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Abstract

Heterogeneous multi-core embedded systems are being increasingly used to meet performance
requirements of modern applications. However, meeting the often stringent demands for cor-
rectness, resource utilization, and real-time response in a complex concurrent software is chal-
lenging. Model-based design is a widely accepted methodology to meet such requirements
where a functional model of the system is developed independently from its architectural
model. In that regard, functional models developed in synchronous languages have been suc-
cessfully used for synthesis of hardware circuits and sequential software. However, significant
work on distributed software synthesis from synchronous languages remains only theoretical.
We discuss a semantics-preserving synthesis procedure for elastic networks (a common rep-
resentation of distributed synchronous specifications) to SysteMoC which is an actor-oriented
modeling library based on SystemC. Hence, we not only demonstrate a potential simulation
platform that can be used to improve the existing theory, but we also make a step towards
a formal model-based design flow that combines synchronous and actor-oriented Models of
Computation (MoC). Additionally, we discuss some experimental results based on our imple-
mentation of the synthesis procedure.

1. Introduction

Meeting the ever increasing demands for more processing power in many embedded systems is
challenging. Compared to traditional software, concerns of embedded software designers go be-
yond developing concurrent software that can take advantage of the available hardware parallelism.
Actually, the real challenge lies in meeting non-functional system requirements including correct-
ness, resource utilization, and real-time response. To this end, model-based design is regarded by
many as a promising approach to meet such stringent requirements where a functional model of
the system is developed independently from its target architecture. That allows designers to focus
on core functional issues without being distracted by architecture specific issues. That also enables
re-using the same functional model across different target architectures. After validating the func-
tional model, designers proceed with the synthesis phase where the design space is explored to find
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a suitable software mapping and scheduling strategy. Additionally, hardware synthesis should be
considered too for a comprehensive model-based design approach.

We identify some key properties that need to be satisfied in an ideal functional model. (P1) for-
mal verifiability which is mandatory for safety-critical applications. However, it is also increasingly
important for other applications due to software complexity. (P2) composability where the model
can be analyzed and composed in a modular manner from existing models. (P3) analyzability for
early estimation of non-functional system properties. (P4) expressiveness in a wide range of appli-
cation domains including data-dominated as well as control-dominated applications. Additionally,
hybrid system modeling is increasingly important with prevalence of cyber-physical systems. Fi-
nally, (P5) synthesizability such that the generated software is efficient, semantics-preserving, and
satisfies the non-functional requirements of the system. Unfortunately, improving P5 mandates
improving P3. In turn, that typically comes at the cost of reducing support for one or more of
the other properties. For example, adhering to a restricted MoC such as static dataflow networks
[LM87] improves P3 at the cost of reducing model expressiveness in P4. Those limitations have
been acknowledged in projects like Ptolemy II [EJL+03] which focused on formal composition of
multiple MoCs to achieve higher expressiveness.

Synchronous languages [BCE+03] have emerged since early eighties to address the specifica-
tion issues of reactive systems. They are based on a simple MoC hypothesis of perfect synchrony
where the execution of the system is divided into discrete reaction steps called macro-steps. In
each macro-step, the system reads all inputs, executes a finite number of micro-steps, and finally
produces outputs w.r.t. internal system state. All micro-steps are executed in the same variable
environment i. e. a variable can take only one value in a macro-step. Micro-steps are assumed to
consume no time, and time advances to the next macro-step after all micro-steps are finished. They
offer key advantages over traditional programming languages including deterministic concurrency
and explicit modeling of time. Time is essential for improved analyzability [Lee09] and it can
be used for, e. g. , WCET analysis [LS03]. Moreover, they enable designers to associate differ-
ent computation costs with different macro-steps through clock-refinement [GBS13]. Hence, early
estimations of resource utilization can be conducted.

Simplicity of the synchronous hypothesis provides easier reasoning about system behavior. Ad-
ditionally, the sound formal basis and lock-step composition of synchronous modules enable more
efficient formal verification since asynchronous concurrent behaviors should not be considered.
Hence, synchronous languages already satisfy properties P1 and P2 to a large extent and pro-
vide many interesting properties for P3. However, their main application domain was memory-
bounded control-dominated applications. That is demonstrated with commercial successes for Es-
terel [Ber98] and Lustre [HCRP91] in efficient synthesis of real-time uni-processor software as
well as hardware. In that respect, work on distributed software synthesis, also known as desyn-
chronization, for multicore processors and distributed environments like automotive software, is
still an active area of research.

