Deterministic Allocation and Scheduling for
Buffered Exposed Datapath Architectures

Nadine Kercher[0009—0007—0300-0689] 14 Klaus Schneider!0000—0002—1305-7132]

Department of Computer Science,
RPTU University Kaiserslautern-Landau, Germany
https://es.cs.rptu.de

Abstract. Exposed datapath architectures reveal their internal architecture, en-
abling the compiler to allocate processing units (PUs) for the operations of a
dataflow graph, and to schedule them together with the data transfers of their
intermediate results between the PUs. Following traditional compilers, we split
the allocation and scheduling processes into separate phases, although optimal
solutions are lost this way. In this paper, we assume that a schedule must be
determined for a given allocation. We prove that if all nodes mapped to a PU are
completely ordered, a schedule can be inferred efficiently by constraint propa-
gation alone. Allocations that satisfy this property are called deterministic al-
locations and are the basis for highly efficient code generation. In addition to
the theory of deterministic allocations, we present three significant classes of
deterministic allocations with their advantages and disadvantages.

1 Introduction

Exposed datapath architectures such as RAW/Tilera, TRIPS, DySER, Tartan, Conserva-
tion Cores, Transport-Triggered Architectures, STA, FlexCore, MOVE-Pro, AMIDAR,
and SCAD expose their internal architecture to the compiler which can then exploit
instruction-level parallelism (ILP) by (1) allocating processing units (PUs) for the oper-
ations of a dataflow graph, (2) scheduling of execution on the PUs, and (3) scheduling
the communication of intermediate results between PUs. The paradigm of exposed
datapath architectures reduces the processor to a network of simple PUs so that the
processor’s circuit size scales linearly with the number of PUs. Buffered exposed data-
path (BED) architectures replace global register files with FIFO buffers at the network
ports of the PUs. Therefore, the execution of basic blocks on BED architectures can
follow data dependencies to fully exploit ILP.

BED processors can easily be implemented with a large number of PUs [2,4]. How-
ever, generating code for BED processors is more difficult because it requires PU al-
location, instruction scheduling, and communication of intermediate results between
PUs. In particular, the compiler must ensure that values in buffers are accessed in FIFO
order which can be violated if different nodes of the dataflow graph are mapped to the
same PUs. In [7,6], SAT/SMT constraints were formulated to map dataflow graphs onto
BED architectures for optimal compilation with SAT/SMT solvers.

Since the overall problem is NP-complete, as is register allocation for RISC pro-
cessors, heuristics are needed to solve it efficiently. Following traditional compilers,

https://es.cs.rptu.de

2 N. Kercher and K. Schneider

which solve register allocation and instruction scheduling separately, [1] suggested to
split the PU allocation and scheduling problems for BED architectures also into sepa-
rate phases. Several instances of PU allocation can be solved in polynomial time, and
the scheduling problem for a given PU allocation reduces to SAT constraints, most of
which are 2-SAT clauses (which can also be solved in linear time). However, like the
general SAT solving procedure, also the scheduling procedure has to make guesses
with backtracking in unsuccessful cases.

In this paper, we consider the scheduling problem for a given PU allocation. Our
main result, Theorem 1, shows that PU allocations that generate total orders per PU
produce SAT constraints that allow our constraint solver to derive a schedule without
backtracking. These PU allocations are called deterministic and are essential for an
efficient code generator. To demonstrate the practical usefulness of the theorem, we
present three deterministic PU allocations.

The paper is organized as follows: The next section provides a brief review of BED
architectures and their SAT constraints for PU allocation and instruction scheduling.
Section 3.1 proves the paper’s main contribution: deterministic allocations, which map
to each PU a totally ordered set of nodes, allow the construction of a schedule without
backtracking. Sections 3.2, 3.3, and 3.4 present three practically useful deterministic
PU allocations. Section 4 presents experimental results for the allocations presented.
Finally, Section 5 summarizes the main contributions.

2 Preliminaries

A general template for a buffered exposed
datapath (BED) architecture is shown in

Fig. 1: A BED processor consists of a Program
(large) number of PUs, a load/store unit EEEEEERE e

(LSU) for accessing data memory, and a |j7” °°’j| |Z'-'°°’:| | Lo g,l | = J7|
control unit (CU) for accessing program Data
memory. The PUs, LSU, and CU are con- ! ! ! ! ! ! ! ! emeny
nected via FIFO buffers through a net-
work on-chip to avoid unnecessary PU
synchronization. The decentralization of Fig. 1: A general BED architecture.

all components of BED architectures re-

sults in a linear circuit size in terms of the PU number. For more information, see
[1,8,7,6].

