
Nonblocking On-Chip Interconnection Networks

Tripti Jain

Embedded Systems Chair
Department of Computer Science

TU Kaiserslautern, Germany

July 26, 2019

Motivation Known Solutions Contributions Experimental Results Summary

Table of Contents

1. Motivation

2. Known Solutions

3. Contributions

4. Experimental Results

5. Summary

2 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Motivation

I Moore’s law:
number of transistors per mm2 is doubling every year

resulted in exponential growth of computational power
I around 2005, it has however reached its technological limits
parallel architectures required for further performance increase
parallel architectures are realized as systems-on-a-chip (SoC)
new challenge:

developing efficient interconnection networks

4 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Commonly Used Interconnection Networks

architecture
AMBA 2.0,3.0 (ARM) bus
CoreConnect (IBM) bus
STBus (STmicro.) bus
Eclipse (academic) 2D-mesh
Cliche 2D-mesh

I buses have limited bandwidth
buses are currently replaced with 2D-mesh networks
I but the latter are also limited, i.e., blocking (see next slides)

poor real-time guarantees
deadlocks have to be avoided by special routing algorithms

nonblocking networks are required for high-performance

5 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Blocking Networks – Example: Omega-Network

blocking networks cannot implement all n! unicast connections

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

out 1

out 2

out 3

out 4

out 5

out 6

out 7

out 8X

conflicting connections
in 2 out 8

in 8 out 7

6 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Nonblocking Networks – Example: Beneš Network

nonblocking networks can implement all n! unicast connections

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

in 1
in 2

in 3
in 4

in 5
in 6

in 7
in 8

out 1
out 2

out 3
out 4

out 5
out 6

out 7
out 8

connections
in 3 out 6

in 7 out 2

in 8 out 4

in 6 out 1

in 2 out 8

in 5 out 5

in 4 out 7

in 1 out 3

7 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Known Nonblocking Networks

I crossbars:
I prohibitive size of O(n2)
I simple routing algorithm

I Beneš networks:
I scalable size of O(n log(n)a)
I difficult routing algorithm

I sorting networks: (see next slide)
I scalable size of O(n log(n)a)
I routing := sorting by target addresses
I but cannot route inactive inputs (will be discussed later)

8 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Sorting Networks as Interconnection Networks

MBS(n/2)

2
5
7
1

MBS(n/2)

3
4
6
0

Merge(n)

7
5
2
1

6
4
3
0 0

7

6

1

5

4

2

3

I sort both halves of the given input
sequence separately

I then merge the sorted halves

Split(n)

2 (010)

5 (101)

7 (111)

1 (001)

3 (011)

4 (100)

6 (110)

0 (000)

RBS(n/2)_upper

RBS(n/2)_lower

5
7

6
4

0
3
1
2

0
1
2
3

4
5
6
7

I distribute inputs according to their
MSB in the right halves

I then halves are recursively sorted

9 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Problem for Sorting Networks: Partial Permutations

Network

2
1
0
3

3
2
1
0

X
X
X
X

total permutations:
I every input is connected to a unique output
routing = sorting by target addresses

Network

2
⊥
0
⊥

⊥
2
⊥
0

X
X
X
X

partial permutations:
I some inputs have no connection (invalid inputs)
inputs with invalid target address ⊥
I in the example, we must have ⊥ < 2 < ⊥
no place for ⊥ in the order is the right one
routing 6= sorting target addresses

10 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Known Solutions (1): Batcher-Banyan Network

I Batcher-Banyan network1:
add a Banyan network to the sorting network

MBS N Banyan N

xn

x0

⊥

⊥
zk

z0

yn

y0

MBS N Banyan N

2
⊥
0
⊥

⊥
⊥
2
0

0

⊥
2
⊥

I for sorting, consider ⊥ as the largest address
I additional Banyan network can route sequences α⊥k

I Batcher-Banyan works for all MBS networks,
but unfortunately not for RBS sorting networks

1 M. Narasimha. The Batcher-Banyan self-routing network: universality and
simplification. IEEE Transcations on Communications, 36(10):1175-1178,
October 1988.