All events in a synchronous model are synchronized and totally ordered w.r.t a global clock and
communication takes zero-time. Obviously, that is an ideal assumption that cannot be efficiently
realized in practice. Hence, many desynchronization approaches have been proposed in the liter-
ature to relax perfect synchrony while preserving the original semantics (see [Gir05] for a good
survey). Among the proposed techniques are endo/isochronous distribution [BCL00] and efficient
communication through polychrony [LTL03]. In that regard, there is a lack of suitable simulation
tools that help in exercising and improving that body of theoretical knowledge.
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Figure 1: Our simulation flow where the considered synthesis procedure is highlighted. The communication
model of synchronous modules (SM) using synchronous channels (SC) is emphasized.

We discuss in this paper a semantics-preserving synthesis procedure for elastic networks, an ab-
stract distributed synchronous specification that consists of synchronous modules (SM) that com-
municate over synchronous channels (SC). Elastic networks are the first refinement step of perfect
synchrony where computations are still synchronized while communication over SC takes time in
the form of an integer number of clock cycles. The term has been adopted from elastic circuits
[CCKT09] since they both share the same ‘view’ of the system. Hence, elastic network optimiza-
tions can be directly transferred to their hardware counterparts. We avoid the term synchronous
data-flow since it is often confused with static dataflow networks [LM87]. Formally,

Definition 1. A synchronous module is a tuple (P ,L, CF ,DF) where P is a set of input and
output ports P = I ∪ O. L is the set of local variables which define the state of the module. CF
and DF define the list of control-flow and data-flow guarded actions respectively.

Definition 2. A synchronous channel is a tuple (sP, dP,D, C, T ) where sP and dP are SM that
are the source and destination port, respectively. D is minimum token delay. C is the maximum ca-
pacity of the channel. T is the supported token type which can be basic, e. g. integer, or aggregate.

We used guarded actions to characterize SMs. Basically, a guarded actions consists of an action,
usually an assignment operation, that is not executed until its associated boolean guard is satisfied.
More on guarded actions has been provided in Section 2. An SC is a FIFO capable of holding
tokens (valid data) and bubbles (empty). At each clock tick, a token can advance iff the item in the
next FIFO cell is a bubble. That creates back-pressure on producing SM to stop if a consuming
SM has stalled. D determines the minimum number of clock cycles needed by a token through an
SC. That number may increase if a receiving SM stalls. Additionally, an SM cannot fire until there
are tokens on all of its input ports and bubbles on all of its output ports (patience property). Upon
firing, exactly one token is consumed/produced on every input/output port.

The entire simulation flow is depicted in Figure 1 where we obtain our elastic network repre-
sentation from a partitioning stage that is beyond our scope. We focus in this work on the synthe-
sis stage of elastic networks only. Our synthesis target is SysteMoC [FHT06], a SystemC based



module MAC(int ?a, ?b, !s) {
int i , t , o;
loop {

w1: pause;
t = i ;
o = a∗t ;

}
||

loop {
w2: pause;
i = a+b;
if ( t < 0) {

w3: pause;
s = o;

} else {
w4: pause;
if (b>0)

s = o + 1;
}}}




α1 : start∨w1 ⇒ next(w1) = true

α2 : start∨w3∨w4 ⇒ next(w2) = true

α3 : w2∧ (t < 0) ⇒ next(w3) = true

α4 : w2∧¬(t < 0) ⇒ next(w4) = true

β1 : w1 ⇒ t = i

β2 : w1 ⇒ o = a× t

β3 : w2 ⇒ i = a+b

β4 : w3 ⇒ s = o

β5 : w4∧ (b > 0) ⇒ s = o+1




s0 : {start}

s1 : {w1,w2}
true⇒t = i
true⇒o = a× t
true⇒ i = a+b

s2 : {w1,w3}
true⇒t = i
true⇒o = a× t
true⇒s = o

s3 : {w1,w4}
true⇒t = i
true⇒o = a× t

(b > 0)⇒s = o+1

true

t < 0
true

¬(t < 0)
true

(a) (b) (c)

Figure 4: (a) Quartz module MAC, (b) its guarded actions consisting of CGAs(αi) and DGAs (βi), and (c) generated EFSM.

