Nonblocking On-Chip Interconnection Networks

Tripti Jain

Embedded Systems Chair
Department of Computer Science
TU Kaiserslautern, Germany

July 26, 2019

Table of Contents

1. Motivation

2. Known Solutions

3. Contributions

4. Experimental Results

5. Summary

2/33

Motivation
9000000

Motivation

» Moore's law:

number of transistors per mm? is doubling every year
resulted in exponential growth of computational power
around 2005, it has however reached its technological limits
parallel architectures required for further performance increase

parallel architectures are realized as systems-on-a-chip (SoC)

TP T v?

new challenge:

developing efficient interconnection networks

4/33

Motivation
0e00000

Commonly Used Interconnection Networks

architecture

AMBA 2.0,3.0 (ARM) | bus
CoreConnect (IBM) bus

STBus (STmicro.) bus
Eclipse (academic) 2D-mesh
Cliche 2D-mesh

» buses have limited bandwidth

% buses are currently replaced with 2D-mesh networks
» but the latter are also limited, i.e., blocking (see next slides)

% poor real-time guarantees
% deadlocks have to be avoided by special routing algorithms

% nonblocking networks are required for high-performance

5/33

Motivation
[e]e] lelelele]

Blocking Networks — Example: Omega-Network

blocking networks cannot implement all n! unicast connections

inl — x4
in 2 x4
in3 \ x4
in 4 >
in x4
in6 x4
in7 >
in8 >

out 1

out 2

out 3

out 4

out 5

out 6

out 7

out 8

conflicting connections
= in 2> out8

N 8 > out 7

6/33

Motivation
[e]e]e] lelele]

Nonblocking Networks — Example: Benes Network

nonblocking networks can implement all n! unicast connections

inl
in2

t— out 1
— out 2

in3 —
in 4 —

out 3

out 4

in5

in6

out 5

out 6

in7

out 7

in8

out 8

connections

in 3 > out 6
in7 > out 2
in 8 > out 4
in6 > outl
in2 > out 8
in5 > outb
in4 >out?7

inl > out3

7/33

Motivation
0000e00

Known Nonblocking Networks

> crossbars:
» prohibitive size of O(n?)
» simple routing algorithm

> Benes networks:

> scalable size of O(nlog(n)?)
» difficult routing algorithm

> sorting networks: (see next slide)

> scalable size of O(nlog(n)?)
» routing := sorting by target addresses
» but cannot route inactive inputs (will be discussed later)

8/33

Motivation
00000e0

Sorting Networks as Interconnection Networks

~
J
~
J

B O - B 7
5— = - 6
N MBS(n/2) i_) s 5 7 (111) > RBS(n/2) upper 5
11— — — 4 1(001) - 4
— (Meee™ 5 5 301
6
3 - 77 — 2 4(100) - 3
4 — — 2
6 — MBS(n/2) i) —> 1 6 (110) — RBS(n/2) lower 1
0— 0 —> 0 0(000) — 0

» sort both halves of the given input® distribute inputs according to their
sequence separately MSB in the right halves

» then merge the sorted halves » then halves are recursively sorted

9/33

Motivation
000000e

Problem for Sorting Networks: Partial Permutations

2 — 3V
1— 2 Vv
0_)Network 1
3 — 0 Vv
2 — 1 Vv
1 — 2 Vv
O_)Network Ly
1 =] 0 v

total permutations:

> every input is connected to a unique output
% routing = sorting by target addresses

partial permutations:

» some inputs have no connection (invalid inputs)
% inputs with invalid target address |

» in the example, we must have | <2 < |

% no place for L in the order is the right one

% routing # sorting target addresses

10/33

Known Solutions
[le]

Known Solutions (1): Batcher-Banyan Network

» Batcher-Banyan network?:
add a Banyan network to the sorting network

e s e e,
i 1 — 5 2
2 7| Banyan N
- MBS N 2 BanyanNyo 0 aMBSN 0> y: N
—) . L 1 —)\)\ 0
Zo

