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Zusammenfassung

Die Sprachen endlicher Automaten sind abgeschlossen unter Schnitt, Vereinigung und
Komplement. Da diese Operationen effektiv berechenbar sind, ist es konzeptionell auch
möglich, die Schnittmenge aus vielen regulären Sprachen zu bilden und zu prüfen, ob
diese in einer weiteren regulären Sprache enthalten ist. Geprüft wird die Leerheit des
Schnitts aus dem Komplement der weiteren regulären Sprache und den zu schneidenden
Sprachen.

Es ist jedoch nicht praktikabel, große Instanzen solcher Probleme explizit zu berech-
nen. Das liegt daran, dass der Automat der Schnittmenge exponentiell mit der Anzahl
der Automaten wächst. Zeit und Speicherbedarf machen die Berechnung auf physisch
realisierbaren Computern unmöglich.

Diese Arbeit untersucht und entwickelt einen CEGAR-artigen Ansatz (counterexample-
guided abstraction refinement) zur Lösung des Problems. Gestützt werden die theoretis-
chen Resultate durch eine praktische Implementierung des gewonnenen Verfahrens. Die
grundlegende Idee ist die Bestimmung einer Menge von potenziellen Gegenbeispielen.
Diese ist eine Obermenge der echten Gegenbeispiele. Die potenziellen Gegenbeispiele
werden dann auf Echtheit geprüft. Die geschieht in der Absicht, die Inklusion zu zeigen
oder zu widerlegen. Die Abwesenheit von tatsächlichen Gegenbeispielen entspricht der
gültigen Inklusion.

Abstract

The languages of finite automata are closed under intersection, union, and complement.
Since these operations are effectively computable, it is conceptually possible to intersect
many regular languages and check the inclusion of this intersection in another language.
This is done by checking the intersection of the complement of the other language and
the languages that are intersected for emptiness.

Practically, it is not feasible to process larger instances of such problems. The reason
is the size of the intersection automaton that grows exponentially in the number of
automata that are intersected. The time and space consumption render the computation
on physically constructible computers impossible.

This work examines and develops a CEGAR-like approach (counterexample-guided
abstraction refinement) to address these issues. The theoretical results are supported
by a practical implementation. The basic idea is the construction of a set of potential
counterexamples. This set over-approximates the set of actual counterexamples. The
potential counterexamples are then checked for spuriousness. The goal is to prove exis-
tence or absence of actual counterexamples. The absence of actual counterexamples is
equivalent to a proven inclusion.
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1 Introduction

The class of languages that can be represented by finite automata is the class of regular
languages. A useful property of this class is its closure under intersection, union, and
complement. These operations are effectively computable. Conceptually, this allows to
intersect many regular languages and check whether they are included in another regular
language. We refer to this possible superset as the specification. This naming is justified
by practical applications:

One can represent the control-flow (or its approximation) of a thread in concurrent
systems as a finite automaton. We can use such automata to describe the interleav-
ing behavior. The automata allow arbitrary sequences of letters of the other threads’
automata at any time. The intersection of these automata’s languages represents the
interleaved system behavior (or approximates it). We want to know whether all possible
behaviors satisfy a certain specification, which is given as a regular language. Formally,
our goal is to check whether the intersection is included in the specification language.

However, the conventional approach has practical limitations. If we compute an au-
tomaton describing the intersection explicitly, the state space grows exponentially with
the number of intersected automata. If we intersect eight automata with ten states each,
we get a state space of 100 million states. Hence, the practically solvable instances of
the problem are restricted to rather small input sizes.

The application is a fundamental problem of multi-threaded verification. Faster solu-
tions for instances of this problem extent the capabilities of the said verification tech-
nique. Such solutions allow to practically verify larger programs. Hence, we contribute
to verification by tackling the language-theoretic problem.

Another language-theoretic problem and its application in verification has been dis-
cussed in [LCMM12]. The authors tackle the undecidable emptiness problem for the
intersection of context-free languages. To this end, they introduce a language-theoretic
variant of counterexample-guided abstraction refinement (CEGAR). This verification
technique was introduced in [CGJ+00]. The basic idea of CEGAR is to find violations of
the specification by searching for executions over an abstract domain. These executions
are called counterexamples. Such executions may or may not be possible using the actual
data domain of the program. The counterexamples are hence checked for spuriousness.
If the discovered counterexamples are spurious, the model is refined in order not to show
these spurious counterexamples again.

The language-theoretic CEGAR-approach for emptiness of context-free languages
over-approximates one of the context-free languages by a regular language. The inter-
section between a context-free and a regular language is effectively computable. How-
ever, the resulting counterexample language might be spuriously non-empty. To this
end, a spuriousness check is performed. It checks elementary bounded subsets of the
counterexample language for non-spurious counterexamples. This is done by deciding
whether they have a non-empty intersection with both context-free languages. If the El-
ementary Bounded Language was entirely spurious, it will be excluded from the regular
over-approximation. Since the said problem is undecidable, the algorithm might refine
infinitely often without ever reaching an empty set of counterexamples.
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The approach for regular inclusion is quite similar: It over-approximates the regular in-
tersection. The counterexample language consists of the words in the over-approximation
that disobey the specification. Counterexamples are also generalized as Elementary
Bounded Languages. They are then checked for words that are in all of the input lan-
guages. The counterexample language is refined in the negative case.

In contrast to the original work [LCMM12] on language-theoretic abstraction refine-
ment, our approach considers a decidable problem. The original work aimed to solve
the generally undecidable problem for certain instances. Our work’s contribution is the
acceleration of the solution for some instances of our problem. Conventional solutions
for these instances consume more resources than available. Hence, our procedure in-
creases the range of practically computable instances. Our solution does neither aim
to be a decider nor a semi-decider for the general case: It might try to refine infinitely
often without ruling out all spurious counterexamples and without finding an actual
counterexample. More details on this property and variants of this procedure that are
deciders for a certain subclass are given in Section 10. In that Section, we also suggest
CEGAr (less refinement) and CEGaR (less abstraction). These variants of our procedure
do not implement the classical CEGAR approach. They allow to semi-decide the prob-
lem since they can enumerate all possible languages of counterexamples. The restriction
to be neither a decider nor a semi-decider was not a big issue for randomly generated
test instances. Our implementation found exact solutions notably often: Only about
5% of the finished executions gave up without proving or disproving the claim (see also
Section 9).

Our implementation can be used as a component of a decider: If our tool cannot find
a solution, it can be ran again with a less coarse over-approximation. The counterex-
ample might then be found in a repeated run of the automaton. In the worst case, the
over-approximation is tightened until our procedure computes the exact intersection.
Although this variant might fail due to practically infeasible instances, it is conceptually
a decider.

Our work is structured as follows: In Section 2, we first give an overview on the
fundamentals and the basic concepts that are used in this work. The theoretical part
introduces the procedure to over-approximate the intersection. This is covered in Sec-
tion 3. We then introduce the spuriousness check. Section 4 presents an overview how
counterexamples are extracted and how their spuriousness is checked. Technical details
how we generalize a single counterexample to a language of counterexamples are pre-
sented in Section 5. The actual counterexample check requires a preparation of the input
automata. This is covered in Section 6. After this preparation, a Presburger Formula
can be generated. This formula is satisfiable if and only if there is a non-spurious coun-
terexample in the given Elementary Bounded Language of potential counterexamples.
The procedure that extracts this formula is introduced in Section 7.

We support these theoretic results with an implementation of the procedure. Section
8 presents the modules of our implementation, the intended use, and details on part of
the implementation. It also includes a tutorial on the usage and integration of our tool.
Section 9 presents the results of the benchmarks we performed on our tool. We conclude
the work and give an overview on possible variants of the procedure in Section 10.
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2 Fundamentals

The chosen approach uses basic concepts of automata theory, formal languages, and
logics. We now clarify our notation for finite automata and runs. Additional concepts
will be introduced in Section 4.2 when we first use them in the context of the fast
intersection check. These concepts are:

Elementary Bounded Languages Our procedure generalizes counterexamples as El-
ementary Bounded Languages. They satisfy a requirement that is needed for our fast
intersection checks.

Parikh Images Our fast intersection check does not rely on the explicit computation
of the intersection. We rather project the input languages to a domain where the (non-
)emptiness intersection problem is in NP . Parikh Images are one of the two projections
we compose in order to project the languages to this domain.

Presburger Formulas Presburger Arithmetic is a certain fragment of first order pred-
icate logic. We use Presburger Formulas to extract, represent, and intersect Parikh
Images.

Notation of Finite Automata There are various notations on finite automata. In this
work, we use this notation:

Definition 1 (Finite Automata) Let Q be a finite set of states, q0 ∈ Q the initial
state, →⊆ Q × Σ × Q a set of transitions, and QF ⊆ Q be a set of accepting states.
These components form the automaton A = (Q, q0,→, QF ) over the alphabet Σ. 2

Whenever we refer to automata, we usually mean non-deterministic automata. We
use the same notation for deterministic finite automata. We just require that there is at
most one outgoing transition for each combination of source state and letter, i.e. for all
q ∈ Q, a ∈ Σ : | {(q, a, q′) ∈→| q′ ∈ Q} | ≤ 1.

Formally, a transition is a three-tuple of Q × Σ × Q. We use the syntax q
a−→ q′ to

express: There is a transition (q, a, q′) ∈→.

Definition 2 (Runs of Automata) Let A = (Q, q0,→, QF ) be an automaton. We

call a sequence q0
a0−→ q1

a2−→ . . .
an−1−−−→ qn a run of the automaton A (to qn) (reading the

word a0 . . . an−1) if q0, . . . , qn ∈ Q and (q0, a0, q1), . . . , (qn−1, an−1, an) ∈→. A run that
ends with an accepting state qn ∈ QF is an accepting run. A run with a first state qk
that is different from the initial state is called a run from qk to qn. 2

If there is an accepting run reading a word w, the automaton is said to accept the
word w. The set of accepted words form the language L (A) of the automaton A.

Regular languages are closed under union, intersection, and complement. If the lan-
guages are represented by automata, automata accepting the result of these operations
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can be obtained. The techniques include crossproduct automata (for intersection and
deterministic union) and power set automata (for determinization and complement).
When we say that we apply language-theoretic operations on automata, we mean that
we apply the underlying techniques on the automata in order to obtain an automaton
that accepts the resulting language of the operation.
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3 Over-Approximating Regular Intersections

Figure 1: The goal of the over-
approximation: Obtain a
language (dotted circle)
that contains the actual
intersection (grey area).

As already mentioned in the introduction,
the exact computation of an intersection of
many regular languages is practically infeasi-
ble. The reason is the size of state space of
the cross-product automaton, which grows ex-
ponentially in the number of automata: Let
Reg1, . . . , Regk be finite automata with up to
n states each. The cross product automaton
accepts the intersection

⋂k
i=1 L (Regi). States

of the cross-product automaton are tuples of
the form (q1, . . . , qk) where each component qi
is a state of Regi. Hence, it contains up to
nk states. The automaton accepts in precisely
those states where each component is accept-
ing.

We present a procedure that computes
an over-approximation of the intersection:
The resulting automaton has significantly less
states than the cross-product automaton while accepting a superset L of the intersection⋂k
i=1 L (Regi). Figure 1 illustrates the approach. Furthermore, during the computation

of the automaton, a complete exploration of the cross-product automaton is practically
infeasible. Thus, our procedure over-approximates the cross-product automaton before
its whole state space is explored. This is achieved in the following way: The procedure
intersects some of the automata explicitly. The result is then over-approximated by an
automaton with less states. The over-approximates automaton can then be intersected
with input automata or intersections until all input languages will have been considered.

The advantage of this approach can be seen by comparing the result to an on-the-fly
approach, which partially explores the state space of the whole cross-product automaton
and over-approximates the partial automaton.

The difference between the two procedures is that the approximation on the fly cer-
tainly considers states that are found early – in graph theoretic terms: With a low
distance from the initial state – more frequently than states that are explored later:
Whenever the state space is reduced by over-approximating the explored states, the
known part of the automaton is considered for the over-approximation. This part will
still be a known part for later over-approximations. Thus it will be considered again
while freshly explored parts of the automaton will be considered for the first time. Fur-
thermore, states and transitions that are discovered at a later point in the on-the-fly
approximation are already biased by the decisions that were made during earlier over-
approximations. Our variant treats all states equally as the approximation takes place
after all states of the partial intersection are known. Thus, the focus of this work is on
the approximation after partial intersection.

In this section, we will first present the over-approximation of explicitly computed
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automata. We will explain the construction and properties of this procedure. After
that, we will discuss how to combine partial intersections and over-approximations. We
do so in order to obtain a procedure for the intersection of all automata. We will also
discuss how knowledge about emptiness of intersections is preserved throughout the
procedure and where we find bottlenecks.

3.1 Over-Approximating a Partial Intersection

This step is applied after an intersection was computed. The purpose is to prepare an
automaton to be an input for the next intersection step. We are given an automaton
A = (Q, q0,→, QF ) and want to construct an automaton A′ = (Q′, q′0,→′, Q′F ) with
|Q′| < |Q| states that accepts at least the original language L (A) ⊆ L (A′). We will
later see how the whole procedure of stepwise over-approximating the intersection of the
input automata keeps the properties of this over-approximation: Intersecting the smaller
automaton A′ with others will lead to smaller automata than doing the same with A.

Uniting States The core mechanism that we use in order to over-approximate a lan-
guage unites two states to a single one that inherits the transitions and acceptance
behavior of both original states.

Definition 3 (Uniting States) Let A = (Q, q0,→, QF ) be an automaton containing
at least the states q1, q2 ∈ Q, q1 6= q2. Uniting the states q1 and q2 to q′ yields the
automaton A [(q1, q2); q′] := ({q′} ∪Q \ {q1, q2}, q′0,→′, Q′F ) where

q′0 :=

{
q′ if q0 = q1 or q0 = q2

q0 otherwise

→′ :=
{

(q′i, a, q
′
j) for each qi

a→ qj

}
with q′i = q′ for qi ∈ {q1, q2} and q′i = qi otherwise, q′j accordingly

Q′F :=

{
{q′} ∪QF \ {q1, q2} if {q1, q2} ∩QF 6= ∅
QF otherwise

Example 1 (An Automaton for {ab}) Figure 2 shows the minimal automaton that
accepts the language {ab} and the various options of uniting states. Uniting the initial
state q0 and its direct neighbor state q1 results in an automaton that accepts a language
described by the regular expression a∗b. The reason is that the new state q0, q1 inherits

the transition q0
a→ q1 as a self-loop and q1

b→ q2 as an outgoing transition to the
accepting state q2. The new state is now the initial state as q0 was the initial state
before it was united with q1. Similarly, uniting q1 with q2 yields a new state that accepts
as q2 accepted before. The automaton is equivalent to the regular expression ab∗. The
automaton that is constructed by uniting q0 and q2 accepts the language that is described
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q0start q1 q2 q0, q1,q2start
a b

a, b

q0, q1start q2 q0start q1, q2 q0, q2start q1

a

b a

b

a

b

Figure 2: An automaton accepting {ab} (upper left) and all possible results after uniting
states. Lower row: The results after uniting q0 with q1, q1 with q2, and q0 with
q2. Upper right: The result after uniting the remaining two states in any of
the automata in the lower row.

by (ab)∗. Uniting the remaining two states of any of these three automata always creates
the same single state automaton that accepts the language that is described by {a, b}∗.