3. BACKGROUND
3.1. Synchronous modeling in Quartz

Synchronous languages [20, 21] have emerged since early
eighties to address the specification issues of reactive sys-
tems. Since then, tens of synchronous languages and deriva-
tives have been proposed in the literature [20]. They are based
on a simple Model of Computation (MoC) hypothesis of per-
fect synchrony where the execution of the system is divided
into discrete reaction steps called macro-steps. In each macro-
step, the system reads all inputs, executes a finite number of
micro-steps, and finally produces outputs. All micro-steps are
executed in the same variable environment i. e. a variable can
take a only one value in a macro-step. Micro-steps are as-
sumed to consume no time, and time advances to the next
macro-step after all micro-steps are finished. Simplicity of the
synchronous hypothesis enables easier reasoning about sys-
tem behavior. Additionally, it lends itself naturally to formal
verification e. g. by model checking.

Figure 4(a) depicts our example Quartz module MAC with
input variables a and b and output variable s and local vari-
ables i, t, o. Macro-steps are determined using pause state-
ments which have been labeled to show the control-flow of
the module. Basically, MAC consists of two infinite loops
running in parallel. However, they are running in lock-steps
synchronizing at each pause. Figure (4)(a) is shown only
to provide intuition on how our starting synchronous model
would look like. Compiling MAC using Averest’s Quartz
compiler would yield a set of CGAs and DGAs as depicted

in Figure 4(b). A guarded action (GA) has the form 〈γ⇒ α〉,
where γ is a boolean expression guard and α an assignment.
An Immediate assignment, denoted by 〈x = e〉, assigns x to
the evaluated result of expression e in the current macro-step,
while a delayed assignment denoted by 〈next(x) = e〉, assigns
x to the value of e of current macro-step, in the next macro-
step. Note that most synchronous languages can be compiled
to guarded actions which makes our characterization of EM’s
behavior in terms of CF and DF a common intermediate
format that is not limited to Quartz.

Definition 6. Extended Finite State Machine (EFSM): is
the tuple (S,s0,T,D), where S is a set of states, s0 ∈ S is the
initial state, and T ⊆ (S×G× S) is a finite set of transition
relations where G is the set of transition guards. D is a map-
ping S→ D, which assigns each state s ∈ S a set of DGAs
D(s)⊆ D which are executed in state s.

One can represent a synchronous system with a state-
machine that has a single state with all DGAs attached to
it. At each clock tick, all guards γ are evaluated. Then, only
the assignments α that have their γ evaluated to true will be
executed. However, we are interested in a more efficient rep-
resentation (in terms of computation) of the system by only
evaluating DGAs that belong the current reaction. To this
end, we generate an Extended Finite Machine from the given
CGAs of the system. Then, each DGA is attached only to the
state(s) where it could possibly be executed. EFSM is defined
formally in Definition 6.

Figure 2: (left) Quartz module MAC, (middle) compiled guarded actions where CF (αi) and DF (βi), and
(right) generated EFSM.

actor-oriented modeling library. SysteMoC provides both time-triggered and asynchronous data-
triggered actor firing options. Hence, it enables gradual refinement of a synchronous model from
perfect synchrony to a completely asynchronous actor network model. Our discussion of the syn-
thesis procedure is organized as follows: First, we give in Section 2 the necessary background.
Then, we discuss the details of synthesizing SMs and SCs in Section 3. Later, some experimental
results based on our implementation are described in Section 4. Finally, we discuss some related
work in Section 5.

2. Background

We give in this section the necessary background on synchronous guarded actions and later on
actor-oriented modeling using SysteMoC.

2.1. Synchronous guarded actions

Figure 2 depicts an example synchronous module MAC written in the imperative synchronous
language Quartz [Sch09] which is the specification language of our Averest framework1. Module
MAC has input variables a and b, output variable s, and local variables i, t, o. Macro-steps
are determined using pause statements which has been assigned labels to show the control-flow
of the module. Basically, MAC consists of two infinite loops running in parallel. However, they
are running in lock-steps synchronizing at each pause. Quartz syntax of MAC is shown only to
provide an intuitive description of how a synchronous model would look like. Compiling MAC
using Averest’s Quartz compiler would yield a set of control-flow guarded actions (CGA) and
data-flow guarded actions (DGA).

1Available at http://www.averest.org

http://www.averest.org


A guarded action (GA) has the form 〈γ ⇒ α〉, where guard γ is a boolean expression that needs
to be satisfied in order for action α to be executed. We are mostly concerned with assignment
actions. An immediate assignment, denoted by 〈x = e〉, assigns x to the evaluated result of ex-
pression e in the current macro-step. A delayed assignment denoted by 〈next(x) = e〉, assigns x to
the value of e in the current macro-step. However, the assignment is executed in the next macro-
step. Note that most synchronous languages can be compiled to guarded actions which makes our
characterization of SM behavior in terms of set of CGAs (CF) and set of DGAs (DF) a common
intermediate format. CGAs differ from DGAs in that their actions are assignments to control-flow
labels whereas actions of DGAs assign values to module variables only.