> for sorting, consider L as the largest address
» additional Banyan network can route sequences ol ¥

» Batcher-Banyan works for all MBS networks,
but unfortunately not for RBS sorting networks

1 M. Narasimha. The Batcher-Banyan self-routing network: universality and
simplification. |EEE Transcations on Communications, 36(10):1175-1178,

October 1988.
12/33

Known Solutions
oe

Known Solutions (2): Narasimha's Network

» Narasimha?proposed a front-end splitter for a RBS network

*, N LA J— —> 1l
1 i > — 2
Splitter ——| RBS N 0 o| Splitter |0 JJRBSN| o~
k 7 ?
., J AN AN 5 2 0
20
> front-end splitter: partitions valid and invalid inputs
> sequence Zp, ...,z is not sorted (just the valid inputs)

» only some RBS networks can be used for this construction

» inefficient O(n) algorithm to compute the switch configuration

2 M.Narasimha. A recursive concentrator structure with applications to
self-routing switching networks. IEEE Transcations on Communications,
42(2-4):896-898, April 1994.

13/33

Contributions
00000000000

Two Main Contributions

1. improved Narasimha's configuration circuit with two
alternatives:
> parallel prefix computation of parities (PPC)
reduces depth from O(n) to O(log?(n))
» ranking based computation (RC)
reduces depth from O(n) to O(log(n))

2. routing partial permutations on general RBS networks
two general constructions of ternary split modules

» Split modules as ternary sorters
» Split modules as ternary concentrators

15/33

Contributions
0e000000000

Contribution 1: Consider Narasimha's Splitter

p[n/2—1]ﬁ
x[n-1] 2-1 n/2-1
u[n-1] —
u[n-2]
x[n-2] . .
" subnetwork* | *
] gE 1
plil d
X[2i+1] ><
x[2i]
n/2-1 n/2-1
H n/2-2|
p[O]ﬁ lower | :
4 subnetwork * | -
x[1] ><) H \
0
X(0] vl o 0

y[n-1]
y[n-2]
y[n-3]
y[n-4]

yI3]
yl2l
i1l
ylo]

> recursive structure

» 2 2 x 2 crossbar switches

> lower and upper subnetwork

» ingoing flip-shuffle, outgoing
perfect shuffle permutation

» configuration of switches

> determine po,...,pz_1

» inputs 0/1 are evenly distributed
to both subnetworks

» j.e., one to the lower,
the next to the upper network

» subnetworks sort binary inputs

% shuffled output y will then be
sorted

16 /33

Contributions
00e00000000

Sequential Switch Configuration: by Narasimha (1994)

switches

» Narasimha's circuit computes the configuration as follows

{ msb(xg) cfori=0

pi-= pi—1 ® msb(xpj—1) ® msb(xp;) : for i >0

> leads to circuit with O(n) XOR gates
» with a depth (latency) of O(n)

17/33

Contributions
000e0000000

Contribution 1.1: Parallel Parity Configuration (PPC)

> reduces depth from O(n) to O(log?(n))

> since @ is associative, we use a work-efficient parallel-prefix
computation, but it computes all prefixes

» however, we just need half of them

» solution: two step procedure
> step 1: pairing computes z; := x3;—1 @ xp; for i =1,...,5 —1
> step 2: p; is obtained by a parallel prefix sum of z,...,zz_1:

pii=20021D... Dz

> reduce size from O(2n) to O(3n), i.e., by 25%

» almost same circuit size as the sequential configuration,
but with improved depth O(log?(n))

18/33

Contributions
0000e000000

Example: Parallel Parity Configuration (PPC)

2[0]

2[1]

a Z[2]
ﬁ 2[3]

step 1 step 2 switches

. . . column of xors work-efficient parallel
work-efficient parallel-prefix switches prefix for n/2

19/33

Contributions
00000800000

Contribution 1.2:Ranking based Computation (RC)