In this case, uniting the first pair of states leads to a partial loss of information on the
quantity of the characters: The first two automata only ensure that b (a respectively)
occurs exactly once without a requirement on the number of occurrences of the other
letter. The third automaton only ensures that a and b occur equally often without
a requirement on the exact number. They also partially preserve information on the
order of the characters: The first two automata in the second row ensure that a always
occurs before b does. The third automaton in the second row ensures that each a is
immediately followed by b. Interestingly, this is enough information about the structure
of word to retrieve the original word ab by adding back exact information on the quantity:
Restricting any of the three languages to words that contain a and b exactly once, leads
back to the original language {ab}. Uniting another pair of states leads to a complete
loss of information on the order.

Yet, the original word ab is still present in all four languages. The ability to com-
pletely restore the original language by adding information on the quantity can pay out
throughout the procedure of over-approximating the whole intersection: While the in-
tersection of some subset of the input automata loses information on the quantity after
uniting states, the intersection of a different subset of the input automata might still
carry this information. The lost information might be restored by intersecting these two
intersections.
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The number of states of an automaton decreases certainly by one when uniting two
states in an automaton. In Example 1, all automata resulting from uniting states ac-
cepted a superset of the original language. In the following, we will show that uniting
any pair of states in any automaton will generally lead to the acceptance of a superset
of the original automaton’s language.

Lemma 1 (Corresponding Runs After Uniting States) Let A = (Q, q0,→, QF )

be an automaton, qu1 , q
u
2 ∈ Q states of the automaton A, q0

a0−→ . . .
an−1−−−→ qn a run of A

and A′ = A [(qu1 , q
u
2 ); q′] = (Q′, q′0,→′, Q′F ) the automaton after uniting the states qu1 , q

u
2

to q′ ∈ Q′. Then q′0
a0→ · · · an−1→ q′n with

q′i =

{
q′ if qi ∈ {qu1 , qu2}
qi otherwise

for all 0 ≤ i ≤ n.

is a run of A′.

Proof We prove the claim by an induction on the length of the word that is read along
the run. We need to show that the defined run is a valid run of A′ and that each of its
states q′i is either the corresponding state qi in the run of A or the substitute q′ if the
corresponding state was one of the two states that were united.

Base Case: Let q0 be a run of A reading the word of length 0. Then, the corresponding
run of A′ needs to consist of only q′0, which is already defined to be the initial state of
the automaton A′. The initial state of A′ is either the former initial state q0 of A or the
new state q′ if q1 or q2 is the initial state of A. Hence, the new initial state q′0 itself is a
run of A′ reading the empty word.

Induction Hypothesis: For a fixed length k, for every run q0
a0−→ . . .

ak−1−−→ qk that exists

in A, there exists a run q′0
a0−→ . . .

ak−1−−→ q′k in A′ where q′0, . . . , q
′
k are chosen according to

the definition above.
Induction Step: A run q0

a0−→ . . .
ak−1−−→ qk

ak−→ qk+1 of A reading a word of length k + 1

implies a run q0
a0−→ . . .

ak−1−−→ qk of A reading a prefix of length k. As a result of the

induction hypothesis, there is also a run q′0
a0−→ . . .

ak−1−−→ q′k in the automaton A′. As the

run of A ends in qk
ak−→ qk+1, the automaton A contains a transition (qk, ak, qk+1) ∈→.

According to the definition of the transition relation after uniting two states, there exists
a corresponding transition in A [(qu1 , q

u
2 ); q′] where qk (qk+1) is supplemented by q′ if and

only if qk (qk+1) is qu1 or qu2 . This means that the new transition leads from the end of
the run of A′ according to the induction hypothesis to the state q′k+1, which corresponds
to qk+1 in A. Thus, the existing transition (q′k, ak, q

′
k+1) ∈→′ of A′ extends the run of A′

to q′0
a0−→ . . .

ak−1−−→ q′k . . .
ak−→ q′k+1. �

When two states are united, the resulting state inherits the acceptance behavior of
the original states: It is a final state if at least one of the two original states accepted it.
Thus, the previous lemma implies that a run remains accepting after uniting two states
if it corresponds to an accepting run in the original automaton.
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Corollary 1 Let A be an automaton and A′ be the automaton after uniting two of the
states of A. If there is an accepting run of A reading a word w, then there is also an
accepting run in the automaton A′ reading the word w. 2

Therefore, we know that uniting two states is a method to always obtain an over-
approximation of the previous language:

Theorem 1 Let A be an automaton that accepts L (A) and A′ be the automaton af-
ter uniting two of the states of A. The automaton A′ accepts at least the language
L (A) ⊆ L (A′) of the original automaton. 2

Selecting a Pair of States to Unite As shown before, we can unite an arbitrary pair
of states, and the result is certainly an over-approximation of the input. We are left
with the choice of the pairs of states to unite first. The choice decides how much and
which kind of information about the language we lose. We now present a heuristic to
select promising pairs of states.

The basic idea is to consider all pairs of states, rate the effect of uniting this pair and
select the pair rated best. The central criterion for this rating is the similarity as we
assume that uniting similar states does not add many new words. After uniting a pair
of states, ratings involving the adjacent states need to be updated in order to choose the
next pair. We now examine which words are added after uniting a pair of states. This
will motivate the concrete measure for the effect of this operation.

Let A = (Q, q0,→, QF ) be an automaton and q1, q2 ∈ Q be two states of A. Assume
Lq(A) ⊂ L (A) are the words that can be read along an accepting run containing the
state q, Lqpre(A) are the words that can be read by a run from the initial state to q, and
Lqpost(A) are the words that can by read by an accepting run from q.

Uniting the states q1 and q2 adds new accepting runs in this way: The runs have
a prefix up to the new state that was also a prefix of an accepting run through q1 or
q2. They also have a suffix from the new state that was also a suffix from the other
state. Thus, the new runs’ words are

⋃
(i,j)∈{(1,2),(2,1)} Lqipre(A) · Lqjpost(A). However, these

words do not necessarily extend the language of the automaton: The words with a prefix
w ∈ Lq1pre(A) ∩ Lq2pre(A) that can lead a run both to q1 and q2 had been accepted by the
automaton before the states were united. The situation for postfixes is similar. This
reduces the newly accepted words to

(i, j) ∈ {(1, 2), (2, 1)}
(
Lqipre(A) \ Lqjpre(A)

)
·
(
Lqjpost(A) \ Lqipost(A)

)
.

However, these words are only added if they had not been accepted by a run through
states other than q1 and q2. Furthermore, this set of newly added words cannot directly
be used as a measure for the effect of uniting a pair of states: The sets are usually infinite
as there are in general infinitely many runs of an automaton. Tracing all possible pre-
and suffixes takes too long to be done for each rating of a state pair.
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q0start

q1

q2 q0, q1start q2

a

aa

b

b

a

b

Figure 3: An example automaton. The similarity rating for q0, q1 is (1, 1). The automa-
ton on the right is the result after uniting the two states.

The phenomenon that uniting states adds words that are built crosswise from a prefix
to one state and a suffix from the other state is the key motivation of our measure.
Additionally, we assume that states with more adjacent states occur in more runs than
states with less adjacent states. This assumption is not true in general but it is a simple
heuristic as it only involves comparing the states’ direct neighbors.

Hence, we define the similarity rating of a pair of states. It counts the number of
incoming and outgoing transitions that are exclusive to one of the states:

Definition 4 (Similarity Rating) Let A = (Q, q0,→, QF ) be an automaton contain-
ing at least the states q1, q2 ∈ Q. The similarity rating of q1 and q2 is:

sim(q1, q2) := (simin(q1, q2), simout(q1, q2))

with

simin(q1, q2) :=

∣∣∣∣∣∣
⋃

i∈{1,2}

(
{(q, a) | q a→ qi}

)
\
(
{(q, a) | q a→ q1} ∩ {(q, a) | q a→ q2}

)∣∣∣∣∣∣ ,
simout(q1, q2) :=

∣∣∣∣∣∣
⋃

i∈{1,2}

(
{(a, q) | qi

a→ q}
)
\
(
{(a, q) | q1

a→ q} ∩ {(a, q) | q2
a→ q}

)∣∣∣∣∣∣ .

The rating assigns two numbers to each pair of states. An example and some prop-
erties of this measure will motivate why it is beneficial to count incoming and outgoing
transitions separately and why exclusive edges are counted as defined above.

Example 2 (State Similarity Rating) Figure 3 shows an example automaton with
two similar states: The initial state q0 has an incoming transition from q1 with letter a
and a self-loop also with the letter a, that counts as an incoming transition from q0. The
only incoming transition of q1 is the one from q0 with the letter a. Thus, the self-loop at
q0 and the transition from q0 to q1 are counted as a common incoming transition from
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q0 with the letter a. The only exclusive incoming transition is the one from q1 to q0 with
the letter a as q1 has no incoming transition from q1 and therefore none from this state
reading the letter a. Hence, the incoming similarity rating is simin(q0, q1) = 1.

Similarly, the self-loop at q0 and the transition from q1 to q0 count as a common
outgoing transition to q0 reading a. Also the transitions from q0 and q1 to q2 with the
letter b count as a common outgoing transition. The only exclusive transition is the one
from q0 to q1 reading b as q1 has no outgoing transition to itself. Hence, the outgoing
similarity rating is simin(q0, q1) = 1. In total, there is only one exclusive outgoing and
one exclusive incoming transition. Thus, the similarity rating is sim(q0, q1) = (1, 1).

The second automaton is the result after uniting those two states. Interestingly, the
new automaton also accepts exactly the language b∗a. Since the original language is
not only included in the resulting language but even exactly the same language, the
new automaton is not only an over-approximation of the old one but even an exact
minimization. 2

Although the previous example is indeed an exact minimization, this does not hold
for all pairs of states with the similarity rating (1, 1). A simple counterexample is a
pair of a state with a unique incoming and a state with a unique outgoing transition.
If those unique transitions read other letters than all other transitions, then uniting the
pair of state adds a new word that contains both characters sequentially. For example,
the states q0 and q2 of the initial automaton in Figure 2 have this property. Their
similarity rating is sim(q0, q2) = (1, 1) as the only transition of q0 is outgoing and the
only transition of q2 is incoming. Yet, uniting these two states yields an automaton
accepting {a, b}∗.

However, there are similarity ratings that imply that uniting the considered pair of
states does not add new words to the language of the automaton: Similarity ratings with
a component being 0 imply that the language will not change when uniting two states
under certain conditions. These conditions ensure that there are no edge cases where
uniting the two states adds accepting states to the end or initial states to the beginning
of runs.

Lemma 2 (Similarity Ratings with 0 as a Component) Let A = (Q, q0,→, QF )
be an automaton. Let q1, q2 ∈ Q be two of the states of A. A rating with simin = 0 or
simout = 0 implies L (A [(q1, q2); q′]) = L (A) if none of the following holds:

• The incoming rating is simin(q1, q2) 6= 0 and |{q1, q2} ∩QF | = 1.

• The outgoing rating is simout(q1, q2) 6= 0 and q0 = q1 or q0 = q2.

Proof We prove the statement by considering runs of accepting words in the new
automaton after uniting the states and argue how we can be sure to find an accepting
run for the same word in the original automaton. Since we are assuming that one of
the components of the similarity rating is zero, we split our argument in two cases
depending on the component. If both components are zero, both arguments will lead to
an accepting run in the original automaton:
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simin(q1, q2) = 0 The two states agree on the incoming transitions. This means that
any non-empty word that leads from any state q to q1 (q2) can also
lead to q2 (q1) by changing the choice in the last transition. If a
word in the automaton after uniting the states is accepted by a run
that includes the new state elsewhere than in the first position then
it was already accepted by the old automaton: From the new state,
the word is accepted directly, after taking a transition that belonged
to q1 or after a transition that belonged to q2.
The original automaton shows the same behavior in all three cases:
If the new state accepts the word, then q1 and q2 accepted the word.
As they are reachable reading the same prefixes, the old automaton
could choose a run going to the accepting state.
If the run continues after the new state by taking a transition that
is exclusive to q1 (q2), the old automaton can choose to take a run
to this state and continue the run from the exclusive transition.

There is a special case where q1 (q2) is the initial state of the original
automaton A: Uniting q1 and q2 could possibly add new words that
are accepted by a run that starts with a transition that is exclusive to
q2 (q1). The original automaton required runs to have a prefix leading
to q2 (q1). However, exclusive outgoing transitions to the non-initial
state are not considered here as they fall under the second of the
excluded cases.

simout(q1, q2) = 0 The two states agree on the outgoing transitions. Thus, every run
through the new state can be reconstructed in the old automaton as
a run to one of the two states as it can always be continued in the
same way since the outgoing transitions exist for both states q1 and
q2. If the new state is initial, then it was possibly not reached by
a run to this state but the run started there. Since the new state
is only initial if one of the two states q1 or q2 was initial, the old
automaton can reconstruct this run by starting in the initial state.

There is a special case where q1 (q2) is accepting and the other one is
not: If the new state is reached by a transition that was exclusive to
the non-accepting state q2 (q1), then the new automaton can accept
the word although the old automaton required a non-empty suffix to
reach an accepting state. This can only happen if the two states q1

and q2 disagree both on incoming transitions and on the acceptance
behavior. The first of the excluded cases rules out this situation.

If the accepting run contains the new state at more than one position, we can prove the
statement by applying the argument in an inductive way: We always follow the run in
the automaton until the next state is the new state. If the states agree on the incoming
states, we have to choose q1 or q2 so that there is an outgoing transition to the successor
of the new state in the run in the new automaton. If the states agree on the outgoing
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state, we just follow the available transition to q1 or q2. We repeat this until we reach
the end of the run. �

If we have more information on the state pair than just the similarity rating, we can
strengthen the previous claim about cases when a similarity rating with a component
being zero implies that uniting states is a minimization rather than an actual over-
approximation:

sim(q1, q2) = (0, 0) Always.

simout(q1, q2) = 0 1. The states agree on the acceptance behavior, i.e
|QF ∩ {q1, q2}| 6= 1

2. The non-accepting state does not have exclusive incoming edges,
i.e.

({q1, q2} \QF ) ∩
{
q ∈ {q1, q2} | ∃q′∈Q∀q′′∈{q1,q2}\qq′

a→ q ∧ q′ 6 a→ q′′
}

= ∅

simin(q1, q2) = 0 1. None of the two states is the initial states, i.e. q1 6= q0 6= q2

2. Only the initial state has exclusive outgoing edges, i.e.
{(a, q) | q1

a→ q} ∪ {(a, q) | q2
a→ q} ⊆ {(a, q) | q0

a→ q}

Applying the Measure Previously, we have motivated the chosen measure and proven
that it can even help finding state pairs that can be united without changing the lan-
guage. Although this is not the main purpose of the measure, it still gives an impression
that low numbers in one of the components indicate good candidates when uniting states.
We will now explain how to select a state pair after obtaining the similarity measure for
each possible pair of states.

