

@ split the verification process into two stages

14/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Idea 1

Hoare-like rules
Quartz Hoare

O synthesis to sequential code to use the classical Hoare calculus
@ defining Hoare rules for each statement

o local reasoning not possible

= rules collect assignments/identify macro step
e using two-stage Hoare-like rules
o default reaction (and other Quartz specific issues)

© split the verification process into two stages

14/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Idea 1

Hoare—y{@ rules
Quartz l Hoare

O synthesis to sequential code to use the classical Hoare calculus
@ defining Hoare rules for each statement

o local reasoning not possible

= rules collect assignments/identify macro step
e using two-stage Hoare-like rules
o default reaction (and other Quartz specific issues)

© split the verification process into two stages

14/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

A Hoare calculus for Quartz - Idea 2

transformation Hoare verification
Quartz SSTA form Hoare

O synthesis to sequential code to use the classical Hoare calculus

@ defining Hoare rules for each statement

@ split the verification process into two stages
@ transformation that concentrates the macro-step behavior
@ reason about code in SSTA normal form

14/36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

Defining a Hoare Calculus for Quartz - ldea 2

transformation Hoare verification
STA Rule

[flongrm]] Y G b o) = v)) £9)
(Lo a7 pause ()
Yi---¥Yn y

15 /36

Hoare Calculus

Interactive Verification on Source-Code Level A Hoare calculus for Quartz
A Hoare calculus for Quartz in SSTA form

Contribution

Defining a Hoare Calculus for Quartz - ldea 2

transforghation Hoare verjfication
Quartz f SSTA form Hoare

STA Rule

[flonrm]] Y G b o) = v)) £9)
(Lo a7 pause ()
Yi---¥Yn y

15 /36

Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transformation Hoare verjfication
Quartz SSTA form Hoare

source-code transformation

o all assignment collected in a synchronous tuple assignment
@ must not invent additional variables

@ parallel operator must be removed

16 /36

Hoare Calculus
A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transformation Hoare verjfication
Quartz SSTA form Hoare

removing the parallel operator

Interactive Verification on Source-Code Level

@ similar to eliminating gotos in sequential programs

@ proved the impossibility without adding additional variables

@ problem: representing two parallel loops may introduce an
irreducible sub graph

16 /36

Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transﬂ/mation Hoare verjfication
H

module AshcroftManna(nat{3} ?i, nat{2} !o){

bool x;0 = 1;
while(!'x){
while(i==0&!'x){
wl: pause;
o =1;
}
w2: pause;
o =1; I
if(rx)q{
while(i==1 & !x){
w3: pause;
o= 0;
} w4: pause;
o=0;

do {

wb: pause;
} while(i!=2);
w6: pause;
w7: pause;
X = true;

1

16 / 36

Hoare Calculus
Interactive Verification on Source-Code Level A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

transﬂ;\[mation Hoare verjfication
module CounterExample (){

while(...){ while (...){
pause; pause;
pause; Il pause;
pause; }
} pause;
}

16 /36

Hoare Calculus

A Hoare calculus for Quartz

A Hoare calculus for Quartz in SSTA form
Contribution

Interactive Verification on Source-Code Level

Contribution

Interactive Verification on Source-Code Level
@ negative result: no Hoare rules for Quartz
e verification of SSTA programs [GS12a]
@ Theorem 'Ashcroft Manna' = transformation not possible

17 /36

Proof Rules for Assertions and Assumptions
The AIFProver
Contribution

Interactive Verification on Guarded-Action Level

Outline

@ Interactive Verification on Guarded-Action Level

18 /36

Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Approach

compiling

< back-annotation

19/36

Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Advantage of two Representations

e implicit usage of SSTA normal form

Quartz is better human readable

AIF format is better machine-readable

just a few simple rules are required

schizophrenia and causality are dealt with at compile time
flexible decompositions of proof goals (independent of syntax)

compilation to guarded actions is verified

AIF file contains assumption and assertions = proof goal

20/36

Approach
Advantages
Proof Rules for Assertions and Assumptions

Interactive Verification on Guarded-Action Level The AIFProver

Contribution

Idea fo Rules

(Gy:G,L) (Gy,Ly) @ decomposition of a sequence
L, o rules decompose proof goals
= rules split AIF files

assert(x)))

N @ rules insert assumptions and
L assertions into AIF files
2

(GaLy)

21/36

Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

(Gi;GaL) (G.Ly)

Ly
L_assert(x) | assume(x) assume(Ix)
[assume(x), |
L,
(GzL2)

21/36

Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Interactive Verification Framework - AlFProver