» reduces depth from O(n) to O(log(n))
» ranks: number of Os in xp,...,X;

i
» ranks: r; ;= Z—'msb(x,-) -1
=0

r7=101 X7=1 F—— 7=10 ——y 15=0—— y7=1 r1=000
r6=100 x6=1 y6=1 r3=001
r5=011 x5=1 y5=1 r7=101
14=010 x4=0 y4=1 r6=100
r3=001 x3=1 y3=1 r5=011
122001 x2=0 y2=0 r4=010
r1=000 x1=1 y1=0 r2=001
r0=000 x0=0 y0=0 r0=000

» rank r; is considered as local target address in that the Split

module will route inputs to the outputs
20/33

Contributions
000000e0000

Narasimha's Network: Routing Partial Permutations

g —))

-% - 3 = | > (front-end) valid splitter:

é - = a2 > separates valid inputs and invalid inputs
- m x .

K — » RBS(n):

> consists of split module, and two RBS
(n/2) modules

= sL(RES (/)] Spli '
< = RBS (n/2) [» Split module:
0 = %_ P sorts the ternary inputs with ordering
x

N 2 RBS (n/2) 0<1=<1

21/33

Contributions
00000008000

Asymptotic Complexities

| sequential PPC | RC
splitter depth O(n) O(log(n)?) O(log(n))
splitter size O(nlog(n)) O(nlog(n)?) | O(nlog(n)?)
computation every column | every column | first column
main gates xor xor adder
network depth || O(n) O(log(n)?) O(log(n)?)

network size

O(nlog(n)*)

O(nlog(n)*)

O(nlog(n)*)

» size of the entire network is same for all three circuits
» depth of RC approach is better as compared to others

22/33

Contributions
00000000e00

Contribution 2: Solutions for other RBS networks

11 |resm) > for partial permutations, we may use ternary
— or ternary splitters

0L RBS(n/2)'§ — % 1s up, 0s down, L anywhere
— % we need ternary sorters or ternary splitters

we proposed three general constructions for ternary split modules
based on binary modules, two of them are shown on the next slide

23/33

Contributions
00000000080

Basic Terminology: Splitter, Sorter, Concentrator

0 —> 1 0—> 1 0=

1 — . 1 1 — 1 1 =

1 — Splitter 1 1— Sorter 1 1 Concentrator i

1L == 0 1 —> 0 1L = 0
» routes all Os to the » sorts the sequence P routes either Os or 1s

lower half and all 1s with total order to its 5 outputs

to the upper half 0=<1=<1

» remark: for (partial) permutations,
we have at most 5 Os and at most 5 1s in the inputs

> a splitter can be implemented by two concentrators

> every sorter is also a splitter, but not vice versa

24 /33

Contributions
0000000000 e

Contribution 2: Solutions for other RBS networks

uln-1]
uln-1] -
1_ fpyinn) yin-1]
o
sclanr:g E concentratorf T yn/2]
(1-sorter) g (1-sorter)
8% x[0]
1ol u[o] | & £ Eﬁ
EQ
s’
11| o & I(n-1
x[n-1] %g x[n-1} [o-1]
binary 3
sorter 2 concentrator|
(0-sorter) § (0-sorter) y[n/2-1]
x(o1 0] Yol X10] ———yi0]

1[0]

» implements a ternary
sorter

» implements a ternary
splitter

> doubling circuit size of » doubling circuit size of
RBS networks RBS networks

25/33

Experimental Results
@000

Experimental Results

» we consider implementations of four known binary sorters:
Batcher-Bitonic [?], Cheng-Chen [?], Chien-Orug [?],
Narasimha [7]

» implemented as a combinational circuit with 1 bit message size

> we compare the circuit size and circuit depth as a measure of
the latency (using netlist generator) for different numbers of
inputs

» we compare chip area, power consumption and maximal clock
frequency (using Cadence 65nm technology) with different
numbers of inputs

27/33

Experimental Results
[e] lele}

Asymptotic Complexities

| network || depth | size \

Crossbar O(log(n)) [O(n?)