The intuition of the measure is to rate the amount of new prefixes and suffixes. When
uniting two states, we might add new words that start with a prefix leading to one of
the two states and end with a suffix leading from the other state to an accepting state.
The first component of the measure can be seen as a judgement for the number of new
prefixes, the other one as judgement for the number of suffixes.

We decided to minimize by the product of two components as it reflects the way how
prefixes that are exclusive to one of the states and suffixes that are exclusive to the other
state form new words.

The overall procedure for the over-approximation of a partial intersection is hence as
follows: Given a subset of possibly over-approximated automata, compute the actual
intersection. Determine the current number of reachable states and the desired number
of states. If the determined number of states exceeds the desired number of states by
k, reduce the number of states by uniting k pairs of states: Determine the similarity
rating for every pair of states, select a pair of states by the minimal product of the
two components of the similarity rating, unite the pair of states, update the similarity
ratings involving states that are adjacent to the new state, repeat.
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Why does the selection minimize by the product of the two components? Other pos-
sibilities to select a pair include considering a fixed component, the minimal component
of each tuple, and the sum. Just selecting the pair of states with the minimal rating
with respect to one of the components is not always a good solution: If we unite two
states that promise to add only a few new prefixes, this still might have a big impact if
there are many suffixes added for each of those prefixes. It might be better to allow a
little more prefixes if each of them only adds a moderate amount of suffixes. Similarly,
minimizing by the sum of the components has pitfalls as well. If we have moderately
many prefixes and suffixes with an apparently low sum, this might already have a big
impact since each of the prefixes combined with each of the suffixes can form a new
word.

An example we have seen before are similarity ratings with a component being 0.
After forming the sum, we cannot tell whether a component was 0 before. If we consider
the product, it will be 0 if at least one of the components was 0.

3.2 Chaining Intersections and Over-Approximations

Figure 4: The tree-like chaining of
exact intersection and
over-approximations. The
four circles represent the
input languages. The dot-
ted circles represent the
over-approximation of an
intersection.

The previously explained procedure does cre-
ate over-approximations. Its input is still
an exact intersection. The goal is to cre-
ate an over-approximation of the intersection
(as illustrated in Figure 1) without having to
explore the whole state space of the cross-
product automaton. In order to keep the input
for the over-approximation step small, we want
to create small cross-product automata that
describe the intersection of only two automata.
After applying the over-approximation pro-
cedure for this exact intersection, we inter-
sect the over-approximation with another lan-
guage. This chaining of exact intersections and
over-approximations maintains the actual in-
tersection: If a word is contained in all in-
put languages, then it remains in any over-
approximation (see Corollary 1) and in any in-
tersection.

This allows us to combine intersection and
over-approximation steps in any order. We
chose a tree-like procedure as shown in Figure 4: We compute exact intersections for pairs
of automata and over-approximate the result. We start with pairs of input automata
and repeat the same process for pairs of resulting languages. After logarithmically many
layers of intersections and one intersection less than input languages, we are left with a
single over-approximation of the intersection of all input languages.
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Over-Approximating Empty Intersections Over-approximating languages might lead
to an entire loss of information of the language. We already saw a worst-case scenario
in Example 1 were the resulting automaton accepted all words over the alphabet {a, b}.
Emptiness of intersections is a useful result: An empty intersection between a language
and the complement of another language is equivalent to the inclusion of the first lan-
guage in the latter. Thus, we want emptiness to propagate during the procedure: If
an intersection is empty, the over-approximation shall stay empty so that all following
intersections will become empty as well.

We first show a result on pairs of states that are both reachable through runs starting
from the initial state. Uniting such pairs of states in automata that accept no words
yields automata that still do not accept any word.

Lemma 3 (Uniting Reachable States Preserves Emptiness) Let there be an au-
tomaton A = (Q, q0,→, QF ) and be q1, q2 ∈ Q be states that are reachable from q0. If
L (A) = ∅ holds, then L (A [(q1, q2); q′]) = ∅.

Proof None of the states q1 and q2 accepts nor starts a run to an accepting state.
Otherwise, the language of A could not be empty. Thus, the automaton A′ after uniting
q1 and q2 still does not have an accepting run from the initial state. �

If one of the two states is not reachable from the initial state, it can still be an
acceptable state or start a run that leads to an accepting state although the language is
empty. Uniting such a state with a state that is reachable from the initial state will add
a word to the language of the automaton. The similarity rating alone does not prevent
this:

Let qreach be a state that is reachable from the initial state and qunreach be a state
that is not reachable from the initial state. The similarity rating of these states is at
least sim(qreach, qunreach) = (0, 0) if both states have no transitions at all, qreach is the
initial state and qunreach the accepting state. Even if the states are neither initial nor
accepting, uniting them can still add a word to the language when the similarity rating
is sim(qreach, qunreach) = (1, 1): The state qreach has only one incoming transition. It
is reachable from the initial state via this transition. The state qunreach has only one
outgoing transition. An accepting state is reachable from qunreach via this transition.
Once we unite qreach and qunreach, the accepting state becomes reachable from the initial
state, and the language of the automaton is no longer empty.

The only way to keep a language empty when over-approximating it is to only unite
reachable states. Recall that the languages to over-approximate are the results of inter-
sections. In actual implementations, the cross-product automaton is usually generated
by exploring both automata simultaneously and adding transitions when they are seen
in both automata. The result is a cross-product automaton that only contains reachable
states. Our over-approximation will propagate the emptiness of the languages of such
automata.

Determining the Number of State Uniting Steps We have discussed the tree-like
chaining of intersections and over-approximations. In the following, we present how to

21



determine the number of state uniting steps. Since each step reduces the number of
states by one, the number of state uniting steps defines the size of the automata we
intersect. The problem that we address is the exponential size of the state space. Thus,
we need to reduce the number of states in the automaton depending on the size of the
intersected automata.

If the automata that are intersected have |Q1| and |Q2| states, then the result-
ing automaton will be over-approximated so that the number of states in the over-
approximated automaton does not exceed 2 ·max(|Q1|, |Q2|). The final automaton that
over-approximates the whole intersection has up to 2s · |Q| states where |Q| is the size
of the biggest automaton that is initially intersected and s is the number of sequential
intersections. Due to our tree-like construction, there are s = log2 (k) sequential intersec-
tions and |Q| = max {|Qi| | Qi state set of an input automaton }. Thus, the resulting
automaton has up to 2log2(k) · |Q| = k · |Q| states. Before the last over-approximation, the

last cross-product automaton consists of up to
(
2log2(k)−1 · |Q|

)2
= k2

4
· |Q|2 states. Unlike

the exact computation of the intersection, our over-approximating procedure does not
have to deal with an exponential but only with a polynomial state space.

Keeping Down the Number of Candidates We have ensured that the size of the
intersection automata is always bounded by a polynomial in the size and number of
input automata. This requires us to reduce the number of states from k2

4
· |Q|2 to k · |Q|.

Since we consider all pairs of states as possible candidates for a state union, we need
to compute the similarity rating for any possible state pair. If there are n states, there
are n·(n−1)

2
unique pairs of distinct states. If we want to reduce n to m states, we need

to unite n−m pairs of states. Hence, we need to consider up to

n−m∑
i=1

(n− i+ 1) · (n− i)
2

=
n−m∑
i=1

n2 − 2 · i · n+ n− i2 − i
2

=(n−m) · n
2

2
+ n · (n−m+ 1) · (n−m)

2
+ (n−m) · n

2

+
(n−m) · (n−m+ 1) · (2n− 2m+ 1)

12
+

(n−m) · (n−m+ 1)

4

=− m

3
+
m2

2
− m3

6
+
n

3
− 2 ·m · n+m2 · n+

3 · n2

2
− 2 ·m · n2 +

7 · n3

6

similarity ratings of state pairs. This means that the over-approximation of the last
intersection step requires up to

7

384
· k6 · |Q|6 − 1

8
· k5 · |Q|5 +

11

32
· k4 · |Q|4 − 2

3
k3 · |Q|3 +

7

12
k2 · |Q|2 − 1

3
· k · |Q|

state similarity ratings. We see that the dependency between the number of state simi-
larity ratings and the input size is polynomial with a degree of 6. In order to speed up
the procedure and to make it feasible for bigger input automata, we need to reduce the
number of state pairs that are being rated. We use two approaches to reduce the number
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of comparisons. The first one is a side-effect of a heuristic with the main purpose to
improve the accuracy of the over-approximation.

In Lemma 2, we showed that zero as a component of the similarity rating implies that
uniting the rated states does not alter the language under some circumstances. Those
circumstances included that the two states may not disagree in the acceptance behavior
if they have exclusive incoming transitions. The problem is that uniting an accepting
and a non-accepting state has to result in a state that accepts in order to keep words in
the language that were accepted by this accepting state. However, this also adds words
that only lead the run to a non-accepting state. Another problem is that uniting states
spreads the acceptance behavior over the automaton: Whenever we unite two states
that disagree in the acceptance behavior, we lose a non-accepting state. In a worst case
scenario, all states in the automaton could become accepting states.

Thus, we chose the heuristic not to unite accepting with non-accepting states. This
also allows us to compute the state similarity ratings of fewer state pairs: If we compared
n states, we needed to compute n·(n−1)

2
state similarity ratings. If α · n out of n states

accept, we can reduce the number of considered state pairs to (1−α)·n·((1−α)·n−1)
2

+ n·(n−1)
2

.
The highest impact can be observed when half of the states are accepting. In this case,
we save more than a half of the state similarity rating and we are left with 1

2
·
(
1− 1

n−1

)
of the similarity ratings that the whole set of state pairs required.

On Automata Minimization The presented heuristic has the side-effect of reducing
the number of considered state pairs. Automata minimization is another method that
increases the number feasible practical examples. The automaton in Figure 3 gives an
example how uniting two states does not always add additional words to the language
of the automaton. Lemma 2 named cases when the state similarity rating will pick
state pairs with this property. This means that many of the uniting steps are in fact
minimization steps as they do not actually over-approximate the language. Each of
those steps still requires us to update the state similarity ratings, which can mean up to
quadratically many entries.

Thus, a minimization of the automaton prior to the over-approximation saves effort.
Automata minimization algorithms can reduce the number of states without changing
the language. This shifts minimization effort from the over-approximation algorithm to
an actual minimization algorithm.

The problem is the worst-case complexity: Minimizing automata in order to obtain
non-deterministic finite automata is known to be PSPACE-complete as shown in [JR93].
The Hopcroft minimization algorithm is sub-quadratic but it requires the input au-
tomaton to be deterministic. The deterministic equivalent of a non-deterministic finite
automaton can be exponentially bigger as shown in [Moo71].

An example is the language of words that have a specific letter at the n-th position
from the end. The non-deterministic automaton of this language requires n states: When
the special letter is seen, a non-deterministic transition allows to leave the initial state to
a chain of states that accepts an n letter long suffix. Since the deterministic automaton
cannot guess which occurrence of the special letter is the n-th position from the end, it
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needs to keep track of all occurrences in the last n positions. As there are 2n different
possibilities, there also need to be that many states.

The determinization of worst-cases like the mentioned one takes exponentially many
steps and the result cannot be used as even the minimized version is bigger than the
original non-deterministic automaton. In this case, the similarity ratings have to be
computed on the original automaton and the minimization is in vain. In experiments,
a determinization and an application of Hopcroft did pay out: Adding the minimiza-
tion step extended the possible input size of random examples while still being able to
compute previously feasible examples. The over-approximation itself was still required
in the experiments: A tree-like chaining of intersections steps with applications of the
Hopcroft minimization but without an over-approximation step lead to automata that
were too big for eight gigabytes of RAM.

In practical applications, it might be a critical question whether a minimization pro-
cedure should be applied or not. The decision depends on the actual use-case scenario.
If the involved classes of languages tend to show the described worst-case behavior, at-
tempts to minimize these automata should be avoided. Another possibility is an oppor-
tunistic approach: At the beginning of each minimization attempt, a maximal duration
or determinization and minimization is determined. Once this duration is exceeded, the
procedure directly switches to over-approximating the not minimized automaton.

Figure 5: The sequential chaining of
exact intersection and over-
approximations. The circles
represent the input languages.
The lower row represents the
input. The upper row shows
the procedure with its inter-
mediate and final results.

Advantages of the Tree-Like Approach
We illustrated the tree-like approach of
chaining actual intersection steps with over-
approximation steps in Figure 4. We explained
several effects like the preservation of empti-
ness by the over-approximation procedure and
the remaining details how the steps of the over-
approximation procedure are combined. Not
all of those properties and details did directly
depend on the tree-like approach. Yet, the
choice of this concrete chaining pattern does
have implications on the procedure and its re-
sult. In the following, we will motivate this
choice by comparing a different pattern.

The sequential approach as illustrated in
Figure 5 is a different possible pattern. Ini-
tially, two of the input languages are inter-
sected. All other input automata are sequen-
tially intersected with a single intermediate language. A technical difference is the change
of the sizes of the involved sets. If the input automata are all of the same size, then the
tree-like approach always intersects automata of the same size as well. The sequential
approach intersects the potentially big intermediate result with comparably small input
automata.
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Thus, the desired automata size for the over-approximation steps needs to be adjusted.
The tree-like approach doubles the size once per layer. In the sequential approach, it
needs to grow in every step as the intermediate intersection represents an increasing
number of automata. Therefore, the desired size after the i-th intersection is |Q|+ i · |Q|
where |Q| is the maximal size of state sets of the input automata. If there are k input
automata, the resulting size is k · |Q|, which is the same size as in the tree-like approach.

An interesting difference between the approaches is the point in time when all input
automata were considered at least once. In the tree-like approach, this happens after k

2

of k− 1 intersection steps, assuming that the intersection steps are done layer-per-layer.
The sequential approach considers only k

2
+ 1 automata within that many intersection

steps. If the last two automata have an empty intersection, the tree-like approach will
be aware of that after k

2
of the intersection steps while the sequential approach will

take all k − 1 intersection steps. Conversely, if the first half of the input automata
is the smallest subset of the input automata with an empty intersection, the sequential
approach determines that after k

2
−1 intersection steps. The layer-wise tree-like approach

takes k− 3 intersection steps as it needs to compute a child node of the root in the tree
of intermediate intersections.

These examples show that the advantage of one of the two approaches in determining
emptiness depends on the concrete input. Even the exact order of the input automata
matters: If both the first and the last automaton need to be considered in order to
conclude emptiness, both approaches need to do all intersection steps. If the second half
of automata is the one with the empty intersection, then the sequential approach needs
to do all intersections. Although there might be classes of inputs where one approach
can conclude emptiness earlier, the advantages disappear for unfortunate input orders.