One can represent the behavior of synchronous system with a state machine that has only a single
state with DF attached to it. At each clock tick, all guards γ of DGAs in DF are evaluated. Then,
only the assignments α that have their guards γ evaluated to true will be executed. However,
we are interested in a more efficient representation, in terms of computation, of the system by
only evaluating DGAs that belong to the current synchronous reaction. To this end, we generate
an Extended Finite State Machine (EFSM) from the given CF of the system. Then, each DGA is
attached only to the state(s) where it could possibly be executed. An EFSM is formally defined
in Definition 3. Figure 2 depicts CF , DF and the generated EFSM of module MAC. The default
starting state is s0 where only label start is set. Each state has been annotated with its control flow
labels and its attached DGAs. Note that each state represents a synchronous reaction where all
system variables should have a unique value. A reaction to absence should take place for variables
that have not been assigned a value by DGAs of the current synchronous reaction. In that respect,
variables in Quartz can be either of type memorized or type event depending on their required
reaction to absence behavior. Memorized variables are assigned their same value in the previous
reaction, whereas event variables take the default value for their data type e. g. false for booleans.

Definition 3. An Extended Finite State Machine (EFSM) is a tuple (S, s0, T,D), where S is a
set of states, s0 ∈ S is the initial state, and T ⊆ (S ×G× S) is a finite set of transition relations
where G is the set of transition guards. D is a mapping S → D, which assigns each state s ∈ S a
set of DGAs D(s) ⊆ D which are executed in state s.

2.2. Actor-oriented modeling in SysteMoC

SysteMoC is used to describe a network graph of communicating actors. Each actor has a set of
input ports I and a set output ports O. Ports have a supported token type e.g. double. An actor’s
input port should be connected to the output port of another actor that supports the same token
type. The connection is a FIFO that has a configurable size. Actor’s internal states are defined by
a set of local variables L′ that are readable and writable only inside the actor. The behavior of the
actor is defined by a Firing-FSM (FFSM). Formally,

Definition 4. An actor network graph is a directed bipartite graph (A,C, P,E) containing a set of
actors A, a set of channels C, a channel parameter function P : C → N∞ × V ∗ which associates
with each channel c ∈ C its buffer size n ∈ N∞ = {1, 2, 3, . . .∞}, and possibly also a non-empty
sequence v ∈ V ∗ of initial tokens, and finally a set of directed edges E ⊆ (C×A.I)∪ (A.O×C).
The edges are further constrained such that exactly one edge is incident to each actor port and the
in-degree and out-degree of each channel in the graph is exactly one.
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class MAC : public smoc_actor {
SC_HAS_PROCESS(MAC);

smoc_firing_state s0, s1, s2, s3;
// Other definitions omitted.

public:
smoc_port_in<int> a, b; smoc_port_out<int> s;
MAC(sc_module_name name)
: // Constructor instantiations omitted.

{
// Only firing transitions of s1 are shown.
s1=TILL(clk)>>(a(1)&&b(1)&&(guard1))>>s(1)

>>CALL(MAC::action1)>>s2|
TILL(clk)>>(a(1)&&b(1)&&(guard2))>>s(1)
>>CALL(MAC::action1)>>s3;

} };

Figure 5: Actor model of module MAC, (left) a graphical model where each actioni executes DGAs corresponding to si, patience property is
observed by guarding all firing transitions such that one token (bubble) should be available on all input (output) ports before firing,
(right) textual C++ code generated for the actor where guard1 and guard2 are functions (t > 0) and (t ≤ 0) respectively.

state has been annotated with its control flow labels and its
attached DGAs.

3.2. Actor-oriented modeling in SysteMoC
SysteMoC is used to describe a network graph of commu-

nicating actors. Each actor has a set of input ports I and a set
output ports O. Ports have a supported token type e. g. dou-
ble. An actor’s input port should be connected to the output
port of another actor that support the same token type. The
connection is a FIFO that has a configurable size. Actor’s in-
ternal state is defined by a set of local variables L ′ that are
readable and writable only inside the actor. The behavior of
the actor is defined by a Firing-FSM (FFSM). Formally,

Definition 7. Actor network graph: is a directed bipar-
tite graph (A,C,P,E) containing a set of actors A, a set of
channels C, a channel parameter function P : C→ N∞×V ∗

which associates with each channel c ∈ C its buffer size
n ∈ N∞ = {1,2,3, ...∞}, and possibly also a non-empty se-
quence v ∈ V of initial tokens , and finally a set of directed
edges E ⊆ (C×A.I )∪ (A.O×C). The edges are further con-
straint such that exactly one edge is incident to each actor
port and the in-degree and out-degree of each channel in the
graph is exactly one.