Narasimha [?] O(n) O(n(log(n))?)
PPC O(log(n)?) | O(n(log(n))?)
RC O(log(n)?) | O(n(log(n))?)
Batcher-Bitonic [?] || O(log(n)?) | O(n(log(n))?)
Chien-Orug [?] O(log(n)?) | O(n(log(n))?)
Cheng-Chen [7?] O(log(n)?) | O(n(log(n))*)

» RC and Cheng-Chen's network have best depth complexities
> developed networks are as good as so-far known best ones

» but can additionally route partial permutations

28/33

Experimental Results
[e]e] e}

Experimental Results - Binary Sorter

-10°
; T T T T
80 |—e— Batc68 b
% 1l | —a- ChCh96
£ 60| | ChOroa ,
f —— Nara94
g £ — PPC
2 g 40f - RC e
5 05] -
e
® ol |
[
N
1%}
ol i
0 B I I I I I I I
| ! ! ! ! ! | 0 20 40 60 80 100 120 140
0 20 40 60 80 100 120 140 n

n

P sizes of ChCh96, Nara94, and PPC are more or less the same

» depths of PPC and the ChCh96 are comparable in the ranges up to
n = 64,

% PPC and Cheng-Chen are the best for practical depth and size

20/33

Experimental Results
[e]e]e]]

Experimental Results - Narashima’s RBS Network with
Front-End Splitter

-10°

(250 F

21 |—e—Nara% 1 | —e—Nara9%4 |
N -=— PPC 200 —= PPC
® —e— RC - RC
a0 1.5\ f 150 |- 4
2 =
% £
5 1 : & 10 .
*
g 05| : 50| .
&

of . or)

1 1 1
0 20 40 60 80 100 120 140 0 20 40 €0 80 100 120 140

n n

P sizes of PPC and Nara94 is almost the same
» depth of PPC is good
% again, PPC is the best for practical depth and size

30/33

Summary
[le]

Summary

> system-on-a-chip designs require efficient interconnection
networks

» mesh networks are not powerful enough

> crossbars lead to large circuits

> sorting networks are attractive alternatives, but cannot handle
invalid inputs

» we considered extensions of sorting networks for partial
permutations

» using ternary sorters as Split modules in RBS networks

» using prefix sequences generated by a front-end splitter

> the latter requires prefix-based configurations, and developed
two efficient versions (parallel prefix and ranking based
configurations)

32/33

Summary
oe

The End

Thank you for your attention.

Questions?

33/33

References |

34/33

RBS-Banyan Networks

2 (10) —
J_—)Lg_

0 (00) =
3(11)—>

2 — L
l L = 2
MBS N Banyan N .yo 0 — MBS N g Banyan N G
L — 0
11—y
2 (10) —| £
0 (00) —| &
1(01)—»

35/33

Asymptotic Complexities

\ || depth | size \
Merge module O(log(n)) | O(n(log(n))?)
Split module (permutation) || O(log(n)) | O(n(log(n))?)
Split module (concentrator) || O(log(n)) | O(n)

| networks || depth | size
MBS O(log®(n)) | O(nlog?(n))
RBS O(log?(n)) | O(nlog®(n))
RBS (concentrator) || O(log®(n)) | O(nlog(n))
AKS O(log(n)) | O(nlog(n))

36/33

Experimental Results - Other Networks

of cells

0.5

-10°

—e— BatcherBanyan
S PPC
Benes

e

50 60

P latency of Benes is best

» PPC is the best for practical

-10*
. T T T T
L5 o2 BatcherBanyan)
o - PPC
b 5 —— Benes
g 1f ,
3
8
z
| g 05 1
3
]
—
| ol |
. . \ . . . \
70 0 10 20 30 40 50 60 70

size

37/33

	Motivation
	Known Solutions
	Contributions
	Experimental Results
	Summary
	Appendix

