
Abstract
A lognormal interconnection length distribution function

is derived from a large number of VLSI layouts. The assump-
tion of a Weibull distribution could not be confirmed. Hierar-
chical slicing trees are derived from structural descriptions of
the sample systems by recursive partitioning. Using the ear-
lier proposed area estimation results, a new model for inter-
connection length estimation based on slicing trees is
proposed, also resulting in a lognormal length distribution
with parameters close to the layout results. We therefore be-
lieve that the results are a step forward towards understand-
ing and predicting interconnection lengths and logical path
delays before layout.

Introduction
In the realm of deep submicron chip technologies, perfor-

mance becomes more and more determined by interconnec-
tion lengths at all levels of the layout hierarchy. Therefore,
performance driven design primarily seeks to minimize inter-
connection related delays on the critical paths of digital sys-
tems. This effects placement and routing.

Since there are limits to the possible reduction of inter-
connection length, critical paths are also subject to optimiza-
tion during logic design. For this purpose, possibly critical
paths have to be known before layout. Therefore, the estima-
tion of interconnection lengths prior to layout is an important
task for reliable delay calculations during logic design.

Another application of interconnection length estimation
is the control of performance driven layout with hierarchical
methods. A critical path or even a single net on a critical path
can be distributed over several levels of a hierarchy or several
modules at one level. While the design of one module pro-
ceeds, estimates of the fragments of paths or nets in other
modules are necessary to control this design.

Many other applications of such estimations can be
found. All have in common that good estimations either im-
prove the design quality or reduce the design effort by reduc-
ing the number and cost of design iterations.

This paper concentrates on the estimation of interconnec-
tion length on hierarchically composed ASICs in standard
cell technology with optional macro cells. Off-chip intercon-
nections are not considered. From layout experiments simple
interconnection length models are derived and compared to
experimental results. The models are not based on Rent’s
rule, but on our area estimation model that has been success-
fully applied to predict module areas during chip planning[1].
The paper is based on a Ph.D. thesis which contains more de-
tails and results [2].

But a word of caution is necessary at this point. While

area estimation gains some of its precision from integrative
effects, resulting in the averaging out of errors, interconnec-
tion length results are mainly maximum length values with
very little averaging. Thus the prediction of the length of an
individual net or path is nearly impossible within reasonable
error margins. Instead we predict lengths distributions. From
these distributions we can predict the probability of the max-
imal length of an individual net.

Basic Models
Let us simplify the problem by assuming that the digital

system is synchronous and the performance directly depends
on the path delay of the longest logic path between clocked
storage elements. This defines the critical path. Clock sched-
ules and distribution are not considered here.

The path delay is the sum of logic element delays and net
delays. A net delay depends on the net topology and the
length of the net segments and can be calculated using
Elmore’s or related models. Thus the problem can be speci-
fied as predicting the topology and geometry of all nets on the
critical path.

In practice the critical path is not known a priory and
therefore all paths have to be considered. With the above
mentioned caution about results on individual nets we can ex-
pect a set of possibly critical nets using probabilistic meth-
ods.

We further assume a layout hierarchy of rectangular cells
that recursively partition the chip. The leaves of the hierarchy
are either standard or macro cells. Only slicing geometries
are assumed. These restrictions are necessary in order to be
able to model the geometry as a tree structure. Most layouts
follow these restrictions. It has been shown that layouts out-
side of these restrictions gain only minor advantages that are
not significant relative to the prediction tolerances.

Under these restrictions our area estimation model [1]
provides some of the basic geometric parameters. It will be
explained in a few paragraphs.

Starting point of all estimations is a hierarchically com-
posed structural description of the system, as schematic dia-
grams or netlists. Each component of the structure hierarchy
will be related to a component of the layout hierarchy.

The area estimation of a single component or module
starts by recursive bipartitioning the structure, using any
good mincut or ratio-cut algorithm. This results in a tree with
the module as root and its subcomponents as leaves. Subcom-
ponents can be either other composed modules, standard, or
macro cells.

