

Nonblocking On-Chip Interconnection Networks

Tripti Jain

Embedded Systems Chair
Department of Computer Science
TU Kaiserslautern, Germany

July 26, 2019

Motivation
oooooooo

Known Solutions
oo

Contributions
oooooooooooo

Experimental Results
oooo

Summary
oo

Table of Contents

1. Motivation
2. Known Solutions
3. Contributions
4. Experimental Results
5. Summary

Motivation

► Moore's law:

number of transistors per mm^2 is doubling every year

- ↪ resulted in exponential growth of computational power
- around 2005, it has however reached its technological limits
- ↪ parallel architectures required for further performance increase
- ↪ parallel architectures are realized as systems-on-a-chip (SoC)
- ↪ new challenge:

developing efficient interconnection networks

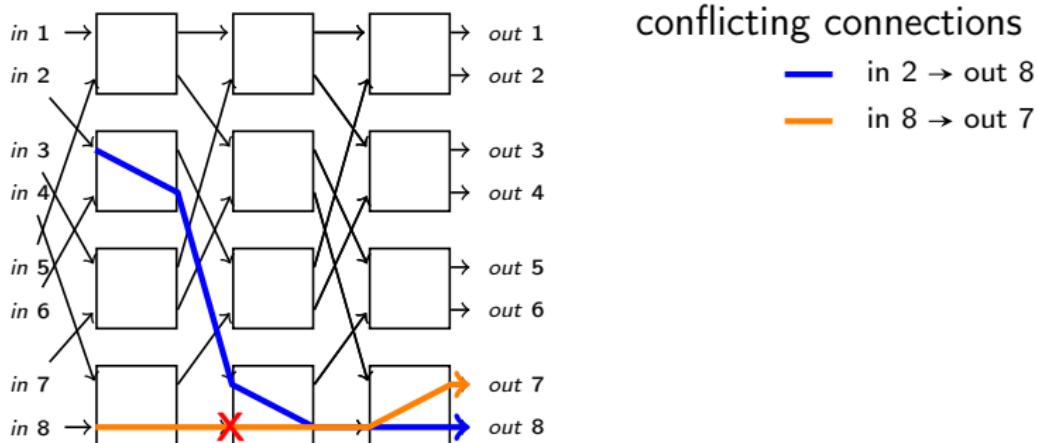
Commonly Used Interconnection Networks

	architecture
AMBA 2.0,3.0 (ARM)	bus
CoreConnect (IBM)	bus
STBus (STmicro.)	bus
Eclipse (academic)	2D-mesh
Cliche	2D-mesh

- ▶ buses have limited bandwidth
- ↗ buses are currently replaced with 2D-mesh networks
- ▶ but the latter are also limited, i.e., blocking (see next slides)
 - ↗ poor real-time guarantees
 - ↗ deadlocks have to be avoided by special routing algorithms
- ↗ **nonblocking networks are required for high-performance**

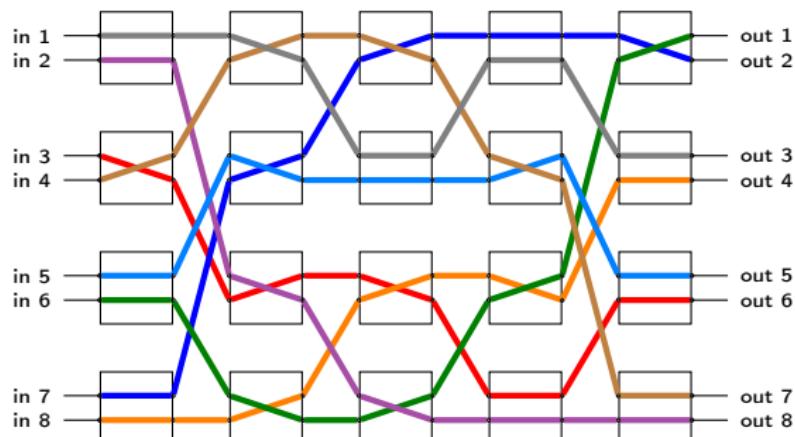
Blocking Networks – Example: Omega-Network