Some BED processors, such as SCAD and TTA, execute move instructions that
transfer a constant (an immediate operand or an opcode) or a result value from an out-
put buffer to an input buffer. Due to the production/consumption of data tokens that
BED processors share with dataflow computing, the code generation typically uses
dataflow graphs (DFGs) as an intermediate compiler representation [5,7]. Generating
move code from DFGs requires (1) a mapping of the DFG nodes to PUs (PU allocation),
(2) an ordering of the DFG nodes for instruction scheduling, and (3) an ordering of the
DFG edges for a communication schedule [1,7,6]. For a given PU allocation, the SAT
constraints for specifying (2) and (3) were specialized in [1] as follows:

Deterministic Allocation and Scheduling for BED Architectures 3

Definition 1 (SAT Constraints for a Given Allocation). For an arbitrary dataflow
graph with nodes P and buffers B, and a given allocation o : P — {1,..., o} mapping
nodes P to PUs Py, ..., P,, we define the following constraints using a strict ordering
relation < on the nodes, and a strict ordering relation T on the buffers:

— data dependency constraints: for every edge b : p — q, we demand p < q

— FIFO behavior constraints: for all edges b; : p; — q; and b; : p; — q;, we demand
® p; < pj <> b; T b; ifb; and b; use the same output buffer of the same PU
® g; < ¢q; <> b; T b; ifb; and b; use the same input buffer of the same PU

Data dependency constraints ensure that nodes are scheduled according to their data
dependencies. FIFO behavior constraints guarantee that the order in which values are
written to and read from a FIFO buffer is the same. Solutions to these constraints
correspond with instruction and data transfer schedules.

The constraint solver presented in [1] generates an undirected graph whose ver-
tices are labeled with node or buffer order constraints. If the equivalence p; < p; <+
b; T bj; is derived from the FIFO constraints by transitive closure, then the vertices
p; < pjand b; C b; are connected. Therefore, vertices in the same strongly connected
component must have the same truth value, which is determined by either data de-
pendency constraints or guesses of the solver. As shown in [1], these guesses may be
unsuccessful even if a solution exists, so that backtracking to previous guesses is gener-
ally unavoidable.

3 Scheduling with Deterministic Allocations

3.1 Deterministic Allocations

A PU allocation is called deterministic if the DFG nodes mapped to any PU are to-
tally ordered. For such deterministic allocations, all equivalences can be resolved by
constraint propagation alone, i.e., no guessing is required:

Theorem 1 (Scheduling with Deterministic Allocations). For any deterministic
PU allocation (that maps all nodes of a dataflow graph to PUs such that the set of nodes
mapped to the same PU is totally ordered), the constraint solver can propagate the facts
by transitive closure computation without guessing and backtracking.

Proof. The solver must find partial orders for the nodes and buffers that satisfy the
constraints given in Definition 1. Note that the data dependencies are independent of
the allocation, but the FIFO behavior constraints depend on it. According to the FIFO
behavior constraints, equivalences are created for a pair of buffers if (1) their source
corresponds with the same output buffer of a PU or (2) their target corresponds with
the same input buffer of a PU. Thus, for each equivalence p; < p; < b; T b;, the truth
value of p; < p;, and consequently also the truth value of b; C b;, is determined by the
given total node order. After processing all equivalences in this manner, the transitive
hull of the result is checked. If irreflexivity and transitivity are satisfied, the result is
valid; otherwise, a conflict is found. In case of a conflict, there is no valid solution since
no guessing was done. O

4 N. Kercher and K. Schneider

The advantage of deterministic allocations is obvious: there is no need to guess, which
would otherwise require backtracking in case of a conflict until a valid solution or
proof of unsatisfiability is found. This improves the runtime of the solver to find a
schedule for a given allocation. However, this benefit comes at the cost of providing
enough PUs such that all pairs of nodes p and ¢ with neither p < ¢ nor ¢ < p can be
assigned to different PUs.