Partitioning tries to minimize the number of signal con-
nections or nets between the children of the currently parti-

Interconnection Length Estimation During Hierarchical VLSI
Design

Axel Heß and Gerhard Zimmermann
Informatik, University of Kaiserslautern



tioned tree node. This results in a concentration of nets
towards the leaves of the tree and thus in the smaller subtrees,
as should be expected in a good layout. Since smaller sub-
trees are correlated to smaller areas, this results in shorter
netlengths for as many nets as possible. Therefore, the tree
represents features of a good layout

These features are of statistical nature. Different parti-
tioning algorithms or executions will result in different trees.
The final layout will most certainly result in another tree if
the layout is sliced, also strongly depending on the chosen
layout algorithm. On the other hand, the results of benchmark
experiments with the leading layout algorithms show differ-
ences in total area of a few percent, which is less than the area
prediction tolerance. We can therefore assume that any good
partitioning algorithm will result in the same predicted area
within the range of intrinsic tolerances. Our experiments
have confirmed this assumption [2].

The next step is the estimation of the shape function of a
node in the tree from the shape functions of it’s children.
Shape functions express the area values for different aspect
ratios of a cell. It is represented by all possible length (x) and
width (y) values of a rectangular cell, including added empty
space in either x or y to extend a cell to a given dimension. If
we define the shape function as the smallest possible y-values
for a continuous range of x-values, a step function results.

In order to calculate the shape function of a node with two
subnodes, the subnode shape functions have to be added. If
the subnodes are placed on top of each other (horizontal com-
mon edge or cut line), the y-values have to be added for equal
x-values. Otherwise x and y have to be exchanged. Since we
do not know the orientation of the cut line, we execute both
additions and select from the two resulting shape functions
the steps with the smaller area. We call the result the optimal
shape function. The optimal orientations are assigned to its
steps.

We can calculate the shape functions of all internal nodes
of the tree including the root, if the shape functions of the
leaves are given. The sequence of calculation is bottom-up or
from the leaves to the root. The same bottom-up sequence
can also be applied in a hierarchy of modules, since the size
of the bottom leaves, either standard or macro cells, are
known.

If we select a shape for the root of the hierarchy, for ex-
ample of the chip, we find the optimal orientation of the step
of the corresponding shape function and, proceeding top-
down, we can find the corresponding optimal orientations of
all nodes. This brings us close to the topology of floor plans.
The only missing parameter is the position of the adjacent
subnodes relative to the cut line, top/bottom or left/right. This
is called the ordering. The only way to determine this would
be a complete placement. The estimations are therefore based
on oriented, unordered slicing trees. This results in some of
the estimation tolerances.

If we assume wiring channels between cells, channel
space has to be added to the shape functions in x and y, result-
ing in additional tolerances. This is also the place where area

and netlength estimation are closely related. We will there-
fore postpone this part until we explain the new model.

Previous work
We will only give a very short overview over the

netlength estimation work. Many papers are based on the
well known Rent’s Rule:

Donath used it to calculate the upper limit of the average
netlength for r>1/2 [3]:

More sophisticated models followed by Suen [4],
Schmidt [5], and e.g. Feuer for r>1/2 [6]:

Because of the technology at the time, these models
where mainly applied to PCBs. Because we need maximum
values, the average is not sufficient to determine the length of
the critical path.

Therefore, Sastry and Parker used Rent’s rule to deter-
mine the netlength distribution in gate arrays [7]. A stochastic
model resulted in a Weibull-distribution for the netlength
which was experimentally confirmed:

This results in an average value of:

The parameters r and k have been determined experimen-
tally by fitting the curve to a measured distribution. The mod-
el was further improved by Gura and Abraham [8].