blocking networks cannot implement all $n!$ unicast connections



Nonblocking Networks – Example: Beneš Network

nonblocking networks can implement all $n!$ unicast connections



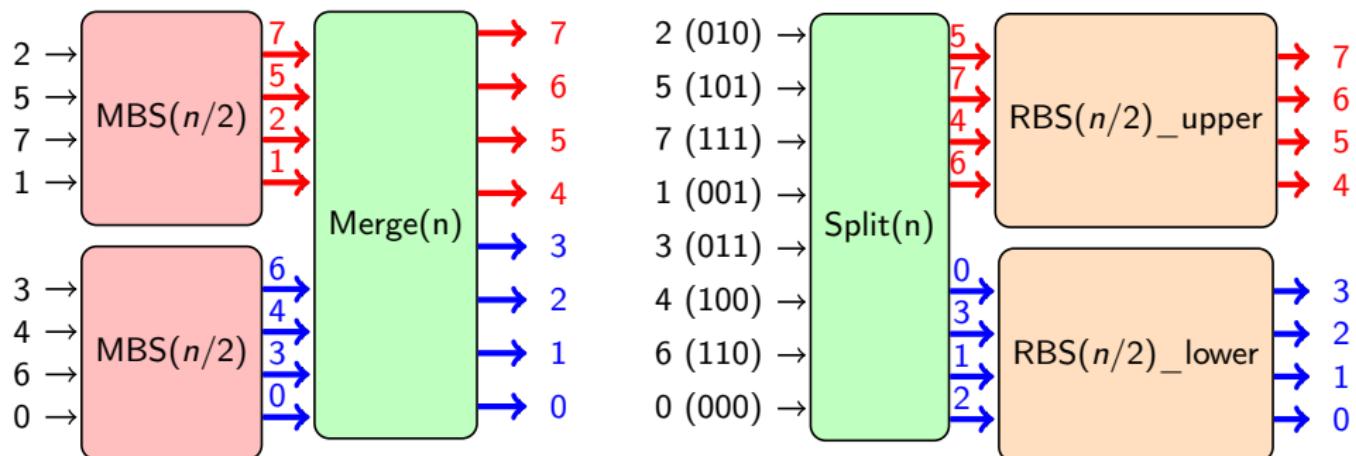
connections

- in 3 → out 6
- in 7 → out 2
- in 8 → out 4
- in 6 → out 1
- in 2 → out 8
- in 5 → out 5
- in 4 → out 7
- in 1 → out 3

Known Nonblocking Networks

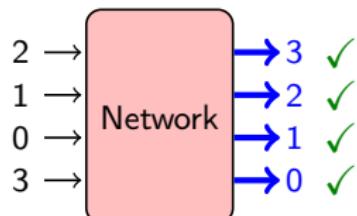
- ▶ crossbars:
 - ▶ prohibitive size of $O(n^2)$
 - ▶ simple routing algorithm
- ▶ Beneš networks:
 - ▶ scalable size of $O(n \log(n)^a)$
 - ▶ difficult routing algorithm
- ▶ sorting networks: (see next slide)
 - ▶ scalable size of $O(n \log(n)^a)$
 - ▶ routing := sorting by target addresses
 - ▶ but cannot route inactive inputs (will be discussed later)

Sorting Networks as Interconnection Networks



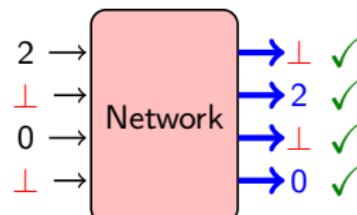
- ▶ sort both halves of the given input sequence separately
- ▶ then merge the sorted halves
- ▶ distribute inputs according to their MSB in the right halves
- ▶ then halves are recursively sorted

Problem for Sorting Networks: Partial Permutations



total permutations:

- ▶ every input is connected to a unique output
- ↪ routing = sorting by target addresses

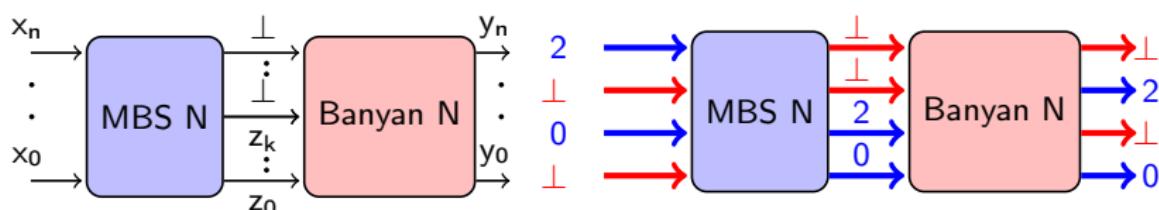


partial permutations:

- ▶ some inputs have no connection (invalid inputs)
- ↪ inputs with invalid target address ⊥
- ▶ in the example, we must have $\perp < 2 < \perp$
- ↪ no place for \perp in the order is the right one
- ↪ **routing \neq sorting target addresses**

Known Solutions (1): Batcher-Banyan Network

- ▶ Batcher-Banyan network¹:
add a Banyan network to the sorting network

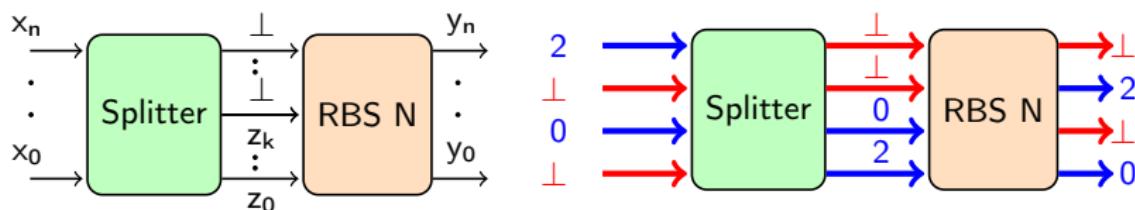


- ▶ for sorting, consider \perp as the largest address
- ▶ additional Banyan network can route sequences $\alpha \perp^k$
- ▶ **Batcher-Banyan works for all MBS networks,
but unfortunately not for RBS sorting networks**

¹ M. Narasimha. The Batcher-Banyan self-routing network: universality and simplification. *IEEE Transactions on Communications*, 36(10):1175-1178, October 1988.

Known Solutions (2): Narasimha's Network

- ▶ Narasimha² proposed a front-end splitter for a RBS network



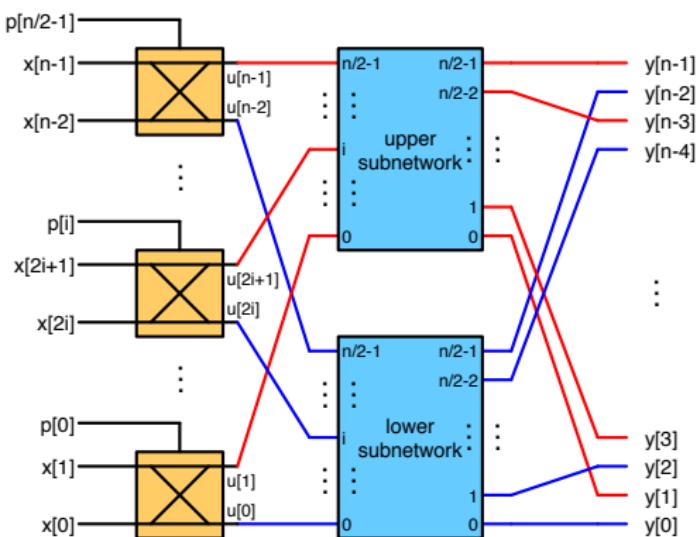
- ▶ front-end splitter: partitions valid and invalid inputs
- ▶ sequence z_0, \dots, z_k is not sorted (just the valid inputs)
- ▶ only some RBS networks can be used for this construction
- ▶ inefficient $O(n)$ algorithm to compute the switch configuration

² M.Narasimha. A recursive concentrator structure with applications to self-routing switching networks. *IEEE Transactions on Communications*, 42(2-4):896-898, April 1994.

