
Reconfigurable Hardware for Median Filtering for Image Processing Applications

Tripti Jain, Prashant Bansod, C. B. Singh Kushwah and Mayenk Mewara
Department of Electronics & Instrumentation Engineering

Shri G. S. Institute of Technology & Science
Indore, India

tjain25@gmail.com, ppbansod@iitb.ac.in, chandrabhansingh4@gmail.com, ermayank2004@yahoo.com

Abstract—Median filter is a non-linear filter used in image
processing for impulse noise removal during morphological
operations, image enhancement and other image processing
operations. It finds its typical application in the situations
where edges are to be preserved for higher level operations like
segmentation, object recognition etc. Real-time applications,
such as video and high speed acquisition cameras often require
fast algorithms for processing. Reconfigurable hardware filters
can be embedded with image acquisition system to achieve this
goal. In this paper we propose a hardware implementation of a
median filter with programmable window sizes ranging from
3x3 to 7x7. This median filter was designed, simulated and
synthesized on the Xilinx family of FPGAs (XC3S500E of
Spartan-3E). The performance of the same was evaluated for
variety of images. For 3x3 window size, the maximum
operating frequency achieved was approximately 89 MHz and
for 5x5 window sizes, the maximum operating frequency
achieved was approximately 89 MHz. The VHDL was used to
design the above 2-D median filter using ISE (Xilinx) tool. The
proposed hardware implementation took on an average
0.00246 m sec. For a frame of size 4x4 (for window size 3x3),
0.22472 m sec on for a frame of size 16x16 (for window size
5x5) and 0.468 m sec on a average for a frame of size 16x16
(for window size 7x7). The algorithm proposed for the median
filter is based on sorting pixel samples and extracting their
median values.

Keywords-Median filter; Image processing; VHDL; FPGA

I. INTRODUCTION
Image processing is used in many fields like computer

vision, remote sensing, medical imaging, robotics etc. In
many of these applications the existence of impulsive noise
in the acquired images is one of the most common problems
[1]. This noise is generally removed from an image by using
median filter as it preserves the edges during noise removal.
Images can also corrupted by the shot noise, called salt-and-
pepper noise. This noise is characterized by spots on the
image and is usually associated with the acquired image due
to errors in image sensors and data transmission [8]. 2-D
median filter also finds application in the removal of salt and
pepper noise. Median filter is non linear filter but is more
robust than the traditional linear filter [1]. It is more effective
method for noise reduction. It is used in image processing as
well as speech processing. Software as well as hardware
implementations for median filters in one or two dimensions
are possible. Software implemented median filter as

compared to hardware in general purpose processors for real
time does not usually give good results since it is not fast
enough. Therefore a software implementation with flexibility
is required. Generally real time image processing system
require a high speed and FPGA has fast executing speed,
large memory and has capable of flexible logic control [3]
that why FPGAs are often used as implementation platforms
for real-time image processing application [2].

The proposed study was carried out to evaluate the
performance of FPGA (XC3S500E of Spartan-3E) for image
processing operations. We have implemented and tested the
median filtering operations and compared the processing
time with other offline methods. In section II related work is
described briefly. Section III presents the proposed system
architecture for implementing the median filter by means of
FPGA. Section IV is implementation. In section V
experimental results are analyzed and finally conclusion is
presented in section VI.

II. RELATED WORK
Wnuk has purposed different architectures for

implementation of image processing algorithm in hardware
[5]. It have been shown that such an implementation is cost
effective and offers a low power implementation with FPGA
chip the design is also supported VHDL compilers, libraries,
etc. Rodrigue et al. has purposed a new PCI based system
with reconfigurable hardware for real time image processing
[6]. In this system they have used the HOT2-XL PCI board.
After the comparison of this hardware implementation with
software they have observed that time require for FPGA
based reconfigurable system is 85 times smaller than
software. Maheshwari et al. has purposed parallel-serial
input scheme and algorithm [7]. According to their algorithm
first the number are sorted vertically then numbers are sorted
horizontally and then in step 3 numbers are sorted cross
diagonal elements and pick up the middle element this
middle element is the median of the nine elements. They
have ob-served that the hardware requirement of their design
is very less.