Sechen derives netlength distributions for two extreme
cases. Either all cells connected by a net are randomly distrib-
uted over a square grid or clustered together as close as pos-
sible for an optimal layout [9]. Hamada et.al. refine this
principle by topological distances and combine it with the
Weibull distribution assumption [10].

Pedram and Preas finally determine the netlength in opti-
mized standard cell blocks from assumptions about pin distri-
butions and channel geometries [11]. In the last three
approaches the actual netlists are used for the estimation.

Experimental Results
Because there is little experimental evidence about

netlength distributions of real layouts under different condi-
tions we executed many layouts. Despite this large effort it is
impossible to say that the sample is sufficiently large. All
statements made in this paper are therefore only valid in rela-
tion to this sample.

The sample consists of three VLSI chips in 0.7 micron
standard cell technology. They have been designed in two
levels of hierarchy. They are part of a high performance par-
allel Volume Visualization Architecture DIV2A [12]. Table 1
summarizes the main parameters of the three chips.

The flexible blocks consist of standard cells. The macro

P k M
r⋅=

R M
r 1 2⁄–∼

R δ 2
2 r 3 2 r⋅+( )⋅ ⋅

1 2 r⋅+( ) 2 2 r⋅+( )⋅
-------------------------------------------------------- M

r 1 2⁄–

1 M
r 1–

+
-----------------------⋅ ⋅ ⋅=

F x( ) 1 e
k x

r⋅–
–=

R
1
r
--- 1

k
---⎝ ⎠

⎛ ⎞ 1 r⁄
Γ 1

r
---⎝ ⎠

⎛ ⎞⋅ ⋅=



cells are memory blocks from a generator. All layouts have
been conducted using shape function generation, top down
chip planning, cell synthesis, and chip assembly in the
PLAYOUT system [13]. For the purpose of standard cell
placement in the cell synthesis phase, Gordian [14] and Tim-
berwolf [15] have been adjusted to and reimplemented in
PLAYOUT to guarantee comparable results.

In order to gain a large statistical variation, all standard
cell block have been synthesized with both algorithms, dif-
ferent aspect ratios, and different pin distributions.

One of the first surprising results was the shape of the
netlength distribution. We could not fit a Weibull distribution
as we expected. Figure 1 shows measurements and the best
fitting Weibull distribution for one of the standard cell bocks.
The measurements summerize over 100 layouts. The length
units on the horizontal axis is one standard cell height. All
other blocks showed similar strong deviations. The Weibull
distribution assumes too many very short nets that are not
found in our standard cell layouts.

We therefore tried to find a distribution function that fits
our results. The result is a lognormal distribution with the
density function:

The two parameters can be determined with:

Table 1: Chip Parameter

chip
name

# of
flexible
 blocks

# of
macro
cells

# of
nets at
chip
level

total #
of std
cells

total #
of nets

avrg #
of

cells/
block

avrg #
of

nets/
block

adr 12 0 1484 7862 9033 655 752

vox 26 6 2030 14227 16899 547 650

seg 7 6 1178 3508 4232 501 604

Figure 1: Measured netlength distribution and best fitting
Weibull density function

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

Outmux_SUM
weibull(x) 1

f x( )
1

2 π⋅ σ x⋅ ⋅
------------------------------ e

ln x( ) µ–( ) 2

2 σ2⋅
------------------------------–

⋅=

 and

m is the arithmetic mean of the measured distribution and
s the variance. The resulting density function is shown as a
continuous curve in Figure 2, together with measurements.

The curve fits long nets perfectly, but deviates for shorter
nets. In order to improve the fitting for short nets we calculat-
ed the optimal parameters using a least square method. The
result is the dashed curve which fits best in the short range but
not so well in the rest of the range. Since the interesting range
for critical path is that of long nets we decided to use the log-
normal distribution with parameters calculated from average
and variance.