AVEREST i

feedback

simpler AlF

— decomposition L simpler AIF @
e \

simple DP

Procedure

compile

simpler AIF

AIF

simulator
© AlFProver

> Rule/Tactic

user Selection

22/36

Approach

Advantages

Proof Rules for Assertions and Assumptions
The AIFProver

Contribution

Interactive Verification on Guarded-Action Level

Contribution

Interactive Verification on Guarded-Action Level

@ interactive verification rules [GS12b]

@ extension for temporal logic LTL

o rules for module calls [GS13b]

o rules for preemption context [GMS13]

e the AlFProver tool [GS12b, GS13b, GS13a]

23/36

Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

Outline

© Representation of Synchronous Systems for Verification

24 /36

Idea

Summary of Identified Problems

25 /36

Idea
Summary of Identified Problems

Representation of Synchronous Systems for Verification

Representing Quartz in other MoCs

25 /36

Idea

Summary of Identified Problems

u n

Representation of Synchronous Systems for Verification ol
ontribution

Representing Quartz in other MoCs

Averest

25 /36

Representation of Synchronous Systems for Verification

Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Summary of |dentified Problems

Problems to Solve

assignment behavior
preservation of determinism
execution order

no serialization

reaction step behavior

temporal behavior

26 /36

Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

27 /36

Idea
Summary of Identified Problems
Example

i e Evaluati
Representation of Synchronous Systems for Verification CZ—;tL:'? on

true = x=(z==0)
true = y=z>0
true = next (z)=z+1

28/36

Representation of Synchronous Systems for Verification

true = x=(z==0)
true = y=z>0
true = next (z)=z+1

Idea

Summary of Identified Problems
Example

Evaluation

Contribution

X=(Z==O)
Xy =
X, = true
y=z>0
v = _
y, = true
x, = false
xy Ay, = ¢ vy, = false
z =z+1

28 /36

Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Representation of Synchronous Systems for Verification

true = x=(z==0) x=(z==0))
Xy =
true = y=z>0 x, = true
true = next (z)=z+1 y=2>0
V= —
y, = true
x, = false
xy Ay, = ¢ vy, = false
z =z+1)

28/36

Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

Evaluation

1 C€

Averest_| SGAs aif2sal e > SAL

Quartz

20/36

Idea

Summary of Identified Problems
Example

Evaluation

Contribution

Representation of Synchronous Systems for Verification

P #SGA| GC| sc| Es|
ABRO 7 0.11| 0.06 0.05
ABROM[M=13] 20| 427| 792 3.27
AuntAgatha 2 0.12 | 0.07 0.09
VendingMachine 23 1.14| 0.15 0.07
LightControl 36 1.79 | 0.44 0.40
MinePumpController 42 760 | 0.22 0.09
RSFlipFlop 7| 5351 1.18 1.18
MemoryController 41 | 407.95 | 42.93 3.42
IslandTrafficControl 83 | 504.64 | 62.40 1.94
FischerMutex 60 0.14 | 0.22 0.09
Dekker 28 0.63| 0.21 0.17
SingleRowNIM 15 0.06 | 0.04 0.04
PigeonHole 1 0.01 | 0.05 0.05
Queens 1 029 | 0.19 0.20
MagicSquare 29| 1.83 | 65.67 | 9638.84

30/36

Idea
Summary of Identified Problems
Example

. e Evaluation
Representation of Synchronous Systems for Verification Contribution

Contribution

Representation of Synchronous Systems for Verification

by interleaved guarded actions [GS13c]
@ reuse of algorithms presented in [GMS13]
@ in SRI's Symbolic Analysis Laboratory [GBS14]
@ The tool aif2sal [GS13c, GBS14]

31/36

Conclusions

Outline

@ Conclusions

32/36

Conclusions

Contribution

Interactive Verification of Synchronous Systems

@ interactive verification techniques on source-code level:

o verification of SSTA programs [GS12a]

o Theorem 'Ashcroft Manna' = transformation not possible
@ interactive verification techniques on guarded-action level:

interactive verification rules [GS12b]
extension for temporal logic LTL

rules for module calls [GS13b]

rules for preemption context [GMS13]

the AIFProver tool [GS12b, GS13b, GS13a]

@ representation of synchronous systems for verification

o by interleaved guarded actions [GS13c]
e in SRI's Symbolic Analysis Laboratory [GBS14]
o The tool aif2sal [GS13c, GBS14]

33/36

Conclusions

Bibliography |

@ Gesell, M., F. Bichued, and K. Schneider: Using different representations
of synchronous systems in SAL.

In MBMV, 2014.

@ Gesell, M., A. Morgenstern, and K. Schneider: Lifting verification results
for preemption statements.

In SEFM, 2013.

@ Gesell, M. and K. Schneider: A Hoare calculus for the verification of
synchronous languages.