12 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Known Solutions (2): Narasimha’s Network

I Narasimha2proposed a front-end splitter for a RBS network

Splitter RBS N

xn

x0

⊥

⊥
zk

z0

yn

y0

Splitter RBS N

2
⊥
0
⊥

⊥
⊥
0
2

0

⊥
2
⊥

I front-end splitter: partitions valid and invalid inputs
I sequence z0, . . . , zk is not sorted (just the valid inputs)
I only some RBS networks can be used for this construction
I inefficient O(n) algorithm to compute the switch configuration

2 M.Narasimha. A recursive concentrator structure with applications to
self-routing switching networks. IEEE Transcations on Communications,
42(2-4):896-898, April 1994.

13 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Two Main Contributions

1. improved Narasimha’s configuration circuit with two
alternatives:
I parallel prefix computation of parities (PPC)

reduces depth from O(n) to O(log2(n))
I ranking based computation (RC)

reduces depth from O(n) to O(log(n))

2. routing partial permutations on general RBS networks
two general constructions of ternary split modules
I Split modules as ternary sorters
I Split modules as ternary concentrators

15 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Contribution 1: Consider Narasimha’s Splitter

x[0]

x[1]

x[2i]

x[2i+1]

x[n-2]

x[n-1]

u[0]
u[1]

u[2i]
u[2i+1]

u[n-2]
u[n-1]

y[0]
y[1]

y[n-2]
y[n-1]

y[n-3]
y[n-4]

y[2]
y[3]lower

subnetwork

upper
subnetwork

0

n/2-1

i

0

n/2-1

i

n/2-1
n/2-2

0
1

n/2-1
n/2-2

0
1

…

…
…

…
…

…

…
…

…

p[i]

p[0]

p[n/2-1]

…
…

…
…

…
…

I recursive structure
I n

2 2× 2 crossbar switches
I lower and upper subnetwork
I ingoing flip-shuffle, outgoing

perfect shuffle permutation
I configuration of switches

I determine p0, . . . , p n
2−1

I inputs 0/1 are evenly distributed
to both subnetworks

I i.e., one to the lower,
the next to the upper network

I subnetworks sort binary inputs
shuffled output y will then be

sorted

16 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Sequential Switch Configuration: by Narasimha (1994)

x[7]

x[6]

x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[7]

x[6]

x[5]

x[4]

x[3]

u[0]

x[2]

x[1]

x[0]

u[1]

u[2]

u[3]

u[4]

u[5]

u[6]

u[7]

switches

⊕ ⊕

⊕

c [0]

p[0]

⊕

⊕

⊕

p[1]

⊕

⊕

⊕

⊕

c [1]

p[3]

p[2]

x[2]

x[0]

⊕

⊕

c [2]

c [3] x[4]

x[6]

I Narasimha’s circuit computes the configuration as follows

pi :=

{
msb(x0) : for i = 0
pi−1 ⊕msb(x2i−1)⊕msb(x2i) : for i > 0

I leads to circuit with O(n) XOR gates
I with a depth (latency) of O(n)

17 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Contribution 1.1: Parallel Parity Configuration (PPC)

I reduces depth from O(n) to O(log2(n))

I since ⊕ is associative, we use a work-efficient parallel-prefix
computation, but it computes all prefixes

I however, we just need half of them
I solution: two step procedure

I step 1: pairing computes zi := x2i−1 ⊕ x2i for i = 1, . . . , n2 − 1
I step 2: pi is obtained by a parallel prefix sum of z0, . . . , z n

2−1:

pi := z0 ⊕ z1 ⊕ . . .⊕ zi

I reduce size from O(2n) to O(3
2n), i.e., by 25%

I almost same circuit size as the sequential configuration,
but with improved depth O(log2(n))

18 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Example: Parallel Parity Configuration (PPC)

x[7]

x[6]

x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x[7]

x[6]

x[5]

x[4]

x[3]

u[0]

x[2]

x[1]

x[0]

u[1]

u[2]

u[3]

u[4]

u[5]

u[6]

u[7]

switches

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

p[1]

p[0]

p[2]

p[3]

p[4]

p[5]

p[6]

p[7]

work-efficient parallel-prefix

⊕

⊕

⊕

⊕

p[0]

⊕

x[7]

z[0]