Netlength Model
The next question is: How can we find a hypothetical

model that will allow us to predict netlength distributions
similar to the measured ones. This would be a step forward to
understanding netlength as related to layout techniques. It
should at least allow us to predict probabilities of upper limits
of path lengths.

Starting information is the hierarchical structure descrip-
tion of the digital system. If we have done no chip planning
or layout yet, we have no information about shapes and pin
distributions with the exception of standard and macro cells.
We have knowledge about the chip technology, e.g. the num-
ber of signal routing layers, and the available layout tools.
We should also have knowledge about other layouts in the
same technology with the same tools. The latter knowledge
can be used to refine the parameters in the estimation models.

Routing Space Estimation

Before we can estimate netlengths, we need estimated
layout dimensions. We already explained the basic optimal
addition of shape functions, but postponed the addition of
routing space.

For the purpose of this paper we assume two signal rout-
ing layers that are partially blocked over standard and macro

σ2
ln s

2

m
2

------ 1+( )= µ ln m( )
1
2
--- ln s

2

m
2

------ 1+( )⋅–=

Figure 2: Measured netlength distribution and lognormal
density functions

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35 40 45 50

Div_SUM
lognormal(x) 1
logN_ann(x) 1



cells. The layers are primarily assigned to the two routing di-
rections. Here we also assume two hierarchy levels. The
primitives of the lower level are standard cells. The primi-
tives of the upper level are flexible cells (standard cell
blocks) and macro cells, composing the chip. The extension
to more hierarchy levels is no problem.

We further assume that a major part of the routing is chan-
nel based and the rest will use feedthroughs through or over
cells. Feedthroughs are either intrinsic parts of the standard or
macro cells, or result from empty space that is added to cells
to create rectangular shapes in a slicing structure, or
feedthroughs are added on purpose in standard cell rows for
nets crossing rows. More than two routing layers can be mod-
eled as additional feedthroughs. Unused feedthroughs are
modeled as transparency. For standard cells we also assume
equivalent pins on opposite sides. We distinguish row based
and block based design styles.

As it was explained in section “Basic Models”, the struc-
ture of a composed cell is recursively bipartitioned to create
a tree. By optimal shape function addition and by adding ap-
propriate routing areas, a slicing tree with shape functions at
each node is calculated. The steps of the shape functions car-
ry orientation information. Thus, for a given shape of the
root, the orientation of all cut lines of the corresponding
floorplan can be derived and a floorplan representative can be
constructed with correct node dimensions but random order-
ing. Also, the transparency of each node is calculated.

We postponed the discussion of the wiring areas that have
to be added to the node areas. Each net either uses up trans-
parency or requires additional tracks in routing channels be-
tween cells. For this purpose we partition every n-point net
into 2(n-1) segments and determine the node in the slicing
tree which should provide track space for the segments. Since
we do not know the ordering, the routing cannot be deter-
mined more precisely. Figure 3 shows a sample floorplan and
its slicing tree with three different nets.

Net (m3, m4) is a 2-point net crossing the vertical cut of
node n5 between two leaf cells. It is split into two segments
at the node that represents it’s cut line during partitioning (cut
line node). This point is marked by an open circle. Cell m0
represents the surrounding cells. Thus net (m2, m0) is an ex-
ternal net. Net (m1, m5, m6) is split into four segments. Three
of the segments connect a leaf cell to the corresponding cut
line node. The remaining segment (n1, n3) is treated different-

Figure 3: Definition of segments

m1 m2

m3 m4

m5

m6

m1 m2 m3 m4

m5

m0

m6
v v

v

h h
n2

n0

n3

n4

n5

n1

ly because both ends connect internal nodes. In any case rout-
ing space for segments is always added at the cut line node.
In the case of external nets, tracks are to be supplied by the
root node of the composed cell, in this case n1, amd not by n0.