The remainder of this section presents three types of deterministic allocations and
their respective advantages and disadvantages. They use different strategies to define
a total order for the nodes assigned to a PU ensuring that the solver does not have to
guess.

3.2 Vertex-Disjoint Path Cover Allocation

A vertex-disjoint path cover consists of the minimum number of paths needed to cover
each vertex of a graph exactly once. A graph can have multiple vertex-disjoint path
covers [3]. A PU allocation can now map each of these paths to the same PU. This
reduces the necessary communication between the PUs since one of the next input
values is always produced by a node mapped to the same PU.

Corollary 1. For any allocation that associates the paths of a vertex-disjoint path cover
of the dataflow graph with the PUs of a BED architecture, either a solution or a conflict
can be deduced without guessing and backtracking.

Figure 2a shows an example graph that
leads to a conflict if mapped to a single
PU. Nodes labeled with D duplicate their
input to the two outputs, and BinOp can
be any operation with two inputs and
one output. The edges are interpreted as
follows: a black arrow encodes a left in-
put of a PU, a blue dashed arrow a right
input of a PU, a filled arrowhead a left
output of a PU, and an empty arrowhead
a right output of a PU.

Both edges bfl and bf2 describe a
data transfer from the left output to the
left input of the PU. Sharing the same
source and target generates the FIFO be-
havior constraints bfl C bf2 < n® <
nland bfl C bf2 <+ n3 < n2.

According to the path, the nodes are
ordered as follows: N0 < n1 < n2 < n3. The order of the producer nodes n@ < nl
results in bfl C bf2, while the order of the consumer nodes n2 < n3 results in
bf2 C bfl. In other words, the production and consumption orders of the two edges
that share the same source and target do not match. This creates a conflict in the FIFO
buffer which is unavoidable for the given DFG and allocation since only deduction
was used without guessing.

Fig. 2: DFG (a) leads to a conflict if all nodes
are mapped to the same PU, while DFG (b)
solves the problem.

Deterministic Allocation and Scheduling for BED Architectures 5

Analyzing this more closely, we see that the problem stems from the transitive edge
bf1 which shares the same source and target as the aforementioned path. This can be
solved by modifying the graph as shown in Figure 2b where the outputs of one of the
duplication nodes are swapped so that all edges have different sources or targets than
the transitive edge.

Now, the valid buffer order bf0@ C— bf3 C bfl C— bf2 C bf4 can be derived. How-
ever, not all cases are solvable. Since there are only four possibilities to connect dif-
ferent sources with different targets, having four transitive edges (five parallel edges)
always results in two edges sharing one virtual channel.

As aresult, the vertex-disjoint path cover allocation enables scheduling in polyno-
mial time because it eliminates the need for guessing. Another advantage is that the
PUs require less communication since connected paths are mapped to the same PU
such that intermediate results can be directly used there. Furthermore, some, but not
all, of the conflict cases are solvable. However, if there are fewer PUs than paths, some
paths must share a PU. Thus, with a limited number of PUs, it is not always possible
to obtain a total order of the nodes mapped to the same PU.

3.3 Per Level Allocation

In leveled graphs, all nodes are assigned to a level such that edges only connect nodes
of levels i and i+ 1. Any non-leveled graph can be transformed into a leveled graph by
inserting copy nodes with one input and one output. Depending on where the copy
nodes are inserted, several leveled versions of a non-leveled graph can be obtained.
Special SAT constraints can be defined for leveled dataflow graphs [6], which simplifies
their allocation and scheduling. We can also define a simple deterministic allocation
for leveled graphs, as explained in the following corollary.

Corollary 2. For any given allocation that maps at most one node per level of the data-
flow graph to the same PU, ordering the nodes of one PU by their levels either results in a
conflict-free schedule without guessing or proves that no schedule exists.

The per-level allocation is even complete, i.e., it allows the solver to always find a
solution if enough PUs are provided:

Corollary 3. Consider an allocation that maps at most one node from each level of a
dataflow graph to the same PU. If the nodes of a PU are ordered according to their levels,
a solution can always be deduced for that allocation without guessing.