A difference when it comes to practical implementation is the ability to execute the
steps in parallel. The idea for the tree-like approach is the following: If we want to
execute the procedure in 2i threads, we let each thread compute a node that is i layers
below the root node. This is done by following the node to its leaves. The thread
runs the tree-like approach just on the input automata that correspond to the leaves.
Whenever two threads finish, we combine their results by letting a thread intersect and
over-approximate the result. In this way, we make use of the fact that there is not a
single intermediate result in the tree-like approach on which everything is dependent.

The sequential approach depends on the single intermediate result. Thus, it can not
be split to several threads. The solution is a slight variant of the approach: The set of
input automata is split in parts of equal size and each thread executes the sequential
approach on its part of the input set. The results can then be grouped to be processed
by several threads again. This procedure is repeated until a single result is left.

This parallelizeable variant of the sequential approach is tree-like as well: Whenever
a set of automata is processed by the sequential approach, the resulting intermediate
result is the parent node of the automata in the set. Thus, the variant can be seen as
non-binary tree-like.

The final decision for the tree-like approach was made due to a property of the result
itself: An intermediate result carries information about all automata whose intersection
it over-approximates. If the number of automata k is a power of 2, the information about
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each input automaton will be processed equally often, namely log2(k) times, which is
once per each layer of the tree.

In a strictly sequential approach, this is not the case: If the input is a list of automata
A1, . . . , Ak, the automaton A1 will be considered in each of the k−1 intermediate results
and thus in k − 1 intersection and over-approximation steps. Any other automaton Ai
with 1 < i ≤ k will be considered k − i + 1 times. This means, that information
concerning the first automaton will be subject to the over-approximation k − 1 times
as often as information concerning the last automaton. Thus, we choose the tree-like
approach in the hope that information on the automaton that occur earlier in the list is
fairly considered.
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4 On Counterexamples

Section 3 showed how an over-approximation of the intersection of the input automata
is obtained. The over-approximation intersection can now be checked against the spec-
ification. If L is the over-approximation of the intersection of the input automata
L (Reg1) ∩ · · · ∩ L (Regk), and L (Reg) is the specification, then a word w that is in
the over-approximation w ∈ L is a counterexample.

A counterexample in the over-approximated intersection L exists if and only if the
over-approximation L is not included in the specification L (Reg). Since the over-
approximation L contains the intersection L (Reg1) ∩ · · · ∩ L (Regk) ⊆ L, the ab-
sence of a counterexample implies that the intersection is included in the specification
L (Reg). However, the existence of a counterexample in the over-approximation L does
not imply that the intersection is not included in the specification. A counterexample
w ∈ L, w 6∈ L (Reg) is spurious if it only exists in the over-approximation but not
in the actual intersection w 6∈ L (Reg1) ∩ · · · ∩ L (Regk). Hence, the absence of non-
spurious counter-examples in over-approximation L is equivalent to the inclusion of the
intersection in the specification L (Reg1) ∩ · · · ∩ L (Regk) ⊆ L (Reg).

The inclusion of the intersection in the specification can hence be determined by testing
for the existence of a non-spurious counterexample. It is not feasible to compute the
exact set of all non-spurious counterexamples because this requires the exact intersection
of the input automata.

Thus, the test for non-spurious counterexamples is done in this way: If there is a
counterexample w, check whether w is spurious. If it is not, then the inclusion is dis-
proven. If it is a spurious counterexample, proceed with the next one as long as there
are counterexamples available. If no counterexample is non-spurious, the inclusion is
proven.

Unlike determining the whole set of non-spurious counterexamples, the spuriousness
check for a single counterexample w is feasible: A counterexample w is non-spurious if
and only if it is included in all of the intersected languages L (Reg1) , . . . ,L (Regk). This
check can be done without obtaining the actual intersection if we just solve the word
problem for w and each of the languages.

Performing the spuriousness check for every single counterexample is only a decider
for finite sets of counterexamples. Thus, we will present a way to check certain infinite
subsets of the set of counterexamples at once. It does not only extend the class of
languages of counterexamples that can be decided. It also speeds up the search for
non-spurious counterexamples by ruling out infinitely many spurious counterexamples
at once.

In this section, we will discuss how to extend a single counterexample to an infinite
language of counterexamples so that the existence of non-spurious counterexamples can
be checked. We will give an overview on this procedure, name difficulties, and explain
how to address them. Section 5 will cover technical and theoretical details on obtaining
those languages. Sections 6 and 7 will explain the technique behind the said spuriousness
check.
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4.1 Generalizing Counterexamples

Figure 6: The generalization Lw
(small ellipse) of the
counterexample w (cir-
cle) is spuriously non-
spurious.: The part that
touches the intersection
does not violate the spec-
ification L (Reg) (rectan-
gular). Only the over-
approximation L (dotted
ellipse) violates it.

We are given a language L that over-approximates
an intersection L (Reg1) ∩ · · · ∩ L (Regk) ⊆ L
and a specification L (Reg). In the following, we
will discuss how to use a counterexample w ∈ L,
w 6∈ L (Reg) to obtain a generalized counterexam-
ple Lw, w ∈ Lw. Section 5 presents technical details
on this generalization. Subsection 4.2 explains a
quick procedure to check whether there is a non-
spurious counterexample in the generalization Lw.
Technical details on the necessary preparations can
be found in Section 6. Technical details on the in-
clusion check itself will be given in Section 7.

Generalizing counterexamples can lead to spu-
riously non-spurious counterexamples. Figure
6 illustrates when they occur: There is a
spurious counterexample w ∈ L, w 6∈ L (Reg),
w 6∈ L (Reg1) ∩ · · · ∩ L (Regk). The generalization
Lw of the counterexample does contain words that
are in the intersection. However, those words do
not violate the specification. The problem is that
such generalizations can lead to falsely concluding
that there are non-spurious counterexamples.

Avoiding this wrong conclusion is hence a re-
quirement of our procedure. We chose not to en-
force this requirement when checking the gener-
alization of the counterexample for non-spurious
counterexamples. This could be done by using the
intersection not only to ensure a counterexample
to be non-spurious, which means that it is in the
intersection L (Reg1) ∩ · · · ∩ L (Regk), but also to
check whether it actually disobeys the specification, which means that also L (Reg) is
considered in the intersection. Our procedure generalizes the counterexamples in a way
so that each word in the generalization disobeys the specification. This means that we
construct a generalization Lw of the counterexample w that is included in the language
of all possible counterexamples L (Reg) ∩ L.

This does not only supersede the check of the generalization against the complemented
specification L (Reg) but it can also speed up the elimination of non-spurious counterex-
amples: If all words in the generalization Lw are spurious, they will be excluded from
the over-approximation by intersecting the over-approximation with the complement of
the generalization. Since the generalization consists only of words that are in the over-
approximation and not in the specification, each word in the generalization is a potential
counterexample that we will not need to check in a later step of the loop. This avoids

28



cases where the counterexample w is the only representative its generalization Lw that
actually violates the specifications. Such cases are expensive as they require the whole
intersection check and the refinement without significantly reducing the set of possible
counterexamples that remain to be checked.

Thus, the procedure works as follows:

1. Compute the automaton describing all possible counterexamples
LC := L ∩ L (Reg).

2. Find a counterexample w ∈ LC .

3. Generalize the counterexample w along the automaton describing the set of possi-
ble counterexamples LC to Lw (see Section 5).

4. Use the intersection check (see Subsection 4.2) to test for counterexamples that
are also in L (Reg1) ∩ · · · ∩ L (Regk).

• If there is any, the inclusion does not hold.

• If there is none, repeat but exclude the entirely spurious generalized coun-
terexample. The new language of possible counterexamples is thus
L′C := LC ∩ Lw.

4.2 Fast Intersection Checks

Once we have a generalization Lw ⊆ L (Reg) ∩ L of a counterexample w, we need to
check whether it contains any non-spurious counterexample. This means that we want

to decide Lw ∩ L (Reg1) ∩ · · · ∩ L (Regk)
?
= ∅.

To this end, we define the Fast Intersection Check as follows. The underlying tech-
niques Elementary Bounded Languages, Parikh Images, and Presburger Formulas will
be introduced throughout this section.

1. A generalization of a counterexample w is given as a regular Elementary Bounded
Language Lw = {wx1

1 . . . wxll | (x1, . . . , xl) ∈ L} where L ⊆ Nl is a semi-linear set.

2. Introduce fresh letters a1, . . . , al for the infixes w1, . . . , wl and obtain another El-
ementary Bounded Language L′w = {ax1

1 . . . axll | (x1, . . . , xl) ∈ L} using the same
semi-linear set L.

3. Given k regular languages L (Reg1) , . . . ,L (Regk), try to express its words as se-
quences of the letters a1, . . . , al, representing the infixes w1, . . . , wl. Skip words
that cannot be expressed using theses infixes.
L (Reg′i) = {ai1 . . . aim ∈ {a1, . . . , al}∗ | 1 ≤ im ≤ l,m ∈ N, wi1 . . . wim ∈ L (Regi)}
for 1 ≤ i ≤ k.

4. Intersect the resulting regular languages with the modified Elementary Bounded
Language: L (Reg′i) ∩ L′w for 1 ≤ i ≤ k.
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5. Describe the Parikh Images of L (Reg′1)∩L′w, . . . ,L (Reg′k)∩L′w as Presburger For-
mulas. The Parikh Images are of the form {(x1, . . . , xl) ∈ L | wx1

1 . . . wxll ∈ L (Regi)}.

6. Intersect the Parikh Images by forming the conjunct of the Presburger Formulas
and deciding satisfiability.

• The conjunct is satisfiable. Then, there is a satisfying assignment of the
variables x1, . . . , xl. Thus, the word wx1

1 . . . wxll is in L (Reg′1) , . . . ,L (Reg′n)
and L′w. The intersection is non-empty.

• The conjunct is not satisfiable. The intersection is empty.

The basic idea is that we project the words to a domain where we can test more easily
whether the given languages have an empty intersection. In general, this does find all
non-empty intersections but not all empty intersection: If the intersection in the original
domain is non-empty, then there is at least one element in it, whose projection is also in
the projection of all of the intersected sets and thus in the intersection of the projection.
If the intersection in the original domain is empty, then there still might be different
elements in each of the intersected sets that have the same projection. In this case, the
projection has a non-empty intersection although the intersection in the original domain
is empty.

We can still use this approach to actually decide emptiness for intersections with the
following property: Non-empty intersections in the projection need to contain at least
one unique element. This element in the projected domain is unique in the sense that
there is only one element in the intersection in the original domain that is projected it.

We strengthen the requirement and get a property that implies the previous one.
Instead of requiring the existence of an element with a certain property, we extend
the property to all elements in the intersection: We are interested in instances of the
intersection problem whose intersection in the new domain is guaranteed to only consist
of elements with a representative in the original domain that is in each of the intersected
sets.

We produce such instances by preventing the generalization of the counterexample
from having several elements that are projected to a single element. Before projecting
the input languages, we intersect each of them with this generalization of the counterex-
ample. The intersection of these languages is still the same. Yet, the intersection of the
projected languages is different: Intersecting with the generalization of the counterex-
ample rules out elements that are projected to the same element as others in the set.
Thus, the instance does have the desired property.

Existential Presburger Formulas In order to solve the said emptiness problem in the
projected domain, we use formulas in first order predicate logic. Each formula represents
a set of the elements in the projected domain that are satisfying assignments of the
formula. We solve the emptiness of the intersection of the sets by checking satisfiability
of the conjunct of formulas. Satisfiability of first order predicate logic is in general not
decidable. However, satisfiability of first order formulas is decidable for certain fixed
theories as shown in [Sca84].
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We use Existential Presburger Arithmetic. This is a fragment of first-order logic for-
mulas whose only predicate is the equality of sums.

Definition 5 (Existential Presburger Arithmetic) The signature of a formula in
Presburger Arithmetic is:

• Domain: D := N

• Functions: 0/0, 1/0,+/2

• Predicate: =/2

The functions and the predicate are interpreted as expected in the natural numbers.
A formula in Existential Presburger Arithmetic is equivalent to a Presburger Formula

of the form ∃x1 . . . ∃xkB for some k ∈ N and a quantifier-free Presburger Formula B. 2

There are interesting properties of our syntax of Presburger Arithmetic:

• Domain: The natural numbers are the domain. However, an integer variable can
be represented by a natural number variable for the positive component and one
for the negative component.

• Functions: The only non-constant function is the addition. Subtraction can be
represented as an addition on the other side of an equation or inequality. Mul-
tiplication between a constant c and a variable can be expressed as a sum of c
occurrences of the variable. Constants in the natural numbers are represented as
sums of 1. The constant 0 is redundant: As the neutral element of addition, it can
be left out of sums. If the constant 0 appears as a side of an equation or inequality,
it can be turned to a sum by adding 1 to both sides of the equation or inequality.

• Predicates: Equality is the only predicate. Less-than-or-equal can be expressed us-
ing an additional variable that is existentially quantified: For example, the formula
∃z : x+ z = y is equivalent to x ≤ y.

We will make use of formulas in Existential Presburger Arithmetic as their satisfiability
problem is in NP as shown in [Sca84]. Thus, the sets need to have a representation
as an Existential Presburger Formula. Each Presburger Formula can be transformed
into an Existential Presburger Formula as shown in [Coo72]. However, the size of the
formula grows exponentially when eliminating the universal quantifiers as discussed in
[LOW15]. We will present a procedure that purely relies on sets that can be defined
by Existential Presburger Formulas. We will present a procedure in Section 7 to obtain
these formulas and show that their size is still polynomial although they do not contain
universal quantifiers.

The Parkih Image of a language is a set of vectors of natural numbers that represent
words by carrying the frequency of each letter of the alphabet in a component of the vec-
tor. Parikh Images of context-free (and hence regular languages as well) are semi-linear.

31



This is the main statement of Parikh’s Theorem as republished in [Par66]. According
to [GS66], semi-linear sets can be defined by Presburger Formulas.

We can check the satisfiability of the conjunct of the Existential Presburger Formulas
describing the Parikh Image of regular languages. This means that we know whether
there is an assignment that satisfies all of the formulas. This assignment corresponds to
a vector in the Parikh images. The existence of such a vector in all of the sets proves
that there are some permutations of a word so that each language contains at least one
of the permutations.

Elementary Bounded Languages It does not suffice to only check the existence of
permutations of a word. The idea is to shape the generalization of the counterexample
Lw so that each word can be represented by vectors of natural numbers so that no pair
of words shares the same vector. We then present a way to obtain these vectors as a
Parikh Image of a projection of the languages. To this end, we use so called Elementary
Bounded Languages. All words in a regular language are composed out of the same
infixes in the same, fixed order. Only the number of repetitions differs. Hence, each
word in the Elementary Bounded Language corresponds to a vector.

