
Antichain Optimization
using Simulation Relations

for Context-Free Games

Fajar Haifani

August 1, 2017

Master’s Thesis

Technical University of Kaiserslautern

Department of Computer Science

First Reviewer : Prof. Dr. Klaus Schneider

Second Reviewer : Prof. Dr. Roland Meyer

Supervisor : Sebastian Muskalla, M. Sc.

I certify that the content of this master thesis has not been submitted for

any degree requirements. This is an original work and any sources have been

properly acknowledged.

Fajar Haifani

Acknowledgement

Firstly, I would like to express my gratitute towards Prof. Roland Meyer as

my mentor and thesis reviewer. I am grateful for being able to work on an

interesting topic in his group. It has been a great experience not only to

work on this thesis, but also to learn theoretical computer science in general

from him.

I would also like to thank Prof. Klaus Schneider as the first reviewer.

A special thanks goes to Sebastian Muskalla, Msc as my supervisor for

his guidance, advices, and patience while working with me. Despite being in

a tight schedule, he has been able to make time to discuss my thesis.

I would like to thank Markus, Constantin, and Felix for their support

with the implementation.

I would also like to thank my parents and family for their supports and

prayers.

Lastly, it is not at all possible for this thesis to get to this present state

without the help of many people whom I can not mention here. Nevertheless,

I would like to sincerely thank them all.

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Structure . 3

2 Preliminary Concepts 5

2.1 Context-Free Games . 5

2.2 Domain . 7

2.3 Fixed-Point Iteration . 11

3 Proposed Optimizations 13

3.1 Subset Relation between Boxes 14

3.2 Simulation Relations . 15

3.2.1 Simulation Relations between States 16

3.2.2 Simulation Relations between Arcs in Boxes 16

3.2.3 Simulation Relations between Boxes 18

3.2.4 Monotonicity for Boxes 20

3.2.5 Implication and Monotonicity for Formulas 22

3.3 Antichain Optimization . 25

3.3.1 Implication between Boxes 25

3.3.2 Implication between Clauses in CNF 26

3.3.3 Implication between Formulas in CNF 27

3.3.4 Minimization of Formulas 27

4 Experiments 29

4.1 Implementation . 29

4.1.1 Program . 29

4.1.2 Instance Generation 30

4.1.3 Implementation Tricks 34

4.1.4 Inclusion Check . 36

4.1.5 Forward Simulation Relation Check 37

4.1.6 Backward Simulation Relation Check 38

4.1.7 Forward-Backward Simulation Relation Check 40

4.1.8 Precomputation . 42

4.1.9 Formula Reduction . 45

4.2 Simulation Setup . 47

4.3 Benchmarking Results . 49

4.3.1 Improvement . 51

4.3.2 Shortcomings . 53

4.3.3 Timeout and Memory Consumption 54

4.3.4 Average Cases . 55

5 Conclusion and Future Work 58

5.1 Conclusion . 58

5.2 Future work . 59

A Table of Instances 63

B Table of Aggregates 68

Abstract

Methods from verification have been lifted to synthesis. One of the techniques

is context-free games [5]. Finding winning strategy for the games can be

carried out by using fixed-point iteration. This fixed-point iteration computes

the set of plays starting from a given initial sentential form. This set of plays

is represented by a negation-free Boolean formula with implication as the

order. In this thesis, we propose a set of heuristic optimizations by weakening

the notion of implication for the context-free games. For this, we adapt

simulation relations for inclusion testing of Büchi automata [1]. This will

reduce the number of implication checks and reduce memory consumption.

In addition, we also propose a formula reduction technique which will further

improve runtime. This may give us significant improvement, especially if

successful reductions happen early in the iteration. This is because it will

also reduce the computational costs of all future steps of the iteration. In

addition, a significant decrease in formula size will both decrease memory

consumption and contributes extra speed up. We test our optimizations

by solving instances with NFAs and CFGs generated according to Tabakov-

Vardi model [10]. Not all of the game instances generated are optimizable.

This is due to the fact that our optimizers rely heavily on the structure of

the NFAs and CFGs. However, for most cases, we are able to get better

performance.

Chapter 1

Introduction

Synthesis and verification problems for recursive programs are a pair of prob-

lems often discussed together in the context of automatic programming. This

is the task of automatically discovering parts of a program that are still miss-

ing in order to satisfy some specification. Possible applications are helping

end-users automate repetitive tasks [2], automating geometry constructions

[3], etc.

Synthesis can carried be out by saturation or summarization. When us-

ing saturation [7], we perform a backward reachability analysis from a given

set of regular configurations. This results in a pre∗-image consisting of all

configurations which can reach the set of regular configurations. We then

check whether the initial configuration is in the pre∗-image. Summarization

amounts to combining parts of the computations with similar input-output

pairs. In other words, we analyze a program in terms of procedure summaries.

A recent summarization approach [5], models the synthesis problem by

using an inclusion game on the derivation tree of a context-free grammar.

Demonic and angelic non-determinism are modeled as choices for two players

respectively: refuter and prover. Synthesis amounts to finding a winning

strategy for prover. One significant part of computing this strategy is the

fixed-point iteration based on the implication relation. This part determines

1

the runtime of a context-free game instance and is suitable for optimizations.

In [5], the authors also mentioned the possibility of heuristics that can be used

for optimizations: an antichain optimization and a lazy evaluation strategy.

In this thesis, we try to apply the subsumption relations used in [1] to obtain

antichain optimizations.

1.1 Contribution

The contribution of this thesis is a set of optimization techniques for context-

free games. The optimizations work by adapting the simulation relations used

in [1]. In the paper, the simulation relations were used to avoid a part of the

search space that is subsumed by the other part when performing inclusion

check for Büchi automata. We make use of the relations for NFAs. In total,

we explore four relations: subset relation, forward simulation relation, back-

ward simulation relation, and forward-backward simulation relation. This is

designed to stop the fixed-point iteration earlier and reduce the size of the

search space representation.

For the search space representation, we use negation-free Boolean formu-

las. By using the simulation relations, we can reduce these formulas. Formula

reductions have an important advantage for the fixed-point iteration’s run-

time. An early successful reduction will help to reduce the computational

costs of the later steps of the iteration. This is due to monotonicity, a prop-

erty that we will later explain in detail. Due to this property, a reducible

part of a formula will remain reducible throughout the iteration despite being

transformed into different formulas. If this part is reduced, the later steps of

iteration will also be affected. Two key operations which enjoy this benefit

are implication checks and formula compositions.

We devise experiments to compare the performance of our simulation

based solvers with a CNF solver without simulation relations. We add our

solvers into a c++ program developed at TU Kaiserslautern. Many of the

2

functionalities are already available. These include instance generation ac-

cording to the Tabakov-Vardi model [10], a CNF based solver, a worklist

based Kleene iteration algorithm, etc. The results show that our solvers

improve the runtime of many instances that are in line with the properties

of our simulation relations. As an observation, a DFA can not be used in

conjunction with the subset relation.

1.2 Structure

This thesis is organized in five parts. After the introduction, we first intro-

duce some concepts necessary for the development of the simulation relations

in Chapter 2. This part includes the concept about context-free games in

general, the domain of the search space, and the fixed-point iteration. We

leave some concepts such as strategy synthesis as they are not within the

scope of our work. Interested readers can refer to [5].

In Chapter 3, we show how to adapt simulation relations in [1] for our

case. This includes adapting the different notations and redefining the ac-

ceptance condition. We use boxes instead of supergraphs and we need an

acceptance condition for NFAs instead of NBAs. The domain of the fixed-

point iteration is vectors of formulas. We also show how this can be used to

reduce the representation of the formulas to speed up the fixed-point itera-

tion.

Then, Chapter 4 is devoted to showing experimental evidence. We use a

program developed in the Concurrency Theory Group at TU Kaiserslautern

[9] and develop additional subroutines to support our work. For the sim-

ulation relations, we also use some implementation tricks to decrease the

overhead caused by the additional computations. These include using in-

dices to represent more complex data structure, hashing of the simulation

relations, using pointers whenever possible, and taking advantage of the re-

3

lation between different simulation relations.

In Chapter 5, we present the conclusion and future work. We revisit

the work that we have done. Afterwards, we present the possible future im-

provements and workarounds. Some of them are using SAT solvers and the

analysis of instance generation.

In addition, we put the results of the experiments in the Appendix. In

total, there are 160 context-free game instances. We present the results in

two tables. The first table contains results of some representative individual

instances and the second table contains the aggregate results.

4

Chapter 2

Preliminary Concepts

In this chapter, we first get into the basic idea of context-free games and

introduce some notations necessary for the optimizations. We will make use

of the simulation relations from [1] and argue why we can use them in the

next chapter.

2.1 Context-Free Games

Given a program template P and a specification ψ, we would like to find an

instantiation P@i which satisfies ψ. This is the essence of program synthesis.

The program template is modelled as context-free grammar and the specifi-

cation can be modelled as regular language. We can then see this synthesis

problem as an inclusion problem. We want to determine whether a context-

free language is in some regular language.

This problem is closely related to verification problem. We can see this

when we consider the complement of the inclusion problem. More specif-

ically, verification problem amounts to finding a word that is outside of a

regular language. With this, we can check whether the program template

violates the specification.

One way that is often used to represent a regular language is by using

5

nondeterministic finite automata [6]. This is the representation of regular

languages that we will use for the simulation relations.

Definition 2.1.1 (NFA). A Nondeterminstic Finite Automata NFA A over

a finite alphabet Σ is a triple (Q,→, F) with a single initial state q0 ∈ Q

where:

1. Q is a finite set of states.

2. F ⊆ Q is a finite set of final states.

3. →: Q×Σ→ P (Q) is a transition function that determines which states

the automata can move to based on the current letter.

On the other hand, we use a context-free grammar to represent the pro-

gram. For context-free games, we consider CFGs where the nonterminals are

divided into two sets.

Definition 2.1.2 (Context-free grammar). A context-free grammar G with

ownership partitioning is a triple (N,Σ, P). where:

1. N = N�
⊎
N© is a finite set of nonterminals

2. Σ is a finite set of terminals

3. P ⊆ N × (N ∪ Σ)∗ is a finite set of production rules.

The ownership partitioning is also extended to sentential forms ϑ =

(N ∪ Σ)∗. The ownership of α = wXβ depends on the leftmost nonter-

minal X. α belongs to prover if X ∈ N� and refuter if X ∈ N©.

Given a context-free grammar G and an NFA A, a context-free game in-

stance (ϑ,⇒L, α) is a triple with ϑ the set of sentential forms in G, ⇒L is

a left derivation relation based on the production rules of G, and α ∈ ϑ is

the initial position. Prover (refuter) has to do a leftmost derivation starting

from α. Prover (refuter) takes turn when she owns the leftmost nonterminal

of the sentential form and proceeds by choosing one of the right hand side

6

choices. Prover wins either by enforcing an infinite play or deriving a word

inside L(A) while refuter wins by deriving a word outside of L(A).

Note that inclusion games are determined [4]. For any sentential form

α ∈ (N ∪ Σ)∗, exactly one of the players has a winning strategy. For our

purpose, we use the non-inclusion game where we want to find the strategy

for refuter.

Fixed-point iteration is used to compute a representation of the set of all

plays starting a sentential form α ∈ (N ∪ Σ)∗. Then, we can determine the

winner by evaluating this representation.

2.2 Domain

Here, we try to explore the domain over which the fixed-point iteration op-

erates. The fixed-point iteration works on the representation of the set of

all plays starting from all of the nonterminals. A play p = p0p1... is a se-

quence of sentential forms pi such that pi ⇒L pi+1. The set of plays starting

from a sentential form α forms a tree with α as root. Branches in the tree

represent possible choices either for refuter or prover. Based on [4], we can

see this tree as a negation-free Boolean formula over the set of words where

inner nodes are disjunctions (conjunctions) when they are owned by refuter

(prover). They also provided a way to represent it in a finite way by rep-

resenting infinite plays as false. This means that neither refuter nor prover

derives a word. This happens for emptiness games where the regulars specifi-

cation is an empty language. This finite Boolean formula will be the domain.

Now, we need to describe the propositions for the formulas. This should

represent the terminal words derivable in a play. Usually, the language of an

NFA is infinite. In order to get a finite representation, we put the words in

the language into equivalence classes based on their induced state changes.

This is due to the fact that what matter for acceptance condition are the

7

state changes. Two words inducing similar state changes will have the same

behaviour in terms of the acceptance condition of the NFA. So, they are

defined to be equivalent.

Definition 2.2.1 (Transition equivalence vA). Given NFA A = (Q,→, F),

u, v ∈ Σ∗. u vA v if for all p, q ∈ Q, p
u→ q iff p

v→ q.

We treat the finite number of equivalence classes as propositions in our

formulas. We call these equivalence classes boxes. For a word w ∈ Σ, the

box ρw is the set of state pairs which transitions are induced by the word w.

If there is another word v such that v vA w, then, based on the definition of

vA, we get ρw = ρv.

Definition 2.2.2 (Box). ρw = {(p, q)|p w→ q}.

q0start

q1 q2

q3 q4

q5

a a

a

b

a

a

c

a

Figure 2.1: NFA A

Graphically, a box is drawn as a rectangle with arcs inside representing

state changes. The boxes in Figure 2.2 are based on the NFA A in Figure 2.1

representing the language aa∗ba∗a+ aca. The language of a box is the set of

words inducing state changes in the box. For example, L(ρba) = a∗ba∗a.

When we compose two plays together, we need to maintain that the

terminal word of the resulting play still induces state changes. For this, we

have a composition operation [5]. An arc (p, q) exists in the composition of

two boxes ρ and τ if there is a state r such that (p, r) ∈ ρ and (r, q) ∈ τ .

The set of all boxes equipped with the composition operation and ρε as an

identity element forms a monoid.

8

ρε ρa ρb ρc ρab ρbc

ρba ρac ρca ρaba ρaca

Figure 2.2: Boxes for NFA A

Definition 2.2.3 (Composition). ρv; ρw = {(p, q)| there is r ∈ Q(p, r) ∈
ρv and (r, q) ∈ ρw} = ρvw.

When we deal with context-free games, determining the winner relies on

the acceptance condition of the NFA. This is formalized as Definition 2.2.4

[4]. The idea is to categorize boxes according to whether their languages

contain accepted words. Since we see this game from the perspective of

refuter, we see a box as a proposition with Boolean value true if refuter can

derive any words in the language of the box to win.

Definition 2.2.4 (Rejecting). A box τ is rejecting if there is no (q0, qf) ∈ τ
for any qf ∈ F . We assign true to rejecting boxes for the evaluation of a

formula.

Now that we have boxes as propositions, we are ready to form the formu-

las. We use the perspective of the non-inclusion game for refuter. In order

for the refuter to win, she needs to be able to choose production rules within

a play which will eventually lead to a terminal word outside of L(A) given

prover ’s move. The choices of prover are manifested as disjunction ∨ and

the choices of refuter are manifested as conjunction ∧.

Definition 2.2.5 (Formula). A Formula F is defined inductively as

F := ρ|G ∧G′|G ∨G′|false

with false ∧ F = false and false ∨ F = F .

9

The composition between two formulas is again a formula. This is lifted

from the composition of boxes and used to reflect the composition of the plays

represented by the two formulas. The composition happens in two different

manners. The first one is when the left formula operand does not consist of

a single box only. In other words, it consists of smaller formulas connected

by a logical operator. For this, we simply distribute the composition of the

right formula operand to the two smaller formulas from the left operand. The

next case is when the left operand is a box and the right operand consists

of smaller formulas connected by a logical operater. Just like the first case,

we distribute the composition of the box over the two smaller formulas from

the right operand. Both occur without changing the logical operator. Since

the composition operation for boxes is non-commutative, The order of the

composition for formulas should also be intact.

Definition 2.2.6 (Composition between formulas). (F ∧
∨ F

′);G = (F ;G ∧
∨

F ′;G) and τ ; (F ∧
∨ F

′) = (τ ;F ∧
∨ τ ;F ′)

For the implication check, we need a notion of evaluation of formulas just

like in propositional logic. Firstly, we need a box assignment which assigns

either true or false to boxes. This assignment is also used for box evaluation.

Then, we define formula evaluation by setting up the rules for operators ∧
and ∨.

Definition 2.2.7 (Evaluation). Given box assignment v = MA → {false, true}
we define evaluation of formula as ev(ρ) = v(ρ), ev(F ∧G) = ev(F) ∧ ev(G)

and ev(F ∨G) = ev(F) ∨ ev(G).

Now, we need to understand what implication means when dealing with

formulas representing plays. Intuitively, F ⇒ G means refuter has more

choices from the set of plays represented by G [5]. The set of formulas BF

with this relation is still a quasi order where two different formulas can im-

ply each other. Therefore, we use ⇔ to form a finite equivalence classes

of formulas BF/⇔ to get the antisymmetry property. We will later perform

fixed-point iteration on (BF/⇔,⇒). The monotonic function for the iteration

reflects all possible steps prover and refuter can take from a given sentential

10

form.

2.3 Fixed-Point Iteration

With a monotonic function [5] and that BF/⇔ is a lattice, we can use fixed-

point iteration to solve a context-free game instance. The existence is due to

Theorem 2.3.1. The result of the iteration is a vector of formulas representing

the set of all plays starting from all nonterminals. To determine the winner,

we assign true to rejecting boxes and evaluate the formulas. If the resulting

formula evaluates to true, then the winner is refuter. Otherwise, it means

prover has a winning strategy.