Two Main Contributions

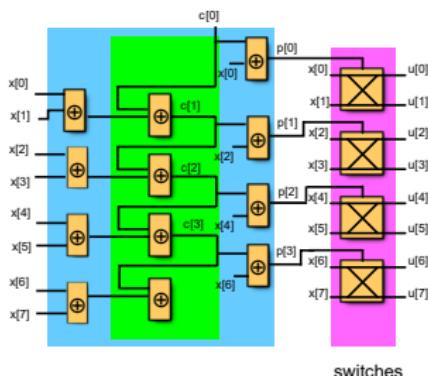
1. improved Narasimha's configuration circuit with two alternatives:
 - ▶ parallel prefix computation of parities (PPC)
reduces depth from $O(n)$ to $O(\log^2(n))$
 - ▶ ranking based computation (RC)
reduces depth from $O(n)$ to $O(\log(n))$
2. routing partial permutations on general RBS networks
two general constructions of ternary split modules
 - ▶ Split modules as ternary sorters
 - ▶ Split modules as ternary concentrators

Contribution 1: Consider Narasimha's Splitter



- ▶ recursive structure
 - ▶ $\frac{n}{2}$ 2×2 crossbar switches
 - ▶ lower and upper subnetwork
 - ▶ ingoing flip-shuffle, outgoing perfect shuffle permutation
- ▶ configuration of switches
 - ▶ determine $p_0, \dots, p_{\frac{n}{2}-1}$
 - ▶ inputs **0/1** are evenly distributed to both subnetworks
 - ▶ i.e., one to the lower, the next to the upper network
 - ▶ subnetworks sort binary inputs
 - ▶ shuffled output y will then be sorted

Sequential Switch Configuration: by Narasimha (1994)



- ▶ Narasimha's circuit computes the configuration as follows

$$p_i := \begin{cases} \text{msb}(x_0) & : \text{for } i = 0 \\ p_{i-1} \oplus \text{msb}(x_{2i-1}) \oplus \text{msb}(x_{2i}) & : \text{for } i > 0 \end{cases}$$

- ▶ leads to circuit with $O(n)$ XOR gates
- ▶ **with a depth (latency) of $O(n)$**

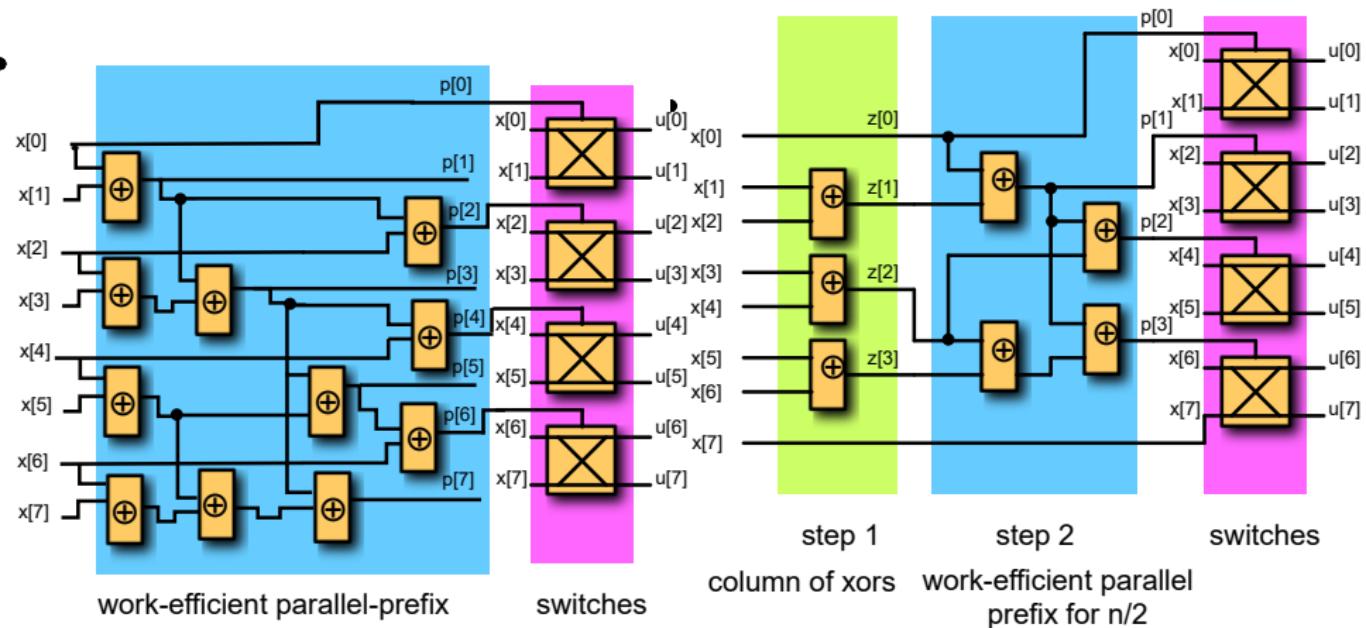
Contribution 1.1: Parallel Parity Configuration (PPC)