Definition 6 (Elementary Bounded Language (EBL)) Let w1, . . . , wl be words
and the vector set L ⊆ Nl be definable by Elementary Functions. A language L of
the form

L = {wx1
1 . . . wxll | (x1, . . . , xl) ∈ L},

is an Elementary Bounded Language over the infixes w1, . . . , wl. 2

A vector (x1, . . . , xl) ∈ L denotes the numbers of repetitions of the infixes in a word
wx1

1 . . . wxll ∈ L.
The class of Elementary Bounded Languages is incomparable to the classes of regular,

context-free and context-sensitive languages. For example the regular language {a, b}∗
is not an Elementary Bounded Language. The language {(ab)x1(ba)x2 | x1 = x2 ∈ N} is
an Elementary Bounded Language, a context-free language and not a regular language.
The language {(ab)x1(ba)x2 | x1, x2 ∈ N} is also an Elementary Bounded Language but
it is regular. The regular language {a, b} is not an Elementary Bounded Language.
The Elementary Bounded Language {ax1bx2cx3 | x1 = x2 = x3 ∈ N} is not context-free.
There are subclasses of the class of Elementary Bounded Languages that consist only of
regular languages:

Lemma 4 An Elementary Bounded Language L = {wx1
1 . . . wxll | (x1, . . . , xl) ∈ L} is

regular, if the components of L do not depend on each other, i.e. L = L1 × · · · ×Ll and
L1, . . . , Ll ⊆ N, and each component is semi-linear, i.e. L1, . . . , Ll are semi-linear sets.

Proof The proof is constructive. Since the sets L1, . . . , Ll are independent, the lan-
guage L is a concatenation of languages of the form {wxii | xi ∈ Li}. Since regular
languages are closed under concatenation, it remains to be shown that each of these
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languages is regular. Since each set Li is semi-linear, there is a regular language using a
single letter so that the word lengths of this regular language correspond to the set Li.
If we replace any edge in this automaton by a sequence of edges reading wi, we get an
automaton for the language {wxii | xi ∈ Li}. �

The procedure in Section 5 generalizes the counterexample to an Elementary Bounded
Language. There, the sets L1, . . . , Ll are either N or {1}. This means that the language
is described by a regular expression that consists of the infixes w1, . . . , wl and Kleene
stars for some of the infixes.

The useful property of Elementary Bounded Languages is the fixed order of the suf-
fixes: A vector (x1, . . . , xl) ∈ Nk denoting the number of repetitions of the suffixes
describes a single word wx1

1 . . . wxll . This is not the case for vectors in Parikh Images:
For example, the Parikh Image of (ab)∗(ba)∗ is the set of all vectors in N2 with equal
first and second component. The words abab and baba are both represented by the vec-
tor (2, 2) in the Parikh Image. The vectors describing the number of repetitions in the
Elementary Bounded Language are (2, 0) and (0, 2).

The set of vectors denoting the frequency of infixes in the Elementary Bounded Lan-
guage can still be expressed as a Parikh image: If we represent each of the infixes
w1, . . . , wl as a fresh letter a1, . . . , al and determine the Parikh Image of the modified
word, then the Parikh Image vector coincides with the corresponding vector denoting
the frequency of each infix in the original word. For example, if we represent the infix
ab as c and ba as d, the language (ab)∗(ba)∗ will be represented as c∗d∗. The words abab
and baba will be represented as cc and dd. The Parikh Images of the modified words
are (2, 0) and (2, 0), which coincides with the exponents in the representation (ab)2(ba)0

and (ab)0(ba)2.
If there are words in an intersection between an Elementary Bounded Language and

other languages, then those words can certainly be expressed by the vector denoting
the frequency of infixes. In order to intersect languages with the Elementary Bounded
Language using Presburger Formulas describing sets of such vectors, we need to represent
the languages as sets of those vectors. This means that all words of the language need to
be split in infixes of the Elementary Bounded Language and represented as a sequence
of the letters that represent the corresponding infix. If we want to intersect a language
Lin with an Elementary Bounded Language L = {wx1

1 . . . wxll | (x1, . . . , xl) ∈ L} over
the infixes w1, . . . , wl that are represented by the letters a1, . . . , al, we first prepare the
language

L′in = {ai1 . . . ail ∈ {a1, . . . , ak}∗ | ex. k ∈ N, wi1 . . . wik ∈ Lin, 1 ≤ ij ≤ l f.a. 1 ≤ j ≤ k} .

A constructive approach to obtain L′in from an automaton for Lin will be presented
later in Section 6. However, the resulting language L′in might still contain words
with the same Parikh Image as different words in other languages or the Elemen-
tary Bounded Language. The problem is that we do not enforce an order of the
infixes. We solve this by intersecting the resulting language L′in with the language
L′ = {ax1

1 . . . axll | (x1, . . . , xl) ∈ L} that represents the Elementary Bounded Language L.
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The intersection is of the form

L′in ∩ L′ = {a
x1
1 . . . axll ∈ L

′ | wx1
1 . . . wxll ∈ Lin, (x1, . . . , xl) ∈ L} .

The Parkih Image of L′in ∩ L′ consists of vectors that represent a single word since
the Elementary Bounded Language enforces the order or the infixes. If we prepare all
languages that we want to intersect in the same way, it suffices to intersect their Parikh
Images. Thus, we came up with the procedure we presented at the beginning of this
section.

Note on Non-Regular Elementary Bounded Languages Note that this procedure
does not necessarily require the generalization Lw to be regular. Regularity was used
in step 4: The intersection of two regular languages is still regular. Thus, we are
sure that the result is still a finite automaton from which we can then extract the
Presburger Formula describing the Parikh Image. Our way to obtain the Presburger
Formula describing the Parikh Image requires finite automata. However, even if the
Elementary Bounded Language is non-regular, a regular intersection suffices at that
point:

If the generalization Lw = {wx1
1 . . . wxll | (x1, . . . , xl) ∈ L} is non-regular but L is still

semi-linear, we can intersect the input languages with a regular hull w∗1 . . . w
∗
l ⊇ Lw of

Lw. This is already enforces the order of the infixes. Yet, we still need to consider the
actual Elementary Bounded Language in the intersection of the Parikh Images. This
can be done by obtaining a Presburger Formula describing L since L is semi-linear. We
then add the Presburger Formula to the conjunct.
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5 Generalizing Counter-Examples as Elementary
Bounded Languages

The over-approximation of the intersection may contain words that violate the speci-
fication. Such counterexamples might be actual counterexamples if they disprove the
inclusion or spurious counterexamples. We motivated in Section 4.1 that we want to
check the spuriousness of infinitely many counterexamples at once and want to ignore
this whole set if it is entirely spurious. Thus, we will present a procedure to find such
generalized counterexamples.

The generalized counterexamples are Elementary Boundeded Languages since the pro-
cedure we presented in Section 4.2 requires such languages. As mentioned in Section 4.1,
entirely spurious counterexamples will be ignored by intersecting the language of poten-
tial counterexamples with the the complement of the set of spurious counterexamples.
Hence, the languages of generalized counterexamples will be regular.

If L (Reg) is the specification and L is the over-approximation of the intersection,
then LC := L∩L (Reg) is the set of exactly those potential counterexamples that might
be in the intersection and violate the specification. After excluding a set of spurious
counterexamples, the language LC will be updated. We assume that the language of
possible counterexamples is given as an automaton AC

We present an approach whose input is this automaton AC : The given automaton AC
contains potential counterexamples that we have not examined before. A path from the
initial state to an accepting state of AC admits a counterexample w. A language {w}
containing a single word w is already a finite Elementary Bounded Language as it can
be expressed as a sequence of infixes with an exponent that is fixed to 1. The idea is
to search for loops along the path to the accepting state. Such loops are then added as
infixes with a Kleene star.

This is done in a procedure like this:

1. Given is the automaton AC describing the non-empty language of potential coun-
terexamples LC .

2. Perform a depth first search to find a run to an accepting state. Extract the
counterexample w that is read by this run.

3. Move along the run to the accepting state. For each state, run a depth first search
to find a run to the state itself. If the run to the state itself reads wloop, insert w∗loop
at the corresponding place of the word that is read along the run to the accepting
state.

4. The result is an Elementary Bounded Language of the form

Lw =
{
wx1

1 . . . wxll | (x1, . . . , xl) ∈ L ⊆ Nl
}

with L = L1 × · · · × Ll, Li ∈ {{1} ,N}
for all 1 ≤ i ≤ l and w = wy1

1 . . . wyll with yi = 1 if Li = {1}
and yi = 0 if Li = N for all 1 ≤ i ≤ l.

35



q0start . . . q . . . qf
wx1

1 wxii

wloop

w
xi+1

i+1 wxii

Figure 7: The run of A reading wx1
1 . . . wxii w

xx+1

i+1 . . . wxll leads through a state q.

We will first formalize the said basic principle of this approach and show that it works
as intended. After that, we will explain how to find loops and how to add them to the
Elementary Bounded Language.

Lemma 5 (Adding Loops to Elementary Bounded Languages) .
Let A = (Q, q0,→, QF ) be an automaton whose language contains an Elementary Bounded
Language L = {wx1

1 , . . . , w
xl
l | (x1, . . . , xl) ∈ L} ⊆ L (A). Let wi and wi+1 be infixes and

q ∈ Q a state of A so that for every word w = wx1
1 . . . wxii w

xi+1

i+1 . . . wxll ∈ L there is a run
from the initial state q0 to an accepting state qf ∈ QF that passes state q after reading
wx1

1 . . . wxii .

If there is a run from state q to state q reading the infix wloop, then the Elementary
Bounded Language L′ =

{
wx1

1 , . . . , w
xi
i w

xloop
loop w

xi+1

i+1 , . . . , w
xl
l | (x1, . . . , xl) ∈ L, xloop ∈ N

}
is contained in the language L (A) ⊇ L′ of the automaton and contains the original
Elementary Bounded Language L ⊆ L′.

Proof Since the exponent xloop of the new infix wloop is independent from the others
exponents x1, . . . , xl, restricting xloop to 0 yields precisely the original language L.

In order to show the inclusion in the language of the automaton L (A), we consider
all words w ∈ L′. These words are always of the form wx1

1 . . . wxii w
xloop
loop w

xi+1

i+1 . . . wxll . The

word wx1
1 , . . . , w

xi
i w

xi+1

i+1 ∈ L′ is also contained in L. Thus, there is a run from the initial
state q0 to the state q reading wx1

1 , . . . , w
xi
i and a run from the state q to an accepting

state qf ∈ Q. Since there is a run from q to q reading wloop, we can construct a run that
starts in q0, reaches q for xloop + 1 times, ends in the final state qf and reads the word
wx1

1 . . . wxii w
xloop
loop w

xi+1

i+1 . . . wxll . �

It is an interesting property of this principle that the resulting Elementary Bounded
Language might be in a different class than the original language: The Elementary
Bounded Language (aa)∗ = {ax1ax2 | x1 = x2 ∈ N} is regular. If we add b∗ between
the existing infixes, we get the context-free language {ax1bxloopax2 | x1 = x2, xloop ∈ N},
which is not regular. Conversely, there is the context-free but not regular Elementary
Bounded Language {ax1bx2 | x1 > x2 ∈ N}. However, adding b∗ between the two infixes
yields the regular language {ax1bxloopbx2 | x1 > x2, xloop ∈ N} = a∗b∗.

A way to enforce regularity of the resulting Elementary Bounded Language lies in the
choice of the place where to insert the loop: If a regular Elementary Bounded Language
L can be split into two regular Elementary Bounded Languages L1L2 = L, then the
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concatenation L1w
xloop
loop L2 of the two languages and a regular language w

xloop
loop is still

regular.
Another property worth noting is the preservation of the prefixes and suffixes of the

runs: Lemma 5 requires all words to have a path in the automaton that passes state q
after reading the corresponding part of the word. If these runs also admit a state q′ with
the same property, then this state q′ remains a candidate for a second application of the
lemma: Let q, q′ be two states so that each word of the original Elementary Bounded
Language admitted a run going through q and q′ at a corresponding place in the words.
Let the Elementary Bounded Language be modified by adding a loop reading wloop at
q as an infix. Then the new words are of the form w′w

xloop
loop w

′′ and w′w′′ is a word of
the original Elementary Bounded Language. A new word can still be accepted by a run
with the same prefix reading w′ and suffix reading w′′. Such a new run also passes q′

when reading w′ or w′′.
We make use of those two properties in our approach: We start with a single run to

an accepting state. The induced language is a single word and thus both regular and
a Elementary Bounded Language. Then, we traverse this single run and try to find
loops along the states of this run. While traversing the states along the single run, the
Elementary Bounded Language can be split into a prefix and a suffix language. The
prefix language is already build up of infixes that are not repeated and such that are
repeated arbitrarily often. The suffix language contains a single word and is thus regular.
Hence, regularity is preserved after adding the infix with the Kleene-star. Furthermore,
the suffix of the initial run from the currently inspected state to the accepting state
is still a suffix of at least one run for each word in the modified Elementary Bounded
Language. Hence, Lemma 5 remains applicable while traversing the initial run and
extending the Elementary Bounded Language.

Thus, the extraction of Elementary Bounded Languages works conceptionally as
shown at the beginning of this section.
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6 On Symbolic Language Representations

In the previous sections, we motivated the use and construction of Elementary Bounded
Languages for fast intersection checks based on Parikh Images and Presburger Formulas.
The idea was to uniquely identify a word by a vector denoting the repetitions of the
infixes in the Elementary Bounded Language. As presented in Sections 4.2 and 4.1, we
want to use Parikh Images in order to project the languages that we want to intersect
to sets of such vectors.

Vectors in the Parikh Image denote the frequency of each letter. Thus, the Parikh
Image is equivalent to the vector denoting the repetitions of the infixes if we repre-
sent each infix by a fresh letter: If the Elementary Bounded Language is of the form
{wx1

1 . . . wxll | (x1, . . . , xl) ∈ L}, then we represent it as
{
ax1

1 . . . axll | (x1, . . . , xl) ∈ L ⊆ Nl
}

where a1, . . . , al are different letters. If the Elementary Bounded Language is represented
as a list of infixes and some representation of the set L, the transformation is quite easily
done by replacing the list of words by a list of letters and by keeping the set L.

In this section, we will explain how to transform any regular language to this form.
We assume the language to be given as an automaton A = (Q, q0,→, QF ). The

infixes w1, . . . , wl of the Elementary Bounded Language shall be represented as the
letters a1, . . . , al. We construct a new automaton A′ = (Q, q0,→′, QF ) over the alphabet
{a1, . . . , al}. The new automaton copies all states and their acceptance behavior but it
replaces the transitions in the following way:

→′ =
{
q′

ai−→ q′′
∣∣∣ q′ ∈ Q, q′′ ∈ Q,wi s.t. there is a run q′

wi,1−−→ . . .
wi,|wi|−−−→ q′′

}
where wi,j is the j-th letter of wi

Hence, the new transitions are shortcuts for a sequence of transitions that is induced
by the corresponding infix of the Elementary Bounded Language. Yet, many of the
transitions and states are not necessary if they are not reached at the end of an infix of
Elementary Bounded Language. Thus, the transitions are updated while traversing the
automaton. This is done by the following steps:

1. Initialize a worklist with the initial state q0 of the automaton A.

2. Inspect each state in the worklist until it is empty.

a) Ignore states that have been inspected before.

b) If the currently inspected state is qcurr, add{
qcurr

ai−→ q′′
∣∣∣ex. q′′, wi with qcurr

wi,1−−→ . . .
wi,|wi|−−−→ q′′

}
as new transitions,{

q′′
∣∣∣ex. wi with qcurr

wi,1−−→ . . .
wi,|wi|−−−→ q′′

}
to the worklist.