Theorem 2.3.1 (Knaster, Tarski ’55). Let (D,≤) be a complete lattice and

f : D → D a monotonic function, then

x = u{d ∈ D|f(d) ≤ d}

is the least fixed point, and

y = t{d ∈ D|f(d) ≤ d}

is the greatest fixed point.

Theorem 2.3.1 only states about the existence of the least fixed point. In

order to find it, we need an algorithm based on Kleene fixed-point theorem

[8].

Theorem 2.3.2 (Kleene fixed-point theorem). Let (D,≤) be a complete

lattice with a least element ⊥ ∈ D and f : D → D a monotonic function,

then we can get a chain

⊥ ≤ f(⊥) ≤ f(f(⊥)) · · · ≤ fn(⊥) ≤ . . .

and obtain the least fixed-point of f

lfp(f) = t(fn(⊥)|n ∈ N)

11

The monotonic function for our context-free games reflects one step of a

play considering all of the choices for the current player [5]. This function is

based on the production rules. It takes a vector of formulas as an input. A

formula ∆Xi
in the vector represents the set of plays starting from a nonter-

minal Xi. Given a production rule Xi → η1|...|ηl of Xi, we calculate a new

formula ∆Xi
= fXi

(∆X1 , ...,∆Xk
) with

fXi
(∆X1 , ...,∆Xk

) = ∆η1 ∧ ... ∧∆η1

if Xi belongs to prover and

fXi
(∆X1 , ...,∆Xk

) = ∆η1 ∨ ... ∨∆η1

otherwise. Initally, we use ∆X1 = ... = ∆Xk
= false because false is the

bottom element in BF/⇔. We perform this until fixed-point.

There are several variations of the fixed-point iteration. For our purpose,

we use worklist based Kleene iteration algorithm. This choice, however, does

not affect our results in a meaningful way. Even when we choose arbitrary

formulas as in chaotic iteration [4], the results and performances should re-

main stable.

12

Chapter 3

Proposed Optimizations

The fixed-point iteration algorithm for context-free games is doubly expo-

nential in terms of the number of states of the automaton. It is therefore

expected to be beneficial to have optimizations that take into account the

states of the NFA. These optimizations should also be consistent with the

result of the fixed-point iteration. In other words, the winner of a game

instance does not change whether we use the optimizations or not. Since

the game is basically checking for language inclusion, the behaviour that we

are interested in is related to the acceptance condition. In particular, the

optimizations should take into account Definition 2.2.4.

This fixed-point iteration operates on the set of negation-free Boolean

formulas (up to logical equivalence) BF/⇔ which forms a partial order with

implication as the ordering. In the original formulation, there are no impli-

cation relations between different boxes. Here, we try to weaken this notion

of implication such that we have more relations between boxes. First, we

explore how subset relation between boxes can be used. Then, we adopt the

relations from [1] which take advantage of the simulation relations between

states. With these relations, we will have more implication relations be-

tween formulas. Therefore, we can possibly have more successful implication

checks and reduce the number of iterations. Also, we can reduce the size

of the Boolean formulas. Whenever there are simulation relations between

13

boxes within a clause, we can perform reductions until any two boxes in the

clause do not have implication relation. We also do the same with clauses

such that in the end, there are no two clauses having implication relation.

3.1 Subset Relation between Boxes

The first relation that we want to consider is the subset relation. Since a

box is basically a set of arcs, a simple subset relation would be sufficient for

our first notion of implication. If a box is a subset of another box, then its

behaviour is subsumed by the other box. In particular, when the set of state

changes in a box is a superset of those in another box, then the smaller one

will be rejecting if the superset box is rejecting.

Definition 3.1.1. Let ρ, τ boxes. ρ vs τ if ρ ⊆ τ .

Here, the notion of implication is that non-existence of any arc (q0, qf)

for qf ∈ F in a box ρ means that any boxes that are subsets of ρ will also not

contain (q0, qf). Therefore, rejection of ρ also means rejection of the other

smaller boxes.

Lemma 3.1.2. Let ρ, τ boxes, if ρ vs τ and τ is rejecting, then ρ is rejecting

Proof. Since τ is rejecting, then, for any qf ∈ F , (q0, qf) 6∈ τ . Because ρ vs τ ,

it means ρ ⊆ τ . Therefore (q0, qf) 6∈ ρ. Hence, ρ is rejecting.

For NFA A in Figure 2.1, the example is ρb v ρaba. This is illustrated in

Figure 3.1. We can see that box ρb only contains arc (q1, q2) and this arc is

also contained in ρaba. It means that ρb ⊆ ρaba. Suppose ρaba is rejecting.

It means there is no arc (q0, qf) for any qf ∈ F in ρaba. Therefor, it means

(q1, q2) 6= (q0, qf). So, ρb is also rejecting.

14

ρb ρaba

vs

Figure 3.1: Subset relation example for NFA A in Figure 2.1.

This will enable us to remove one of two boxes related by vs in a formula.

We will revisit this after introducing the other relations.

3.2 Simulation Relations

Other kinds of relation deal with simulation of the states of an NFA with

respect to its acceptance condition. For this, we use simulation relations

that were successfully used for Büchi automata in [1]. These relations are

on the states of NBAs and we will use it for NFAs with different acceptance

condition (i.e. existence of accepting run instead of lasso). However, since

our domain is a transition monoid consisting boxes, we will also lift these

relations into boxes. We do this by maintaining that simulated boxes have

subsumed behaviours.

There are three main relations that we want to consider: forward, back-

ward, and forward-backward. The first relation is forward simulation rela-

tion. This relation is based on the future behaviour of a program, given two

states the program can take. In terms of the acceptance condition, forward

reachability of final state is a necessary behaviour which should be reflected

in the definition. The next relation is backward simulation relation. In

contrast with forward simulation relation, backward simulation relation is

based on the past behaviour of a program. In terms of acceptance condition,

backward reachability of initial state should be reflected in the definition.

Finally, forward-backward simulation relation combines both of the previous

relations.

15

3.2.1 Simulation Relations between States

Before we define our simulation relations between boxes, we start with sim-

ulation relations between states. The first simulation relation that we would

like to evaluate is the forward simulation relation. if a state p is forward

simulated by another state q, it means that the behaviour of the automata

starting from p subsumes the behaviour starting from q.

Definition 3.2.1. Let NFA A = (Q,→, F) and p, r ∈ Q, we have p 4f r

only if

∀p a−→ p′∃r a−→ r′ s.t. p′ 4f r
′ and p ∈ F ⇒ r ∈ F

From the definition, we can see that for any state change from state p,

there is also a state change induced by the same letter from q. Moreover,

whenever p is a final state, q will also be a final state mimicking the accepting

behaviour of p. For the NFA in Figure 2.1, the simulation relation based on

4f is q4 4f q2.

Now, we define the backward simulation relation between states. How-

ever, this is different from the original definition [1] where forward reachabil-

ity of final states is also taken into account.

Definition 3.2.2. Let NFA A = (Q,→, F) and p′, r′ ∈ Q. p′ 4b r′ only if

∀p a−→ p′∃r a−→ r′ s.t. p 4b r and (p′ = q0)⇒ (r′ = q0)

The original definition also requires p′ ∈ F ⇒ r′ ∈ F . This is due the

difference in the acceptance conditions. For Büchi automata, the acceptance

condition is the existence of lasso: there is a path from the initial state to

some final state and the set of final states is visited infinitely often. For NFA

A, the example is q3 4b q1.

3.2.2 Simulation Relations between Arcs in Boxes

In order to lift the relations between states to boxes, we have an additional

intermediary step. A box is essentially a set of arcs and here, we define

16

relations between arcs. These relations between arcs will then be used for

relations between boxes.

Firstly, we define forward simulation relation for arcs. The idea is that

if the right endpoint state q of an arc (p, q) is simulated by another right

endpoint state s of another arc (r, s), then the behaviour of the arc (p, q)

can be simulated by the behaviour of the arc (r, s). Here, p should equal r.

In the same line of argument for the relation between states, this behaviour

is still reachability of final states. In other words, we lift the behaviour of

forward simulation between states into the behaviour of forward simulation

between arcs.

Definition 3.2.3. Let ρ, τ boxes with (p, q) ∈ ρ and (r, s) ∈ τ , then

(p, q) vf (r, s) if p = r and q 4f s

For the NFA in Figure 2.1, we have (q0, q4) vf (q0, q2). We get this rela-

tion because we have q4 4f q2 from the previous subsection.

Next, we define backward simulation relation for arcs. In line with the

forward simulation relation, the idea is that if the left endpoint state p of an

arc (p, q) is simulated by another left endpoint state r of another arc (r, s),

then the behaviour of the arc (p, q) can be simulated by the behaviour of the

arc (r, s). Here, q should equal s. In contrast with the forward simulation

relation, it is the behaviour of backward simulation between states that we

lift to arcs. This behaviour is backward reachability of initial state q0.

Definition 3.2.4. Let ρ, τ boxes, (p, q) ∈ ρ and (r, s) ∈ τ , then

(p, q) vb (r, s) if q = s and p 4b r

For the NFA A in Figure 2.1, we have (q3, q5) vb (q1, q5). As we already

know from the previous subsection that q3 4b q1.

Lastly, by using both forward and backward simulation between states, we

define the forward-backward simulation relation between arcs. More specif-

ically, an arc is simulated by another arc if both of its respective endpoint

17

states are simulated by the other arc. The left and right endpoint states

should be both simulated.

Definition 3.2.5. Let ρ, τ boxes, (p, q) ∈ ρ and (r, s) ∈ τ . (p, q) vfb (r, s)

if q 4f s and p 4b r

3.2.3 Simulation Relations between Boxes

Now, we are ready to define simulation relation between boxes. We define

forward simulation between boxes by using the arcs. A box ρ is simulated

by τ if all of ρ’s arcs are simulated by some of τ ’s arcs.

Definition 3.2.6. Let ρ, τ boxes, then ρ vf τ if for all (p, q) ∈ ρ, there is

(r, s) ∈ τ such that (p, q) vf (r, s)

For the NFA A in Figure 2.1, ρac vf ρab. As we can see from Figure 3.2,

ρac only has one arc (q0,q4). This arc is simulated by one of the arcs in ρab.

(q0,q4) is forward simulated by (q0,q2).

ρac ρab

vf

Figure 3.2: Forward simulation relation example for NFA A in Figure 2.1

Next, we show that this forward simulation behaves like implication when

we use the notion of rejection from Definition 2.2.4. It means that if a box ρ

is forward simulated by another box τ , then nonexistence of accepted words

in L(ρ) will imply nonexistence of accepted words in L(τ).

Lemma 3.2.7. Let ρ, τ boxes, if ρ vf τ and τ is rejecting, then ρ is rejecting

Proof. Since τ is rejecting, then for any qf ∈ F , (q0, qf) 6∈ τ . Assume ρ is not

rejecting, then (q0, qf) ∈ ρ and because ρ vf τ , it means (q0, qf) ∈ τ which

is a contradiction.

18

The second relation that we need to have is backward simulation between

boxes. Again, we define backward simulation between boxes by using the

arcs. A box ρ is backward simulated by τ , if all of ρ’s arcs is simulated by

some of τ ’s arcs.

Definition 3.2.8. Let ρ, τ boxes, ρ vb τ if for all (p, q) ∈ ρ, there is (r, s) ∈ τ
such that (p, q) vb (r, s).

Just as for forward simulation relation, we need to show that if τ is

rejecting, then ρ is rejecting. This is expressed in the next lemma. In line

with the idea of proof for Lemma 3.2.7, we argue using the arcs and show that

nonexistence of accepting arc in one box implies nonexistence of accepting

arc in the other box.

Lemma 3.2.9. Let ρ, τ boxes, if ρ vb τ and τ is rejecting, then ρ is rejecting

Proof. Since τ is rejecting, then, for any qf ∈ F , (q0, qf) 6∈ τ . Assume ρ is

not rejecting, then (q0, qf) ∈ ρ and because ρ vb τ , it means there is an arc

(q0, qa) ∈ τ such that qa = qf and q0 is an initial state. which means τ is not

rejecting. Hence, we have a contradiction.

ρca ρba

vb

Figure 3.3: Backward simulation relation example for NFA A in Figure 2.1.

Lastly, we define forward-backward simulation between boxes. As the

name implies, this is a combination between forward and backward simula-

tion between boxes. For both forward and backward simulation, the related

arcs have one common endpoint. In contrast, forward-backward simulation

weakens this such that an arc takes advantage of both forward and backward

simulation between states on both endpoints.

Definition 3.2.10. Let ρ, τ boxes, then ρ vfb τ if for all (p, q) ∈ ρ, there is

(r, s) ∈ τ such that (p, q) vfb (r, s).

19

For the NFA A in Figure 2.1, ρc vfb ρb. This is an example of a forward-

backward simulation relation between boxes that is neither a forward nor a

backward simulation relation. So, forward-backward simulation relation is

not simply a union of forward and backward simulation relations. Since both

boxes have only one arc, it is easy to see that ρc vfb ρb. This is because

(q3, q4)vfb(q1, q2).

ρc ρb

vfb

Figure 3.4: Forward-backward simulation relation example for NFA A in

Figure 2.1.

Lemma 3.2.11. Let ρ, τ boxes, if ρ vfb τ and τ is rejecting, then ρ is

rejecting

Proof. Since τ is rejecting, then, for any qf ∈ F , (q0, qf) 6∈ τ . Assume ρ

is not rejecting, then (q0, qf) ∈ ρ and because ρ vfb τ , it means there is

(q0, qf) ∈ τ such that qf ∈ F and q0 is an initial state. It means τ is not

rejecting. Hence, we have a contradiction.

All of the four relations are in fact connected. Due to reflexivity, the

forward simulation relation is also a forward-backward simulation relation.

This is also the case with the backward simulation relation. However, forward

and backward simulation relations are not subset of each other. Lastly, since

an arc is both forward and backward simulates itself, the subset relation

is both a forward and a backward simulation relation. We will use this

observation later to develop one of the implementation tricks to decrease the

extra costs caused by our optimization techniques.

3.2.4 Monotonicity for Boxes

For the fixed-point iteration to work, it is necessary that these simulation

relations are monotonic with respect to composition. Later, we will use this

20

to show the monotonicity for formulas. In order to make it easier, we first

rephrase the definition of the simulation relations by using not only letters

but words.

Lemma 3.2.12. Let p, p′, q, q′ ∈ Q, if p 4f p′, for all w ∈ Σ∗ with p
w→ q,

there is p′
w→ q′ such that q 4f q′

Proof. We prove this using induction on length of w.

(Base case) Let w = ε. Since p
ε→ p, there is p′

ε→ q′ such that p′ 4f q′

where p′ = p and q′ = p.

(Induction step) Let w ∈ Σ∗ such that p
w→ p′. Based on induction hypoth-

esis, there is q
w→ q′ such that q 4f q′. Let a ∈ Σ a letter such that p′

a→ p′′

for some p′′ ∈ Q. Since p′ 4f q′, it means there must be a transition q′
a→ q′′

for some q′′ ∈ Q with p′′ 4f q′′. Therefore, for the transition p
w.a−→ p′′ there

is q
w.a−→ q′′ such that p′′ 4f q′′.

We also need to rephrase the backward simulation relation. This is stated

in Lemma 3.2.13.

Lemma 3.2.13. Let p, p′, q, q′ ∈ Q, if p 4b p′, for all w ∈ Σ∗ with p
w→ q,

there is p′
w→ q′ such that q 4b q′

Proof. Analogous to Lemma 3.2.12, but backwards.

When we compose boxes, it is necessary that the simulation relations

remain consistent. This is important for the fixed point algorithm. The al-

gorithm requires the monotonicity property. The idea is to show that all of

the arcs within the composed smaller boxes are simulated by some arcs in

the composition of the larger boxes by using the properties of arcs resulting

from the composition operation.

We will prove the monotonicity property only for forward-backward sim-

ulation relation. However, due to reflexivity, the monotonicity of forward,

backward, and subset subsumption follows.

Lemma 3.2.14. Let τ, τ ′, ρ, ρ′ be boxes, If τ vfb τ ′ and ρ vfb ρ′ then τ ; ρ vfb
τ ′; ρ′

21

Proof. (1)First, we prove that τ ; ρ vfb τ ′; ρ. Let (p, q) ∈ τ ; ρ, it means that

there is r ∈ Q such that (p, r) ∈ τ and (r, q) ∈ ρ. Since τ vfb τ ′, it means

there is (p′, r′) ∈ τ ′ such that (p, r) vfb (p′, r′). Let w ∈ L(ρ). Because

r 4f r′, then, there is q′ such that r′
w→ q′. In other words, w ∈ L(ρ)

also induces state change from r′ to q′. Therefore (r′, q′) ∈ ρ. Moreover,

based on Lemma 3.2.12 q 4f q′. Since (p′, r′) ∈ τ ′ and (r′, q′) ∈ ρ it means

(p′, q′) ∈ τ ′; ρ. Also, because p 4b p′ and q 4f q′, it means τ ; ρ vfb τ ′; ρ
(2)Next we prove that τ ′; ρ vfb τ ′; ρ′ Let (p, q) ∈ τ ′; ρ, It means there is

r ∈ Q such that (p, r) ∈ τ ′ and (r, q) ∈ ρ. Since ρ vfb ρ′, it means there is

(r′, q′) ∈ ρ′ such that (r, q) vfb (r′, q′). Let w ∈ L(τ ′). Because r 4b r′, then

there is p′ such that p′
w→ r′. In other words, w ∈ L(τ ′) also induces state

change from p′ to r′. Therefore (p′, r′) ∈ τ ′. Moreover, based on Lemma

3.2.13 p 4b p′. Since (p′, r′) ∈ τ ′ and (r′, q′) ∈ ρ′ it means (p′, q′) ∈ τ ′; ρ′.