- ▶ reduces depth from $O(n)$ to $O(\log^2(n))$
- ▶ since \oplus is associative, we use a work-efficient parallel-prefix computation, but it computes all prefixes
- ▶ **however, we just need half of them**
- ▶ **solution: two step procedure**
 - ▶ step 1: pairing computes $z_i := x_{2i-1} \oplus x_{2i}$ for $i = 1, \dots, \frac{n}{2} - 1$
 - ▶ step 2: p_i is obtained by a parallel prefix sum of $z_0, \dots, z_{\frac{n}{2}-1}$:

$$p_i := z_0 \oplus z_1 \oplus \dots \oplus z_i$$

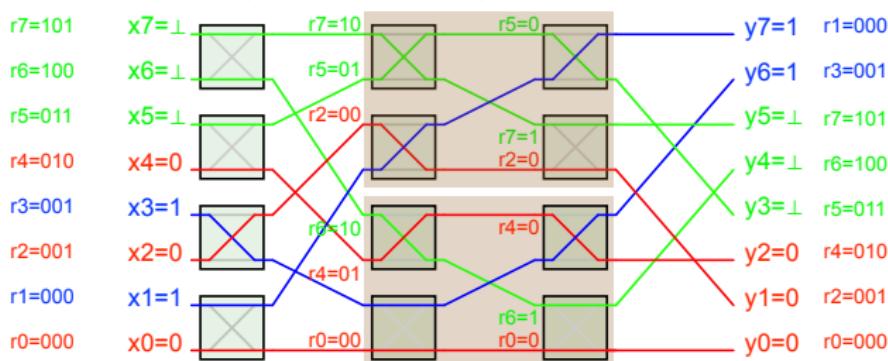
- ▶ reduce size from $O(2n)$ to $O(\frac{3}{2}n)$, i.e., by 25%
- ▶ almost same circuit size as the sequential configuration, but with improved depth $O(\log^2(n))$

Example: Parallel Parity Configuration (PPC)



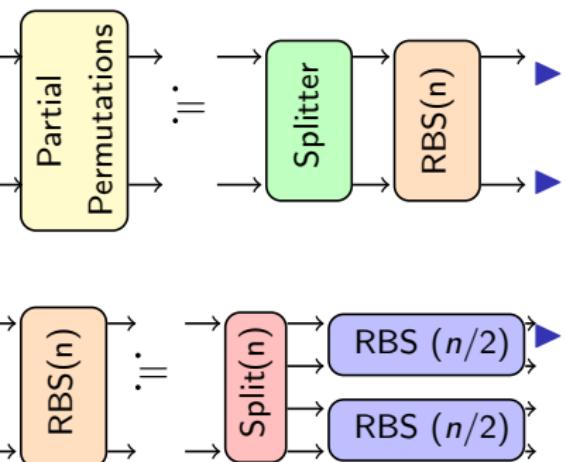
Contribution 1.2: Ranking based Computation (RC)

- ▶ reduces depth from $O(n)$ to $O(\log(n))$
- ▶ ranks: number of 0s in x_0, \dots, x_i
- ▶ ranks: $r_i := \left(\sum_{j=0}^i \neg \text{msb}(x_j) \right) - 1$



- ▶ rank r_i is considered as local target address in that the Split module will route inputs to the outputs

Narasimha's Network: Routing Partial Permutations



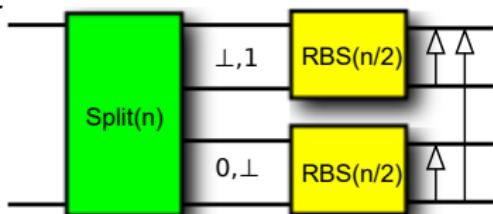
- ▶ (front-end) valid splitter:
 - ▶ separates valid inputs and invalid inputs
- ▶ RBS(n):
 - ▶ consists of split module, and two RBS ($n/2$) modules
- ▶ Split module:
 - ▶ sorts the ternary inputs with ordering $0 \preceq \perp \preceq 1$

