Hardware-Software Synthesis Project

Design and implementation of a parallel computing processor

University of Kaiserslautern
Embedded Systems Group
11.04.2014

Carsten Harms
Amir Kabouteh
Navid Dorosti
Ali Sabeghi

Overview

Introduction

Assembler and Instruction set
Communication(Host\PowerPC)
Design

Implementation

VYVVYY

Introduction

The goal for this project is to develop a Hardware/Software system for parallel numerical computation.

> Software Components
o Assembler

Translates human readable code to instructions.
o Client software
Communication between the host and PowerPC using TCP/IP

> Hardware Components
o Parallel Computing Processor (PCP)

The designed processor is executing 64 warps of 4 Threads in parallel.
o Bus Communicator

Sets the mode and manages the transaction between PCP and Device Memory (by Ali)

Assembler and Instruction set

e Assembler is written in Python, using regular expressions
o Assembler instruction format:

label | condition operation

1 : cl? add r5 r3 r1 # comment
eql r3 r4 c2 c3
jac 11

e Instruction format is inspired by MIPS and extended and modified for our needs
o Makes instruction decoding very simple

Instruction Format

constrains:

e 3 bit condition register address
e 5 bit general purpose register address

R-Type cond opcode target src 1 src 2 unused
MEM cond opcode target source unused
I-Type cond opcode target & source 16-bit immediate
J-Type cond opcode unused address
C-Type cond opcode unused src 1 src 2 c target 1 c target 2
Special cond opcode unused

Communication Host-PowerPC

e (lient is written in Python as a command line interpreter
e Two TCP connections are used, each dedicated to
© commands
o data
e (Commands are transmitted as human readable ASCII
o Examples: CONNECT, EXIT, INFO, PROGRAM
o easily extendable and debugging friendly
e Data is send as a binary stream and is meant to be stored in previously allocated
memory blocks on the device memory

Parallel Computing Processor

Design

> System has three modes
o Programming
© Running
o Reading
> 6 Stage Pipeline
o Scheduler
PC Block Read
IF-ID
Register Read
Execution
o PC Block-Register Write
> each stage executes one warp which consists of four threads

O O O O

Parallel Computing Processor

Design

PC Block
(Write)

Reg Stage
(Write)

PC Block
(Read)

Execution
Stage

Reg Stage
(Read)

Parallel Computing Processor

Scheduler

Schedules the active warps

One FIFO queue of size 64

Enqueue active warps which are not in the pipeline

Dequeue inactive warps or those which are currently in the pipeline

Keeps the Warp Threads Status

Changes made in the execution stage and will be pipeline to the scheduler

This unit feeds the whole pipeline, in case it does not work the pipeline will do a NO_OP
Being activated by the control unit

YYVYVYVYYVYY

Parallel Computing Processor

PC Block

> Stores the Program Counters for all threads of all warps

> Performs three steps in one clock cycle in parallel
o Outputting the PC of active threads in the scheduled warp
o Modifying the PC of active threads in the executed warp
o Sending the updated values to the scheduler

Parallel Computing Processor

IF-ID Stage

> [F-ID In programming mode
o Instruction memory can be accessed by the Communicator Module-Write enable by
Control unit
> [F-ID In running mode
o IF fetches the instruction corresponding to the input PC and pass it to ID
o ID decodes the instruction and sends different parts either to outputs or pipeline
registers

Parallel Computing Processor

Register Stage

> Register Read Contains two Sets of Registers.
o Normal data registers, one mini Register file (32 Registers) for each thread of all warps.
o Condition Registers, one Register file(8 1-bit Registers) for each thread of all warps.

For Normal Data Registers

> FPGA offers many dual port Block RAM, which are used to implement the register files
o Dual port is not enough, we require two reads and one write simultaneously
o Solution => duplicate the register sets for each thread. Write to both of Register files
and read the first address from register No.1 and Second address from register No.2.

For Condition Registers

> Similar to Data Registers but we need one read and two writes simultaneously
o For Writes: First read the value we want to change, make changes to the read value.
Write it back to both Condition Register files. Both files will stay Consistent
o For Read: Always read from the same condition register file

Parallel Computing Processor

Execution Stage

> Consists of 4 execution Units and a Scratchpad Memory

> Handles the load and store instructions from and to the Scratchpad Memory

> (alculates thread control values according to the type of instruction and inactive signals
which come from execution units and will send them to scheduler

> Execution units
o Execute four threads in parallel
o Non-intelligent and straightforward result computation
o Compute New PC’s and send them through pipeline to PC block

Parallel Computing Processor

Write back to Register and PC-Block

> Updating PC values

> Writing to the register files for data and condition registers

> Sending back the finished warp address and New PC’s so that the Scheduler can check the
active threads and enqueue or dequeue it.

PowerPC-PCP Communication

e Bus configuration of the system

e Communicator unit .

® Phases of PowerPC-PCP communication

PowerPC-PCP Communication . Bus Configuration

PowerPC
ﬁ
| — |
7 Device
Memory
O JI.)LEDS
Parallel ~

Processor

D master interface

Slave interface

PLBO PLB1 (Master Bus)

PowerPC-PCP Communication .Communicator Module

Communicator modules Tasks:

e Sets the working mode of PCP (Programming,Running ,Result)

e Manages the Communications between PCP and other components of system(PowerPC
,Device Memory)

PowerPC-PCP Communication,PCP Programming Mode

Parallel Processor works in 3 different modes

% In Programming mode:
> In Programming mode , the Software sets the Software Accesible Register of

Communicator Module via slave bus

> The Software Sets the Instruction memory start and end registers which show the the start
and End of the Instruction memory block in Device memory via slave bus

> The Communicator unit, start to send sequence of read requests on master bus and puts
the data on Instruction memory of Parallel Processor .

PowerPC-PCP Communication, PCP Running Mode

% In Running Mode:

> If there is a Store instruction ,Communication unit gets the data and its address from the execution unit

and sends a write request on bus (master bus)

> If there is Load instruction , Communicator gets the address from execution unit and send the read request

on bus and waits for validation and then puts the data on Scratch pad.

PowerPC-PCP Communication,PCP Result Mode

% In Result Mode:

> The Communicator ,Starts to read the data of Scratch pad and sends of sequence of write request on bus

The Registers in Communicator which show the start and end of data block on Device memory are set by

the Software via slave bus

Thank you for your Attention