Definition 8. Actor: is the tuple (P ,L ′,F ,R ) where P is a
set of input and output ports P = I ∪O, L ′ is the set of local
variables which define the state of the actor. F is a set of
functions, R is the firing FSM.

Note that F = FG ∪FA where FG is a set boolean func-
tions used to guard firing transitions, and FA is set of firing
actions executed upon firing. Only FA are able to change
values of L ′. Note also that an EFSM is a restricted form
of a FFSM where the relation between FSM states and FA

is bijective. Therefore, we describe the behavior of actors
using EFSM. Guards of firing transitions are described by
G ⊆ Gclk×GI ×GO×FG, where GI ( GO) are used to guard
that sufficient number of tokens (bubbles) are available on
input (output) ports to be consumed (produced), and Gclk is
a clock event condition used if clock synchronization is re-
quired. Clocks in SysteMoC are defined per actor. Therefore,
firing transitions can be synchronized by setting an equal
clock period (main clock) for all actors in the network and
setting all firing transitions to have Gclk. It is simple to model
actors that require multi-cycles for their computation by set-
ting their clock to an integer number of the main clock period.
It is even possible to configure delay time for individual fir-
ing transitions by using Virtual Processing Component (VPC)
which is a supporting framework to SysteMoC.

4. SYNTHESIS OF MODEL ENTITIES
4.1. Synthesis of an Elastic Module

Given an EM defined by (P ,L ,CF ,DF ) we need to gen-
erate its corresponding SysteMoC actor (P ,L ′,F ,R ). To
this end, we need to generate and synthesize the EFSM R
based on the given (CF ,DF ). Additionally, we synthesize
F =FG∪FA where each firing action in FA is generated from
DGAs of a corresponding state in R , while FG are generated
from transition guards of R . Finally, actor variables have to
be synthesized such that L ′=L∪LE where LE are extra vari-
ables required to handle the semantic mismatch between the
two different MoCs e. g. output variable are writable only in
actors whereas they are both readable and writable in Quartz.
The details of this synthesis procedure have been omitted
from this work due to the lack of space. We refer the inter-
ested reader to [21] for a more detailed treatment.

Figure 5 shows a graphical and a textual representation of
the actor representing module MAC. Note that GI and GO of

Figure 3: MAC actor model, (left) a graphical model where each actioni executes DGAs corresponding to
si, patience property is observed by guarding all firing transitions such that one token (bubble)
should be available on all input (output) ports before firing, e. g. a(1). (right) textual C++ code
generated for the actor where guard1 and guard2 are functions (t > 0) and (t ≤ 0) respectively.

Definition 5. An actor is a tuple (P ,L′,F ,R) where P is a set of input and output ports P =
I ∪ O, L′ is the set of local variables which define the state of the actor, F is a set of functions,
andR is the firing FSM.

Note that F = FG∪FA where FG is a set of boolean functions used to guard state transitions, and
FA is set of firing actions executed upon firing and able to change values of L′. Note also that an
EFSM is a restricted form of an FFSM where the relation between FSM states and FA is bijective.
Therefore, we can describe the behavior of actors using EFSM. Transition guards of an EFSM are
described by G ⊆ Gclk × GI × GO × FG, where GI (GO) are used to guard that sufficient number
of tokens (bubbles) are available on input (output) ports to be consumed (produced), and Gclk is a
clock event condition used if clock synchronization is required. Figure 3 depicts the actor model
and the generated code for module MAC. Clocks in SysteMoC are defined per actor. Therefore,
transitions can be synchronized by setting an equal clock period (main clock) for all actors in the
network and setting all firing transitions to have guard Gclk. It is simple to model actors that need
multi-cycles for their computation by setting their clock to an integer number of the main clock
period. It is even possible to configure delay time for individual firing transitions by using Virtual
Processing Component (VPC) which is a supporting framework to SysteMoC.

3. Synthesis details

We discuss in this section the synthesis details of an SM and an SC separately.