Also, because p 4b p′ and q 4f q′, it means τ ′; ρ vfb τ ′; ρ′

(3)By transitivity, τ ; ρ vfb τ ′; ρ′

3.2.5 Implication and Monotonicity for Formulas

In this part, we try to weaken the notion of implication between formulas

by using the simulation relations we devised in the previous section. The

implication between boxes ρ and τ used in [5] works simply by checking

whether ρ = τ . Before we do this for formulas, we first define the implication

between boxes. Since we already have four simulation relations, we use r ∈
{s, f, b, fb} to indicate which relations an implication is based on.

Definition 3.2.15 (Implication between boxes). ρ ⇒r τ if whenever ρ is

rejecting, then τ is rejecting. τ vr ρ if and only if ρ⇒r τ .

Now, we are ready to weaken the notion of implication for formulas. The

following definition is mentioned [4] as a future work.

Definition 3.2.16 (Implication between formulas). We define F ⇒r G as

G vr F :

∧
ρ,τ∈MA:τvrρ

ρ⇒r τ |= F ⇒r G (3.1)

22

Here, we lift the definition of vr between boxes into relation between

formulas. We use the symbol ⇒r to distinguish it from ⇒ where r indicates

which relation to use.

Lastly, we need to argue about its correctness. We need to make sure

that monotonicity holds when composing formulas. The idea of the proof is

the same as the monotonicity proof for ⇒ in [5]. We first need to show that

some distributivity properties analogous to those of implication also apply

for vr. Firstly, we need to show a property similar to

(A ∧∨ A
′ ⇒ B)⇔ (A⇒ B ∨

∧ A
′ ⇒ B).

Here, we can replace ∧∨ with either ∧ or ∨ and ∨∧ should be replaced by the

logical operator not replacing ∧∨. The property is formulated in lemma 3.2.17.

The idea of the proof is simply to use the definition and argue by using the

similar distributivity property for ⇒.

Lemma 3.2.17. (F) vr (G ∧
∨ G

′)⇔ (F vr G ∨
∧ F vr G′)

Proof. (F) vr (G ∧
∨ G

′)⇔
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ |= G ∧
∨ G

′ ⇒ F

⇔ For any assignment v such that whenever ev(
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ) = true

we have (ev(G) = true ∧∨ ev(G
′) = true)⇒ e(F) = true

⇔ For any assignment v such that whenever ev(
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ) = true

we have (ev(G) = true⇒ ev(F) = true) ∨∧ (e(G′) = true⇒ e(F) = true)

⇔
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ |= (G⇒ F) ∨∧ (G′ ⇒ F)

⇔
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ |= (G⇒ F) ∨∧
∧
ρ,τ∈MA:τvrρ

τ ⇒ ρ |= (G′ ⇒ F)

⇔ (F vr G ∨
∧ F vr G′)

Next, we also need to show an distributivity property similar to

A⇒ (B ∧
∨ B

′)⇔ (A⇒ B ∧
∨ A⇒ B′)

for vr. This is formulated in Lemma 3.2.17.

Lemma 3.2.18. (F ∧
∨ F

′) vr (G)⇔ (F vr G ∧
∨ F

′ vr G)

23

Proof. analogous to Lemma 3.2.17 with no change of logical operator

We now show that the composition of formulas is monotonic with respect

to vr. The idea is the same as Lemma 6 in [5] but we change the base case

of phase (1) with Lemma 3.2.14 and use Lemma 3.2.17 for equivalence (i)

and Lemma 3.2.18 for equivalence (ii).

Lemma 3.2.19. Let F, F ′, G,G′ be Formulas. If F vr F ′ and G vr G′ then

F ;G vr F ′;G′

Proof. 1. We perform an induction on G′ with base case F, F ′, G,G′ ∈MA

which is proven by Lemma 3.2.14. Let G′ = G′1
∧
∨ G

′
2. By Lemma

3.2.17, G vr G′1 ∧∨ G′2 is equivalent to (G vr G′1 ∨∧ G vr G′2). By induc-

tion hypothesis, we get (F ;G vr F ′;G′1 ∨∧ F ;G vr F ′;G′2). Again by

Lemma 3.2.17 and Definition 2.2.6, we have F ;G vr F ′;G′1 ∧∨ F ′;G′2 ⇔
F ;G vr F ′;G′

2. We perform an induction on F ′ with previous step as base case: F, F ′, G ∈
MA and G′ a formula. Let F ′ = F ′1

∧
∨ F

′
2. By Lemma 3.2.17, F vr F ′1 ∧∨

F ′2 is equivalent to (F vr F ′1 ∨∧ F vr F ′2). By induction hypothesis, we

get (F ;G vr F ′1;G′ ∨∧ F ;G vr F ′2;G′). Again by Lemma 3.2.17 and

Definition 2.2.6, we have F ;G vr F ′1;G′ ∧∨ F ′2;G′ ⇔ F ;G vr F ′;G′

3. We perform an induction on G with previous step as base case: F,G ∈
MA and F ′, G′ formulas. Let G = G1

∧
∨ G2. By Lemma 3.2.18, G1

∧
∨

G2 vr G′ is equivalent to (G1 vr G′ ∧∨ G2 vr G′). By induction

hypothesis, we get (F ;G1 vr F ′;G′ ∧∨ F ;G2 vr F ′;G′). Again by

Lemma 3.2.18 and Definition 2.2.6, we have F ;G1
∧
∨ G2 vr F ′;G′ ⇔

F ;G vr F ′;G′

4. We perform an induction on F with previous step as base case: F ∈MA

and F, F ′, G′ formulas. Let F = F1
∧
∨ F2. By Lemma 3.2.18, F1

∧
∨ F2 vr

F ′ is equivalent to (F1 vr F ′ ∧∨ F2 vr F ′). By induction hypothesis, we

get (F1;G vr F ′;G′ ∧∨ F2;G vr F ′;G′). Again by Lemma 3.2.18 and

Definition 2.2.6, we have F1;G ∧
∨ F2;G vr F ′;G′ ⇔ F ;G vr F ′;G′

24

3.3 Antichain Optimization

One significant part of the fixed-point iteration is the vector of formulas. In

the worst case, this can be of size k · 2k with k = 2|Q|
2

[5]. We try to reduce

the size of the formulas by removing some boxes and clauses with the help of

the simulation relations. Unlike for SAT, this reduction is expected to boost

performance because every step of the iteration will add more information to

the vector of formulas. The minimized formula will contain boxes that are

not related by ⇒r. Therefore, we call this antichain optimization.

Definition 3.3.1 (Antichain). Let (D,≤) be a partial order. C ⊆ D is an

antichain if any two elements in C are not comparable.

The optimization is done in two steps. The first step is reduction of

clauses by removing subsumed boxes. The second step is reduction of formu-

las by removing subsumed clauses. This optimization should also preserve

logical equivalence in terms of ⇔r. This is important to preserve the exis-

tence of winning strategies.

3.3.1 Implication between Boxes

In a clause K =
∨
ρi, sometimes there are i and j such that box ρi is sim-

ulated by ρj. One of them therefore can be removed. In order to do this,

we need an algorithm to check subsumption relation between boxes. This

algorithm is based on Lemma 3.2.11. Note that the relation 4r has to be

precomputed.

Algorithm 3.3.2 (Implication check between boxes). Given boxes τ, ρ,

and 4r
(1) for all pair (qa, qb) ∈ τ check if there is (q′a, q

′
b) ∈ ρ

such that (qa, qb) 4r (q′a, q
′
b)

(2) return true iff (1) is true

25

Algorithm 3.3.2 will be used to check every pair of boxes within a clause

to determine which boxes to eliminate. We will later show how this algorithm

is used for removing boxes.

3.3.2 Implication between Clauses in CNF

For checking implication between formulas in CNF, we also need to define

implication between clauses. This will not only useful for stopping the iter-

ation earlier, but also reducing the size of the formulas. When we encounter

two clauses K and L in a formula with K ⇒r L, we can remove L. For this,

we need to know how implication between clauses and simulation relations

between boxes are connected. This is expressed in Lemma 3.3.3.

Lemma 3.3.3. Let K,L be clauses. K ⇒r L if only if for all ρ ∈ K there is

τ ∈ L s.t. τ vr ρ

Proof. (⇐) Let ev be an evaluation for both K and L such that ev(K) = true.

Since a clause is a conjunction of negation free boxes, there exists a box ρ ∈ K
such that ve(ρ) = true. Based on the assumption that for ρ, there is τ ∈ L
such that τ vr ρ and Lemma 3.2.11, ev(τ) = true. Again, since L is also a

conjunction of negation free boxes and τ ∈ L, τ causes ev(L) = true.

(⇒) Assume that there is ρ ∈ K such that for any τ ∈ L, τ 6vr ρ. We can

have an assignment v giving the value true to ρ and false to other boxes

such that ev(K) = true. We are then free to assign false to all boxes in L

with v so that ev(L) = false.

Then, based on Lemma 3.3.3, we need an algorithm to check whether

K ⇒ L. This is a naive algorithm where we simply loop through all of the

boxes in both clauses. In the worst case, it is quadratic in the number of

boxes.

Algorithm 3.3.4 (Implication check between clauses). Given 2 clauses K and L,

(1) For every ρ ∈ K, check whether there is τ ∈ L s.t. τ vr ρ
by using Algorithm 3.3.2

(2) return true iff (1) is true

26

3.3.3 Implication between Formulas in CNF

Finally, we lift this weaker implication checks on boxes to formulas. This

will be used in the fixed-point iteration. In the end, BF/⇔r will have less

equivalence classes than BF/⇔. With this, we will have more implication

relations between formulas. This will hopefully improve the runtime of the

fixed-point iteration as we can stop the fixed-point iteration earlier.

Lemma 3.3.5. Let F , G be formulas, F ⇒r G if and only if for all clause

L ∈ G there is K ∈ F such that K ⇒r L

Proof. (⇒) Assume there is a clause L ∈ G such that for all K ∈ F , K 6⇒ L,

we can have a box assignment v such that ev(F) = true , but ev(L) = false.

This leads to a case where ev(F) = true but ev(G) = false.

(⇐) If F evaluates to true, then all clauses in F evaluates to true. Since

we assume that for any clause L ∈ G there is K ∈ F such that K ⇒ L, it

means all clauses in G evaluates to true. Therefore, F ⇒ G

Now, we design the algorithm to check whether a formula implies another

formula based on Lemma 3.3.5. We will use this to stop the fixed-point

iteration based on the simulation relations.

Algorithm 3.3.6 (Implication check between formulas). Given 2 formulas

F and G,

(1) For every L ∈ G, check whether there is K ∈ F s.t. K ⇒ L

by using Algorithm 3.3.4

(2) return true iff (1) is true

3.3.4 Minimization of Formulas

In the previous section, we have weakened the notion of implication so that

we have a smaller number of equivalence classes. Now, we want to further

improve the fixed-point iteration algorithm by performing formula reduc-

tions. Given a formula F , we want to minimize it into min(F) such that

min(F) ⇔ F and the size of min(F) is smaller than F . This will hope-

fully improve the runtime, because in every step of the fixed-point iteration

27

algorithm, new information will be added to the current vector of formulas

[5]. More specifically, the implication check for smaller formulas is cheaper

and minimization in an iteration will affect the runtime of implication checks

afterwards.

Algorithm 3.3.7 (Formula minimization). Given a formula F and an NFA A,

(1) Precompute 4r for A

(2) For every clause C ∈ F , remove box τ ∈ C
if, based on Lemma3.2.11, there is a box ρ ∈ C such that τ ⇒r ρ.

(3) Remove clauses L ∈ F
if, based on Lemma 3.3.3, there is a clause K ∈ F such that K ⇒r L

For correctness, one important thing that has to be satisfied is logical

equivalence between a formula and its minimized version. If a formula F

and its minimization min(F) are logically equivalent, any assignment v will

make both formulas evaluate to true. Therefore, the winner of a context-free

game instance will remain the same whether we use F or min(F).

Lemma 3.3.8. Given a formula F and its minimization min(F), min(F)⇔r

F

Proof. ((1) box elimination) Given τ ⇒r ρ, we show that τ ∨ ρ⇔r ρ.

(⇐) clear.

(⇒) Assume ρ = false, then τ = false because τ ⇒r ρ. So, τ ∨ ρ = false

((2) clause elimination) Given K ⇒r L, K ∧ L ⇔r K,

(⇒) clear.

(⇐) K ∧ (K ⇒r L)⇔ K ∧ (¬K ∨ L)⇔ (K ∧ ¬K) ∨ (K ∧ L)⇔ K ∧ L

28

Chapter 4

Experiments

4.1 Implementation

For the implementation of context-free games, we use the c++ program writ-

ten in the Concurrency Theory Group at TU Kaiserslautern. The original

program is not one of the contributions of this thesis. This program can al-

ready handle context-free game instances with some optimizations. For our

purpose, we develop additional subroutines for the precomputations, impli-

cation checks, and formula minimizations.

When using our optimizations, we also introduce extra computational

costs during the fixed-point iteration. These costs mainly come from the im-

plication checks between boxes. Therefore, in order to improve the runtime,

we need to use some techniques that are not necessarily clear from the theory

part. These include using efficient data structure and memory management.

4.1.1 Program

The program works by generating instances of context-free games, solving it,

and checking its correctness. There are already some solvers and optimiza-

tions and we use the CNF based solver as a baseline. We will later compare

our optimization results with this solver.

29

The instance generation algorithm is based on the Tabakov-Vardi model

[10]. When the generation is done naively, we will have an NFA with un-

reachable states and states that do not reach final states. Thus, the size of

an NFA may be a misleading indicator for the context-free games. Moreover,

some types of computations will be more expensive. Therefore, the imple-

mentation was modified. We will explore this in the next subsection.

4.1.2 Instance Generation

Instance generation is not the scope of this thesis. However, due to its im-

portance, we try explore the implementation. The generation of NFAs works

by iteratively creating transitions from a uniformly random reachable states

to a new state. This guarantees that the NFA is connected. This happens in

lines 5-11 in Code 4.1. Then, new random transitions are added with some

probability. This is done in lines 13-21. In our case, the probability is 0.5.

Line 25 sets state 0 to be the initial state. Additionally, we can also have

multiple initial states. However, in our experiment, we only fix one initial

state. Lastly, a state will be set to a final state based on Bernoulli distribu-

tion with probability 0.5.

Code 4.1: NFA generation

1 unique_ptr <NFA <size_t ,size_t >> generateFixedTransitionNFA(

size_t alphabetSize , size_t states , size_t transitions ,

unsigned int flags , double finalStateProbability)

2 {

3 unique_ptr <NFA <size_t ,size_t >> nfa(new MatrixNFA(states ,

alphabetSize));

4 double transitionProbability = 0.5;

5 if (flags & GEN_CONNECTED){

6 for (size_t to = 1; to < states; to++){

7 size_t from = uniform_int_distribution <size_t >(0, to -1)(

generator);

30

8 size_t letter = uniform_int_distribution <size_t >(0,

alphabetSize -1)(generator);

9 nfa ->createTransition(from , letter , to);

10 }

11 }

12

13 RandomSetGenerator setgen(alphabetSize*states*states);

14 for (size_t i = (flags & GEN_CONNECTED) ? states -1 : 0; i

< transitions && !setgen.empty(); i++){

15 size_t x = setgen.draw(generator);

16 size_t from = x%states;

17 x /= states;

18 size_t to = x%states;

19 x /= states;

20 size_t letter = x;

21 nfa ->createTransition(from , letter , to);

22 }

23

24 // state 0 is always initial

25 nfa ->setStateInitial (0);

26 if (flags & GEN_MULTIPLE_INITIAL){

27 double initialStateProbability = 0.5;

28 for (size_t i = 1; i < states; i++){

29 nfa ->setStateInitial(i, bernoulli_distribution(

initialStateProbability)(generator));

30 }

31 }

32

33 for (size_t i = 0; i < states; i++){

34 nfa ->setStateFinal(i, bernoulli_distribution(

finalStateProbability)(generator));

35 }

36 return nfa;

37 }

Next, we explore how a context-free grammar is generated. This is also

according to the Tabakov-Vardi model [10]. The input of the algorithm is

the number of terminals, nonterminals, and productions. Firstly, we produce

transitions to epsilon from the set of nonterminals and set the owner by using

31

bernoulli distribution with probability 0.5. This occurs in line 4 Code 4.2.

This is a first step to guarantee that a terminal word can be derived from

any nonterminals. Then, lines 7-21 are for generating the production rules.

Everytime a production rule for a nonterminal is added, the algorithm makes

sure that the nonterminals on the right hand side can already derive termi-

nal words. The variable x sums up this choice. x encodes both terminals

and two nonterminals. If x is less than terminals, then x represents a termi-

nal symbol. If x==terminals, then x represents an epsilon. If x is greater

than terminals, then x%i represents the first nonterminal in the RHS and

x/i represents the second one. Lastly, line 31-49 makes sure that the number

of production rules equals some predetermined input production count. In

our case, the default value for the number of production rules is twice the

number of nonterminals [9].