In PLPV, 2012.

@ Gesell, M. and K. Schneider: Interactive verification of synchronous
systems.

In MEMOCODE, 2012.

34 /36

Conclusions

Bibliography Il

@ Gesell, M. and K. Schneider: An interactive verification tool for
synchronous/reactive systems.

In MBMV, 2013.

@ Gesell, M. and K. Schneider: Modular verification of synchronous
programs.

In ACSD, 2013.

@ Gesell, M. and K. Schneider: Translating synchronous guarded actions to
interleaved guarded actions.

In MEMOCODE, 2013.

35/36

Conclusions

Thank you for the attention! Any Questions? J

36 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Proof Rules

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

e decompose proof goal (G, L) to (G1,L1) ...(Gn, Ln)

@ insert assumptions and assertions representing the execution
history and the user’s knowledge of the program

37/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Proof Rules

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

e decompose proof goal (G, L) to (G1,L1) ...(Gn, Ln)

@ insert assumptions and assertions representing the execution
history and the user’s knowledge of the program

Rule Example

(G U {enter (G, L) = assume(0)}, L)
CaseDistinction (G U {enter (G, £) = assume(—0)}, £)
(G, L) & BoolCases(o)

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Temporal Logic

Given the AIF file (G) and the labels (£) of a Quartz program
Overall Task

@ extending proof goal with specification

o decompose (G, £) k= to (G1, L£1) = 1 - (Gns La) E ¢n

@ insert assumptions and assertions representing the execution
history and the user's knowledge of the program

38/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Temporal Logic

({(y = assert(w))} UG, L) = (G, L) E G(y — «)

Rule Example

(9:£) = ¢ AXGyp
(G, L) E Ge < UnrollAlways()

UnrollAlways

A

38/36

Further Work

Other Rules

G.L)EY (G, L) E v

G, L) Uyl (G, L) FlpUvl

(G, L)Y Ev VY AX[YUA]
(G, L) [¢ U 4] & NextWUntil()

(G.L) EvVeAX[p U]
(G,£) = [¢ Un] < NextSUntil()

(G.L) Een(G.L) E =X
(G, L) = Gy < Induction()

39/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Interactive Verification Framework - AlFProver

Implementation Details

@ Averest is implemented in F#

AlFProver uses same code base and is implemented in F#
proof rules are F# functions

proofs are F# scripts/programs

e 6 o6 o

F# interactive console allows to generate proofs

40/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

Module A

—t.
—ta
—t.

41/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

LIl
ARARRR

Module A

—t.
—ta
—t.

—a
—:
—:

41/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

interactive proof rule for module calls in synchronous programs

Problems Induced by Calling a Module

specific: default reaction
general: substituted behavior
specific: preemption and delayed start

42/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

LIl
ARARRR

Module A

—t.
—ta
—t.

—a
—:
—:

43/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

Module A

—t.
—ta
—t.

43/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

as

43/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rule for Module Calls

LIl
ARARRR

=1 =oe(Y)

—a
—:
—:

43/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Rules for Preemption

=0 =o

Approach

@ restriction to preemption specific behavior
step wise application possible
preemption-specific ©

specification should preserved 'as much as possible’

correct by construction

44 /36

Fibonacci Numbers

module Fib(nat 7i,f,event !r)

nat k,g,n;
n = i;
if(n <= 0)
£=0;
else {
k = 1;
g = 0;
f = 1;
while(k != n) {
next(g) = £;
next(f) = f+g;
next (k) = k+1;
1: pause;
¥
}

emit (r);

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

@ computes Fibonacci numbers

in quartz
o r—f == FIB (ip)

45 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Fibonacci Numbers

: . EFSM for Modul Fib
_

%

State 0
nat k,g,n; true = n=i
n = i; n <0 = emit(r)
g n<0=£=0
if(n <= 0) n>0= k=t
£=0; n>0= g=0
> n>0= f=1
else { 0> 0 = next(g)=t
k = 1: n >0 = next(f)=f+g
’ n >0 = next (k)=k+1
g = 0; n=—k= emit(r) A ARASE
f = 1; \
while(k !'= n) { n#kAn<0 State 1

= n ==k = emit(r)
next(g) = £f; n#k = next(g)=f n#k
next(f) = f+g; n==k n#k = next(f)=f+g
next (k) = k+1; B doer Glans
5
1l: pause;

}

n==k

}

emit (1) ;

State 2

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Fib in STA form (automatic-version)

module FSA(nat 7i,f,event r)

nat k,g,n,1;
do {
case
(1==0) do //State 0
(n,r,k,g,f).(g,f,k,1) =

(i,n<=0,1,0,(n>071:0)).
(f,f+g,k+1,(n>0&n!=k?1:2));