3.1. Synthesis of a Synchronous Module

Given an SM defined by (P ,L, CF ,DF), we need to generate its corresponding SysteMoC actor
(P ,L′,F ,R). To this end, we need to generate and synthesize the EFSM (R) based on the given
(CF ,DF). Additionally, we synthesize F = FG ∪FA where each firing action in FA is generated
from DGAs of a corresponding state in R, while FG are generated from transition guards of R.



Finally, actor variables have to be synthesized such that L′ = L∪LE where LE are extra variables
required to handle the semantic mismatch between the two different MoCs e. g. output variables
are writable only in actors whereas they are both readable and writable in synchronous guarded
actions. Details of SM synthesis have been briefly discussed here. We refer to [Ben13] for complete
details including code generation templates.

Our EFSM generation algorithm proceeds by evaluating (to a boolean canonical form) all guards
of CF based on the label variable environment of current state. Then, a subset CF ′ is defined
such that its guards didn’t evaluate to false in the previous step. Later, CF ′ goes through case
discrimination to identify the variable environment of each of the next state(s) to be visited. The
algorithm starts with the label environment of the initial state, i. e. , only label start is assigned
value true. Attaching DGAs to a state is done by evaluating all guards of DF based on the state’s
label environment and attaching the corresponding subset DF ′ with guards that were not reduced
to false. As for actor variable L′, we provide in Table 1 a summary of the generated variables. The
rationale behind that will get clearer next in our discussion of firing action generation.

Table 1: Synthesizing variables of a synchronous module.

Variable flow Variable type Generated variables

Input
Memorized Port variable only.
Event Port variable only.

Output
Memorized Port variable and local carry variable .
Event Port variable, a local carry variable, and a flag variable.

Local
Memorized A local direct variable, a local carry variable, and a flag variable.
Event A local direct variable, a local carry variable, and a flag variable.

An actor firing action proceeds in two phases, namely, immediate and delayed. In the immediate
phase, (1) the reaction to absence for all variables of type event are executed and flags of delayed
assignments are checked to be executed. To this end, all local variables and output variables of
type event should have a boolean flag that is set when a delayed value is available from previous
reaction to be assigned. (2) immediate guarded actions are ordered and executed, (3) by this time,
all variable values in the current reaction are known and output values can be propagated on ports.
The delayed phase can now proceed where (1) DGAs writing to local variables are executed first.
However they are rewritten such that writing is done to a carry variable and not to the actual direct
variable. That is because the current value of local variables might be used by transition guard
functions FG to determine the next transition. Finally, (2) DGAs writing to output variables are
ordered and executed.

Definition 6. Guarded action dependencies: let G = 〈γ ⇒ x = τ〉 be a guarded action where γ
is the boolean guard, x is the variable assigned a value, and τ is an expression. Let FV (τ) be the
set of free variables in expression τ . We define the following:

rdV ars(γ ⇒ x = τ) = FV (γ) ∪ FV (τ)
wrV ars(γ ⇒ x = τ) = {x}

rdV ars(γ ⇒ next(x) = τ) = FV (γ) ∪ FV (τ)
wrV ars(γ ⇒ next(x) = τ) = {x}

Definition 7. Guarded actions order: for guarded actions G1 and G2, we say that G1 < G2 iff
wrV ars(G1) ⊆ rdV ars(G2).



Figure 5 shows a graphical and a textual representation of
the actor representing module MAC. Note that GI and GO of
all transitions must insure that there is one token (bubble) on
all input (output) ports before firing in order to observe the
patience property. Additionally, all firing transitions should
be guarded with a clock condition Gclk to synchronize firing
of all actors in the network.

Figure 6 depicts the target hardware model of our consid-
ered EM. Compared to the model of traditional synchronous
modules of Figure 1, one can note that combinational logic
has been replaced by Trigger Logic (TL) and Computation
Logic (CL). At its simplest forms, TL would implement
SELF communication with other EMs and control the pa-
tience property, while CL would implement the combina-
tional logic of a corresponding synchronous module. Main-
taining patience requires clock-gating the registers to keep
their state which saves dynamic power. Additionally, note that
output of CL may be connected to a traditional synchronous
module instead of an EM.