Code 4.2: CFG generation

1 unique_ptr <Grammar > generateGrammarChomsky(size_t terminals

, size_t nonterminals , size_t production_count ,

unsigned int flags){

2 vector <Grammar ::ntspec > ntspecs;

3 for (size_t i = 0; i < nonterminals; i++){

4 ntspecs.push_back ({ bernoulli_distribution (0.5)(generator)

? Grammar :: ntspec :: PROVER : Grammar :: ntspec ::REFUTER

, {}});

5 }

6 if (flags & GEN_NONEMPTY){

7 for (size_t i = 0; i < nonterminals; i++){

8 size_t x = uniform_int_distribution <size_t >(0, terminals

+i*i)(generator);

9 vector <Grammar ::rhs > production;

10 if (x < terminals){

11 production = {{ Grammar ::rhs::TERMINAL , x}};

12 }else if (x == terminals){

13 production = {};

14 }else{

15 x -= terminals +1;

32

16 size_t n1 = x%i;

17 x /= i;

18 size_t n2 = x;

19 production = {{ Grammar ::rhs:: NONTERMINAL , n1}, {Grammar

::rhs:: NONTERMINAL , n2}};

20 }

21 ntspecs[i]. productions.push_back(production);

22 }

23 if (production_count >= nonterminals)

24 production_count -= nonterminals;

25 else

26 production_count = 0;

27 }

28 if (flags & GEN_CONNECTED){

29 }

30

31 RandomSetGenerator setgen(nonterminals *(terminals +1+

nonterminals*nonterminals));

32 for (size_t i = 0; i < production_count && !setgen.empty

(); i++){

33 size_t x = setgen.draw(generator);

34 size_t from = x%nonterminals;

35 x /= nonterminals;

36 vector <Grammar ::rhs > production;

37 if (x < terminals){

38 production = {{ Grammar ::rhs::TERMINAL , x}};

39 }else if (x == terminals){

40 production = {};

41 }else{

42 x -= terminals +1;

43 size_t n1 = x%nonterminals;

44 x /= nonterminals;

45 size_t n2 = x;

46 production = {{ Grammar ::rhs:: NONTERMINAL , n1}, {Grammar

::rhs:: NONTERMINAL , n2}};

47 }

48 ntspecs[from]. productions.push_back(production);

49 }

50

33

51 unique_ptr <Grammar > grammar(new Grammar(ntspecs ,

uniform_int_distribution <size_t >(0, nonterminals -1)(

generator)));

52 return grammar;

53 }

4.1.3 Implementation Tricks

Our set of optimizations introduce additional computational costs for the

fixed-point iteration. This may affect the overall runtime. Therefore, we

carefully develop the subroutines for our solvers by using some implementa-

tion tricks to reduce the costs.

Firstly, we want to avoid recomputing box relations. As we will later

explore, checking simulation relations takes some extra computational costs

due to its arcs evaluations. Moreover, in the fixed-point iteration, we may

want to know the relation between two boxes that were previously computed.

So, instead of recomputing it, we store the result of the first check of two

boxes in some sort of hash map. The immediate structure that we could use

for its key is the pair of boxes itself. However, hashing a complex structure

such as boxes is still a costly operation. Therefore, we assign a unique id to

a box and use this id for hashing. In order to do this, we use DummyBox

class. This class is also from the original program. Then, we make a map

with a pair of indices as key and Boolean value as relation flag.

The source code for implication check where we avoid recomputing simu-

lation relations between boxes is Code 4.3. In line 1, we have a variable impli-

cationMap to store the implication relations between boxes. The key is a pair

variable of indices for two boxes. Before any other advanced checks, we first

check whether the boxes are equal. This is done by checking equality between

the indices of the two boxes. Then, we start with accessing box relations that

were already stored in implicationMap. Lines 6-10 are used for this. If box1

implies box2 then implicationMap.at(make pair(box2.getId(),box1.getId()))

34

will return true. Otherwise, the execution continues to line 11. This will

call one of the simulation relation checks explained in the next 4 subsections.

The variable type will determine whether the relation is inclusion, forward,

backward, or forward-backward simulation relations.

Code 4.3: General mapping trick for implication between boxes

1 unordered_map < pair <size_t ,size_t >, bool >implicationMap;

2 bool implies(const DummyBox &box1 , const DummyBox &box2)

override {

3 if(box1.getId()==box2.getId()){

4 return true;

5 }

6 try{

7 bool s=implicationMap.at(make_pair(box2.getId(),box1.getId

()));

8 return s;

9 }catch(const out_of_range &e){

10 }

11 bool s=simulationRelation.isSimulatedBy(this ->getActualBox(

box2), this ->getActualBox(box1), type ,false);

12 implicationMap[make_pair(box2.getId(),box1.getId())]=s;

13 return s;

14 }

Secondly, we take advantage of the fact that the four simulation relations

for boxes are related. As the first observation, inclusion is a sub-poset of

both forward and backward simulation relations. Both forward and back-

ward simulation relations are sub-posets of forward-backward simulation re-

lations. When checking a simulation relation, we first perform checks on all

of the direct subposets of the simulation relation. Before checking forward

and backward simulation relation, we first try to check the inclusion rela-

tion. Also, before checking forward-backward simulation relation, we first

check both forward and backward simulation relations. As an illustration,

given an arc (qa, qb) in some box ρ, we can skip a whole loop for searching

forward simulating arc (qa, q
′
b) in another box τ , if we can ascertain that

35

qb = q′b. This is the condition for subset relation.

Thirdly, whenever possible, we take advantage of pointers. This is neces-

sary because we use c++. Whenever we iterate over a complex object such

as list of boxes, we need to avoid copying the object because we will get ex-

tra computational cost. We do this especially in the formula reduction part

where we have to iterate over clauses and boxes. However, for objects using

size t as data type, we simply use it as it is because it is already a data type

suitable for indexing. Some of them are states, alphabets, and nonterminals.

4.1.4 Inclusion Check

The inclusion check is used for implication check when using inclusion rela-

tion. We have a naive implementation where for any arc in the first box b1,

we check in constant time whether this arc also exists in b2. This means

that in the worst case, we have to check every arcs in box b1. This yields an

algorithm running in quadratic time with respect to the number of states.

In practice, this can be more expensive than equality check between boxes.

The extra costs come from the weakening of the relation. if an arc does not

exist in b1 but exists in b2, we need to continue searching for inclusion. But,

for equality check, we can already stop the search.

Code 4.4: Subset relation check between boxes

1 bool isSimulatedBy(const Box &b1 , const Box &b2 , simtype t)

{

2 if(t== inclusion){

3 bool simulated=true;

4 for (size_t from = 0; from < n->stateCount (); from ++) {

5 for (size_t to= 0; to < n->stateCount (); to++) {

6 if(!b1.lineExist(from ,to)){continue ;}

7 if(b1.lineExist(from ,to) && !b2.lineExist(from ,to)){

8 // counter example found

36

9 simulated=false;

10 break;

11 }

12 }

13 if(! simulated){

14 // outer break

15 break;

16 }

17 }

18 return simulated;

19 }

20 }

4.1.5 Forward Simulation Relation Check

Implication check with forward simulation relation is more expensive than

with inclusion relation. The algorithm runs in |Q|3 in the worst case. This

is one order higher than inclusion relation. The extra costs are due to the

search of forward simulating state in b2. As previously explained, inclusion

relation is a sub poset of forward simulation relation. It means that if box b1

is a subset of box b2, then box b1 is also forward simulated by box b2. We

implicitly check for this inclusion in line 7 Code 4.5. When this condition is

violated, it means the arc (b1from,b1to) in b1 also exist in b2. Therefore,

we skip line 10-16 and continue testing other arcs in b1.

The simulation relation check between arcs itself is in line 13. This is

based on Definition 3.2.3. For arc (b1from,b1to), we check whether there is

a state b2to, such that (b1from,b2to) ∈ b2 and b1to 4f b2to. If this is not

satisfied, then we find a proof that the two boxes are not related. So, we can

break the whole loop.

Code 4.5: Forward simulation relation check between boxes

1 bool isSimulatedBy(const Box &b1 , const Box &b2 , simtype t)

{

2 if(t== forward){

37

3 bool simulated=true;

4 //for all lines in b1

5 for (size_t b1from = 0; b1from < n->stateCount (); b1from

++) {

6 for (size_t b1to = 0; b1to < n->stateCount (); b1to ++) {

7 if(!b1.lineExist(b1from ,b1to)){continue ;}

8 //find a line simulating the line in b1

9 if(b1.lineExist(b1from ,b1to) && !b2.lineExist(b1from ,

b1to)){

10 bool found=false;

11 for (size_t b2to = 0; b2to < n->stateCount (); b2to ++) {

12 //check condition of forward simulation for lines

13 found=b2.lineExist(b1from ,b2to) && isSimulatedBy(b1to ,

b2to ,forward);

14 if(found){

15 break;

16 }

17 }

18 // counter example found

19 if(! found){

20 simulated=false;

21 break;

22 }

23 }

24 }

25 if(! simulated){

26 //outer break

27 break;

28 }

29 }

30 return simulated;

31 }

4.1.6 Backward Simulation Relation Check

Just as forward simulation relation, implication check with backward sim-

ulation relation is also more expensive than with inclusion relation. The

algorithm runs in |Q|3 in the worst case. With the same reasoning, The ex-

38

tra costs come from the search of backward simulating state in b2. Again,

we implicitly check for inclusion in line 7 Code 4.6.

The structure of Code 4.6 is not very different from that of forward simu-

lation relation. What changes is the loop in line 11-17. In particular, we use

Lemma 3.2.4 for line 13. Again, If this is not satisfied, then we find a proof

that the two boxes are not related and we can break the whole loop.

Code 4.6: Backward simulation relation check between boxes

1 bool isSimulatedBy(const Box &b1 , const Box &b2 , simtype t)

{

2 if(t== backward){

3 bool simulated=true;

4 //for all lines in b1

5 for (size_t b1from = 0; b1from < n->stateCount (); b1from

++) {

6 for (size_t b1to = 0; b1to < n->stateCount (); b1to ++) {

7 if(!b1.lineExist(b1from ,b1to)){continue ;}

8 //find a line simulating the line in b1

9 if(b1.lineExist(b1from ,b1to) && !b2.lineExist(b1from ,

b1to)) {

10 bool found = false;

11 for (size_t b2from = 0; b2from < n->stateCount ();

b2from ++) {

12 // check condition of backward simulation for lines

13 found = b2.lineExist(b2from , b1to) && isSimulatedBy(

b1from , b2from , backward);

14 if (found) {

15 break;

16 }

17 }

18 // counter example found

19 if (!found) {

20 simulated = false;

21 break;

22 }

23 }

24 }

39

25 if(! simulated){

26 // outer break

27 break;

28 }

29 }

30 return simulated;

31 }

32 }

4.1.7 Forward-Backward Simulation Relation Check

The implication check with forward-backward simulation relation includes

the extra costs from both forward and backward simulation relations. This

increases the order of the complexity to |Q|4 in the worst case. Again, with

the same implementation trick, in line 2 Code 4.7, we check first for forward

simulation relation and backward simulation relation. If either one of them

is satisfied, then b1 is forward-backward simulated by b2. Otherwise, the

execution moves on to search for forward-backward simulating arc in b2 that

is neither forward nor backward simulating arc in line 12-26. When this hap-

pens, we also make sure that forward and backward simulation relations are

not rechecked by adding line 16. b1from==b2from filters out forward simu-

lation relations and b1to==b2to filters out backward simulation relations.

Code 4.7: Backward simulation relation check between boxes

1 bool isSimulatedBy(const Box &b1 , const Box &b2 , simtype t)

{

2 if(t== forwardbackward){

3 if(isSimulatedBy(b1 ,b2 ,forward)|| isSimulatedBy(b1 ,b2 ,

backward))return true;

4 bool simulated=true;

5 //for all lines in b1

6 for (size_t b1from = 0; b1from < n->stateCount (); b1from

++) {

7 for(size_t b1to = 0; b1to < n->stateCount (); b1to ++) {

40

8 if (!b1.lineExist(b1from , b1to)) {

9 continue;

10 }

11 if(b1.lineExist(b1from ,b1to) && !b2.lineExist(b1from ,

b1to)) {

12 //find a line simulating the line in b2

13 bool found = false;

14 for (size_t b2from = 0; b2from < n->stateCount ();

b2from ++) {

15 for (size_t b2to = 0; b2to < n->stateCount (); b2to ++)

{

16 if(b1from == b2from ||b1to==b2to){continue ;}

17 found = b2.lineExist(b2from , b2to) && isSimulatedBy(

b1to , b2to , forward) && isSimulatedBy(b1from ,

b2from , backward);

18 if (found) {

19 break;

20 }

21 }

22 if (found) {

23 //outer break

24 break;

25 }

26 }

27 if (!found) {

28 simulated = false;

29 break;

30 }

31 }

32 }

33 if(! simulated){

34 // outer break

35 break;

36 }

37 }

38 return simulated;

39 }

40 }

41

4.1.8 Precomputation

Implication checks based on simulation relations other than inclusion relation

rely on the simulation relations on states 4r. These need to be precomputed.

For both the forward and backward simulation relations, we use a naive al-

gorithm. We first explain the precomputation for the forward simulation

relations in Code 4.8. We first initialize all relations between states to be

true. This happen in line 3-7 Code 4.8. Next, we eliminate the relations that

do not satisfy Definition 3.2.1 until there is no change any more. The while

loop starting from line 10 keeps track if there is change. Within the loop, we

check whether every pair of states s1 and s2 satisfy forward simulation con-

dition. This is done by making sure that for any outgoing transitions from

s1 to state bS1, there is transition with similar letter l going out of s2 into

state nS2 which forward simulates nS1. Moreover, if s1 is a final state, then

s1 is also a final state. This is all checked in line 14-28. The relation, at this

point, can only change from true to false. This check is reflected in line 29-31.

Code 4.8: Precomputation for forward simulation relations

1 void precomputeF (){

2

3 for (size_t from = 0; from < n->stateCount (); from ++) {

4 for (size_t to = 0; to < n->stateCount (); to++) {

5 simulations[simulationIndex(from , forward , to)] = true;

6 }

7 }

8

9 bool changed = true;

10 while (changed) {

11 changed = false;

12 for (size_t s1 :n->getAllStates ()) {

13 for (size_t s2 : n->getAllStates ()) {

14 // Forward simulation

15 //for all outgoing transition from s1

16 vector <Transition > outTransS1 = n->getOutTransitions(s1

);

42

17 for (Transition tr : outTransS1) {

18 if (! simulations[simulationIndex(s1 , forward , s2)]) {

break; }

19 size_t l = tr.letter;

20 size_t nS1 = tr.to;

21 vector <size_t > nextSS2 = n->applyTransition(s2 , l);

22 //find nS2 such that nS1 is simulated by nS2

23 bool found = false;

24 for (size_t nS2:nextSS2) {

25 // forward simulation condition

26 found = simulations[simulationIndex(nS1 , forward , nS2

)] && (!(n->containsFinalState ({s1})) || (n->

containsFinalState ({s2})));

27 if (found) {break;}

28 }

29 if (simulations[simulationIndex(s1 , forward , s2)] !=

found) {

30 simulations[simulationIndex(s1, forward , s2)] = found

;

31 changed = true;

32 }

33 }

34 }

35 }

36 }

37 }

The precomputation of the backward simulation relations between states

is quite similar to the precomputation of the forward simulation relations

between states. We can see this in Code 4.9. The first difference is that

it searches through incoming transitions for a violation instead of outgoing

transitions. Line 16 and 21 is for getting incoming transitions to s1 and s2

respectively. The second difference is that instead of final states, we use ini-

tial state. This is due to Definition 3.2.2.

Code 4.9: Precomputation for backward simulation relations

43

1 void precomputeB (){

2

3 for (size_t from = 0; from < n->stateCount (); from ++) {

4 for (size_t to = 0; to < n->stateCount (); to++) {

5 simulations[simulationIndex(from , backward , to)] = true;

6 }

7 }

8

9 bool changed = true;

10 while (changed) {

11 changed = false;

12 for (size_t s1 :n->getAllStates ()) {

13 for (size_t s2 : n->getAllStates ()) {

14 // backward simulation

15 //for all incoming transition from s1

16 vector <Transition > inTransS1=n->getInTransitions(s1);

17 for(Transition tr : inTransS1){

18 if(! simulations[simulationIndex(s1 , backward , s2)]){

break ;}

19 size_t l=tr.letter;

20 size_t pS1=tr.from;

21 vector <size_t > pStateS2 = n->applyTransitionBackward(

s2 , l);

22 //find pS2 such that pS1 is simulated by pS2

23 bool found=false;

24 for (size_t pS2:pStateS2) {

25 // backward simulation condition

26 found = simulations[simulationIndex(pS1 , backward ,

pS2)] && (!(n->isInitialState(s1)) || (n->

isInitialState(s2)));

27 if(found){break;}

28 }

29 if (simulations[simulationIndex(s1 , backward , s2)] !=

found){

30 simulations[simulationIndex(s1, backward , s2)] =

found;

31 changed = true;

32 }

33 }

44

34 }

35 }

36 }

37 }

4.1.9 Formula Reduction

Finally, we implement formula reduction. The first step is to reduce each

clause. Again, we do this naively by checking each pair of distinct boxes tau

and rho within a clause K and checking whether tau implies rho. If implica-

tion holds, we would immediately remove tau so that it will not be checked

again in the next iteration. The choice to remove tau is due to Lemma 3.3.8.

This algorithm is quadratic in the size of the clause.

An additional trick to improve the performance is by using pointer when

iterating over the boxes. This keeps us from copying boxes from the clause

everytime we access a box over the iteration. Also, since the two nested

loops starting from line 4 and line 7 are actually looping over the same object

atoms, we add !(*tau == *rho) as a condition alongside the implication check

between boxes in line 8. This is because a box implies itself by reflexivity. If

we do not have this additional condition, any box will definitely be eliminated

because it has implication relation with itself.