⊕

⊕
x[6]

x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

z[1]

z[2]

z[3]

p[1]

p[2]

p[3]

x[7]

x[6]

x[5]

x[4]

x[3]

u[0]

x[2]

x[1]

x[0]

u[1]

u[2]

u[3]

u[4]

u[5]

u[6]

u[7]

step 1 step 2 switches

column of xors work-efficient parallel
prefix for n/2

19 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Contribution 1.2:Ranking based Computation (RC)

I reduces depth from O(n) to O(log(n))
I ranks: number of 0s in x0, . . . , xi

I ranks: ri :=

 i∑
j=0

¬msb(xi)

− 1

x7=⊥

x6=⊥

x5=⊥

x4=0

x3=1

x2=0

x1=1

x0=0

y7=1

y6=1

y5=⊥

y4=⊥

y3=⊥

y2=0

y1=0

y0=0

r7=101

r6=100

r5=011

r4=010

r3=001

r2=001

r1=000

r0=000

r7=10

r6=10

r5=01

r4=01

r2=00

r0=00 r0=0
r6=1

r4=0

r2=0
r7=1

r5=0

r7=101

r6=100

r5=011

r4=010

r3=001

r2=001

r1=000

r0=000

I rank ri is considered as local target address in that the Split
module will route inputs to the outputs

20 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Narasimha’s Network: Routing Partial Permutations

P
ar
ti
al

P
er
m
ut
at
io
ns

Sp
lit
te
r

R
B
S(
n)=

R
B
S(
n)

Sp
lit
(n
) RBS (n/2)

RBS (n/2)

=

I (front-end) valid splitter:
I separates valid inputs and invalid inputs

I RBS(n):
I consists of split module, and two RBS

(n/2) modules
I Split module:

I sorts the ternary inputs with ordering
0 � ⊥ � 1

21 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Asymptotic Complexities

sequential PPC RC

splitter depth O(n) O(log(n)2) O(log(n))
splitter size O(n log(n)) O(n log(n)2) O(n log(n)2)

computation every column every column first column
main gates xor xor adder
network depth O(n) O(log(n)3) O(log(n)2)
network size O(n log(n)3) O(n log(n)3) O(n log(n)3)

I size of the entire network is same for all three circuits
I depth of RC approach is better as compared to others

22 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Contribution 2: Solutions for other RBS networks

RBS(n/2)

Split(n)

RBS(n/2)

⊥,1

0,⊥

I for partial permutations, we may use ternary sorters
or ternary splitters

1s up, 0s down, ⊥ anywhere
we need ternary sorters or ternary splitters

we proposed three general constructions for ternary split modules
based on binary modules, two of them are shown on the next slide

23 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Basic Terminology: Splitter, Sorter, Concentrator

Splitter

0
⊥
1
⊥

⊥
1
⊥
0

I routes all 0s to the
lower half and all 1s
to the upper half

Sorter

0
⊥
1
⊥

1
⊥
⊥
0

I sorts the sequence
with total order
0 � ⊥ � 1

Concentrator

0
⊥
1
⊥

⊥
0

I routes either 0s or 1s
to its n

2 outputs

I remark: for (partial) permutations,
we have at most n

2 0s and at most n
2 1s in the inputs

I a splitter can be implemented by two concentrators
I every sorter is also a splitter, but not vice versa

24 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Contribution 2: Solutions for other RBS networks

binary
sorter

(1-sorter)

binary
sorter

(0-sorter)

⊥➜0

⊥➜1

M
UX

 (
se

le
ct

 0
 fr

om
 0

-s
or

te
r a

nd
 1

fr

om
 1

-s
or

te
r)

x[n-1]

x[0]

x[n-1]

x[0]

y[n-1]

y[0]

u[0]

u[n-1]

l[n-1]

l[0]

I implements a ternary
sorter

I doubling circuit size of
RBS networks

y[n-1]

y[0]

y[n/2]

y[n/2-1]

(n,n/2)
concentrator
(1-sorter)

(0-sorter)

⊥➜0

⊥➜1

x[n-1]

x[0]

x[n-1]

x[0]

u[n-1]

u[0]

l[n-1]

l[0]

(n,n/2)
concentrator

I implements a ternary
splitter

I doubling circuit size of
RBS networks 25 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Experimental Results

I we consider implementations of four known binary sorters:
Batcher-Bitonic [?], Cheng-Chen [?], Chien-Oruç [?],
Narasimha [?]