Proof. By Corollary 2, it remains to prove that no conflict can occur. A conflict occurs
if the inferred order is not a partial order, i.e., if irreflexivity or transitivity is violated.
The order is deduced by propagating the facts step by step through the equivalences.
Each equivalence is of the form p; < p; <+ b; C b; where p; and p; are mapped to
the same PU, and b; and b; use the same input or output buffer of that PU. According
to the per-level allocation, p; and p; are on different levels, and thus b; and b; are
between different pairs of levels (k,k + 1) and (I,! + 1). Now, consider the buffer
layers between the levels. These layers are totally ordered by the given total order of
the nodes according to their levels. Furthermore, the partial order is not violated by
buffers from the same layer, since they are independent of each other. O

6 N. Kercher and K. Schneider

In summary, the per-level allocation has the advantage that it does not require guess-
ing and always finds a solution if enough PUs are provided. However, this advantage
comes at the cost of leveling the graph, which takes time and makes the dataflow graph
(at most quadratically) larger. Unlike the vertex-disjoint path cover allocation, it does
not reduce communication between PUs.

3.4 Root Rank Allocation
Finally, we construct a version of the per-level allocation for non-leveled graphs:

Definition 2 (Root Ranks). The root ranks of the nodes of a directed graph G are
determined iteratively: Roots, i.e., nodes without predecessors have rank 0, and for all
other nodes, the rank is the maximum rank of the predecssors plus 1.

Lemma 1. Nodes in a dataflow graph can only depend on nodes with smaller root ranks.

Proof. Suppose node n of root rank ¢ depends on node m of root rank 7+ k with & > 0.
This means that an output of node m is processed to determine an input of node n.
Thus, there exists a path from node m to node n. As long as node m is in the graph,
node n cannot be a root, since node m is one of its predecessors. Thus, node m has a
lower root rank than node n, which is a contradiction of the assumption. O

For leveled graphs, the root ranks are the levels. However, they are also applicable to
non-leveled graphs and do not require edges to connect only root ranks ¢ with root
ranks ¢ + 1.

Corollary 4. Assume that a given allocation maps at most one node per root rank of the
dataflow graph to different PUs. Ordering a PU’s nodes according to their root rank results
in constraints for which either a solution or a conflict can be deduced, i.e., no guessing is
required for scheduling.

The root rank allocation can be viewed as a combination of the per-level and the
vertex-disjoint path cover allocations. Like the vertex-disjoint path cover allocation, it
can be applied to non-leveled graphs and does not require guessing, and it also suffers
from transitive edges. It also has the disadvantage of the per-level allocation: it cannot
take advantage of efficient bypasses of values from the output of a PU to its input,
since the communication between the PUs is not reduced by this allocation.

4 Experimental Results

In our experiments, we use the specialized constraint solver presented in [1]. It is exe-
cuted on the constraints for the three allocations presented in the previous section. The
measured time for solving the resulting scheduling constraints does neither include
the translation of programs into dataflow graphs nor the generation of constraints.
Our test data files are available on the Averest website! and are listed in Table 1. All