III. SYSTEM ARCHITECTURE
The architecture of the proposed system is shown in

Fig. 1. The system is composed of PC, Universal
asynchronous receiver and transmitter (UART), Random
access memory (RAM) and median filter. PC interfacing is
optional and carried only for the testing purpose. In actual

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.172

172

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.172

172

Third International Conference on Emerging Trends in Engineering and Technology

978-0-7695-4246-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICETET.2010.172

172

implementation, image from the acquisition system will be
fed for processing. Image data is taken from the PC and
processed image is again sent back to PC. The three main
components UART, RAM and the median filter are
implemented in FPGA as a single logic unit as shown by
dashed line in Fig. 1.

Figure 1. System architecture.

A. UART
UART includes a transmitter and a receiver. The

transmitter is essentially a special shift register that loads
data in parallel and then shifts it out bit by bit at a specific
rate. The receiver, on the other hand, shifts in data bit by bit
and then reassembles the data. No clock information is
conveyed through the serial line. Therefore before the
transmission begins, the transmitter and receiver must agree
on a set of parameters in advance, which include the baud
rate, number of data bits, stop bits, and, parity bit. UARTs
are frequently used in conjunction with the EIA (Electronic
Industries Alliance) RS-232 standard, which specifies the
electrical, mechanical, functional, and procedural
characteristics of two data communication equipments. Since
the voltage level defined in RS-232 is different from that of
FPGA I/O, a voltage converter chip is needed between a
serial port and an FPGA’s I/O pins. In our system UART is
transmit the data from the PC to RAM and after processing
the data is again send back to PC through UART. The design
is customized for a UART with a 19,200 baud rate, 8 data
bits, 1 stop bit, and no parity bit. We use an oversampling
scheme to estimate the middle points of transmitted bits and
then retrieve them at these points accordingly.

B. RAM
RAM is used as a temporary storage for the image data

before and after processing through the median filter block.
It accepts the image data from the UART and stores the
image pixels in the column sorted fashion as required for the
median filter algorithm. The size of the RAM depends on the
maximum number of pixels in the input image. We have
implemented the RAM to store an image of 128x128 pixels.
RAM implementation in FPGA device puts a number of
constraints on performance and speed [9]. It is implemented
in FPGA by using smaller memories connected via

multiplexors and decoders. The high-level entity consists of
one decoder and a set of basic RAM components and
multiplexors. The multiplexor and the decoder description
use a generic VHDL behavior description. The basic RAM
component depends on the specific device. In our
implementation we have targeted Xilinx XC3S500E of
Spartan-3E.

C. Median Filter
Median filter is nonlinear spatial filter. It is particularly

effective in the presence of impulse noise also called salt and
pepper noise [4]. Edges are preserved during the median
filtering. Hence it is the primary choice in the situations
where the image is to be further used for high level
operations like segmentation, content based retrieval etc.
Median filter is applied on a 2-D mask of size NxN, where N
is an odd number. For implementing the median filter, the
pixels in the chosen mask need to be sorted in the ascending
order and then the center pixel of the mask is replaced by the
median pixel value from the sorted list. Fig. 2 illustrates the
procedure.

For the 3x3 mask with center pixel intensity of 17, the
neighborhood pixels are sorted in the ascending order of
their intensities. The center pixel intensity is replaced by the
median value (5th) of the sorted list, which in this case is 17
as before. We have incorporated the comparator based
approach. The comparator count and delay are considered as
criteria for a given number of inputs.

Figure 2. Application of the median filter

IV. IMPLEMENTATION
The median filter is implemented using three user

selectable windows 3x3, 5x5 and 7x7. Bigger masks have a
tendency to eliminate small edges [1]. The proposed
architecture for median filter was tested on the images
ranging from 4x4 up to 128x128 pixels. The images were
transferred to the target FPGA Spartan-3E (XC3S500E) via
UART for user selected median filter windows out of 3x3,
5x5 and 7x7. The median filtered images were transferred
back to the PC for comparison purposes. The implementation

173173173

was carried out at the clock of 50 MHz. The processing time
through the proposed architecture was recorded for each of
the image. Also the percent utilization of the target device
was estimated.