Input Output

Comp.
Logic

Trigger
Logic

State
registers

Figure 6: A hardware model of elastic module

We believe that synthesis of EMs should be considered
early in design since many potential functions of TL may re-
quire considering TL and CL together for synthesis. There-
fore, we argue against black-box wrapping approaches that
considers circuit elasticity only later, e. g. LIP [6]. Basically,
functions implemented by TL can go well beyond maintain-
ing patience to include (1) multi-cycle control where TL can
analyze a given input and determine if it requires one or more
cycles to compute in CL and keep patience-mode activated
accordingly (2) power-gating of CL in case no computations
are required which saves static power. Actually, saving static
power at this fine-grained (per-computation) level is partic-
ularly important technique for handling the utilization wall
[23]. Basically, the utilization wall observation states that the
percentage of chip area that can be powered-on within chip’s
power budget is dropping exponentially with the progression
of Moore’s law and thus the rest of the chip forms so-called
dark silicon. Based on that, one should consider partitioning
of CL to multiple-parts, even at the cost of more redundancy,

empty full

i(1)\ store

o(1)\ forward

i(1)&o(1)\
store_forward

i o

Figure 7: Actor model of a Channel Buffer

where each part is responsible of executing one (or more) fir-
ing actions. Therefore, TL would route input to the required
CL part while keeping other parts power-gated. We believe
that it’s very difficult to consider CL partitioning and input
routing in circuits specified in HDL due to the relatively low
abstraction level and the lack of formal semantics. Hence, it
is reasonable to consider model-based design in that context.

4.2. Synthesis of an Elastic Channel
We consider here the synthesis of an EC defined by the

tuple (sP,dP,D,C ). Note that it is important for us to make
EMs completely independent of ECs. Hence, we can use the
same EM with different channel configuration of D and C .
Unfortunately, SysteMoC actors can only communicate asyn-
chronously over FIFOs defined in the class smoc_fifo. A
FIFO can be formally defined by (sP,dP,D,C ) where D = 0.
Therefore, we had to simulate the clock cycle delay on an EC
by means of Channel Buffers (CB). Basically, CB is a Syste-
MoC actor that has the sole purpose of delaying its input by
one clock cycle. Therefore, to model an EC delay of D clock
cycles, one needs to chain D number of CBs together.The
actor model of a CB is depicted in Figure 7.

Token storage is implemented by the FIFOs connecting
CBs. Note that D and C of an EC can’t be considered in-
dependently. We need to keep in mind the synthesizability
to our target SELF protocol. To this end, we need to make
sure that (1) the configured maximum capacity of a FIFO
connecting two CBs is either one or two tokens, and (2) that
D < C ≤ 2D . These conditions stem from the fact that SELF
is based on chaining Elastic Buffers (EB) and/or Elastic Half
Buffers (EHB) both with a delay of one clock cycle. How-
ever, EB have a storage capacity of two tokens compared to
one token in EHB. For more details on SELF and its hardware
implementation options see [14, 16]. Figure 8 compares two
ECs with the same D and different C . Note that we gener-
ated a single C++ template class for CB. The compiler would
then instantiate as many classes as needed depending on the
declared token types.

Finally, join and fork nodes of the SELF protocol can be
implemented by corresponding actors. Additionally, there is

Figure 4: Actor model of a Channel Buffer (CB). Channel buffers are chained with smoc_fifo to build a
synchronous channel where each CB contributes to a delay of one clock cycle.

We provide a partial order relation on guarded actions in Definitions 6 and 7. Ordering of guarded
action in immediate and delayed phases requires finding a total (sequential) order for DGAs based
on the analyzed partial order. In that regard, a topological sorting is done such that for each two
DGAs where G1 < G2: G1 should appear before G2 in the immediate phase (RAW dependency)
and G1 should appear after G2 in the delayed phase (WAR dependency). Consider for example
DGAs of state s1 in Figure 2. DGA (RAW) ordering in the immediate phase should be β3, β1, and
β2. However, no delayed assignments exist in s1. Therefore, the delayed phase shall be empty in
its firing action.

3.2. Synthesis of a Synchronous Channel

We now consider the synthesis of an SC defined by tuple (sP, dP,D, C). Note that it is important
for us to make SMs completely independent of their communication over their SCs. In that way,
we can reuse generated SM code and simulate them with different SC configuration of D and C.
Unfortunately, SysteMoC supports only one FIFO type for communication between actors which
is defined in the class smoc_fifo. A smoc_fifo can be considered as an SC that has zero
delay i. e. D = 0. Therefore, we had to simulate the clock cycle delay on an SC by introducing
Channel Buffers (CB). Basically, a CB is a basic SysteMoC actor that has the sole purpose of
delaying its input by one clock cycle. Therefore, to model an SC with delay of D clock cycles, we
need to generate a chain of D number of CBs connected by smoc_fifo.