Code 4.10: Clause Reduction

1 bool reduce(BoxManager <Box , size_t , size_t > *boxManager) {

2 bool reduced=false;

3 typename std:: unordered_set <Box >:: iterator tau = atoms.

begin();

4 while (tau != atoms.end()) {

5 typename std:: unordered_set <Box >:: iterator rho = atoms.

begin ();

6 bool isRemoved=false;

7 while (rho != atoms.end()) {

8 if (boxManager ->implies (*tau , *rho) && !(* tau == *rho))

{

45

9 isRemoved=true;

10 break;

11 } else {

12 rho ++;

13 }

14 }

15 if(isRemoved){

16 reduced=true;

17 tau = atoms.erase(tau);

18 }else{

19 tau++;

20 }

21 }

22 return reduced;

23 }

The second step of the formula reduction is clause elimination. This clause

elimination is also based on Lemma 3.3.8. We perform this just like box

elimination. For any two distinct clauses K and L in a formula, we check

whether K implies L. Here, what we remove is L instead of K. We combine

this clause elimination with clause reduction in Code 4.10. We perform this

in line 2-7. Clause reduction precedes clause elimination because, in this way,

the cost of clause elimination will be reduced.

Code 4.11: Formula Reduction

1 bool reduce(BoxManager <Box , size_t , size_t > *boxManager){

2 bool reduced=false;

3 for (Clause c : clauses) {

4 if(c.reduce(boxManager)){

5 reduced=true;

6 }

7 }

8

9 typename std:: unordered_set <Clause , typename Clause ::

Hasher >:: iterator L = clauses.begin();

10 while (L != clauses.end()) {

11 typename std:: unordered_set <Clause , typename Clause ::

46

Hasher >:: iterator K = clauses.begin();

12 bool isRemoved=false;

13 while (K != clauses.end()) {

14 if(K->implies (*L,boxManager) && !(K==L)){

15 isRemoved=true;

16 break;

17 };

18 K++;

19 }

20 if(isRemoved){

21 reduced=true;

22 L=clauses.erase(L);

23 }else{

24 L++;

25 }

26 }

27 return reduced;

28 }

The result of both precomputations are used for simulation relation checks

between boxes. Different simulation relations between boxes need them dif-

ferently. Firstly, inclusion check does not need any precomputation. Forward

and backward simulation relation checks need forward precomputation and

backward precomputation respectively. Lastly, forward-backward simulation

relation check needs both of the precomputations.

4.2 Simulation Setup

In our experiments, 20 instances of context-free games are randomly gener-

ated by using Tabakov-Vardi model [10] and we perform fixed-point iteration

on them by using worklist based Kleene iteration algorithm. We do this for a

parameter set. For each instance, we run 13 solvers. As our baseline solver,

we use a CNF Solver without any simulation relations or reductions. For

this solver, implication check between boxes only amounts to checking box

equality. The checks also take advantage of the box indexing trick we explain

in Section 4.

47

We also compare the results when using different parameter sets. The

parameter sets reflect the size of the instances. These include the number of

states, the number of alphabets, and the number of nonterminals.

Table 4.1: Solver list. The reduction is done for k=1,2,4.

Solver Description

CNF Baseline CNF Solver without any simulation relations or reduc-

tions.

CNF SRD inclusion CNF Solver with inclusion relation.

CNF SRD forward CNF Solver with forward simulation relation.

CNF SRD backward CNF Solver with backward simulation relation.

CNF SRD fb CNF Solver with forward-backward simulation relation.

CNF SRD inclRedk CNF Solver with inclusion relation and reduction for

every k iteration.

CNF SRD forwardk CNF Solver with forward simulation and reduction for

every k iteration.

CNF SRD backwardk CNF Solver with backward simulation and reduction for

every k iteration.

CNF SRD fbk CNF Solver with forward-backward simulation relation

and reduction for every k iteration.

When we compare between different techniques for optimizations, it may

happen that some of them have timeout and some others don’t. This presents

a problem when comparing the runtimes. So, we decided to only take into

account the instances for which all compared techniques can finish within

the time bound for the aggregated results.

48

Table 4.2: Parameter list.

Parameter Description values

Q The number of states {10,30}
Σ The number of alphabets {2,20}
N The number of nonterminals {10,30}

The choice of parameters is based on trial and error. We want to have

a small value and a large value for each parameter, but we are limited by

the power of the machine. The experiments are run on Intel i7-4700HQ,

2.39 GHz. For the number of states, the smallest number that we could get

such that there is a non-reflexive forward-backward simulation relation is 6.

However, we increase it to 10 to increase the likelihood that we get such

relations. The smallest number of alphabets we could reasonably use is 2.

For the small number of nonterminals, we use 10. In contrast, we determine

the large values of the parameters simply by picking a number and reducing

it if it took a long time or our machine simply stopped responding.

4.3 Benchmarking Results

In this section, we try to see whether our weaker notion of implication has

any effects on the performance of fixed-point iteration for context-free games.

After running the experiments, the results show that the performance of

our solvers depend very much on the instances generated according to the

Tabakov-Vardi model [10]. So, we try to analyze it by picking some instances

which reflect different outcomes. Table 4.3 shows the quantities that we

measure for each instance.

49

Table 4.3: Column descriptions for result tables.

Column Name Description Aggregation

No Numbering of instance. We can use this to

track an instance result in this section to its

position in the Appendix.

Union

Q/Σ/N Q is the number of states, Σ is the number

of t, and N is the number of nonterminals.

Key

Solver The name of the solver Key

time The time needed to solve the instance Avg

time% The time in percent relative to baseline CNF

solver’s time.

Avg

ftime The time needed for precomputation of the

forward simulation relations between states.

Avg

btime The time needed for precomputation of

the backward simulation relations between

states.

Avg

ic It consists of two numbers x/y. y represents

the total number of implication check. x rep-

resents the number of implication check re-

turning true.

Sum of x/Sum of y.

fu The number of formula updates in the fixed-

point iteration.

Sum

fr The number of successful formula reduction

based on the simulation relations.

Sum

fc The number of forward simulation relations

between states.

Sum

bc The number of backward simulation relations

between states.

Sum

to A flag indicating timeout. Sum

50

4.3.1 Improvement

The first instance that we want to show is the one successfully improved

by the simulation relations. Besides decreasing the runtime, the number of

formula updates and implication checks are also reduced.

Table 4.4: One of the instances with improved running time due to simulation

relations.

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc

51 30/2/10

CNF Baseline 20.27ms 100% - - 21/26 5 0 - -

CNF SRD inclusion 8.90ms 44% - - 17/21 4 0 - -

CNF SRD forward 2.93ms 14% 120.02ms - 13/16 3 0 654 -

CNF SRD backward 7.83ms 39% - 74.71ms 17/21 4 0 - 0

CNF SRD fb 2.55ms 13% 116.90ms 74.25ms 13/16 3 0 654 0

CNF SRD inclRed1 8.18ms 40% - - 17/21 4 3 - -

CNF SRD fRed1 2.74ms 14% 117.90ms - 13/16 3 2 654 -

CNF SRD bRed1 9.66ms 48% - 78.07ms 17/21 4 3 - 0

CNF SRD fbRed1 3.25ms 16% 117.26ms 80.92ms 13/16 3 3 654 0

CNF SRD inclRed2 7.78ms 38% - - 17/21 4 3 - -

CNF SRD fRed2 2.77ms 14% 112.59ms - 13/16 3 2 654 -

CNF SRD bRed2 7.50ms 37% - 63.64ms 17/21 4 3 - 0

CNF SRD fbRed2 3.18ms 16% 122.47ms 80.93ms 13/16 3 2 654 0

CNF SRD inclRed4 8.86ms 44% - - 17/21 4 1 - -

CNF SRD fRed4 3.03ms 15% 120.92ms - 13/16 3 0 654 -

CNF SRD bRed4 9.08ms 45% - 86.19ms 17/21 4 1 - 0

CNF SRD fbRed4 2.76ms 14% 109.63ms 72.58ms 13/16 3 0 654 0

Table 4.4 shows the results of one of the instances whose runtime is im-

proved by simulation relations. The baseline CNF solver without simulation

relations requires 26 implication checks and 5 formula updates. In contrast,

inclusion relation reduced it to 21 and 4, respectively. Forward simulation

relation improves it further to 16 implication checks and 3 formula updates.

For this instance, the forward simulation relation helps to speed up the fixed-

point iteration to be 7 times faster than baseline CNF solver.

51

Table 4.6: One of the instances with improved running time due to reduc-

tions.

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc

49 30/2/10

CNF Baseline 9.19ms 100% - - 19/27 8 0 - -

CNF SRD inclusion 8.50ms 92% - - 19/27 8 0 - -

CNF SRD forward 7.13ms 78% 340.80ms - 19/27 8 0 646 -

CNF SRD backward 7.82ms 85% - 220.95ms 19/27 8 0 - 483

CNF SRD fb 7.05ms 77% 335.38ms 222.35ms 19/27 8 0 646 483

CNF SRD inclRed1 7.07ms 77% - - 19/27 8 3 - -

CNF SRD fRed1 6.77ms 74% 321.58ms - 19/27 8 3 646 -

CNF SRD bRed1 6.85ms 74% - 228.35ms 19/27 8 3 - 483

CNF SRD fbRed1 6.78ms 74% 285.64ms 210.72ms 19/27 8 4 646 483

CNF SRD inclRed2 6.01ms 65% - - 19/27 8 3 - -

CNF SRD fRed2 6.04ms 66% 297.32ms - 19/27 8 3 646 -

CNF SRD bRed2 5.80ms 63% - 196.55ms 19/27 8 3 - 483

CNF SRD fbRed2 6.02ms 65% 285.43ms 200.97ms 19/27 8 3 646 483

CNF SRD inclRed4 5.78ms 63% - - 19/27 8 1 - -

CNF SRD fRed4 6.68ms 73% 299.33ms - 19/27 8 1 646 -

CNF SRD bRed4 5.47ms 59% - 189.74ms 19/27 8 1 - 483

CNF SRD fbRed4 5.93ms 65% 285.12ms 198.13ms 19/27 8 1 646 483

Another important advantage of the simulation relations is that they may

still improve runtime when there is no reduction in the number of formula

updates and implication checks. The improvement comes from formula re-

ductions. Formula reductions can help to reduce the runtime of formula

compositions. This is due to the reduction in the size based on Algorithm

3.3.7. Table 4.6 shows the resulting speed ups. The runtime with forward

simulation relation is 92% of the baseline. When using reduction every two

iterations, it speeds up to 65%.

However, this advantage occurs rarely in our experiments. In most cases,

reductions rarely give significant speed up to our simulation relation based

solvers. In order to figure out why, we try to assess the performance of the

reductions by keeping track of the number of successful reductions. The col-

umn fr shows the values for this. It is calculated by increasing a counter

whenever an attempt to reduce a formula produces a strictly smaller one.

This apparently does not correlate with the runtime. Sometimes, smaller

numbers of successful reductions give better results and sometimes it is the

other way around.

52

Therefore, we propose other ways to assess the performance of our re-

duction algorithm as future work. Firstly, we can record the formula size

ratios after and before a reduction. Then, we average these numbers over

the number of reduction attempts. This reflects the overall size decrease of

formulas throughout the fixed-point iteration. Secondly, we can keep track

of the positions of successful formula reductions within the fixed-point iter-

ation. The idea is that early reductions matter more than the later ones.

This is also due to the monotonicity property. If we compose two related

boxes with another box, then we get new pair of boxes that are still related.

In other words, relations are carried until the end of the iteration. An early

reduction will ease the burden of the many later implication checks and for-

mula compositions.

Table 4.6 also shows that even without reduction in the number of im-

plication checks, a simulation relation based solver can still perform better.

This is apparently a rare case in our experiments. Checking implication in

general is more costly when using simulation relations.

4.3.2 Shortcomings

The simulation relation based solvers take advantage of the structure of the

instances. Both the NFAs and the CFGs matter. However, the Tabakov-

Vardi instance generation algorithm we explained in Subsection 4.1.2 can

not guarantee that the instances we get, have the properties we want for the

solvers. Particularly, the performance of a simulation relation based solver

depends on the existence of simulating pairs of boxes in the NFA and the

occurrences of these related boxes in the formulas within the fixed-point it-

eration. In other words, many instances may be not optimizable. This may

result in the simulation relation based solvers having worse performance than

the baseline solver.

53

Table 4.8: One of the instances with worse running time than baseline.

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc

105 10/20/30

CNF Baseline 4.83ms 100% - - 51/72 21 0 - -

CNF SRD inclusion 4.81ms 100% - - 51/72 21 0 - -

CNF SRD forward 6.16ms 127% 27.25ms - 51/72 21 0 0 -

CNF SRD backward 7.08ms 147% - 11.73ms 51/72 21 0 - 0

CNF SRD fb 6.57ms 136% 35.74ms 10.04ms 51/72 21 0 0 0

CNF SRD inclRed1 7.00ms 145% - - 51/72 21 4 - -

CNF SRD fRed1 6.84ms 141% 35.72ms - 51/72 21 4 0 -

CNF SRD bRed1 6.64ms 137% - 11.55ms 51/72 21 4 - 0

CNF SRD fbRed1 13.94ms 288% 40.49ms 13.21ms 51/72 21 12 0 0

CNF SRD inclRed2 8.72ms 180% - - 51/72 21 4 - -

CNF SRD fRed2 6.74ms 139% 43.74ms - 51/72 21 4 0 -

CNF SRD bRed2 6.79ms 140% - 11.23ms 51/72 21 4 - 0

CNF SRD fbRed2 8.73ms 181% 40.35ms 12.96ms 51/72 21 4 0 0

CNF SRD inclRed4 7.77ms 161% - - 51/72 21 0 - -

CNF SRD fRed4 6.75ms 140% 38.54ms - 51/72 21 0 0 -

CNF SRD bRed4 6.94ms 144% - 11.17ms 51/72 21 0 - 0

CNF SRD fbRed4 7.10ms 147% 37.58ms 11.36ms 51/72 21 0 0 0

Table 4.8 illustrates an instance where the baseline CNF solver performs bet-

ter than all of the simulation relation based solvers. The instance even has a

large number of forward simulation relations between states. This does not

guarantee the existence of simulating boxes.

4.3.3 Timeout and Memory Consumption

We set the timeout to be 10 seconds. This alows us to solve a lare number of

sufficiently difficult instances in reasonable time. However, it is very rare that

we solve an instance within 10 seconds but after more than 1 second. Among

the total of 160 instances, there is only one instance for which our solvers

require around 4 seconds to finish. We can see this in Table 4.10. For this

instance, the baseline solver failed. When we try to solve larger instances,

at some point, there is a spike in the memory consumption and then, our

machine stopped responding. This is most likely due to an encounter with a

fixed-point iteration which generates formula that are very large. However,

this memory problem is hard to catch and we currently do not have a strong

evaluation for this.

54

Table 4.10: One of the solvable instances with the worst running time.

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

108 10/20/30

CNF Baseline - - - - 0/0 0 0 - - 1

CNF SRD inclusion 5.76s - - - 82/120 38 0 - - 0

CNF SRD forward 5.63s - 8.88ms - 82/120 38 0 0 - 0

CNF SRD backward 3.53s - - 6.77ms 82/120 38 0 - 0 0

CNF SRD fb 3.66s - 5.09ms 4.80ms 82/120 38 0 0 0 0

CNF SRD inclRed1 4.82s - - - 82/120 38 25 - - 0

CNF SRD fRed1 3.97s - 5.93ms - 82/120 38 25 0 - 0

CNF SRD bRed1 4.10s - - 4.69ms 82/120 38 25 - 0 0

CNF SRD fbRed1 4.97s - 5.47ms 5.12ms 82/120 38 43 0 0 0

CNF SRD inclRed2 4.12s - - - 82/120 38 25 - - 0

CNF SRD fRed2 4.38s - 5.29ms - 82/120 38 25 0 - 0

CNF SRD bRed2 4.34s - - 4.23ms 82/120 38 25 - 0 0

CNF SRD fbRed2 4.64s - 6.95ms 6.00ms 82/120 38 25 0 0 0

CNF SRD inclRed4 3.98s - - - 82/120 38 14 - - 0

CNF SRD fRed4 4.05s - 5.81ms - 82/120 38 14 0 - 0

CNF SRD bRed4 4.25s - - 4.66ms 82/120 38 14 - 0 0

CNF SRD fbRed4 4.67s - 4.58ms 4.17ms 82/120 38 14 0 0 0

4.3.4 Average Cases

Despite that the results vary, we can see that the results are actually positive

on average. In order to observe this, we average or sum the results for

each parameter set. For most parameter sets, we can see improvement. For

example, the average time for parameter set 30/20/30 is around 30% faster

with the simulation relation based solvers. This is shown in Table 4.12.

Table 4.12: Summary for parameter 30/20/30.