Asymptotic Complexities

	sequential	PPC	RC
splitter depth	$O(n)$	$O(\log(n)^2)$	$O(\log(n))$
splitter size	$O(n \log(n))$	$O(n \log(n)^2)$	$O(n \log(n)^2)$
computation main gates	every column xor	every column xor	first column adder
network depth	$O(n)$	$O(\log(n)^3)$	$O(\log(n)^2)$
network size	$O(n \log(n)^3)$	$O(n \log(n)^3)$	$O(n \log(n)^3)$

- ▶ size of the entire network is same for all three circuits
- ▶ depth of RC approach is better as compared to others

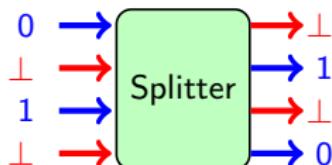
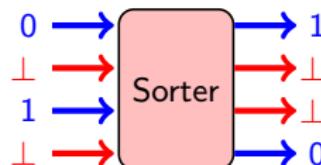
Contribution 2: Solutions for other RBS networks



- ▶ for partial permutations, we may use ternary or ternary splitters
- ⇒ 1s up, 0s down, \perp anywhere
- ⇒ we need ternary sorters or ternary splitters

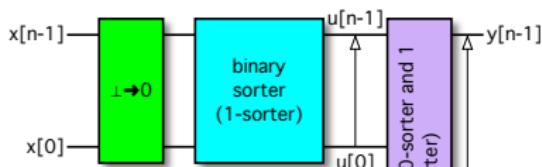
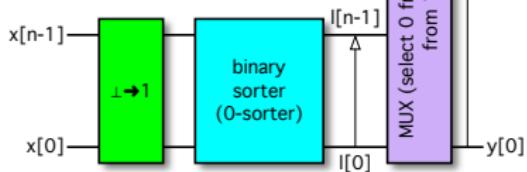
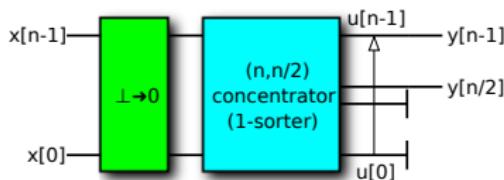
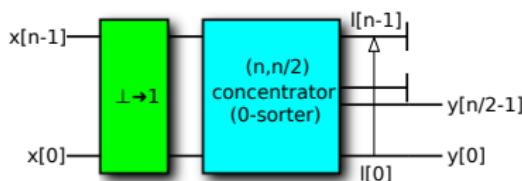
we proposed three general constructions for ternary split modules based on binary modules, two of them are shown on the next slide

Basic Terminology: Splitter, Sorter, Concentrator



- ▶ routes all 0s to the lower half and all 1s to the upper half
- ▶ sorts the sequence with total order $0 \preceq \perp \preceq 1$
 - ▶ remark: for (partial) permutations, we have at most $\frac{n}{2}$ 0s and at most $\frac{n}{2}$ 1s in the inputs
 - ▶ a splitter can be implemented by two concentrators
 - ▶ every sorter is also a splitter, but not vice versa
- ▶ routes either 0s or 1s to its $\frac{n}{2}$ outputs

Contribution 2: Solutions for other RBS networks



- ▶ implements a ternary sorter
- ▶ doubling circuit size of RBS networks
- ▶ implements a ternary splitter
- ▶ doubling circuit size of RBS networks