The length of the segment and the space for the tracks are
related. The width of a track is the routing grid and can there-
fore be represented by an integer track number. Since every
node in the tree is - by the definition of slicing - a rectangular
cell, the length of a track is either the horizontal or vertical di-
mension x or y of the node. It thus can be derived from the
shape function of the node. A net segment on average does
not need a full track, leaving room for more than one segment
per track. This probability is expressed by a track demand
factor between 0 and 1.

A segment will typically require parts of horizontal and of
vertical tracks. The track demand factors for these two re-
quirements will be different, dependend on the main direc-
tion of the segment in the floor plan. This is assumed to be
orthogonal to the cut line node orientation. These factors also
differ between different layout styles.

If a segment connects to a standard or macro cell, the con-
nection point is a pin and therefore on the cell border. The po-
sitions of the pins are fixed and detours may be necessary.
Standard cells and macro cells have to be distinguished be-
cause of different pin positions and equivalent pins. Also,
segments in channels between standard cell rows differ from
segments crossing rows.

If a segment connects to a flexible cell, it can be assumed
that pin positions are adjusted in a top-down design process
such that they minimize the segment length. In bottom-up de-
sign processes, flexible cells have to be treated as macro
cells, since the best position for the pins cannot be deter-
mined.

These examples show that we are dealing with a number
of different track demand factors. There is no room here to go
into more details, but by some geometric reasoning we found
a set that produces estimated shape functions that come very
close to measured ones [2]. Further improvements could be
achieved by adjusting the factors to sample layouts.

This short excursion into shape function estimation was
necessary to understand the calculation of the representative
floorplans. We first calculate the shape function of the root
cell as explained and add space for the remaining external
nets. This is the estimation of all possible actual shapes in-
cluding all routing spaces. We select one of the shapes and
construct a floorplan by randomly choosing the orientations.
The routing space of the internal nodes is equally distributed
to the corresponding child nodes. Thus all nodes and the leaf
cells get all the routing space and thus actual node dimen-
sions. This is not possible during the bottom-up shape func-
tion estimation process, but necessary to predict the lengths
of the segments.

Segment Length Estimation

The reason for splitting nets into the small segments are
delay calculations using RC-trees and Elmore’s or similar de-



lay models. The further feature sizes are reduced, the more
important these models are. In the example in Figure 3 node
n3 is a necessary splitting point. n1 is not necessary for delay
calculation, but simplifies the model.

Let us start with the simple case of a net connecting two
horizontally adjacent cells. Figure 4 shows the possible seg-
ment types on both sides of the cut line. Let the transparency
of the cells be zero. There are only three types of segments:
Type a connects to adjacent sides, type b to sides orthogonal
to the cut and type c to opposite sides. By any combination of
the different types we get nine net-types connecting A and B.

Depending on the type of cells A and B, the frequency
and the lengths distributions of the segment types will differ.
Standard cells (assuming horizontal rows) have no signal
pins on vertical sides and thus no type a or c segments. The
pins on the horizontal sides can be assumed to be equally dis-
tributed. The dimensions xA and xB are the same as A’s and
B’s. For the purpose of this estimation we only compute av-
erage lengths lxA = 0.5 xA and lxB = 0.5 xB.

For macro cells we assume the pins to be equally distrib-
uted on all four sides. It is obvious that the average length of
type a and c together is also near 0.5 xA or 0.5 xB. We can
thus assume an average segment length factor for nets or-
thogonal to the cut line of 0.5 for standard and macro cells.

For flexible cells as leaf cells we assume that the pins of
nets connecting A and B are closer to the cut line. We have
shown in [16] that for type b segments a factor of 0.33 can be
applied, assuming a linear pin density function with the max-
imum towards the cut line. Also, assuming three times more
segments of type a than of type c, a minimal factor of 0.25
could be justified for both together. Counting all together we
assume a factor of 0.3 for flexible cells.

Similar factors can be derived for the average segment
length parallel to the cut line. For type a nets the factors range
between 0.33 for macro and 0.25 for flexible cells.