No Q/Σ/N Solver time time% ftime btime ic fu fr

141-160 30/20/30

CNF Baseline 73.76ms 100% - - 903/1186 283 0

CNF SRD inclusion 53.03ms 72% - - 842/1087 245 0

CNF SRD forward 54.19ms 73% 1.91s - 842/1087 245 0

CNF SRD backward 53.89ms 73% - 207.33ms 842/1087 245 0

CNF SRD fb 54.78ms 74% 1.95s 213.34ms 842/1087 245 0

CNF SRD inclRed1 52.11ms 71% - - 842/1087 245 130

CNF SRD fRed1 52.73ms 71% 1.93s - 842/1087 245 131

CNF SRD bRed1 52.03ms 71% - 210.80ms 842/1087 245 130

CNF SRD fbRed1 56.67ms 77% 2.01s 216.66ms 842/1087 245 245

CNF SRD inclRed2 54.25ms 74% - - 842/1087 245 130

CNF SRD fRed2 53.94ms 73% 1.97s - 842/1087 245 131

CNF SRD bRed2 53.78ms 73% - 208.01ms 842/1087 245 130

CNF SRD fbRed2 56.63ms 77% 2.04s 215.27ms 842/1087 245 131

CNF SRD inclRed4 53.23ms 72% - - 842/1087 245 60

CNF SRD fRed4 53.18ms 72% 1.99s - 842/1087 245 60

CNF SRD bRed4 51.00ms 69% - 207.47ms 842/1087 245 60

CNF SRD fbRed4 54.43ms 74% 1.97s 209.20ms 842/1087 245 60

55

There is also a parameter set which aggregates are slightly worse that

the baseline’s aggregates. Three of our solvers even take 32% to 52% longer

than the baseline CNF. This is shown in Table 4.14. The other summaries

are shown in the Appendix.

Table 4.14: Summary for parameter 10/20/30.

No Q/Σ/N Solver time time% ftime btime ic fu fr to

101-120 10/20/30

CNF Baseline 10.13ms 100% - - 905/1176 271 0 1

CNF SRD inclusion 9.38ms 93% - - 853/1096 243 0 0

CNF SRD forward 11.59ms 114% 52.24ms - 853/1096 243 0 0

CNF SRD backward 15.35ms 152% - 16.28ms 853/1096 243 0 0

CNF SRD fb 13.39ms 132% 70.07ms 16.50ms 853/1096 243 0 0

CNF SRD inclRed1 10.64ms 105% - - 853/1096 243 121 0

CNF SRD fRed1 13.76ms 136% 54.90ms - 853/1096 243 121 0

CNF SRD bRed1 11.32ms 112% - 15.93ms 853/1096 243 121 0

CNF SRD fbRed1 12.13ms 120% 58.39ms 16.25ms 853/1096 243 250 0

CNF SRD inclRed2 10.67ms 105% - - 853/1096 243 121 0

CNF SRD fRed2 14.36ms 142% 55.00ms - 853/1096 243 121 0

CNF SRD bRed2 10.91ms 108% - 15.18ms 853/1096 243 121 0

CNF SRD fbRed2 11.34ms 112% 57.97ms 15.58ms 853/1096 243 121 0

CNF SRD inclRed4 11.44ms 113% - - 853/1096 243 59 0

CNF SRD fRed4 10.28ms 102% 49.06ms - 853/1096 243 59 0

CNF SRD bRed4 11.23ms 111% - 14.03ms 853/1096 243 59 0

CNF SRD fbRed4 10.64ms 105% 46.82ms 12.89ms 853/1096 243 59 0

We also try to see whether there is a correlation between one of the pa-

rameters and the results. From our experiments, in general, we don’t see

that an increase of a parameter will affect the results in a certain way. For

example, from Table B.1 in the Appendix, we can see that the runtimes

for parameter set 10/20/10 are between 40%-74%. When we increase the

number of nonterminals to 30, the runtimes are between 93%-142%. This

indicates that increasing the number of nonterminals will decrease the per-

formance of the simulation relation based solvers. However, for parameter

set 30/20/10 and 30/20/30, the simulation relation based solvers show better

performance for the parameter set with 30 nonterminals. For parameter set

30/20/10, the runtimes are between 99%-110%. In contrast, for parameter

set 30/20/30, the runtimes are between 69%-74%. This happens not only for

the nonterminals, but also for the other parameters.

In terms of the implication checks, we can see that subset relation con-

tributes most of the reductions. For example, the Table 4.16, shows that the

56

subset relation based solver reduces the total number implication checks from

399 to 372. This is 27 implication checks less than the result of the baseline

solver. In contrast, forward simulation relation based solver reduces this to

370 implication checks. Subset relation is a subposet of forward simulation

relation. This means that the forward simulation relation based solver only

cuts off two extra implication checks. We can see that the runtime is even

slightly worse than the subset relation based solver. In other words, the extra

costs outweigh the extra benefits. This does not occur all the time but in

most cases, the weaker the simulation relations, the less improvements we

get. In fact, the subset relation based solver reduces implication checks for

some instances with all of the parameter sets. In contrast, the other simula-

tion relation based solvers only show this advantage for half of the parameter

sets. However, this does not necessarily mean that subset relation is better.

We may still want to get improvements even if it is small.

Table 4.16: Summary for parameter 10/2/10.

No Q/Σ/N Solver time time% ftime btime ic fu fr

61-80 10/20/10

CNF Baseline 17.54ms 100% - - 244/ 399 155 0

CNF SRD inclusion 9.17ms 52% - - 236/ 372 136 0

CNF SRD forward 11.21ms 64% 38.60ms - 236/ 370 134 0

CNF SRD backward 10.06ms 57% - 12.26ms 236/ 372 136 0

CNF SRD fb 12.95ms 74% 41.45ms 13.18ms 236/ 370 134 0

CNF SRD inclRed1 10.68ms 61% - - 236/ 372 136 73

CNF SRD fRed1 10.24ms 58% 41.62ms - 236/ 370 134 75

CNF SRD bRed1 9.18ms 52% - 12.77ms 236/ 372 136 73

CNF SRD fbRed1 11.49ms 66% 47.66ms 17.88ms 236/ 370 134 133

CNF SRD inclRed2 9.53ms 54% - - 236/ 372 136 73

CNF SRD fRed2 9.38ms 53% 41.47ms - 236/ 370 134 75

CNF SRD bRed2 8.86ms 51% - 11.71ms 236/ 372 136 73

CNF SRD fbRed2 11.31ms 64% 35.92ms 10.58ms 236/ 370 134 75

CNF SRD inclRed4 8.39ms 48% - - 236/ 372 136 37

CNF SRD fRed4 8.38ms 48% 34.24ms - 236/ 370 134 38

CNF SRD bRed4 10.02ms 57% - 12.23ms 236/ 372 136 37

CNF SRD fbRed4 9.70ms 55% 39.91ms 12.05ms 236/ 370 134 38

In summary, our solvers show better performances for most cases. This is

principally caused by the weakening of the implication relation. This reduc-

tion enables us to improve many aspects. Firstly, the number of implication

checks can be reduced. Secondly, we can decrease the formula representa-

tions and reduce memory consumption. Lastly, due to formula reductions,

formula compositions are also affected.

57

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have adapted the simulation relations used in [1] to im-

prove the runtime of the fixed-point iteration in our context-free games. It

was previously used for Büchi Automata and we adjust it for NFA. We also

argued why this works by showing the monotonicity property. We showed

that we can minimize the vectors of formulas within the fixed-point iteration

algorithm. This works by removing some boxes and clauses while maintain-

ing logical equivalence.

In Chapter 4, we tried implementing the simulation relations in c++

by adding additional subroutines to an existing context-free games program

from [9]. We set up some experiments to see how well this works. Finally, we

concluded that our set of optimization techniques work well for most of the

instances. We also argued that the success of our optimizations depend on

the generated instances. We used an instance generation algorithm based on

Tabakov-Vardi model [10]. This algorithm may produce instances where the

NFAs do not have a sufficient amount of relations with which we can speed

up the fixed-point iteration. We may also find that the formulas within a

fixed-point iteration generated for some CFGs do not have a sufficient num-

ber of related boxes. This could mean that the overhead will be bigger than

58

the speed up.

5.2 Future work

Our work about simulation relations on context-free games leads us to con-

sider other ways for further improving the context-free games. Firstly, we

can look into algorithms for the precomputation. Our current implementa-

tion is done in a naive way. We start with all states set as related, then

iteratively eliminate incorrect relations. There are other algorithms that are

faster. Using a faster algorithm for precomputations may not improve the

runtime of the fixed-point iteration, but we could have better times for the

precomputations.

Secondly, we can also perform the implication checks by using a SAT

solver. The idea is to form a new formula from two formulas F and G to be

checked for implication by adding information about the implication between

boxes by using logical operator. We will check the resulting formula using

the SAT solver.

Thirdly, we stated in the beginning that formula reductions have some

important advantages. Firstly, a successful reduction in the beginning of the

iteration will affect the rest of the iteration. This is due to the monotonicity

property. For example, if we have a formula ρa ∨ ρb such that ρa vf ρb and

we compose it with another formula consisting one box τ , then we have a

resulting formula ρa; τ ∨ ρb; τ with ρa; τ vf ρb; τ . If we reduce it to ρa based

on Lemma 3.3.8, the effect of the reduction is also carried to the formula after

the composition. We will get ρa; τ . Secondly, the more significant the de-

crease of the formula size, the higher the performance. These two advantages

have not been properly evaluated in this thesis. So, we propose evaluations

of the size decrease and the positions of the reductions in the iteration.

59

One possible analysis of size decrease evaluations is by taking the ratio

of the formula size after and before reduction. Then, we average these ratios

over all of the reduction attempts. This will in some way reflect how much

of the formulas are reduced.

For the positions of the reductions, one possible analysis is to take the

average of the iteration step indices where reductions occur. If reductions

occurs at step 2,3,5, and 10, then the average is 5. This may be used to

reflect the center of the reductions.

Lastly, based on the experiments, we still have a lot of instances which

results are not any better by using the simulation relations. One of the

reasons is that the simulation relations depend on the structure of the in-

stances that are generated. We can have an NFA with only a small amount

of non-reflexive forward and backward relations. In this case, the extra cost

of computing the implication checks will outweigh the benefits of the opti-

mizations. The context-free grammars may also generate formulas with little

or no subsumed parts. This case will also affect the optimizations in negative

way. Therefore, it may be beneficial to also explore whether for real cases,

the instances are optimizable. Another aspect that we could consider is the

instance generation algorithm. Based on Section 4.1.1, the generation algo-

rithm based on Tabakov-Vardi model does not specifically take into account

the simulation relations between states. So, the occurrences of the simulation

relations depend on the random generator.

60

Bibliography

[1] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr,

and T. Vojnar. Advanced ramsey-based büchi automata inclusion test-

ing. In Proceedings of the 22Nd International Conference on Concur-

rency Theory, CONCUR’11, pages 187–202, Berlin, Heidelberg, 2011.

Springer-Verlag.

[2] S. Gulwani. Automating repetitive tasks for the masses. SIGPLAN

Not., 50(1):1–2, Jan. 2015.

[3] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry

constructions. Microsoft Research, June 2011.

[4] L. Hoĺık and R. Meyer. Antichains for the verification of recursive pro-

grams. In Networked Systems - Third International Conference, NETYS

2015, Agadir, Morocco, May 13-15, 2015, Revised Selected Papers, pages

322–336, 2015.

[5] L. Hoĺık, R. Meyer, and S. Muskalla. Antichains for inclusion games.

CoRR, abs/1603.07256, 2016.

[6] D. Kozen. Automata and Computability. Undergraduate Texts in Com-

puter Science. Springer New York, 2007.

[7] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In Proceedings of the 22Nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

61

[8] V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor. Mathematical

Theory of Domains. Cambridge University Press, New York, NY, USA,

1994.

[9] F. Stutz. Operations on a Symbolic Domain for Synthesis. Master’s

thesis, TU Kaiserslautern, Kaiserslautern, 2017.

[10] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical au-

tomata constructions. In In LPAR 2005, LNCS 3835, pages 396–411.

Springer, 2005.

62

Appendix A

Table of Instances

The following table contains the results for two out of 20 instances for every

parameter set generated during the experiments. We pick them based on

whether we consider that the results can give insights to the readers. The

insights include indications of improvements, negative results, or timeouts.

Table A.1: Experiment table.

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

1 10/2/10

CNF Baseline 408.42us 100% - - 11/12 1 0 - - 0

CNF SRD inclusion 407.55us 100% - - 11/12 1 0 - - 0

CNF SRD forward 409.60us 100% 841.69us - 11/12 1 0 22 - 0

CNF SRD backward 448.97us 110% - 627.52us 11/12 1 0 - 19 0

CNF SRD fb 415.26us 102% 845.80us 619.09us 11/12 1 0 22 19 0

CNF SRD inclRed1 651.73us 160% - - 11/12 1 2 - - 0

CNF SRD fRed1 434.50us 106% 825.11us - 11/12 1 2 22 - 0

CNF SRD bRed1 409.73us 100% - 593.04us 11/12 1 2 - 19 0

CNF SRD fbRed1 610.67us 150% 807.38us 596.38us 11/12 1 3 22 19 0

CNF SRD inclRed2 615.68us 151% - - 11/12 1 2 - - 0

CNF SRD fRed2 462.87us 113% 866.95us - 11/12 1 2 22 - 0

CNF SRD bRed2 438.61us 107% - 645.17us 11/12 1 2 - 19 0

CNF SRD fbRed2 652.22us 160% 878.13us 653.74us 11/12 1 2 22 19 0

CNF SRD inclRed4 501.83us 123% - - 11/12 1 1 - - 0

CNF SRD fRed4 698.15us 171% 946.34us - 11/12 1 1 22 - 0

CNF SRD bRed4 836.11us 205% - 979.54us 11/12 1 1 - 19 0

CNF SRD fbRed4 991.55us 243% 1.50ms 1.25ms 11/12 1 1 22 19 0

2 10/2/10

CNF Baseline 8.63ms 100% - - 22/34 12 0 - - 0

CNF SRD inclusion 5.86ms 68% - - 19/29 10 0 - - 0

CNF SRD forward 2.45ms 28% 8.15ms - 15/22 7 0 63 - 0

CNF SRD backward 2.22ms 26% - 5.56ms 15/22 7 0 - 45 0

CNF SRD fb 1.92ms 22% 7.36ms 4.70ms 15/22 7 0 63 45 0

CNF SRD inclRed1 3.56ms 41% - - 19/29 10 5 - - 0

CNF SRD fRed1 1.80ms 21% 6.51ms - 15/22 7 1 63 - 0

CNF SRD bRed1 1.84ms 21% - 4.03ms 15/22 7 1 - 45 0

CNF SRD fbRed1 1.76ms 20% 5.45ms 3.75ms 15/22 7 4 63 45 0

CNF SRD inclRed2 2.65ms 31% - - 19/29 10 5 - - 0

CNF SRD fRed2 1.79ms 21% 5.52ms - 15/22 7 1 63 - 0

CNF SRD bRed2 1.98ms 23% - 4.29ms 15/22 7 1 - 45 0

CNF SRD fbRed2 2.24ms 26% 7.16ms 5.09ms 15/22 7 1 63 45 0

63

CNF SRD inclRed4 3.71ms 43% - - 19/29 10 3 - - 0

CNF SRD fRed4 2.35ms 27% 7.13ms - 15/22 7 1 63 - 0

CNF SRD bRed4 2.27ms 26% - 5.36ms 15/22 7 1 - 45 0

CNF SRD fbRed4 2.21ms 26% 7.30ms 5.10ms 15/22 7 1 63 45 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

26 10/2/30

CNF Baseline 2.17ms 100% - - 33/34 1 0 - - 0

CNF SRD inclusion 2.10ms 97% - - 33/34 1 0 - - 0

CNF SRD forward 2.98ms 137% 4.17ms - 33/34 1 0 35 - 0

CNF SRD backward 2.20ms 101% - 3.74ms 33/34 1 0 - 5 0

CNF SRD fb 3.38ms 156% 4.01ms 4.14ms 33/34 1 0 35 5 0

CNF SRD inclRed1 2.15ms 99% - - 33/34 1 0 - - 0

CNF SRD fRed1 3.29ms 152% 4.78ms - 33/34 1 0 35 - 0

CNF SRD bRed1 2.14ms 99% - 3.26ms 33/34 1 0 - 5 0

CNF SRD fbRed1 2.94ms 136% 4.32ms 4.76ms 33/34 1 1 35 5 0

CNF SRD inclRed2 2.19ms 101% - - 33/34 1 0 - - 0

CNF SRD fRed2 2.55ms 118% 4.41ms - 33/34 1 0 35 - 0

CNF SRD bRed2 3.58ms 165% - 3.51ms 33/34 1 0 - 5 0

CNF SRD fbRed2 2.44ms 113% 4.66ms 4.51ms 33/34 1 0 35 5 0

CNF SRD inclRed4 2.32ms 107% - - 33/34 1 0 - - 0

CNF SRD fRed4 2.51ms 116% 4.36ms - 33/34 1 0 35 - 0

CNF SRD bRed4 2.06ms 95% - 3.28ms 33/34 1 0 - 5 0

CNF SRD fbRed4 2.28ms 105% 4.32ms 3.81ms 33/34 1 0 35 5 0

30 10/2/30

CNF Baseline 3.11ms 100% - - 31/33 2 0 - - 0

CNF SRD inclusion 2.57ms 82% - - 31/33 2 0 - - 0

CNF SRD forward 2.61ms 84% 6.87ms - 31/33 2 0 48 - 0

CNF SRD backward 2.25ms 72% - 5.30ms 31/33 2 0 - 0 0

CNF SRD fb 1.88ms 60% 5.93ms 4.77ms 31/33 2 0 48 0 0

CNF SRD inclRed1 2.00ms 64% - - 31/33 2 1 - - 0

CNF SRD fRed1 1.97ms 63% 5.55ms - 31/33 2 1 48 - 0

CNF SRD bRed1 1.88ms 60% - 4.45ms 31/33 2 1 - 0 0

CNF SRD fbRed1 2.06ms 66% 5.17ms 4.77ms 31/33 2 2 48 0 0

CNF SRD inclRed2 1.86ms 60% - - 31/33 2 1 - - 0

CNF SRD fRed2 2.01ms 65% 5.48ms - 31/33 2 1 48 - 0

CNF SRD bRed2 2.00ms 64% - 4.82ms 31/33 2 1 - 0 0

CNF SRD fbRed2 2.36ms 76% 6.79ms 5.71ms 31/33 2 1 48 0 0

CNF SRD inclRed4 2.50ms 80% - - 31/33 2 1 - - 0

CNF SRD fRed4 2.67ms 86% 7.40ms - 31/33 2 1 48 - 0

CNF SRD bRed4 3.00ms 96% - 6.28ms 31/33 2 1 - 0 0

CNF SRD fbRed4 2.97ms 95% 8.66ms 6.85ms 31/33 2 1 48 0 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