In general, the modified automaton does not accept all words that are accepted by
the original automaton. We will now characterize the language of the automaton after
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performing the presented modification that replaces sequences of transitions reading the
infixes w1, . . . , wl by transitions reading single letters a1, . . . , al.

Lemma 6 (Language of Word-Transition Automaton) Let A = (Q, q0,→, QF )
and A′ = (Q, q0,→′, QF ) with →′ as defined earlier for w1, . . . wl and a1, . . . al.

L (A′) =
{
w = ai1 . . . ai|w| | wi1 . . . wi|w| ∈ L (A) ∩ {w1, . . . , wl}∗

}
.

Proof We prove the equality of the languages by showing the inclusion in both direc-
tions:

⊆: Claim: Any word w ∈ L (A′) that is accepted by the automaton A′ is of the form
w = ai1 . . . ai|w| so that wi1 . . . wi|w| is a word of L (A).

We use an inductive argument: The initial state for both A and A′ is q0. If reading
ai in A′ leads from q′ to q′′, then it does so for wi in A as well because a transition

q′
ai

→′ q′′ was introduced if reading wi leads from q′ to q′′ in A. Thus, if a word
ai1 . . . ai|w| leads to an accepting state in A′, the corresponding word wi1 . . . wi|w|
leads to the same state in A and is accepted as well.

⊇: Claim: If any word w ∈ L (A) is accepted by the automaton A and of the form
w = wi1 . . . wim , then the automaton A′ accepts the word ai1 . . . aim ∈ L (A′).

We apply a similar inductive argument that constructs runs to the same accepting
state in both automata: The initial state for both A and A′ is q0. For any infix
wi, 1 ≤ i ≤ l is read from the initial state q0 in A, a transition with the same
destination state is introduced in A′. If an infix wi leads from q′ to q′′ in A, then
a transition that reads ai and leads from q′ to q′′ was inserted in A′ if q′ was ever
on the worklist. Remember that the approach always adds states to the worklist
when a transition with that state as the destination was added to the automaton.
Hence, while constructing the run and reaching state q′, it is known that this state
is reachable from the initial state by a sequence of infixes. Therefore, it is also
known that all possible transitions starting there have been added to A′. �

Thus, the procedure constructs an automaton that only accepts a representation of
L (A) ∩ {w1, . . . , wl}∗ rather than L (A) itself. This does suffice: The language will be
intersected with the Elementary Bounded Language

{wx1
1 . . . wxll | (x1, . . . , xl) ∈ L} ⊆ {w1, . . . , wl}∗ .

Thus, the actual intersection certainly lies in {w1, . . . , wl}∗. Restricting an input lan-
guage L (A) to this language does hence not alter the intersection.

In fact, the restriction is rather coarse. For the Elementary Bounded Language d(abc)∗,
the procedure would still try to add a transition starting at the initial state that rep-
resents the infix abc. If the initial state is never visited again, then this transition is of
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no use as the intersection with the representation of d(abc)∗ will only keep transitions
representing d at the initial state. Thus, the procedure can be adapted so that it does
not only do the substitution of edges but also the intersection with the representation
of the Elementary Bounded Language.

6.1 A Combined Procedure for Word-Transitions and Intersection
with Elementary Bounded Languages

When an automaton reads words from an Elementary Bounded Language, there might
be infixes that are not read from all states. Adding edges is rather costly because every
edge requires to track all states to which reading an infix leads. We obtain this set of
states by starting at the state q, reading the prefix letter-by-letter, and keeping track
of the set of states where the current prefix of the infix can lead to. Once the whole
prefix is read, we know all states that can be reached from q by reading this infix. In the
worst case, each currently inspected state carries transitions to all states for the current
inspected character. Therefore, we need to touch up to (|w| − 1) · |Q|2 + |Q| transitions
for each of the |Q| states when adding transitions for an infix with |w| characters.

Thus, we want to reduce the number of transitions we add: We only consider those
transitions that can actually be taken when reading a word from the elementary bounded
language. Conceptionally, we already compute an automaton for the intersection of
the Elementary Bounded Language and the input automaton. We only compute those
transitions that are needed for the intersection automaton.

The approach is a variant of the cross-product automaton: Each state of the resulting
automaton represents a state of both automata. Here, we do not explicitly compute the
crossproduct of two existing automata. We compute the needed parts of the automata on
the fly as we are constructing the crossproduct automaton. The states and transitions
for the Elementary Bounded Language are hard-coded in the procedure. We rely on
a fixed subclass of Elementary Bounded Languages. The shortcut transitions of the
input automaton are computed whenever needed and stored for multiple uses in the
cross-product automaton.

The intuition is that we create multiple layers of the original automaton. Each layer
denotes how many of the infixes of the Elementary Bounded Language have been read.
Depending on that, different infixes are represented by the transitions.

We fix the subclass of Elementary Bounded Languages to those languages whose
infixes occur either exactly once or arbitrarily often. Thus, the Elementary Bounded
Language is assumed to be given as

{wx1
1 . . . wxll | (x1, . . . , xl) ∈ L} with L = L1 × · · · × Ll and Li ∈ {N, {1}} , 1 ≤ i ≤ l.

There are several observations about reading words of languages of this subclass of
the Elementary Bounded Languages:

• Once an infix wi was recognized, there may be no infixes wj with lower indices
j < i because the Elementary Bounded Language enforces an order on the infixes.
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• An infix wi may only be immediately followed by infixes wj if there is no infix wj′
with a lower index i < j′ < j that has to occur, i.e. Lj′ = {1}.

• A word may end right after an infix wi if all other infixes wj, j > i are optional,
i.e. Lj = N.

These three observations are the basis for the conditions of the transitions in the
automaton describing the intersection between the said Elementary Bounded Language
and a finite automaton A = (Q, q0,→, QF ). In the intersection automaton, a state qi,h
represents state qi of the automaton A right after reading the representation of infix wh.
Intuitively, the resulting automaton can be seen as a multi-layered automaton where
each layer contains a copy of the automaton. Whenever a different infix is read, the
run switches to a higher layer. The height of a layer denotes the last infix that was
actually read. The following automaton accepts a representation of the intersection of
L (A) and an Elementary Bounded Language of the form as previously described. The
infixes w1, . . . , wl are represented as the letters a1, . . . , al:

A′ = (Q′, q0,0,→′, Q′F ) where

Q′ = {qi,h | 1 ≤ h ≤ l, qi ∈ Q, ex. a run q0 → · · · → qi of A, reading wx1
1 . . . wxhh

with x1 ∈ L1, . . . , xh−1 ∈ Lh−1, xh ∈ Lh \ {0}}
∪ {q0,0}

→′ =
{
qj,h

ah′→ qj′,h′ | qj′,h′ , qj,h ∈ Q′, f(h) ≤ h′ ≤ g(h), ex. qj → · · · → qj′ reading wh′
}

f(h) =

{
h if Lh = N
h+ 1 if Lh = {1}

, g(h) = min ({h < h′′ ≤ l | Lh′′ = {1}} ∪ {l})

Q′F = {qi,h ∈ Q′ | qi ∈ QF , if f.a. j with h < j ≤ l : Lj = N}

The definition of Q′ enforces that we only introduce states that are actually reachable.
The the choice of the destinations of the transitions→′ ensures that the transitions obey
the first two of the three observations. These two definitions ensure that we do not
insert a transition that is never taken while reading a word in the Elementary Bounded
Language. This does not rule out all unnecessary transitions: We might still insert
transitions that never lead to an accepting state as we cannot tell in advance where they
lead to.

While the definition of the transitions is rather straight forward and mainly depends
on comparisons of indices of the states, the definition of state set itself uses an argu-
ment on reachability. A procedure to obtain the whole automaton A′ will be given
now. It illustrates how an automaton according to the said definition can be obtained
algorithmically.

1. The state set is initialized with the new initial state Q′ = {q0,0}. If the initial
state q0 ∈ Q of A is an accepting state q0 ∈ QF and there is no required infix
wi, Li = {1}, add q0,0 as an accepting state.
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2. We iterate through the infixes w1, . . . , wl.

3. The current infix wi can be read after reading wj where j < i is the biggest index
with Lj = {1}. If there is no such index, wi can also be read initially at the
beginning of the word, and j is set to 0. Thus, we initialize a worklist with all
already known states W = {qs,j′ | j ≤ j′ < i, qs,j′ ∈ Q′}. Check the set Li:

Li = {1}: Search for runs of A reading wi that start with states qs if there
is a state qs,j′ ∈ W in the worklist. Store those runs and add the
transitions{

qs,j′
ai−→
′
qs′,i | qs,j′ ∈ W, qs, qs′ are conneceted by a run reading wi

}
.

Add all new transition goals states to Q′. If a state qs′ is an accepting
state qs′ ∈ QF of A and there is no later necessary infix wi′ , i

′ >
i, Li′ = {1}, mark it also as an accepting state qs,i ∈ Q′F .

Li = N: Add transitions in the same way as for the other case but update the
worklist by adding all states to it that are freshly introduced to Q′.

4. The resulting automaton is A′ = (Q′, q0,0,→′, Q′F ).
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7 Parikh Images of Regular Languages as Presburger
Formulas

In Section 4.2, we explain how to decide emptiness of intersections between Regular
Languages and Elementary Bounded Languages using a decider for emptiness of in-
tersections of semi-linear sets. The emptiness of such intersections can be decided by
describing those semi-linear sets by Presburger Formulas, forming their conjunct and
deciding its satisfiability. In Section 6, we constructed automata so that their Parikh
Images are exactly the said semi-linear sets. This section explains how to obtain a
Presburger Formula describing a Parikh Image of a given automaton.

The Verma-Seidl-Schmentick Construction [VSS05, Section 3] presents a procedure
to obtain Parikh Images of Context-Free Grammars. The key concept of this procedure is
counting the number of applications of each production rule: The procedure introduces a
counting variable for each production rule. A constraint ensures that each non-terminal
symbol is consumed by production rules as often as it is initially present or produced by
production rules. The actual Parikh variables of the letters just sum up how often the
applied production rules produce a certain non-terminal symbol.

An example: Let there be two rules S → R, S → a, which consume the start symbol
S and either produce the terminal symbol a or the non-terminal symbol R. Let there be
two more rules R→ Rb,R→ b, which consume the non-terminal symbol R and produce
either the terminal symbol b, either with or without the non-terminal symbol R. The
language is a+ b (b∗) and the correct Parikh Image is {(1, 0)}∪{(0, n) | n ∈ N \ {0}}. If
just the rule S → a is applied exactly once, then the constraint requiring the production
and deletion of a non-terminal symbol to happen equally often is satisfied. This adds
the Parikh vector (1, 0)

A problem is the rule R → Rb: This rule itself closes a cycle of rule applications.
Whenever the rule is applied, it consumes and produces the non-terminal R equally
often. This means that any number of applications of this rule does not violate the
constraint as long as neither S → R nor R → r are applied. However, this should be
impossible. Yet, it allows to count applications of R → Rb even if S → a instead of
S → R is counted. This leads to the wrong Parikh Image {(1, n), (0, 1 + n) | n ∈ N}.

An application of a rule should only be counted if its non-terminal symbol on the left
side is produced as a consequence of a sequence of rule applications starting with the
start symbol. As a way to do that, [VSS05] proposed an additional counting variable:
The variable is similar to a distance measure of terminal and non-terminal symbols:
Exactly the symbols that are produced by consuming the start symbol are allowed to be
marked with 1. All other symbols are either marked 0 or with a non-zero value under
specific conditions: There needs to be an applied rule with a non-zero marking for the
consumed non-terminal symbol. The distance marking of the consumed symbol needs
to be exactly 1 lower than the marking of the produced symbol.
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Trying to Enforce The Distance Marking The distance marking is enforced by re-
quiring all produced terminal symbols to be marked with a non-zero distance marking.

This does rule out the previous counterexample: If the resulting Parikh vector counts
the terminal symbol b at least once, this symbol has to have a non-zero distance marking.
In the previous example, both the terminal symbol a and the terminal symbol b are
supposed to have a non-zero distance marking. The idea is that this marking implies a
sequence of rule applications from the start symbol to all rules producing those terminal
symbols. However, it is possible to consume and produce non-terminal symbols even if
their distance marking is 0.

The problem is that the constraint was not strict enough: It only required the occur-
ring terminal symbols to have a non-zero count without requirements on the rules that
produced these symbols. There just needs to be one correct sequence of applied rules
from the start symbol to a terminal symbol. Terminal symbols could still be produced
as a consequence of a cycle of rule applications: If a cycle of non-terminal symbols only
produces terminal symbols that are also produced as a consequence of rule applications
from the start symbol, there is no constraint requiring the non-terminal symbols in the
cycle to have a distance marking. Thus, the rule applications along the cycle are still
counted although the involved non-terminal symbols are never produced from the start
symbol.

Bypassing the Distance Marking A variant of the previous example illustrates the
flaw: Let there still be the rule S → R that converts the start symbol to the non-terminal
symbol R. We modify the other rule consuming the start-symbol: The new rule S → ab
now also produces the terminal symbol b. The rules R→ Rb,R→ b remain as before.

We count the rule S → ab once and are thus allowed to set the distance marking of
the terminal symbols a and b to 1. All non-terminal symbols are hence marked and can
be used. We mark the non-terminal symbol R with 0 and just apply the rule R → Rb
n times. The zero marking is allowed as b is already marked with 1. Thus, the formula
allows the wrong Parikh Image {(0, n), (1, n) | n ∈ N \ {0}}. The correct Parikh Image
should be {(1, 1)} ∪ {(0, n) | n ∈ N \ {0}}.

Customizing the Verma-Seidl-Schwentick Method Technically, it is easily possible
to convert any deterministic or non-deterministic finite automaton to a context-free
grammar:

Each state in the finite automaton is represented by a non-terminal symbol. The initial
state is the start symbol. Transitions of the form q′

a→ q′′ are modelled as grammar rules:
The rule Rq′ → aRq′′ consumes the non-terminal symbol Rq′ representing the state
q′ and produces the accompanying letter a followed by the non-terminal symbol Rq′′

representing the next state q′′. Accepting states also get a rule that just eliminates the
non-terminal symbol. In this construction, applying rules always yields a word followed
by the representation of a state that can be reached when reading the word. Conversely,
every run induces a sequence of rule application that produces the read word and the
last state of the run. If and only if the run is accepting, the non-terminal symbol can
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be deleted and the word is in the language of the grammar.