I implemented as a combinational circuit with 1 bit message size
I we compare the circuit size and circuit depth as a measure of

the latency (using netlist generator) for different numbers of
inputs

I we compare chip area, power consumption and maximal clock
frequency (using Cadence 65nm technology) with different
numbers of inputs

27 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Asymptotic Complexities

network depth size

Crossbar O(log(n)) O(n2)
Narasimha [?] O(n) O(n(log(n))3)
PPC O(log(n)3) O(n(log(n))3)
RC O(log(n)2) O(n(log(n))3)
Batcher-Bitonic [?] O(log(n)3) O(n(log(n))3)
Chien-Oruç [?] O(log(n)3) O(n(log(n))3)
Cheng-Chen [?] O(log(n)2) O(n(log(n))3)

I RC and Cheng-Chen’s network have best depth complexities
I developed networks are as good as so-far known best ones
I but can additionally route partial permutations

28 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Experimental Results - Binary Sorter

0 20 40 60 80 100 120 140

0

0.5

1

·105

n

Si
ze

(#
of

lo
gi
c
ga
te
s)

Batc68
ChCh96
ChOr94
Nara94
PPC
RC

0 20 40 60 80 100 120 140

0

20

40

60

80

n

D
ep
th

Batc68
ChCh96
ChOr94
Nara94
PPC
RC

I sizes of ChCh96, Nara94, and PPC are more or less the same
I depths of PPC and the ChCh96 are comparable in the ranges up to

n = 64,
PPC and Cheng-Chen are the best for practical depth and size

29 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Experimental Results - Narashima’s RBS Network with
Front-End Splitter

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

·105

n

Si
ze

(#
of

lo
gi
c
ga
te
s)

Nara94
PPC
RC

0 20 40 60 80 100 120 140

0

50

100

150

200

250

n
D
ep
th

Nara94
PPC
RC

I sizes of PPC and Nara94 is almost the same
I depth of PPC is good
again, PPC is the best for practical depth and size

30 / 33

Motivation Known Solutions Contributions Experimental Results Summary

Summary

I system-on-a-chip designs require efficient interconnection
networks

I mesh networks are not powerful enough
I crossbars lead to large circuits
I sorting networks are attractive alternatives, but cannot handle

invalid inputs
I we considered extensions of sorting networks for partial

permutations
I using ternary sorters as Split modules in RBS networks
I using prefix sequences generated by a front-end splitter
I the latter requires prefix-based configurations, and developed

two efficient versions (parallel prefix and ranking based
configurations)

32 / 33

Motivation Known Solutions Contributions Experimental Results Summary

The End

Thank you for your attention.

Questions?

33 / 33

References I

34 / 33

RBS-Banyan Networks

MBS N Banyan N

xn

x0

⊥

⊥
zk

z0

yn

y0

MBS N Banyan N

2
⊥
0
⊥

⊥
⊥
2
0

0

⊥
2
⊥

Sp
lit

RBS

RBS
Banyan N

2 (10)
⊥

0 (00)
3 (11)

2

⊥
3

0
X

⊥
2
3

0

X Sp
lit

RBS

RBS
Banyan N

⊥
2 (10)
0 (00)
1 (01)

2

1
0

⊥

X

1

2
⊥
0

X

35 / 33

Asymptotic Complexities

depth size

Merge module O(log(n)) O(n(log(n))2)
Split module (permutation) O(log(n)) O(n(log(n))2)
Split module (concentrator) O(log(n)) O(n)

networks depth size

MBS O(log2(n)) O(n log3(n))
RBS O(log2(n)) O(n log3(n))
RBS (concentrator) O(log2(n)) O(n log(n))
AKS O(log(n)) O(n log(n))

36 / 33

Experimental Results - Other Networks

0 10 20 30 40 50 60 70

0

0.5

1

·105

n

#
of

ce
lls

BatcherBanyan
PPC
Beneš

0 10 20 30 40 50 60 70

0

0.5

1

1.5

·104

n

La
te
nc
y
(p
ic
o
se
co
nd

s)

BatcherBanyan
PPC
Beneš

I latency of Beneš is best
I PPC is the best for practical size

37 / 33

	Motivation
	Known Solutions
	Contributions
	Experimental Results
	Summary
	Appendix