! http://www.averest.org/

http://www.averest.org/

Deterministic Allocation and Scheduling for BED Architectures 7

[[Vertex-Disjoint Path Cover [Per-Level | Root Rank]
[File [[PUs[constr.| time [ms] [PUs] constr. | time [ms] [PUs] constr. [time [ms] |
BinaryTree_Scl_16 8 30 191 8 38 1.8 8 38 1.92
BinaryTree_Scl_32 16 74 6.72 16 97 6.98 16 97 6.86
BinaryTree_Scl_4 2 2 0.01 2 2 0.01 2 2 0.01
BinaryTree_Scl_64 32 166 32.26 32 218 30.67 32 218 30.62
BinaryTree_Scl_8 4 10 0.13 4 12 0.13 4 12 0.13
EvalPolynomial_SclGlb_16 17 815 1052.53 15 | 5396 | 25555.12 7 3060 | 8563.34
EvalPolynomial_SclGlb_32 33 | 3071 16727.03 18 | 22276 | 460052.6 | 10 | 11103 | 105914.32
EvalPolynomial_SclGlb_4 5 130 25.93 5 359 108.6 4 244 47.26
EvalPolynomial_SclGlb_8 9 378 217.68 10 | 1364 1625.67 6 888 668.18
EvalPolynomial_SclLoc_16 17 815 1050.6 15 | 5396 | 25559.71 7 3060 | 8552.02
EvalPolynomial_SclLoc_32 33 | 3071 16739.09 18 | 22276 | 460825.52 | 10 | 11103 | 106092.84
EvalPolynomial_SclLoc_4 5 130 25.73 5 359 108.87 4 244 47.37
EvalPolynomial_SclLoc_8 9 378 217.38 10 | 1364 1638.81 6 888 666.43
FastFourierTransform_SclGlb_4 4 58 4.24 5 94 6.66 4 90 5.72
FastFourierTransform_SclGlb_8 9 340 172 11 647 313.32 9 578 258.81
FastFourierTransform_SclLoc_4 4 58 4.47 5 98 6.66 4 94 5.68
FastFourierTransform_SclLoc_8 9 340 168.93 11 645 314.38 9 569 255.14
MatrixMultCannon_SclGlb_2 9 151 29.44 10 353 85.69 8 283 55.08
MatrixMultCannon_SclGlb_3 31 493 268.1 28 | 1660 2083.87 20 | 1237 1083.17
MatrixMultCannon_SclGlb_4 73 | 1632 3174.56 60 | 4766 17946.54 | 42 | 3437 | 9535.45
MatrixMultCannon_SclLoc_2 12 91 7.69 13 | 300 60.47 8 205 28.6
MatrixMultCannon_SclLoc_3 36 342 92.55 32 | 1463 1598.72 21 | 1021 790.14
MatrixMultCannon_SclLoc_4 80 | 1214 1547.95 63 | 4390 14427.34 | 42 | 3031 7334.25
MatrixMultSimple_SclGlb_2 8 40 1.15 8 53 1.27 8 53 1.22
Matri 1tSimple_SclGlb_3 27 253 53.71 33 511 143.05 25 427 97.7
MatrixMultSimple_SclGIb_4 64 875 783.9 78 | 1605 1583.18 55 | 1428 1298.08
MatrixMultSimple_SclLoc_2 8 40 1.16 8 52 1.08 8 52 1.08
Matri I le_SclLoc_3 27 252 54.96 33 509 145.59 25 425 100.53
MatrixMultSimple_SclLoc_4 64 885 766.15 78 | 1608 1533.7 55 | 1424 1234.7
MatrixMultStrassenWinograd_SclGlb_4 || 63 | 3831 21514.08 78 | 19491 | 337556.72 | 38 | 9938 | 83643.25
ParallelPrefixTree_SclGlb_16 9 298 139.44 15 | 2364 4626.78 8 727 443.56
ParallelPrefixTree_SclGlb_32 17 714 791.98 31 | 9808 | 80198.79 | 16 | 2245 | 4257.38
ParallelPrefixTree_SclGIb_4 2 15 0.4 3 34 0.85 2 23 0.41
ParallelPrefixTree_SclGlb_64 33 | 1682 4400.1 63 | 34270 | 1100875.25| 32 | 5817 | 29176.61
ParallelPrefixTree_SclGlb_8 5 90 12.97 7 426 146.22 4 175 26.23
ParallelPrefixTree_SclLoc_16 8 302 146.29 15 | 1833 2904.45 8 699 414.4
ParallelPrefixTree_SclLoc_32 16 764 907.44 31 | 6779 | 38037.68 | 16 | 1988 | 3408.16
ParallelPrefixTree_SclLoc_4 2 22 0.85 3 52 2.4 2 33 1.03
ParallelPrefixTree_SclLoc_64 32 | 1758 5197.79 63 | 22001 | 432511.45 | 32 | 4863 | 20538.76
ParallelPrefixTree_SclLoc_8 4 100 15.67 7 393 126.14 4 197 33.01
TransHull_SclGlb_2 5 301 142.13 6 1607 2234.34 3 813 572.88
TransHull_SclGlb_3 16 | 1639 4364.46 14 | 14024 | 168883.45 | 6 5160 | 22188.99
TransHull_SclGIb_4 37 | 3466 19150.24 26 | 52235 |2771997.32| 11 | 18739 | 304298.32
TransHull_SclLoc_2 5 243 90.19 6 1463 1870.58 3 697 428.07
TransHull_SclLoc_3 14 | 1363 2897.69 14 | 12350 | 13143283 | 6 4858 | 20079.19
TransHull_SclLoc_4 33 | 4391 31714.01 25 | 55313 [3107344.56| 12 | 18697 | 303291.22

Table 1: Number of PUs, the number of constraints and the average runtime for the
test files with the three different allocations presented in the previous section.

experiments were performed on a 64-bit machine running the Ubuntu 22.04 operating
system with 192GB RAM and two sockets, each containing an Intel Xeon Gold 5220R
CPU.