Table I shows the results for the above implementation
for a median filter window size of 3x3. It is observed that as
the size of image increases, the processing time increases
along with the percentage utilization of the resources of the
FPGA. This increase is linear with the size of the image after
the image size exceeds 64x64 pixels. However the
percentage increase in the CLBs utilized grows nonlinearly.
Similarly table II and table III shows the results with 5x5 and
7x7 median filter respectively. Fig. 3, 4 and 5 give a plot
between the image size and processing time. We have also
compared our results with the processing time for the same
operation on same images in MATLAB and C++. The off
line processing was carried out on p-IV system with
1.99 GHz clock frequency with 1 GB RAM. These are
shown in Table IV, V and VI respectively and plotted in the
Fig. 3, 4 and 5.

TABLE I. SYNTHESIS RESULT FOR MEDIAN FILTER WITH WINDOW
SIZE 3X3 USING XC3S500E OF SPARTAN-3E XILINX DEVICE

Image Processing Utilization of
Size Time (m sec) Slices (in percentage)
4x4 0.00246 4 (200 out of 4656)

16x16 0.11766 4 (221 out of 4656)
32x32 0.54006 5 (237 out of 4656)
64x64 2.306 5 (250 out of 4656)

128x128 9.525 5 (259 out of 4656)

TABLE II. SYNTHESIS RESULT FOR MEDIAN FILTER WITH WINDOW
SIZE 5X5 USING XC3S500E OF SPARTAN-3E XILINX DEVICE

Image Processing Utilization of
Size Time (m sec) Slices (in percentage)

16x16 0.22472 5(251 out of 4656)
32x32 1.223 5(263 out of 4656)
64x64 5.616 5(278 out of 4656)

128x128 23.986 5(277 out of 4656)

TABLE III. SYNTHESIS RESULT FOR MEDIAN FILTER WITH WINDOW
SIZE 7X7 USING XC3S500E OF SPARTAN-3E XILINX DEVICE

Image Processing Utilization of
Size Time (m sec) Slices (in percentage)

16x16 0.468 7(340 out of 4656)
32x32 2.028 13(651 out of 4656)
64x64 10.092 34(1620 out of 4656)

128x128 44.652 more than 100 percent

TABLE IV. EXPERIMENTAL RESULTS OF FPGA, MATLAB AND C++
FOR THE MEDIAN FILTER (3X3 WINDOW SIZE)

Image Processing Processing Processing
Size Time (FPGA) Time (MATLAB) Time (C++)

 (in m sec) (in m sec) (in m sec)
32x32 0.54006 6.097 6.443
64x64 2.306 6.863 6.606

128x128 9.525 8.510 8.711

TABLE V. EXPERIMENTAL RESULTS OF FPGA, MATLAB AND C++
FOR THE MEDIAN FILTER (5X5 WINDOW SIZE)

Image Processing Processing Processing
Size Time (FPGA) Time (MATLAB) Time (C++)

 (in m sec) (in m sec) (in m sec)
32x32 1.223 14.143 14.055
64x64 5.616 15.385 15.029

128x128 23.986 19.315 20.782

TABLE VI. EXPERIMENTAL RESULTS OF FPGA, MATLAB AND C++
FOR THE MEDIAN FILTER (7X7 WINDOW SIZE)

Image Processing Processing Processing
Size Time (FPGA) Time (MATLAB) Time (C++)

 (in m sec) (in m sec) (in m sec)
32x32 2.028 12.138 11.851
64x64 10.092 14.994 13.674