51 30/2/10

CNF Baseline 20.27ms 100% - - 21/26 5 0 - - 0

CNF SRD inclusion 8.90ms 44% - - 17/21 4 0 - - 0

CNF SRD forward 2.93ms 14% 120.02ms - 13/16 3 0 654 - 0

CNF SRD backward 7.83ms 39% - 74.71ms 17/21 4 0 - 0 0

CNF SRD fb 2.55ms 13% 116.90ms 74.25ms 13/16 3 0 654 0 0

CNF SRD inclRed1 8.18ms 40% - - 17/21 4 3 - - 0

CNF SRD fRed1 2.74ms 14% 117.90ms - 13/16 3 2 654 - 0

CNF SRD bRed1 9.66ms 48% - 78.07ms 17/21 4 3 - 0 0

CNF SRD fbRed1 3.25ms 16% 117.26ms 80.92ms 13/16 3 3 654 0 0

CNF SRD inclRed2 7.78ms 38% - - 17/21 4 3 - - 0

CNF SRD fRed2 2.77ms 14% 112.59ms - 13/16 3 2 654 - 0

CNF SRD bRed2 7.50ms 37% - 63.64ms 17/21 4 3 - 0 0

CNF SRD fbRed2 3.18ms 16% 122.47ms 80.93ms 13/16 3 2 654 0 0

CNF SRD inclRed4 8.86ms 44% - - 17/21 4 1 - - 0

CNF SRD fRed4 3.03ms 15% 120.92ms - 13/16 3 0 654 - 0

CNF SRD bRed4 9.08ms 45% - 86.19ms 17/21 4 1 - 0 0

CNF SRD fbRed4 2.76ms 14% 109.63ms 72.58ms 13/16 3 0 654 0 0

52 30/2/10

CNF Baseline 708.98ms 100% - - 25/42 17 0 - - 0

CNF SRD inclusion 296.04ms 42% - - 20/34 14 0 - - 0

CNF SRD forward 51.04ms 7% 82.60ms - 16/22 6 0 519 - 0

CNF SRD backward 285.47ms 40% - 36.59ms 20/34 14 0 - 2 0

CNF SRD fb 46.17ms 7% 77.22ms 34.03ms 16/22 6 0 519 2 0

CNF SRD inclRed1 287.74ms 41% - - 20/34 14 5 - - 0

CNF SRD fRed1 51.83ms 7% 79.94ms - 16/22 6 4 519 - 0

CNF SRD bRed1 358.33ms 51% - 31.50ms 20/34 14 5 - 2 0

64

CNF SRD fbRed1 64.62ms 9% 80.24ms 45.25ms 16/22 6 7 519 2 0

CNF SRD inclRed2 312.12ms 44% - - 20/34 14 5 - - 0

CNF SRD fRed2 60.66ms 9% 91.70ms - 16/22 6 4 519 - 0

CNF SRD bRed2 324.05ms 46% - 39.24ms 20/34 14 5 - 2 0

CNF SRD fbRed2 58.61ms 8% 93.40ms 40.21ms 16/22 6 4 519 2 0

CNF SRD inclRed4 320.24ms 45% - - 20/34 14 3 - - 0

CNF SRD fRed4 59.75ms 8% 94.84ms - 16/22 6 2 519 - 0

CNF SRD bRed4 326.04ms 46% - 40.32ms 20/34 14 3 - 2 0

CNF SRD fbRed4 57.56ms 8% 95.37ms 40.79ms 16/22 6 2 519 2 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

62 10/20/10

CNF Baseline 9.34ms 100% - - 11/23 12 0 - - 0

CNF SRD inclusion 8.93ms 96% - - 11/21 10 0 - - 0

CNF SRD forward 10.62ms 114% 38.79ms - 11/21 10 0 0 - 0

CNF SRD backward 9.80ms 105% - 13.54ms 11/21 10 0 - 0 0

CNF SRD fb 10.29ms 110% 38.50ms 11.58ms 11/21 10 0 0 0 0

CNF SRD inclRed1 9.25ms 99% - - 11/21 10 3 - - 0

CNF SRD fRed1 28.01ms 300% 94.87ms - 11/21 10 3 0 - 0

CNF SRD bRed1 15.57ms 167% - 25.46ms 11/21 10 3 - 0 0

CNF SRD fbRed1 11.43ms 122% 39.98ms 10.54ms 11/21 10 7 0 0 0

CNF SRD inclRed2 9.61ms 103% - - 11/21 10 3 - - 0

CNF SRD fRed2 10.62ms 114% 33.08ms - 11/21 10 3 0 - 0

CNF SRD bRed2 10.88ms 117% - 14.01ms 11/21 10 3 - 0 0

CNF SRD fbRed2 11.36ms 122% 44.49ms 16.66ms 11/21 10 3 0 0 0

CNF SRD inclRed4 9.78ms 105% - - 11/21 10 2 - - 0

CNF SRD fRed4 9.34ms 100% 35.56ms - 11/21 10 2 0 - 0

CNF SRD bRed4 9.15ms 98% - 12.73ms 11/21 10 2 - 0 0

CNF SRD fbRed4 14.21ms 152% 37.00ms 17.55ms 11/21 10 2 0 0 0

63 10/20/10

CNF Baseline - - - - 0/0 0 0 - - 1

CNF SRD inclusion 1.25s - - - 15/25 10 0 - - 0

CNF SRD forward 1.18s - 8.67ms - 15/25 10 0 0 - 0

CNF SRD backward 1.20s - - 6.95ms 15/25 10 0 - 0 0

CNF SRD fb 1.23s - 9.74ms 8.79ms 15/25 10 0 0 0 0

CNF SRD inclRed1 1.21s - - - 15/25 10 3 - - 0

CNF SRD fRed1 1.22s - 7.11ms - 15/25 10 3 0 - 0

CNF SRD bRed1 1.28s - - 7.51ms 15/25 10 3 - 0 0

CNF SRD fbRed1 306.99ms - 9.59ms 8.17ms 15/25 10 8 0 0 0

CNF SRD inclRed2 1.24s - - - 15/25 10 3 - - 0

CNF SRD fRed2 879.27ms - 5.98ms - 15/25 10 3 0 - 0

CNF SRD bRed2 757.66ms - - 5.49ms 15/25 10 3 - 0 0

CNF SRD fbRed2 802.27ms - 5.27ms 4.70ms 15/25 10 3 0 0 0

CNF SRD inclRed4 782.72ms - - - 15/25 10 2 - - 0

CNF SRD fRed4 794.67ms - 5.12ms - 15/25 10 2 0 - 0

CNF SRD bRed4 790.88ms - - 5.47ms 15/25 10 2 - 0 0

CNF SRD fbRed4 810.37ms - 5.26ms 4.94ms 15/25 10 2 0 0 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

81 30/2/30

CNF Baseline 30.53ms 100% - - 65/88 23 0 - - 0

CNF SRD inclusion 34.23ms 112% - - 56/74 18 0 - - 0

CNF SRD forward 35.64ms 117% 410.61ms - 56/74 18 0 649 - 0

CNF SRD backward 35.68ms 117% - 353.86ms 56/74 18 0 - 589 0

CNF SRD fb 34.90ms 114% 432.90ms 364.93ms 56/74 18 0 649 589 0

CNF SRD inclRed1 37.74ms 124% - - 56/74 18 7 - - 0

CNF SRD fRed1 36.05ms 118% 425.33ms - 56/74 18 7 649 - 0

CNF SRD bRed1 37.46ms 123% - 367.29ms 56/74 18 7 - 589 0

CNF SRD fbRed1 36.12ms 118% 447.10ms 378.24ms 56/74 18 15 649 589 0

CNF SRD inclRed2 37.26ms 122% - - 56/74 18 7 - - 0

CNF SRD fRed2 34.35ms 112% 450.04ms - 56/74 18 7 649 - 0

CNF SRD bRed2 37.49ms 123% - 380.47ms 56/74 18 7 - 589 0

CNF SRD fbRed2 35.66ms 117% 445.84ms 375.94ms 56/74 18 7 649 589 0

CNF SRD inclRed4 36.07ms 118% - - 56/74 18 3 - - 0

CNF SRD fRed4 43.26ms 142% 451.56ms - 56/74 18 3 649 - 0

CNF SRD bRed4 37.64ms 123% - 359.27ms 56/74 18 3 - 589 0

CNF SRD fbRed4 32.89ms 108% 443.14ms 378.88ms 56/74 18 3 649 589 0

65

82 30/2/30

CNF Baseline 6.79ms 100% - - 39/42 3 0 - - 0

CNF SRD inclusion 5.07ms 75% - - 39/42 3 0 - - 0

CNF SRD forward 9.60ms 141% 249.49ms - 39/42 3 0 646 - 0

CNF SRD backward 11.28ms 166% - 284.34ms 39/42 3 0 - 350 0

CNF SRD fb 10.42ms 154% 370.54ms 317.64ms 39/42 3 0 646 350 0

CNF SRD inclRed1 9.80ms 144% - - 39/42 3 1 - - 0

CNF SRD fRed1 7.04ms 104% 208.66ms - 39/42 3 1 646 - 0

CNF SRD bRed1 7.60ms 112% - 200.56ms 39/42 3 1 - 350 0

CNF SRD fbRed1 9.16ms 135% 234.73ms 213.63ms 39/42 3 2 646 350 0

CNF SRD inclRed2 8.71ms 128% - - 39/42 3 1 - - 0

CNF SRD fRed2 7.06ms 104% 182.11ms - 39/42 3 1 646 - 0

CNF SRD bRed2 6.21ms 92% - 163.55ms 39/42 3 1 - 350 0

CNF SRD fbRed2 6.26ms 92% 198.40ms 176.18ms 39/42 3 1 646 350 0

CNF SRD inclRed4 6.21ms 91% - - 39/42 3 0 - - 0

CNF SRD fRed4 6.34ms 93% 193.18ms - 39/42 3 0 646 - 0

CNF SRD bRed4 7.07ms 104% - 164.93ms 39/42 3 0 - 350 0

CNF SRD fbRed4 6.87ms 101% 199.92ms 176.05ms 39/42 3 0 646 350 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

105 10/20/30

CNF Baseline 4.83ms 100% - - 51/72 21 0 - - 0

CNF SRD inclusion 4.81ms 100% - - 51/72 21 0 - - 0

CNF SRD forward 6.16ms 127% 27.25ms - 51/72 21 0 0 - 0

CNF SRD backward 7.08ms 147% - 11.73ms 51/72 21 0 - 0 0

CNF SRD fb 6.57ms 136% 35.74ms 10.04ms 51/72 21 0 0 0 0

CNF SRD inclRed1 7.00ms 145% - - 51/72 21 4 - - 0

CNF SRD fRed1 6.84ms 141% 35.72ms - 51/72 21 4 0 - 0

CNF SRD bRed1 6.64ms 137% - 11.55ms 51/72 21 4 - 0 0

CNF SRD fbRed1 13.94ms 288% 40.49ms 13.21ms 51/72 21 12 0 0 0

CNF SRD inclRed2 8.72ms 180% - - 51/72 21 4 - - 0

CNF SRD fRed2 6.74ms 139% 43.74ms - 51/72 21 4 0 - 0

CNF SRD bRed2 6.79ms 140% - 11.23ms 51/72 21 4 - 0 0

CNF SRD fbRed2 8.73ms 181% 40.35ms 12.96ms 51/72 21 4 0 0 0

CNF SRD inclRed4 7.77ms 161% - - 51/72 21 0 - - 0

CNF SRD fRed4 6.75ms 140% 38.54ms - 51/72 21 0 0 - 0

CNF SRD bRed4 6.94ms 144% - 11.17ms 51/72 21 0 - 0 0

CNF SRD fbRed4 7.10ms 147% 37.58ms 11.36ms 51/72 21 0 0 0 0

108 10/20/30

CNF Baseline - - - - 0/0 0 0 - - 1

CNF SRD inclusion 5.76s - - - 82/120 38 0 - - 0

CNF SRD forward 5.63s - 8.88ms - 82/120 38 0 0 - 0

CNF SRD backward 3.53s - - 6.77ms 82/120 38 0 - 0 0

CNF SRD fb 3.66s - 5.09ms 4.80ms 82/120 38 0 0 0 0

CNF SRD inclRed1 4.82s - - - 82/120 38 25 - - 0

CNF SRD fRed1 3.97s - 5.93ms - 82/120 38 25 0 - 0

CNF SRD bRed1 4.10s - - 4.69ms 82/120 38 25 - 0 0

CNF SRD fbRed1 4.97s - 5.47ms 5.12ms 82/120 38 43 0 0 0

CNF SRD inclRed2 4.12s - - - 82/120 38 25 - - 0

CNF SRD fRed2 4.38s - 5.29ms - 82/120 38 25 0 - 0

CNF SRD bRed2 4.34s - - 4.23ms 82/120 38 25 - 0 0

CNF SRD fbRed2 4.64s - 6.95ms 6.00ms 82/120 38 25 0 0 0

CNF SRD inclRed4 3.98s - - - 82/120 38 14 - - 0

CNF SRD fRed4 4.05s - 5.81ms - 82/120 38 14 0 - 0

CNF SRD bRed4 4.25s - - 4.66ms 82/120 38 14 - 0 0

CNF SRD fbRed4 4.67s - 4.58ms 4.17ms 82/120 38 14 0 0 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