These considerations apply to very short segments in ad-
jacent cells and just give a feeling for the type of model and
the assumed factors. For segments connecting more distant
nodes in the tree, we extend the model, as shown in Figure 5.

xn and yn are the dimensions of the cut line node’s direct
child node that contains the segment. The cell node has the
dimensions xc and yc. We divide the segment in two parts for

a

b

c

b

c

Figure 4: Segment types connecting adjacent cells

A B

xA xB

cu
t

each direction. The first part brings the segment from a pin to
the nearest point (black circle) of the hatched routing rectan-
gle with the dimensions xr and yr. This part is cell type de-
pendent. The above factors derived from Figure 4 can be
applied. The second part within the routing rectangle only de-
pends on the dimensions xr and yr. The horizontal length is
xr, for the vertical length we only need 0.5 yr, because we dis-
tribute the length on both sides of the cut line.

For xr and yr we need average values. The maximum val-
ues xm=max(xr) and ym can be derived by subtracting the
cell dimensions xc and yc from the enclosing node dimen-
sions xn and yc, assuming the cells in opposite corners. The
minimum values are zero. If we assume a distribution of the
positions of connected cells relative to each other as either
equally distributed or tending to be closer together, we as-
sume xr = (0.5.. 0.3)xm and yr = (0.3..0.25)ym for vertical
cuts, again using the above model. For horizontal cuts x and
y are exchanged.

One special case has to be treated. If the cell is an internal
node in the tree, an for example n3 in Figure 3, other factors
for the cell part of the segment have to be applied than for leaf
cells. First, the segment has to reach into the node to connect
to internal segments. This makes it longer. Second, the inter-
nal segments of the node are extended and will have points
not far from the routing rectangle. Thus the segment will be
shorter. We found values between the ones for macro and
flexible cells to be appropriate.

The total segment length is the sum of the four average
values. Each netlength is the sum of its segment lengths. Us-
ing this model and averaging over different partitionings and
different aspect ratios, we achieve the netlength distribution
shown in Figure 6. It is the same standard cell block as in Fig-
ure 2, only the average is taken over a smaller sample, ex-
plaining the larger variations. The similarity between both
curves is relatively good for short nets and very good for long
nets which are more important for critical path evaluations.
The two curves are fitted in the same way as in Figure 2

A good figure for comparing measurement and estima-
tion are the length limits l90, for which 90% of the nets are
shorter than the limit. Using l90 as a netlength in calculations
we can guarantee with a probability of 90% that a netlength
is shorter than this limit. In the same way we can calculate

Figure 5: Segment model

xn

xr

xc

yn yr

yc

cu
t



limits for any given probability, once we have the two param-
eters of the estimated lognormal function. Table 2 shows
some results.

l90_lay is the average over all layouts. l90_lay1 and l90_lay2
are averages over the results of two different layout algo-
rithms to show how much results can differ using different
tools. This puts the deviations between the estimated l90_est
and the layout values into proportion. It also shows that there
is room for improvement by fitting the used factors to specif-
ic layout environments.

Similar estimation results can be obtained for segments,
but we had no means to compare to measured segment
lengths.

Conclusion
The main result of this experiment is the type of netlength

distribution we found. The estimation model shows the same
result. Both results may be typical for the chosen sample of
circuits. But we believe that the result is typical for standard
cell layouts.

The estimated length limit l90 seems to be pessimistic but
a relative reliable prediction. It is based on the netlist and the
estimated size of a block. It can be further refined, but there
will always be a tolerance because there are large tolerances
between different layouts of the same block.

We may derive x90 and y90 values for segments of nets for
the purpose of RC-tree delay calculations. We could extract

Table 2:

cell l90_est l90_lay l90_lay1 l90_lay2

Div 22 27 27 25

MLin 19 37 40 31

Myr 10 16 14 25

Nkr 28 22 19 31

Quad 15 18 18 18

Rgb 27 22 20 29

Figure 6: Estimated netlength density

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35 40 45 50

Div_est_SUM
lognormal(x) 3
logN_ann(x) 3

the estimated lengths of individual nets instead of only giving
distributions, but such results would be very unreliable be-
cause they would be based on a specific partitioning. Further
research would be necessary to find l90 values for individual
nets assuming other partitionings.