However, the said class of Presburger Formulas does not work as intended. As we
mentioned earlier, the problem about loops of rule applications introduces additional
satisfying variable assignments: The formulas accept more vectors than the actual Parikh
Image. Thus, we devise a customized method to obtain a Presburger Formula for the
Parikh Image. It differs from the Verma-Seidl-Schwentick solutions in two ways: The
formula is generated directly from the finite automaton without using a Context-Free
Grammar. Furthermore, this method also fixes the said issue about unrelated loops.

7.1 Verma-Seidl-Schwentick-like Formulas for Finite Automata

We construct a Presburger Formula for the Parikh Image of finite automata using a
similar approach as the one shown in [VSS05]: We introduce variables to count how often
transitions are taken and add constraints to ensure that we only count combinations that
are induced by an actual run in the automaton. A possible Parikh vector can be tested
by comparing each of its components to the number of times transitions reading the
corresponding letter are taken.

A transition variable xq′,a,q′′ counts how often a transition q′
a−→ q′′ is taken. Actual

runs require that each state is entered as often as it is left. Thus, we add a constraint
for each state that the sums of the transition variables for the incoming transitions and
the sums for the outgoing transitions are equal.

Initial and accepting states are special cases: Outgoing transitions of the initial state
are taken once more than its incoming transitions as each run starts there. We take
this into account by increasing the sum of all incoming transition variables of the initial
sate by 1. Similarly, one of the accepting states is entered once more than left. We
introduce the variable fq for all accepting states q ∈ QF . We add it to the sum of
all outgoing transition variables of the corresponding accepting state. An additional
constraint ensures that precisely one of these variables is 1 and all others are 0.

We also need to ensure that passing a transition is only counted if a sequence of
traversed transitions leads to the corresponding state. To this end, we apply a similar
technique as explained for context-free grammars:

We use state distance variables zq for each state q ∈ Q. The initial state is always
marked with 1. All other states may be marked with 0. A non-zero marking needs to
be 1 higher than the marking of a predecessor. Here, a state q′ is the predecessor of a
state q′′ if they are connected by a transition q′ −→ q′′ that is counted as taken.

This state distance rating of each state hence expresses the length of a run from the
initial state to that state so that each transition on the run is counted as taken. We use
this rating to avoid the problem of unrelated cycles of transitions that are counted as
taken: A constraint ensures that transitions may not be counted as taken if they concern
a state with a zero distance rating.

Combining the gathered insights, we formalize the constraints to a Presburger For-
mula:
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Definition 7 (Parikh Image Presburger Formula) Let A = (Q, q0,→, QF ) be a
finite automaton over the alphabet Σ. The Parikh Image Presburger Formula of A is:

P ≡
∑
q∈QF

fq = 1 ∧ zq0 = 1
∧

(q,a,q′)∈→

0 ≤ xq,a,q′
∧
a∈Σ

pa =
∑
q

a−→q′

xq,a,q′ (1)

∧
q∈QF

0 ≤ zq ∧ 0 ≤ fq ≤ 1 ∧
∑
q

a−→q′

xq,a,q′ + fq =
∑
q′

a−→q

xq′,a,q +

{
0 q 6= q0

1 q = q0

(2)

∧
q∈Q\QF

0 ≤ zq ∧
∑
q

a−→q′

xq,a,q′ =
∑
q′

a−→q

xq′,a,q +

{
0 q 6= q0

1 q = q0

(3)

∧
q∈Q\{q0}

( ∨
q′

a−→q
(zq′ + 1 = zq ∧ zq′ > 0 ∧ xq′,a,q > 0)

∨
(
zq = 0

∧
q′

a−→q
xq′,a,q = 0

∧
q

a−→q′
xq,a,q′ = 0

) ) (4)

Usually, we specify assignments of the formula by just assigning values to the variables
pa, a ∈ Σ. All other variables are assumed to be bound by existential quantifiers. 2

Line (1) of this formula ensures basic properties of the variables: Exactly one of the
variables for the accepting states is 1. The distance marking of the initial state is 1. All
transition variables are non-negative. The Parikh variables pa, f.a. a ∈ Σ, count the
frequency of letters by summing up how often corresponding transitions are taken.

The flow constraints are enforced by line (2) and line (3): Each state is entered as
often as it is left. As explained earlier, this constraint is not satisfied for the last state of
an accepting run and the initial state. Thus, the flow equations for an initial or accepting
states have slightly modified sums: Line (2) adds the accepting state variable to the sum
of outgoing transitions of the accepting states. As ensured by line (1), exactly one of
those variables is 1 and compensates that the final state is entered once more than left.
Similarly, both lines add 1 to the sum of incoming transitions of the initial state.

Line (4) sets up the distance marking and enforces that transitions are only counted
if all transitions on a run from the initial state to these transitions are counted as well:
We have two options to assign a distance marking to a state: Either, we assign 0 to it
and do not count any incoming or outgoing transition as taken. Or, we pick a state with
a non-zero marking, follow a transition that is counted as taken and assign a distance
marking to the next state that is increased by 1.

We will first show that the formula has a satisfying assignment for each vector in the
Parikh image:

Lemma 7 (Parikh Vector to Assignment) Let A = (Q, q0,→, QF ) be a finite au-
tomaton over the alphabet Σ =

{
a1, . . . , a|Σ|

}
and P its corresponding Parikh Image

Presburger Formula.

If there is a word w ∈ L (A) and a vector ~p =
(
|w|a1 , . . . , |w|a|Σ|

)
∈ P (L (A)), then there

is a satisfying assignment with pa1 = |w|a1 , . . . , pa|Σ| = |w|a|Σ|.
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Proof If there is a vector ~p in the Parikh image, then there is also a corresponding
accepting run of A that reads the word w. We construct an assignment for the variables
of P :

• We assign the values of the Parikh vector ~p to assignment of the Parikh variables
of P : pa1 = |w|a1 , . . . , pa|Σ| = |w|a|Σ|

• The variable of the final state fq is set to 1 for the last final state q in the run. All
other variables of final states fq′ , q

′ ∈ QF \ {q} are set to 0.

• The transition variables xq,a,q′ , q
a−→ q′ are set to the number of occurrences of the

corresponding transition in corresponding run.

• The state distance variables zq, q ∈ Q are set along the run: The initial state has
the distance marking zq0 . We follow the transitions of the run. Whenever a state
has not been marked with a distance yet, we assign the previously seen or assigned
distance marking and increment it by 1. All other states are marked with 0.

This is clearly an assignment with pa1 = |w|a1 , . . . , pa|Σ| = |w|a|Σ| . It also satisfies all
constraints of the formula P :

Line (1): The basic constraints are satisfied:

– The sum of the variables of the accepting state is 1 since exactly one
of them, namely the variable of the last state of the accepting run,
was set to 1 while all others are 0.

– The distance marking of the initial state is set to 1.

– Transition variables are set to the number of occurrences in the run
and are hence non-negative.

– The Parikh variables are set according to the frequencies of the letters
in the word that is read by the accepting run. Thus, each Parikh
variable is equal to the sum of all occurrences of transitions reading
the corresponding letter in the accepting run.

Line (2): States in the run, other than the first and the last one,are surrounded by
an incoming and an outgoing transition. Thus, the states have equally
many incoming and outgoing transitions if we do not count the first and
the last transition of the run. The additional outgoing transition of the
initial state and the incoming transition of the last state in the accepting
run are compensated by adding 1 to the other side of the equation. Thus,
those flow equations are satisfied.

Line (3): The only difference between flow equations for accepting and non-accepting
states is the final state variable. Since non-accepting states cannot be the
last states of a run, we can safely leave those variables out and the con-
straint remains satisfied.
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Line (4): The constraint for the distance marking addresses states except for the
initial state. If a state is not in the accepting run, it is marked with 0
and the the last part of the disjunct is satisfied. Otherwise, the state q
was marked while traversing the accepting run and the state inherits the
successor of the marking of a state q′. The state q′ occurs in the run right
before the first occurrence of q. Thus, there is a transition from q′ to q
that is taken, q′ has a non-zero distance marking and the marking of q
is the direct successor in the natural numbers. The constraint is hence
satisfied. �

We will now show that each satisfying assignment of the formula corresponds to a vector
in the Parikh image:

Lemma 8 (Assignment to Parikh Vector) Let A = (Q, q0,→, QF ) be an automa-
ton over Σ =

{
a1, . . . , a|Σ|

}
with the Parikh Image Presburger Formula P.

For each satisfying assignment of the formula, there is a word w ∈ L (A) and a vector

~p =
(
|w|a1 , . . . , |w|a|Σ|

)
∈ P (L (A)) so that the variable assignment corresponds to the

vector ~p, i.e. pa1 = |w|a1 , . . . , pa|Σ| = |w|a|Σ|.

Proof Each satisfying assignments specifies how often each transition is taken. It also
specifies how often each character is read. The constraint in line 1 of the formula ensures
that those values are not contradicting. It remains to show that there is a run of the
automaton that takes each transition as often as specified.

The correctness of the original formula for context-free grammars was shown using a
result on communication-free Petri nets as shown in [Esp97, Theorem 3.1]: Let there
be a specification how often each transition in a Petri net shall be applied. There
is a sequence of applications of Petri net transitions if the specification satisfies two
requirements: There is no place where the specified applications of transitions consume
more tokens than produced or given by the initial marking. Every applied transition
needs to be reachable along a sequence of applied transitions from a place that was
initially marked.

A finite automaton is a special case of a communication-free Petri net: Each state
corresponds to a place in the Petri net. The only existing token marks the current state
of a run. The initial marking sets the token to the place corresponding to the initial
state. Petri net transitions move a token from a state to another state if there is a
transition in the automaton in the same direction.

A sequence of applications of Petri transitions can directly be translated to a run in the
automaton. Thus, the said result allows to conclude the existence of a run from a certain
specification. In order to apply this result, we need to show that its two requirements
hold for the Petri net that is implied by the satisfying assignment:

• In sum, transitions may not consume more tokens from a place than they and the
initial marking place there. This is guaranteed since we ensured that each state is
entered as often as it is left.
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• There has to be a path of applied transitions that transports a token from an
initially marked place to each place where transitions shall be applied. In this
special case, only the place corresponding to the initial state is marked. Thus, we
will show that all satisfying assignments only count transitions as used if they are
at the end of a whole path of used transitions starting from the initial state. �

We consider each transition q
a−→ q′. If the variable assignment sets the transitions count

xq,a,q′ 6= 0, then the state distance markings zq, zq′ may not be 0 since the last part of line
(4) is the only case that allows a zero distance rating. This part of the formula cannot
be satisfied if an adjacent transition is used. The other parts of this line ensure that the
marking is either 1 for the initial state or inherited from a predecessor state along an
edge that is counted as used. When tracing back the distance marking, it always needs
to decrease by 1 for each transition until the initial state is reached. Thus, the required
paths of used transitions from the initial state to each used transition do exist.

Hence, the said result on communication free Petri nets applies and a sequence of
applications of Petri net transitions with the said frequencies of each transition does
exist. Thus, there is a run in the automaton reading a word with the Parikh image that
is specified by the satisfying assignment of the formula. The run is accepting as line (2)
ensures that precisely the accepting state q with fq = 1 is entered once more than left.
This means that this state is the last one of the run.

Remark: The said Petri net construction from the original proof for context-free
grammars is not necessary for finite automata. Unlike context-free grammars, the regular
case can also be modelled graph-theoretically:

Each state is modelled as a vertex of the (multi-)graph, each application of a transition
is modelled as a directed edge between the vertices that correspond to the involved states.
We search for an Euler-Walk from the initial state to the final state q with fq = 1.

Euler-Walks use every edge in the graph precisely once. The result is a sequence of
edges where every edge is used exactly once and the goal vertex of each edge is the start
vertex of the next one. This directly corresponds to an accepting run of the automaton.

A characterization of graphs containing Euler-walks and Euler-cycles was first shown
in [HW73]. The conditions are graph theoretical reachability and the equality of the
number of incoming and outgoing edges. The rest of this variant of the proof is quite
similar to the variant using communication-free Petri nets.

We conclude the correctness of the formula:

Corollary 2 The Parikh Image Presburger Formula P characterizes the Parikh Image
of the corresponding finite automaton. 2

An easy example illustrates the usage of this formula:

Example 3 Let A = (Q, q0,→, QF ) be a finite automaton with two states Q = {q0, q1}
where q0 is the initial and the only accepting state QF = {q0}. Reading a from the initial
state q0 leads to q1, reading b from there leads back to q1, i.e. → = {(q0, a, q1), (q1, b, q0)}.
Figure 8 represents this automaton graphically.
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Figure 8: An automaton accepting the language (ab)∗.

The Parikh Image is P (L (A)) = {(n, n) | n ∈ N}. We apply the Parikh Image Pres-
burger Formula for this automaton and get:

P ≡fq0 = 1 ∧ zq0 = 1 ∧ 0 ≤ xq0,a,q1 ∧ 0 ≤ xq1,b,q0 ∧ pa = xq0,a,q1 ∧ pb = xq1,b,q0 (5)

∧ 0 ≤ zq0 ∧ 0 ≤ fq0 ≤ 1 ∧ xq0,a,q1 + fq = xq1,b,q0 + 1 ∧ 0 ≤ zq1 ∧ xq1,b,q0 = xq0,a,q1
(6)

∧ ((zq0 + 1 = zq1 ∧ zq0 > 0 ∧ xq0,a,q1 > 0) ∨ (zq1 = 0 ∧ xq0,a,q1 = 0 ∧ xq1,b,q0 = 0))
(7)

Line (6) contains the flow constraints of Line (2) and (3) of the general formula. This
line mainly enforces the equality xq1,b,q0 = xq0,a,q1 . Since line (5) of the example formula
sets the Parikh variables pa and pb as synonyms of the corresponding transitions, this
implies the equality pa = pb.

The state distance variable zq0 of the initial state is fixed to 1. The state distance
variable of the other state is either

zq1 = 0: In this case, line 7 enforces xq0,a,q1 = xq1,b,q0 = 0. This yields a satisfying
assignment corresponding to the Parikh vector (0, 0).

or

zq1 = 1: Line 7 implies that the predicate zq0 + 1 = zq1 needs to be satisfied. Since Line
5 already set zq0 = 1, a satisfying assignment needs to set zq1 = 2. Furthermore,

the transition q0
a−→ q1 needs to be taken, i.e. xq0,a,q1 > 0. Due to the already

mentioned requirement xq1,b,q0 = xq0,a,q1 , this yields Parikh vectors of the form
(n, n), n ∈ N \ {0}.

Thus, the formula accepts precisely those assignments corresponding to the Parikh
vectors in P (L (A)) = {(n, n) | n ∈ N}. 2

50



8 Notes on the Implementation

This section presents our implementation of the procedure we presented in the previous
sections. The implementation provides a library for the several algorithms that were
introduced. It also offers a command line interface to run the CEGAR loops on randomly
generated instances.