126 30/20/10

CNF Baseline 3.08ms 100% - - 13/17 4 0 - - 0

CNF SRD inclusion 3.70ms 120% - - 13/17 4 0 - - 0

CNF SRD forward 5.48ms 178% 5.22s - 13/17 4 0 670 - 0

CNF SRD backward 4.55ms 148% - 424.39ms 13/17 4 0 - 0 0

CNF SRD fb 4.60ms 149% 5.29s 412.70ms 13/17 4 0 670 0 0

CNF SRD inclRed1 3.09ms 100% - - 13/17 4 8 - - 0

CNF SRD fRed1 3.40ms 111% 3.69s - 13/17 4 8 670 - 0

CNF SRD bRed1 5.13ms 167% - 406.70ms 13/17 4 8 - 0 0

CNF SRD fbRed1 4.97ms 161% 5.45s 440.73ms 13/17 4 12 670 0 0

CNF SRD inclRed2 3.65ms 118% - - 13/17 4 8 - - 0

CNF SRD fRed2 4.86ms 158% 5.19s - 13/17 4 8 670 - 0

CNF SRD bRed2 3.99ms 130% - 420.26ms 13/17 4 8 - 0 0

66

CNF SRD fbRed2 5.07ms 165% 5.13s 404.21ms 13/17 4 8 670 0 0

CNF SRD inclRed4 4.90ms 159% - - 13/17 4 5 - - 0

CNF SRD fRed4 4.73ms 154% 5.41s - 13/17 4 5 670 - 0

CNF SRD bRed4 4.96ms 161% - 456.60ms 13/17 4 5 - 0 0

CNF SRD fbRed4 5.12ms 166% 5.21s 439.08ms 13/17 4 5 670 0 0

129 30/20/10

CNF Baseline 31.79ms 100% - - 28/36 8 0 - - 0

CNF SRD inclusion 10.13ms 32% - - 17/21 4 0 - - 0

CNF SRD forward 12.89ms 41% 2.19s - 17/21 4 0 588 - 0

CNF SRD backward 15.49ms 49% - 186.96ms 17/21 4 0 - 0 0

CNF SRD fb 15.65ms 49% 2.29s 183.40ms 17/21 4 0 588 0 0

CNF SRD inclRed1 15.73ms 49% - - 17/21 4 5 - - 0

CNF SRD fRed1 14.56ms 46% 2.40s - 17/21 4 5 588 - 0

CNF SRD bRed1 14.10ms 44% - 214.34ms 17/21 4 5 - 0 0

CNF SRD fbRed1 8.94ms 28% 2.48s 195.71ms 17/21 4 8 588 0 0

CNF SRD inclRed2 11.46ms 36% - - 17/21 4 5 - - 0

CNF SRD fRed2 17.73ms 56% 2.29s - 17/21 4 5 588 - 0

CNF SRD bRed2 15.70ms 49% - 171.73ms 17/21 4 5 - 0 0

CNF SRD fbRed2 14.44ms 45% 2.28s 174.67ms 17/21 4 5 588 0 0

CNF SRD inclRed4 10.31ms 32% - - 17/21 4 3 - - 0

CNF SRD fRed4 17.91ms 56% 2.78s - 17/21 4 3 588 - 0

CNF SRD bRed4 15.56ms 49% - 217.99ms 17/21 4 3 - 0 0

CNF SRD fbRed4 17.77ms 56% 2.85s 211.67ms 17/21 4 3 588 0 0

No Q/Σ/N Solver time time% ftime btime ic fu fr fc bc to

143 30/20/30

CNF Baseline 11.41ms 100% - - 42/50 8 0 - - 0

CNF SRD inclusion 12.83ms 112% - - 42/50 8 0 - - 0

CNF SRD forward 11.42ms 100% 3.19s - 42/50 8 0 654 - 0

CNF SRD backward 12.28ms 108% - 265.66ms 42/50 8 0 - 0 0

CNF SRD fb 11.66ms 102% 3.09s 275.66ms 42/50 8 0 654 0 0

CNF SRD inclRed1 11.65ms 102% - - 42/50 8 3 - - 0

CNF SRD fRed1 13.75ms 121% 3.27s - 42/50 8 3 654 - 0

CNF SRD bRed1 11.12ms 97% - 285.61ms 42/50 8 3 - 0 0

CNF SRD fbRed1 11.71ms 103% 3.20s 270.41ms 42/50 8 6 654 0 0

CNF SRD inclRed2 8.87ms 78% - - 42/50 8 3 - - 0

CNF SRD fRed2 14.51ms 127% 3.56s - 42/50 8 3 654 - 0

CNF SRD bRed2 13.30ms 117% - 303.33ms 42/50 8 3 - 0 0

CNF SRD fbRed2 11.15ms 98% 3.46s 269.85ms 42/50 8 3 654 0 0

CNF SRD inclRed4 9.95ms 87% - - 42/50 8 1 - - 0

CNF SRD fRed4 10.91ms 96% 2.95s - 42/50 8 1 654 - 0

CNF SRD bRed4 10.62ms 93% - 251.10ms 42/50 8 1 - 0 0

CNF SRD fbRed4 10.05ms 88% 2.82s 235.57ms 42/50 8 1 654 0 0

145 30/20/30

CNF Baseline 8.13ms 100% - - 30/37 7 0 - - 0

CNF SRD inclusion 12.27ms 151% - - 30/37 7 0 - - 0

CNF SRD forward 12.84ms 158% 543.81ms - 30/37 7 0 0 - 0

CNF SRD backward 12.88ms 158% - 194.52ms 30/37 7 0 - 0 0

CNF SRD fb 13.29ms 163% 592.21ms 218.82ms 30/37 7 0 0 0 0

CNF SRD inclRed1 12.11ms 149% - - 30/37 7 4 - - 0

CNF SRD fRed1 12.85ms 158% 592.35ms - 30/37 7 4 0 - 0

CNF SRD bRed1 12.10ms 149% - 210.08ms 30/37 7 4 - 0 0

CNF SRD fbRed1 12.19ms 150% 574.34ms 196.13ms 30/37 7 5 0 0 0

CNF SRD inclRed2 11.89ms 146% - - 30/37 7 4 - - 0

CNF SRD fRed2 12.20ms 150% 554.51ms - 30/37 7 4 0 - 0

CNF SRD bRed2 11.17ms 137% - 192.91ms 30/37 7 4 - 0 0

CNF SRD fbRed2 13.29ms 163% 553.26ms 192.94ms 30/37 7 4 0 0 0

CNF SRD inclRed4 12.65ms 155% - - 30/37 7 3 - - 0

CNF SRD fRed4 11.79ms 145% 553.04ms - 30/37 7 3 0 - 0

CNF SRD bRed4 11.05ms 136% - 186.97ms 30/37 7 3 - 0 0

CNF SRD fbRed4 12.65ms 155% 536.77ms 187.19ms 30/37 7 3 0 0 0

67

Appendix B

Table of Aggregates

The following table sums up the results for every parameter combination.

Table B.1: Aggregated experiment results.

No Q/Σ/N Solver time time% ftime btime ic fu fr to

1-20 10/2/10

CNF Baseline 9.02ms 100% - - 377/ 500 123 0 0

CNF SRD inclusion 7.40ms 82% - - 349/ 455 106 0 0

CNF SRD forward 10.00ms 111% 6.81ms - 342/ 442 100 0 0

CNF SRD backward 8.06ms 89% - 4.91ms 343/ 445 102 0 0

CNF SRD fb 6.73ms 75% 6.48ms 5.14ms 342/ 442 100 0 0

CNF SRD inclRed1 4.67ms 52% - - 349/ 455 106 55 0

CNF SRD fRed1 3.98ms 44% 6.47ms - 342/ 442 100 50 0

CNF SRD bRed1 3.90ms 43% - 4.83ms 343/ 445 102 49 0

CNF SRD fbRed1 4.47ms 50% 6.55ms 5.01ms 342/ 442 100 101 0

CNF SRD inclRed2 4.67ms 52% - - 349/ 455 106 55 0

CNF SRD fRed2 4.20ms 47% 6.58ms - 342/ 442 100 50 0

CNF SRD bRed2 4.52ms 50% - 5.11ms 343/ 445 102 49 0

CNF SRD fbRed2 4.52ms 50% 6.73ms 4.92ms 342/ 442 100 50 0

CNF SRD inclRed4 5.47ms 61% - - 349/ 455 106 34 0

CNF SRD fRed4 4.29ms 48% 7.00ms - 342/ 442 100 30 0

CNF SRD bRed4 4.73ms 52% - 5.77ms 343/ 445 102 31 0

CNF SRD fbRed4 4.96ms 55% 7.23ms 5.34ms 342/ 442 100 30 0

21-40 10/2/30

CNF Baseline 5.37ms 100% - - 860/1007 147 0 0

CNF SRD inclusion 4.91ms 91% - - 838/ 975 137 0 0

CNF SRD forward 5.28ms 98% 6.60ms - 836/ 972 136 0 0

CNF SRD backward 4.86ms 90% - 4.82ms 836/ 972 136 0 0

CNF SRD fb 5.05ms 94% 6.67ms 4.72ms 836/ 972 136 0 0

CNF SRD inclRed1 4.58ms 85% - - 838/ 975 137 47 0

CNF SRD fRed1 4.50ms 84% 6.58ms - 836/ 972 136 52 0

CNF SRD bRed1 4.76ms 89% - 4.56ms 836/ 972 136 51 0

CNF SRD fbRed1 4.99ms 93% 6.56ms 5.03ms 836/ 972 136 99 0

CNF SRD inclRed2 4.94ms 92% - - 838/ 975 137 47 0

CNF SRD fRed2 4.91ms 91% 6.75ms - 836/ 972 136 52 0

CNF SRD bRed2 4.95ms 92% - 5.04ms 836/ 972 136 51 0

CNF SRD fbRed2 5.02ms 94% 7.17ms 5.04ms 836/ 972 136 52 0

CNF SRD inclRed4 4.73ms 88% - - 838/ 975 137 25 0

CNF SRD fRed4 4.73ms 88% 6.63ms - 836/ 972 136 26 0

CNF SRD bRed4 4.78ms 89% - 4.83ms 836/ 972 136 25 0

CNF SRD fbRed4 4.65ms 87% 6.83ms 4.80ms 836/ 972 136 26 0

68

41-60 30/2/10

CNF Baseline 86.74ms 100% - - 408/ 572 164 0 0

CNF SRD inclusion 56.31ms 65% - - 377/ 511 134 0 0

CNF SRD forward 38.87ms 45% 217.54ms - 363/ 483 120 0 0

CNF SRD backward 52.79ms 61% - 159.64ms 371/ 503 132 0 0

CNF SRD fb 39.56ms 46% 204.62ms 150.15ms 363/ 483 120 0 0

CNF SRD inclRed1 52.48ms 60% - - 377/ 511 134 66 0

CNF SRD fRed1 39.90ms 46% 205.99ms - 363/ 483 120 62 0

CNF SRD bRed1 55.97ms 65% - 152.17ms 371/ 503 132 63 0

CNF SRD fbRed1 43.10ms 50% 207.25ms 156.31ms 363/ 483 120 115 0

CNF SRD inclRed2 54.71ms 63% - - 377/ 511 134 66 0

CNF SRD fRed2 39.83ms 46% 204.72ms - 363/ 483 120 62 0

CNF SRD bRed2 54.65ms 63% - 155.46ms 371/ 503 132 63 0

CNF SRD fbRed2 41.16ms 47% 206.42ms 153.17ms 363/ 483 120 62 0

CNF SRD inclRed4 55.15ms 64% - - 377/ 511 134 35 0

CNF SRD fRed4 42.79ms 49% 212.27ms - 363/ 483 120 33 0

CNF SRD bRed4 53.52ms 62% - 151.70ms 371/ 503 132 34 0

CNF SRD fbRed4 41.50ms 48% 205.60ms 155.59ms 363/ 483 120 33 0

61-80 10/20/10

CNF Baseline 17.54ms 100% - - 244/ 399 155 0 2

CNF SRD inclusion 9.17ms 52% - - 236/ 372 136 0 1

CNF SRD forward 11.21ms 64% 38.60ms - 236/ 370 134 0 1

CNF SRD backward 10.06ms 57% - 12.26ms 236/ 372 136 0 1

CNF SRD fb 12.95ms 74% 41.45ms 13.18ms 236/ 370 134 0 1

CNF SRD inclRed1 10.68ms 61% - - 236/ 372 136 73 1

CNF SRD fRed1 10.24ms 58% 41.62ms - 236/ 370 134 75 1

CNF SRD bRed1 9.18ms 52% - 12.77ms 236/ 372 136 73 1

CNF SRD fbRed1 11.49ms 66% 47.66ms 17.88ms 236/ 370 134 133 1

CNF SRD inclRed2 9.53ms 54% - - 236/ 372 136 73 1

CNF SRD fRed2 9.38ms 53% 41.47ms - 236/ 370 134 75 1

CNF SRD bRed2 8.86ms 51% - 11.71ms 236/ 372 136 73 1

CNF SRD fbRed2 11.31ms 64% 35.92ms 10.58ms 236/ 370 134 75 1

CNF SRD inclRed4 8.39ms 48% - - 236/ 372 136 37 1

CNF SRD fRed4 8.38ms 48% 34.24ms - 236/ 370 134 38 1

CNF SRD bRed4 10.02ms 57% - 12.23ms 236/ 372 136 37 1

CNF SRD fbRed4 9.70ms 55% 39.91ms 12.05ms 236/ 370 134 38 1

81-100 30/2/30

CNF Baseline 14.73ms 100% - - 836/ 968 132 0 0

CNF SRD inclusion 12.91ms 88% - - 818/ 941 123 0 0

CNF SRD forward 15.13ms 103% 334.27ms - 818/ 941 123 0 0

CNF SRD backward 15.43ms 105% - 266.15ms 818/ 941 123 0 0

CNF SRD fb 14.84ms 101% 357.10ms 278.56ms 818/ 941 123 0 0

CNF SRD inclRed1 14.92ms 101% - - 818/ 941 123 43 0

CNF SRD fRed1 14.70ms 100% 328.04ms - 818/ 941 123 43 0

CNF SRD bRed1 14.30ms 97% - 249.39ms 818/ 941 123 43 0

CNF SRD fbRed1 14.54ms 99% 320.02ms 242.66ms 818/ 941 123 92 0

CNF SRD inclRed2 14.04ms 95% - - 818/ 941 123 43 0

CNF SRD fRed2 14.11ms 96% 328.09ms - 818/ 941 123 43 0

CNF SRD bRed2 13.56ms 92% - 252.04ms 818/ 941 123 43 0

CNF SRD fbRed2 14.16ms 96% 319.22ms 250.31ms 818/ 941 123 43 0

CNF SRD inclRed4 13.40ms 91% - - 818/ 941 123 22 0

CNF SRD fRed4 14.55ms 99% 340.94ms - 818/ 941 123 22 0

CNF SRD bRed4 15.07ms 102% - 263.20ms 818/ 941 123 22 0

CNF SRD fbRed4 15.98ms 109% 345.21ms 273.72ms 818/ 941 123 22 0

101-120 10/20/30

CNF Baseline 10.13ms 100% - - 905/1176 271 0 1

CNF SRD inclusion 9.38ms 93% - - 853/1096 243 0 0

CNF SRD forward 11.59ms 114% 52.24ms - 853/1096 243 0 0

CNF SRD backward 15.35ms 152% - 16.28ms 853/1096 243 0 0

CNF SRD fb 13.39ms 132% 70.07ms 16.50ms 853/1096 243 0 0

CNF SRD inclRed1 10.64ms 105% - - 853/1096 243 121 0

CNF SRD fRed1 13.76ms 136% 54.90ms - 853/1096 243 121 0

CNF SRD bRed1 11.32ms 112% - 15.93ms 853/1096 243 121 0

CNF SRD fbRed1 12.13ms 120% 58.39ms 16.25ms 853/1096 243 250 0

CNF SRD inclRed2 10.67ms 105% - - 853/1096 243 121 0

CNF SRD fRed2 14.36ms 142% 55.00ms - 853/1096 243 121 0

CNF SRD bRed2 10.91ms 108% - 15.18ms 853/1096 243 121 0

CNF SRD fbRed2 11.34ms 112% 57.97ms 15.58ms 853/1096 243 121 0

CNF SRD inclRed4 11.44ms 113% - - 853/1096 243 59 0

CNF SRD fRed4 10.28ms 102% 49.06ms - 853/1096 243 59 0

69

CNF SRD bRed4 11.23ms 111% - 14.03ms 853/1096 243 59 0

CNF SRD fbRed4 10.64ms 105% 46.82ms 12.89ms 853/1096 243 59 0

121-140 30/20/10

CNF Baseline 32.19ms 100% - - 299/ 432 133 0 1

CNF SRD inclusion 33.16ms 103% - - 280/ 397 117 0 1

CNF SRD forward 34.19ms 106% 3.08s - 277/ 390 113 0 1

CNF SRD backward 34.65ms 108% - 274.08ms 280/ 397 117 0 1

CNF SRD fb 35.36ms 110% 3.08s 288.11ms 277/ 390 113 0 1

CNF SRD inclRed1 34.94ms 109% - - 280/ 397 117 66 1

CNF SRD fRed1 35.26ms 110% 2.93s - 277/ 390 113 73 1

CNF SRD bRed1 33.21ms 103% - 260.25ms 280/ 397 117 66 1

CNF SRD fbRed1 31.76ms 99% 2.91s 273.02ms 277/ 390 113 147 1

CNF SRD inclRed2 34.06ms 106% - - 280/ 397 117 66 1

CNF SRD fRed2 32.32ms 100% 2.79s - 277/ 390 113 73 1

CNF SRD bRed2 35.42ms 110% - 258.96ms 280/ 397 117 66 1

CNF SRD fbRed2 33.81ms 105% 3.06s 277.99ms 277/ 390 113 73 1

CNF SRD inclRed4 34.39ms 107% - - 280/ 397 117 34 1

CNF SRD fRed4 33.40ms 104% 2.97s - 277/ 390 113 38 1

CNF SRD bRed4 33.27ms 103% - 263.10ms 280/ 397 117 34 1

CNF SRD fbRed4 34.40ms 107% 2.84s 259.08ms 277/ 390 113 38 1

141-160 30/20/30

CNF Baseline 73.76ms 100% - - 903/1186 283 0 0

CNF SRD inclusion 53.03ms 72% - - 842/1087 245 0 0

CNF SRD forward 54.19ms 73% 1.91s - 842/1087 245 0 0

CNF SRD backward 53.89ms 73% - 207.33ms 842/1087 245 0 0

CNF SRD fb 54.78ms 74% 1.95s 213.34ms 842/1087 245 0 0

CNF SRD inclRed1 52.11ms 71% - - 842/1087 245 130 0

CNF SRD fRed1 52.73ms 71% 1.93s - 842/1087 245 131 0

CNF SRD bRed1 52.03ms 71% - 210.80ms 842/1087 245 130 0

CNF SRD fbRed1 56.67ms 77% 2.01s 216.66ms 842/1087 245 245 0

CNF SRD inclRed2 54.25ms 74% - - 842/1087 245 130 0

CNF SRD fRed2 53.94ms 73% 1.97s - 842/1087 245 131 0

CNF SRD bRed2 53.78ms 73% - 208.01ms 842/1087 245 130 0

CNF SRD fbRed2 56.63ms 77% 2.04s 215.27ms 842/1087 245 131 0

CNF SRD inclRed4 53.23ms 72% - - 842/1087 245 60 0

CNF SRD fRed4 53.18ms 72% 1.99s - 842/1087 245 60 0

CNF SRD bRed4 51.00ms 69% - 207.47ms 842/1087 245 60 0

CNF SRD fbRed4 54.43ms 74% 1.97s 209.20ms 842/1087 245 60 0

70

	Introduction
	Contribution
	Structure

	Preliminary Concepts
	Context-Free Games
	Domain
	Fixed-Point Iteration

	Proposed Optimizations
	Subset Relation between Boxes
	Simulation Relations
	Simulation Relations between States
	Simulation Relations between Arcs in Boxes
	Simulation Relations between Boxes
	Monotonicity for Boxes
	Implication and Monotonicity for Formulas

	Antichain Optimization
	Implication between Boxes
	Implication between Clauses in CNF
	Implication between Formulas in CNF
	Minimization of Formulas

	Experiments
	Implementation
	Program
	Instance Generation
	Implementation Tricks
	Inclusion Check
	Forward Simulation Relation Check
	Backward Simulation Relation Check
	Forward-Backward Simulation Relation Check
	Precomputation
	Formula Reduction

	Simulation Setup
	Benchmarking Results
	Improvement
	Shortcomings
	Timeout and Memory Consumption
	Average Cases

	Conclusion and Future Work
	Conclusion
	Future work

	Table of Instances
	Table of Aggregates