The delay on logic paths is very roughly related to the
sum of the net lengths on the path. If we use l90 values for
each net, the sum will have a higher probability than 90%.

References
[1] G Zimmermann: “A New Area and Shape Function Esti-

mation Technique for VLSI Layouts”, Proc. 25th Design
Automation Conf., p. 60-65, 1988

[2] A. Heß: “Abschätzungstoleranzen im Hierarchischen
VLSI-Entwurf”, Ph.D. Thesis, Univ. of Kaiserslautern
1999

[3] W. E. Donath: “Placement and Average Interconnection
Lengths of Computer Logic”, IEEE Trans on Circuits and
Systems, Vol. Cas-26, No. 4, April 1979, p. 272-277, 1979

[4] L.-C. Suen: “A Statistical Model for Netlength Estima-
tion”, Proc. 18th Design Automation Conf., p. 769-774, 81

[5] D. C. Schmidt: “Circuit Pack Parameter Estimation Using
Rent’s Rule”, IEEE Trans. on Computer-Aided Design,
Vol. Cad-1, No. 4, October 1982, p. 186-192, 1982

[6] M. Feuer: “Connectivity of Random Logic”, IEEE Trans.
on Computers, Vol. C-31, No. 1, 1982, p. 29-33, 1982

[7] S. Sastry, A. C. Parker: “Stochastic Models for Wireability
Analysis of Gate Arrays”, IEEE Trans. on Computer-Aid-
ed Design, Vol. Cad-5, No. 1, p. 52-65, 1986

[8] C. V. Gura, J. A. Abraham: “Average Interconnection
Length and Interconnection Distribution Based on Rent’s
Rule”, Proc. 26th Design Autom. Conf., p. 574-577, 1989

[9] C. Sechen: “Average Interconnection Length Estimation
for Random and Optimized Placements”, Proc. Interna-
tional Conf. on Computer-Aided Design, p. 190-193, 1987

[10] T. Hamada, C.-K. Cheng, P. M. Chau: “A Wire Length Es-
timation Technique Utilizing Neighborhood Density
Equations”, IEEE Trans. on Computer-Aided Design of
Integr. Circ. and Syst., Vol. 15, No. 8, p. 912-922, 1996

[11] M. Pedram, B. Preas: “Interconnection Length Estimation
for Optimized Standard Cell Layouts”, Proc. International
Conference on Computer-Aided Design, p. 390-393, 1989

[12] J. Lichtermann: “Eine Architektur zur Echtzeitvisual-
isierung von Volumendaten”, Ph.D. Thesis, Univ. of Kai-
serslautern, 1998

[13] G. Zimmermann: “PLAYOUT - A Hierarchical Design
System”, Information Processing 89, G. Ritter (ed.),
Elsevier Science Publ. B. V., p 905-901, IFIP, 1989

[14] J. M. Kleinhans, G. Sigl, F. M. Johannes, K. J. Antreich:
“GORDIAN: VLSI Placement by Quadratic Programming
and Slicing Optimization”, IEEE Trans. on Computer-
Aided Design, Vol. 10, No. 3, S. 356-365, 1991

[15] C. Sechen, K.-W. Lee: “An Improved Simulated Anneal-
ing Algorithm for Row-Based Placement”, Proc. Intern.
Conf. on Computer-Aided Design, p. 478-481, 1987

[16] W. Hebgen, G. Zimmermann: “Hierarchical Netlength Es-
timation for Timing Prediction”, Proc. 5th ACM/SIGDA
Physical Design Workshop, p 118-125, 1996



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