128x128 44.632 21.804 21.412

Figure 3. Comparison between FPGA, MAT-LAB and C++ for window
size 3x3

174174174

Figure 4. Comparison between the FPGA, MATLAB and C++ for
window size 5x5

Figure 5. Comparison between FPGA, MAT-LAB and C++ for window
size 7x7

V. RESULTS AND DISCUSSION
It is observed that the processing time for median

filtering with MATLAB function and C++ routing are
comparable for various image sizes and window sizes
respectively. As the image size increases the processing time
is increases as indicated in tables. FPGA implementation of
the median filter offered much less time as compared to
MATLAB and C++ for the image sizes 100x100 to 120x120
when the 3x3 and 5x5 median filter was implemented.
however the with 7x7 median filter window the processing
time was less for smaller image sizes typically 70x70. As the
image size is increases the processing time in hardware
implementation also went up and was of the same order that
of MATLAB and C++ for image sizes greater than 120x120.
Further the increase in processing time was much faster in
FPGA implementation.

This is suggested that hardware implementation of above
median filter is faster for the image size around 100 x100 or
120x120 for the targeted device (XC3S500E of Spartan-3). A
graph indicates that hardware implementation performed poorer
for image size above than 100x100. An improved performance
for larger image size is possible by selecting a higher version of
the FPGA or increasing the operating clock frequency.

VI. CONCLUSION
In this work we have presented an approach for

reconfigurable hardware and implemented a median filter.
We have targeted Xilinx FPGA XC3S500E for fitting
UART, RAM and median filter. The implementation was
tested with images ranging from 4x4 up to 128x128. The
design offers implementation of median filter with various
window sizes. The results indicate improvement and speed
as compare to offline methods. Other image processing
operations like edge filtering and segmentation can be
integrated with in the same hardware. This will offer a real
time image processor chip for medical as well as non
medical applications.

REFERENCES
[1] Miguel A. Vega-Rodriguez, Juan M.Sanchez-Perez and Juan A.

Gomez-Pulido, “An FPGA based implementation for median filter
meeting the real-time requirements of automated visual inspection
systems,” Proc. of the 10th Mediterranean Conference on Control and
Automation -MED2002, Lisbon, Portugal, July 9-12, 2002, pp. 1-7,
ISBN: 972-9027-03-X.

[2] C. T. Johnston, K. T. Gribbon and D. G. Bailey, “Implementing
Image Processing Algorithms on FPGAs,” Proc. of the 11th
Electronics New Zealand Conference (ENZCon '04), Palmerston
North, New Zealand, November 2004, pp. 118-123.

[3] Duan Jinghong, Deng Yaling and Liang Kun, “Development of image
processing system based on DSP and FPGA,” The Eigth International
conference on Electronic Measurement and instruments,
ICEMI’2007, Electronic Measurement and Instruments, 2007,
pp. 2-791 - 2-794.

[4] Rafael C. Gonzalez and Richard E. Woods, “Digital Image
Processing,” 2nd ed., Pearson education 2004.

[5] Marek Wnuk, “Remarks on hardware implementation of image
processing algorithms,” Int. J. Appl. Math. Comput. Sci., vol. 18,
March 2008, pp. 105-110, ISSN: 1641-876X.

[6] Miguel A. Vega-Rodriguez, Juan M. Sanchez-Pkrez and Juan A.
Gbmez-Pulido, “Real Time Image Processing With Reconfigurable
Hardware, 2001,” pp. 213-216.

[7] Rajul Maheshwari, S. S. S. P. Rao and P. G. Poonacha, “FPGA
implementation of median filter,” tenth International Conference on
VLSI Design, Jan 1997, pp. 523-524.

[8] Zdenek Vasicek and Lukas Sekanina, “An area-efficient alternative to
adaptive median filtering in FPGAs,” FPL 2007 international
conference, 27-29 Aug 2007, pp. 216-221.

[9] R. Senhadji-Navarro, I. Garca-Vargas, G. Jimnez-Moreno and A.
Civit-Balcells, “FPGA-Based Implementation of RAM with
Asymmetric Port Widths for Run-Time Reconfiguration,” Proc. IEEE
International Conference on VLSI, 2007, pp. 178-181.

175175175