Experimental Results

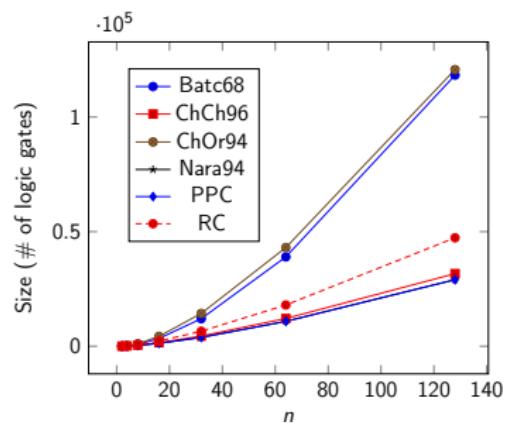
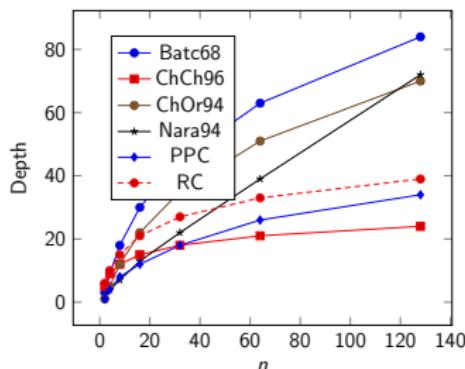
- ▶ we consider implementations of four known binary sorters: Batcher-Bitonic [?], Cheng-Chen [?], Chien-Oruç [?], Narasimha [?]
- ▶ implemented as a combinational circuit with 1 bit message size
- ▶ we compare the **circuit size** and **circuit depth** as a measure of the latency (**using netlist generator**) for different numbers of inputs
- ▶ we compare **chip area**, **power consumption** and **maximal clock frequency** (**using Cadence 65nm technology**) with different numbers of inputs

Asymptotic Complexities

network	depth	size
Crossbar	$O(\log(n))$	$O(n^2)$
Narasimha [?]	$O(n)$	$O(n(\log(n))^3)$
PPC	$O(\log(n)^3)$	$O(n(\log(n))^3)$
RC	$O(\log(n)^2)$	$O(n(\log(n))^3)$
Batcher-Bitonic [?]	$O(\log(n)^3)$	$O(n(\log(n))^3)$
Chien-Oruç [?]	$O(\log(n)^3)$	$O(n(\log(n))^3)$
Cheng-Chen [?]	$O(\log(n)^2)$	$O(n(\log(n))^3)$

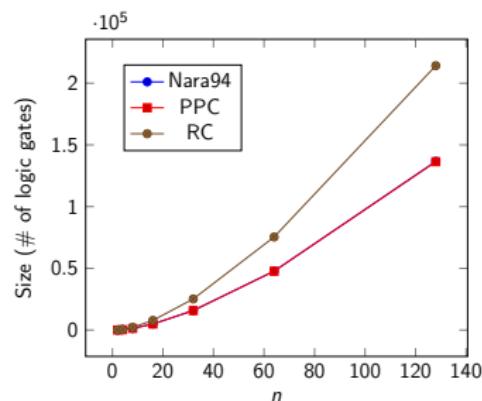
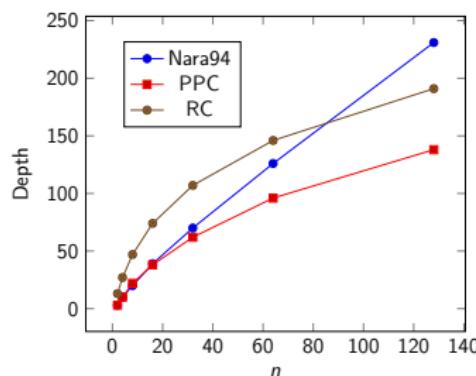
- ▶ RC and Cheng-Chen's network have best depth complexities
- ▶ developed networks are as good as so-far known best ones
- ▶ but can additionally route partial permutations

Experimental Results - Binary Sorter



- ▶ sizes of ChCh96, Nara94, and PPC are more or less the same
- ▶ depths of PPC and the ChCh96 are comparable in the ranges up to $n = 64$,
- ↪ PPC and Cheng-Chen are the best for practical depth and size

Experimental Results - Narashima's RBS Network with Front-End Splitter



- ▶ sizes of PPC and Nara94 is almost the same
- ▶ depth of PPC is good
- ↪ again, PPC is the best for practical depth and size