(1==1) do //State 1
(r).(g,f,k,1) =
(n==k).
(f,f+g,k+1,(n!'=k?1:2));
default
nothing;
pause;
} while (1!=2);

@ structure completely
destroyed

@ code contains only a
single loop

@ same drawbacks as
synthesising
sequential code

/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Fib in STA form (handwritten-version)

module Fib(nat 7i,f,event !r)

nat k,g,n;
n = ij; nat k,g,n;
if(n <= 0) if(n<=0) {
£=0; (n,f,r). () = (i,0,true).);
else { } else {
Lk = ig (n,k,g,f,r).(g,f,k) =
g = 0; (i,1,0,1,k==n).(f,f+g,k+1);
f=1; while(k!=n) {
while(k !'= n) { pause;
next(g) = f; (r).(g,f,k) = (k==n).
next(f) = f+g; ////////’» (f,f+g,k+1);
next (k) = k+1; }
1: pause; ¥
¥
}
emit (r);

Fib in STA form (handwritten-

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

version)

module FSH(nat 7i,f,event !r)

nat k,g,n;
if(n<=0) {
(n,f,r).() = (i,0,true).();
} else {
(n,k,g,f,r).(g,f,k) =
(i,1,0,1,k==n).(f,f+g,k+1);
while(k!=n) {
pause;
(r).(g,f,k) = (k==n).
(f,f+g,k+1);

@ structure is preserved

@ assignment are shifted
and/or duplicated

@ same invariants are
usable

46 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Averest

Averest Design Flow

Quartz —>—> AIFProver,
L Vericsion I

—)—) d SW Synthesis
g HW Synthesis

http://www.averest.org

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Further Work

basis for new work

@ extension of rule set

@ application to HybridQuartz
@ improvement of the AlIFProver

e embedding in a theorem prover
o deeper integration of existing decision procedures
e using information from counterexamples

48/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

SEE
true = x=(z==0)
true = y=2>0
true = z=z+1

49 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Sequential Model of Computation

Behavior of IGAs (subset of Dijkstra’s Guarded Commands)

@ execution of a single enabled guarded actions

SEE

true = x=(z==0)
true = y=2>0
true = z=z+1

49 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Concurrent Model of Computation

Definition: Asynchronous Guarded Actions (AGAs)

An asynchronous guarded action (7 = «) consists of

@ a Boolean guard v and

@ a set of atomic assignments a.

Behavior of AGAs
@ execution of a subset of enabled guarded actions

50 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Concurrent Model of Computation

Behavior of AGAs

@ execution of a subset of enabled guarded actions

SEPE

true = x=(z==0)
true = y=z>0
true = z=z+1

b /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Concurrent Model of Computation

Behavior of AGAs

@ execution of a subset of enabled guarded actions

SEPE

true = x=(z==0)
true = y=z>0
true = z=z+1

50 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Concurrent Model of Computation

Behavior of AGAs

@ execution of a subset of enabled guarded actions

SEPE

true = x=(z==
true = y=z>0
true = z=z+1

ki(,#z)

50 /36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Synchronous Model of Computation

Definition: Synchronous Guarded Actions (SGAs)

A synchronous guarded action (7 = «) consists of

@ a Boolean guard v and

@ a single atomic immediate/delayed assignment «.

Behavior of SGAs

@ execution of all enabled guarded actions in parallel

51/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption
Further Work

Synchronous Model of Computation

Behavior of SGAs

@ execution of all enabled guarded actions in parallel

SEPE

true = x=(z==0)
true = y=z>0
true = z=z+1

51/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic

AlFProver

Rule for Module Calls

Rules for Preemption

Further Work

Synchronous Model of Computation

Behavior of SGAs

@ execution of all enabled guarded actions in parallel

SEPE

true = x=(z==0)
true = y=z>0
true = next (z)=z+1

#1,#2#3

51/36

Proof Rules for Assertions and Assumptions
Rules for Temporal Logic
AlFProver

Rule for Module Calls
Rules for Preemption
Further Work

chronous Model of Computation

execution is divided into a sequence of reactions steps
computation of WCRT

supports hard- and software synthesis

°

°

°

@ deterministic behavior

e formal verification techniques available (i.e. model checking)
°

languages: Quartz, Esterel, Signal, Lustre, etc.

Macro Step Behavior

all inputs are read
all outputs are produced (instantaneously)

new internal state is determined

each variable has a unique value

	What is a Model of Computation?
	Why Interactive Verification
	Interactive Verification on Source-Code Level
	Interactive Verification on Guarded-Action Level
	Representation of Synchronous Systems for Verification
	Conclusions
	Appendix