The actor model of a CB is depicted in Figure 4. Required storage capacity C of the SC can
be distributed among smoc_fifo in the chain. Our arrangement separates SC delay D from
SC capacity C which are implemented by CB and smoc_fifo respectively. Note that an CB is
essentially a single C++ template class in the generated source code. Hence, the C++ compiler
would instantiate as many classes as needed depending on the declared SC token type T . Note that
it is also possible to implement different D and C of an SC using a single complex CB instead of
our chain of simple CBs. However, the C++ compiler will then need to instantiate a different C++
class for each different combination of D, C and T which may result in a larger executable. Note
also that asynchronous communication can be modeled using a single CB that has its clock period
set to arbitrary time period rather than to the main clock period as in synchronous channels.



4. Experimental results

We have developed a synthesis library that is capable of generating code for most features of
Quartz including all of its data types. The library was developed in F#.NET and it has about 3900
Lines of Code (LoC). We took advantage of the data types already supported by SystemC, e. g. ,
bitvectors (sc_bv) were elegantly mapped to their Quartz counterparts. Synthesis of aggregate
data types (tuples) was also straightforward by mapping them to C++ structs. We also supported
assert statement generation to make sure that the original specifications are not violated at run-
time, e. g. , out-of-bound array accesses. We consider here a simple partitioning strategy where
the synchronous system is partitioned to two modules, namely, one that provides input stimuli
(driver) and another that reacts based on that input (main). Therefore, the resulting actor network
consists of two actors representing two SMs. Example results of the experimentations conducted
on different benchmarks is given in Table 2. We list the example alongside, the time required to
generate code for it on a standard PC, the effective number of LoC, the number of canonicalized
boolean expressions during EFSM generation, and the total number of states in the EFSM. Number
of canonicalized boolean expressions is listed since its the most expensive operation in terms of
required computation.

Table 2: Experimental results

Model Time LoC Boolexps States
Heron Sqr Root 0.1 s 462 11 3
Cruise Control 1 s 1266 335 11
SHA (Basic) 3 s 5076 553 60
SHA (Optimized) 12 s 38012 7301 163

The tested benchmarks were Heron (Newton) square root algorithm, a simple car cruise control
model, and an implementation of the SHA2-256 hashing algorithm. Thanks to the robust support
for bitvectors in SystemC, we have not had any problem in synthesizing the SHA2 model, although
it utilizes some sophisticated bitvector operations. SHA2 model was implemented in two versions,
a basic version that maps the standard directly and uses all 64 scheduling values Wt, and an opti-
mized version that starts hashing a block as soon as a hash word has been received. It uses the last
16 scheduling values only which is typical for commercial cores. The optimized version has more
states since it requires more control. The generated code is then compiled using g++ and linked
against SysteMoC, SystemC and some Boost libraries. Note that generated LoC depends on the
number of states in the EFSM and the number of DGAs attached to each state. Comparing basic
and optimized SHA2 implementations reveals that LoC figure grows rapidly due to increased num-
ber of DGAs per state. That issue should be handled by a smarter scheme for DGA code sharing
between different firing actions. We leave that for a future work.

5. Related work

Brandt et al. [BGS10] considered the synthesis of a non-partitioned synchronous system repre-
sented by guarded actions to SystemC directly. In contrast, we discussed the synthesis of dis-
tributed synchronous specifications to SysteMoC. Halbwachs et al. [HM06] discussed a method



for simulating asynchronous tasks in Lustre. Their implementation was based on SCADE, which
is the commercial Lustre tool. This work is concerned instead with the refinement and simulation
of synchronous models using open source libraries. Generally, there is not much work in the area
of synchronous language synthesis for simulation purposes. We note that it is important to preserve
the control states of SMs for better analyzability. Hence, system partitioning schemes that convert
a synchronous model directly to a asynchronous one, e. g. Baudisch et al. [BBS10], are not suitable
for elastic network representation.

6. Conclusion

We discussed in this work a semantics-preserving synthesis procedure for elastic networks. That
enables a large body of theoretical work on synchronous system distribution, e. g. endo/isochrony,
to be exercised and improved. It also makes it possible to gradually refine a synchronous model
from perfect synchrony to a completely asynchronous actor network model. Additionally, analysis
developed for actor networks like [FZK+10] can be utilized in the refined synchronous model.
We think that our synthesis procedure is a step towards combining both MoCs in a formal model-
based design flow that can potentially have better analyzability and expressiveness. For example,
designers can benefit from the composability of synchronous models and combine it with the
mapping and scheduling properties of data-flow actor models to generate safety-critical multi-
processor software.
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