Summary

- ▶ system-on-a-chip designs require efficient interconnection networks
- ▶ mesh networks are not powerful enough
- ▶ crossbars lead to large circuits
- ▶ sorting networks are attractive alternatives, but cannot handle invalid inputs
- ▶ we considered extensions of sorting networks for partial permutations
 - ▶ using ternary sorters as Split modules in RBS networks
 - ▶ using prefix sequences generated by a front-end splitter
 - ▶ the latter requires prefix-based configurations, and developed two efficient versions (parallel prefix and ranking based configurations)

Motivation
oooooooo

Known Solutions
oo

Contributions
oooooooooooo

Experimental Results
oooo

Summary
oo●

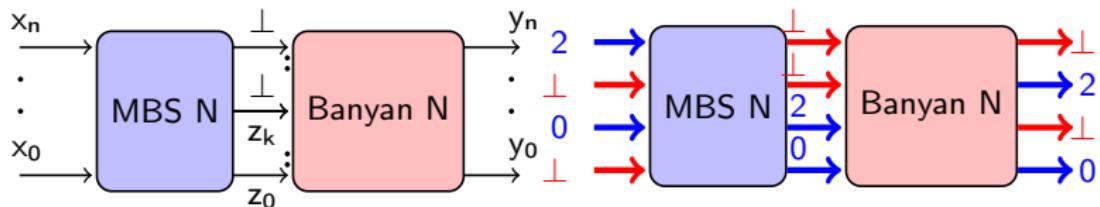
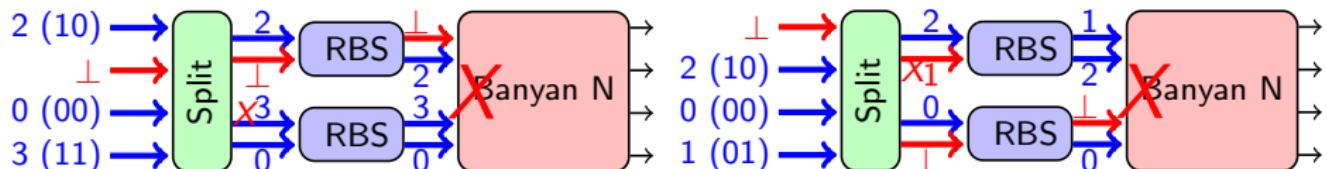
The End

Thank you for your attention.

Questions?

References I

RBS-Banyan Networks

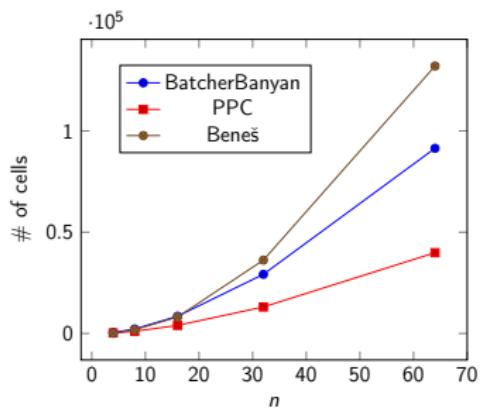
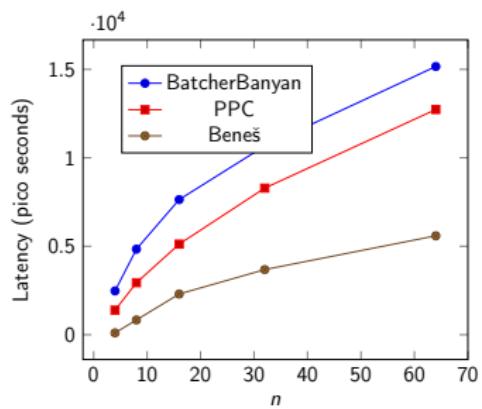


Asymptotic Complexities

	depth	size
Merge module	$O(\log(n))$	$O(n(\log(n))^2)$
Split module (permutation)	$O(\log(n))$	$O(n(\log(n))^2)$
Split module (concentrator)	$O(\log(n))$	$O(n)$

networks	depth	size
MBS	$O(\log^2(n))$	$O(n \log^3(n))$
RBS	$O(\log^2(n))$	$O(n \log^3(n))$
RBS (concentrator)	$O(\log^2(n))$	$O(n \log(n))$
AKS	$O(\log(n))$	$O(n \log(n))$

Experimental Results - Other Networks



- ▶ latency of Beneš is best
- ▶ PPC is the best for practical size