The experimental results are given in Table 1, which lists the number of required
PUs, the number of constraints to be solved and the average solver runtime for each
of the presented allocations on different test files. For one DFG, the different alloca-
tions result in different numbers of constraints. The slowest runtime for the per-level
allocation is about 3100 seconds (55313 constraints), while the root rank allocation
takes at most about 304 seconds (18739 constraints) and the vertex-disjoint path cover
allocation takes only about 32 seconds (4391 constraints).

In addition to runtime, practicality also depends on the number of PUs required and
whether the resulting constraints are satisfiable. The root rank allocation requires the
fewest PUs. Compared to the per level allocation, it is the same for leveled graphs and
can be improved if considering non-leveled graphs. Compared to the vertex-disjoint
path cover allocation, two nodes of the same root rank cannot be on the same path.

8 N. Kercher and K. Schneider

The per level and the vertex-disjoint path cover allocation do not infer bounds on
each other. Regarding satisfiability, the per level allocation is best because it is always
satisfiable. For our test files, the vertex-disjoint path cover allocation returned ‘sat’ for
40 while the root rank allocation only returned ‘sat’ for 12 out of 46 files. According
to our experiments, the vertex-disjoint path cover allocation is the best in terms of
practicality.

5 Conclusions

This paper considers the SAT constraints for mapping a dataflow graph with a given
allocation to a number of FIFO buffered PUs. For the nodes and for the buffers, a strict
and total order must be found that satisfies the data dependencies and the FIFO behav-
ior constraints. Except for transitivity, these constraints are 2-SAT clauses and can be
solved efficiently by the specialized constraint solver presented in [1]. However, this
constraint solver may require guessing and backtracking for arbitrary PU allocations.

In this paper, deterministic PU allocations are considered, i.e., PU allocations where
all nodes mapped to the same PU are totally ordered. We have shown that for deter-
ministic PU allocations, it is possible to construct the required schedule in polynomial
time by constraint propagation alone, i.e., without guessing and backtracking as usual
in constraint solving.

References

1. Bhagyanath, A., Kercher, N., Schneider, K.: Allocation and scheduling of dataflow graphs on
hybrid dataflow/von Neumann architectures. In: Brandt, J., Zhu, Q. (eds.) Formal Methods and
Models for Codesign (MEMOCODE). IEEE Computer Society, Hamburg, Germany (2023)

2. Burger, D., Keckler, S., McKinley, K., Dahlin, M., John, L., Lin, C., Moore, C., Burrill, J., Mc-
Donald, R., Yoder, W.: Scaling to the end of silicon with EDGE architectures. IEEE Computer
37(7), 44-55 (July 2004)

3. Kercher, N.: Code Generation for Buffered Exposed Datapath Architectures. Master’s thesis,
Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
(July 2023)

4. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Ranganathan, N., Burger, D., Keck-
ler, S., Mcdonald, R., Moore, C.: TRIPS: A polymorphous architecture for exploiting ILP, TLP,
and DLP. ACM Transactions on Architecture and Code Optimization 1(1), 62—-93 (2004)

5. Schneider, K.: Translating structured sequential programs to dataflow graphs. In: Formal
Methods and Models for Codesign (MEMOCODE). pp. 66—77. ACM, Beijing, China (2021)

6. Schneider, K., Bhagyanath, A.: Consistency constraints for mapping dataflow graphs to hy-
brid dataflow/von Neumann architectures. Transactions on Embedded Computing Systems
(TECS) 22(5), 81:1-81:25 (2023)

7. Schneider, K., Bhagyanath, A., Roob, J.: Code generation criteria for buffered exposed data-
path architectures from dataflow graphs. In: Languages, Compilers, and Tools for Embedded
Systems (LCTES). pp. 133-145. ACM, San Diego, CA, USA (2022)

8. Schneider, K., Bhagyanath, A., Roob, J.: Virtual buffers for exposed datapath architectures. In:
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (MBMV). ITG-Fachbericht, vol. 302, pp. 45-55. VDE (2022)

	Deterministic Allocation and Scheduling for Buffered Exposed Datapath Architectures