The source code is written in F#. Hence, it relies on the Mono/.net framework. This
open-source programming language was initially introduced by Microsoft in 2005. It is
currently maintained by the F# Software Foundation. Software using the Mono/.net
framework is platform-independent: It runs on multiple processor architectures and
operating systems. It can use any libraries for the Mono/.net platform independent of
their programming language.

The main programming paradigm of F# is functional programming. In 2013, many
software developers in Microsofts Most Valuable Professionals (MVP) program switched
to functional programming and hence to F#, according to [Fan14, p. xv]. For this
work, this programming language was not only chosen for being an increasingly popular
programming language but also for interoperability with other projects:

Existing verification projects like the framework Averest and its programming lan-
guage Quartz are programmed using F#. This allows to easily integrate this work in
Averest. Furthermore, some existing frameworks for Mono/.net and F# were used in
this work:

• Fare (Finite Automata and Regular Expressions). A Mono/.net library offering
basic data structures and algorithms on finite automata. It was released by the
Greek computer programmer Nikos Baxevanis who is also known for the F#-based
automated testing tool “LightCheck”. Fare is heavily inspired by the Java-Library
dk.brics.automaton by Anders Møller (Aarhus University, Denmark).

Our library uses the data structures of Fare as the input format for automata. Fare
is also used for standard operations on non-deterministic finite automata, such as
intersection, union and complement. The ability to convert a regular expression
to an automaton is used when creating finite automata from Elementary Bounded
Languages.

• Microsoft Research Z3. A solver for satisfiability modulo theories written in C++.
In our implementation, it is used to check the satisfiability of the Presburger
Formula for the the fast inclusion check.

• z3fs. An F#-interface to Z3 by Anh-Dung Phan. It allows writing formulas for
Z3 in native F# syntax. In our implementation, it is used when generating the
Parikh Image Presburger Formula for a given automaton.

Note that the binaries of Z3, as it is written in C++, are not platform-independent.
This means that our implementation always needs to be shipped with the .so-file of Z3
for the current architecture and operating system.
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We now present a short overview on a selection of details of the implementation. More
details on the API can be found in the full API specification. It can be generated from the
source code since the functions are documented using the built-in XML Documentation
feature of F#. We start with a short introduction to the data structures. Especially
the data structure for automata as provided by Fare is important since it is the main
input format for our library. After introducing the data structure, we will present the
modules of the program and their role in the presented algorithm.
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8.1 Data Structures for Finite Automata

Many of the introduced algorithms work on finite automata. Thus, data structures for
finite automata are frequently used throughout almost all parts of the implementation.
All used and implemented data structures are strongly tied to the ones offered by Fare.
Although Fare uses whole Unicode as the alphabet of the automata, the input languages
need to use an alphabet that is a subset of a a-z. The allowed range of Unicode
characters is defined in the file AutomataGenerator.fs and can be altered provided
that all characters in that range are legal letters in regular expressions.

The data structures in Fare are state-centric. This means that data is stored per state
and bound to the object representing the state. Therefore, the view on automata is
quite similar to the one that is implicitly used when reading a word: We move from
state to state. The only needed information is which states are the next ones along
transitions reading the current letter. Hence, the most important data structures in
Fare are Fare.State, Fare.Transition, and Fare.Automaton.

Fare.Automaton Fare stores an absolute minimum of information with each object of
the type Fare.Automaton: It stores a flag for the determinism as well as the initial state.
All other information is stored together with the states themselves.

An application for this kind of representation is concatenation: When concatenating
two automata, it suffices to copy all states from the first automaton and add transitions
to the initial state of the second automaton. The second automaton will neither be
altered nor copied at all. The automaton accepting the concatenation of both languages
reuses exactly the same data for the states of the second automaton.

Fare.Transition Transitions are stored carrying the target state and a range of let-
ters: An object of the type Fare.Transition represents a whole set of transitions
with the same start and goal state. If there are transitions q

a1−→ q′, . . . , q
an−→ q′ where

a1, . . . , an is a sequence of consecutive Unicode-characters, then these transitions are rep-
resented by a single object of Fare.Transition: The attribute Fare.Transition.min

is set to a1 and Fare.Transition.max to an. The transition can be taken in a run if
the current Unicode character is not less than a1 and not greater than an in the order
of Unicode characters. We implemented functions that simplify transitions by uniting
overlapping or adjacent intervals.

Fare.State The state itself has an attribute denoting whether the state is an accept-
ing state. The advantage is that this property can be checked in constant time. The
disadvantage is that a variant of an automaton with a different acceptance behavior
needs to be stored as a complete copy as the acceptance behavior cannot be separated
from the states in this model.

Each state is annotated by a constant ID. The ID is unique in the program since there
is a global integer variable for the next state ID. Each construction of a Fare.State

object copies that ID as the current ID and increases the global value. We heavily rely
on this property in our implementation: We use the ID of a state as a primitive key for
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data structures. Other than composed values like strings or recursive types, primitive
types allow comparison in constant time, which is needed when accessing values by a
key.

A state may also be annotated by an attribute called Fare.State.Number. This
mutable integer value can be assigned and changed. The class Fare.Automaton provides
a method Fare.Automaton.SetStateNumbers that assigns the numbers 0, . . . , n − 1
uniquely to each state in a set of n states. Fare uses this internally to store states in
arrays: The numbers are the keys in the array. This allows to only allocate an array of
exactly the size of the set while being able to access the elements in constant time. It is
also possible to use the IDs as the keys of an array. This, however, requires to allocate
an array in the size of at least the interval from the lowest to the highest ID in the set.

The state also carries a Fare.Transition list that denotes all transitions starting
from this state. Checking for a specific goal state or a specific Unicode character always
requires searching in the whole list.

8.1.1 Custom Data Structures

As already mentioned, there are cases when the given data structures do not allow the
fastest possible way of obtaining or manipulating certain data. The biggest issues for
our implementation were:

Access Specific States If an object of the type Fare.Automaton is given, then
the only way to get access to a specific object of the type
Fare.State is traversing the whole automaton. In the worst
case, we need to look at all states and their transitions each
time we want to access a specific state.

Accessing specific states is especially crucial in our algorithm
when we over-approximate an automaton: We need to com-
pare each pair of states. Furthermore, whenever we unite
two states, we need to access those states in order remove
them and transfer their properties to the new state.

Incoming Transitions If we want to get transitions of a state, we need to get at least
the corresponding object of the type Fare.State. This,
however, only works for outgoing transitions. If we want
to know all incoming edges of a specific state, we need to
traverse the whole automaton and check for every single edge
whether it leads to the current state.

Incoming transitions are for example needed to be known
when computing the similarity rating for a pair of states.
Another example is the Parikh Image Presburger Formula
that relies on knowledge about incoming edges of each state.

Filtering Transitions All objects of the type Fare.Transition starting from a
state are organized in a single list. This means that we need
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to search the whole list for transitions leading to a specific
state or reading a certain letter.

While the implemented algorithms do not only need to filter
transitions by their letters, they do need to group letters
by the states: For example, we compare two states by the
number of mismatching transitions. To this end, we need to
count for each successor state how many character are read
uniquely in transitions from one of the start states. Another
application of finding transitions with the same goal is the
simplification of intervals: We unite two objects of the type
Fare.Transition to a single one if the letter intervals are
adjacent or overlapping.

We designed data structures that organize states and transitions in a different way.
We build a redundant data structure once for the automaton and keep it updated when
manipulating the automaton. There are two main applications for our custom data
structure: Comparing and reducing states as described in section 3 and extracting the
Parikh Image Presburger Formula as described in section 7.

Most collections in our data structure are maps that use the ID of a state as the
key. As already mentioned, the mutable attribute Number can be used to assign unique,
consecutive numbers to a state that serve as the key in an array. However, a problem
arises when some methods in Fare.Automaton are called: They also use the numbers
in order to produce arrays. This might override values that are required by our data
structure. For example, if we follow a transition, read the attribute Number of the
goal state, and try to access the corresponding state in the array, we might get a wrong
object because a method like Fare.Automaton.GetSortedTransitions may have called
Fare.Automaton.SetStateNumbers to reassign numbers.

Besides storing the states itself, there are other uses for data structures that use the
state ID to organize data in a map: When rating the similarity of a pair of states, we
organize those ratings in a map. The keys are tuples of the two involved state IDs. In
order to have unique keys, the first ID has to be the lower one.

One of our custom types is AnnotatedState. It has a property State that carries the
original object of the type Fare.State. The attributes Intrans and Outtrans are both
maps from int to lists of tuples of two Unicode characters.

The intended semantics are: The integer value is the Fare.State.Id of the neighbor
state. If the value is a key in AnnotatedState.Intrans, then there are incoming tran-
sitions from the state with that ID. Similarly, AnnotatedState.Outtrans groups the
lists of outgoing transitions by the ID of neighbor states. The value of those maps is an
interval list: The first character in the tuple denotes the beginning, the second one the
end of and interval of Unicode character for which there is a transition connecting the
current state and the state corresponding to the key in the map.

A map in F# is essentially an AVL tree. AVL trees are self-balancing trees that
were introduced by [AVL62]. Typical operations like the insertion, the deletion, and
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the retrieval of data have a worst-case runtime of O (log n). Hence, initializing the data
structure with n states takes

n∑
k=1

O (log(k)) = O (log(n!)) < O (n · log(n))

steps. Additionally, traversing the whole automaton requires in a worst case to touch
every single state and transition object. The worst-case runtimes of the named three
common use cases are:

Access Specific States O (log n) Accessing the AnnotatedState object for a given
ID just takes a single read access on the map. The original
data structure requires traversing the whole automaton for
every single access.

Incoming Transitions O (1) Assuming that the AnnotatedState object is avail-
able, we only need to use its property Intrans in order to
obtain the incoming transitions.
O (log n) Assuming that we have to retrieve the object of
the type AnnotatedState, we need a query to the map that
stores all states of the automaton.

Filtering Transitions O (log k) + O (log n) (for k neighbor states and n states in
total) If the AnnotatedState object is given, we just need
to query the map Intrans or Outtrans. Getting access to
the AnnotatedState object takes again a read access in the
map containing all states.

The given data structures do provide a faster and more convenient way to access and
store data for the said use cases. Note that we chose a purely functional approach and
hence immutable data structures – although Fare.Automaton itself uses mutable data
structures. Therefore, the runtime for write access and the initialization relies on a
compiler that works well and reuses the read-only data. We tried to support this with
our coding style:

Loops are mostly implemented using built-in methods like map, reduce, and fold,
which apply a given function on each element in a given collection. There are a few
cases where those methods are not suitable. In these cases, we implemented recursive
functions. All our recursive functions are tail-recursive. This means that the recursive
function call is the last call of the function. Hence, the recursive call may safely modify,
reuse, and override any data that was produced by the calling function.

We now introduce our implemented modules and their main functions. These intro-
ductions serve as quick overview and as a guide where to find which implementation
of the implemented algorithms. For a more detailed explanation on every function and
precise usage instructions, we refer to our source code and the contained documentation
for each of the functions.
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8.2 The Module Intersect: Over-Approximating the Intersection

The module Intersect implements the algorithms we motivated and introduced in
Section 3. Its main purpose is to generate a finite automaton that accepts an over-
approximation of the intersection of the languages of a list of automata.

We implemented the function IntersectAutomataList for this purpose. The input
is a list of Fare.Automaton objects. The result is a single object of this type. The
function itself splits the work into many tasks of intersecting and over-approximating
two automata at once. This is done in a boustrophedonic way:

An inner recursive function is called with the input list and an empty list. The inner
function calls another function to intersect and over-approximate two automata. The
result will be added at the beginning of the second list. The processed two automata
will be removed from the beginning of the first list and the recursive function calls itself.
Once the first list is empty, the second list takes its place.

This implements the tree-like chaining as introduced in Section 3 and Figure 4. Adding
the resulting automata to the beginning of the list instead of the end of the list does
not only save the need to find the end of the list. It also reverses the result list auto-
matically. In the tree-metaphor, this means that the layers of the tree are processed
boustrophedonically.

This matters when the length of the input list is not a power of two. Then, there is a
layer with an odd number of automata. The automaton that is not intersected in this
layer will be the first one to be intersected in the next layer. This addresses the problem
of automata that are quite seldom intersected and over-approximated.

The function IntersectTwoAutomata is used for the actual intersection and over-
approximation. This function is the place where the intersection and the Hopcroft-
minimization is done and the desired number of states is set. The actual reduction of
states is delegated to the function reduceastates.

This function reduceastates initially calls the function getSimilarityRating to
initialize the custom data structure containing the states and a table of all similarity
ratings of pairs of states. The function then determines the best pair of states to be
united using findmostsimilarstatepair and updates the similarity rating and the two
representations of the automaton using uniteStates.

The step of uniting states is independent from the similarity rating: The function
uniteStates just unites a pair of states that is given as a parameter. The update of
the similarity ratings is delegated to an external function. This allows to independently
change the way how states are selected to be united.

An interesting detail about the implementation is the similarity rating using the rep-
resentation of transitions by Fare.Transition. The algorithm we discussed earlier
simply counted the number of mismatching unique transitions of two states. The type
Fare.Transition represents many transitions as a single object since these objects are
not annotated with single letters but whole intervals in the Unicode alphabet.

Hence, we have two goals: We need to compare whole intervals of letters rather than
single letters. If characters occur in multiple intervals, we may not count them twice.
The first useful trick is our custom data structure. It allows to easily access incoming
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and outgoing transitions by the ID of the neighbor state. These transitions are given as
interval lists. We can count the mismatching transitions of two states by comparing two
interval lists for the same neighbor state ID. This is done by linearly parsing two sorted
interval lists and summing up the lengths of exclusive subintervals. Since we require
sorted lists either way, we can easily prevent double counting: We linearly pre-process
the already sorted interval lists and unite each pair of overlapping intervals to a single
one.
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8.3 The Module CounterExample: Extracting an Elementary
Bounded Counterexample Language

The module CounterExample implements the procedure we motivated in Section 4.1
and introduced in Section 5. Its purpose is to derive a regular Elementary Bounded
Language consisting of potential counterexamples. The counterexamples are words that
are in the over-approximation of the intersection and violate the specification. We
assume the input to be given as a Fare.Automaton. The output is a representation of
the Elementary Bounded Language as a list of tuples. The first component of the tuple
is an infix of the Elementary Bounded Language. The second component is a Boolean
value and denotes the number of possible repetitions of the infix: An infix with false

as the second component has to occur precisely once. An infix with true can occur
arbitrarily often. Intuitively, the Boolean value answers the question whether there is a
Kleene star right of the infix in the representation as a regular expression.

The function for this purpose is FindCounterExampleEBL. It returns an option type:
It uses a variant of a depth-first search on the automaton to find a path to an accepting
state. If there is no such path, the return value is None. Otherwise, it is Some outputEBL

where outputEBL is a regular Elementary Bounded Language that is contained in the
language of the input automaton. It uses the representation as described above. The
Elementary Bounded Language is obtained by splitting the counterexample word and
adding looped infixes:

We start with the initial counterexample path and process every single state on the
path. From every state, we try to find a loop back to the state itself. The infix that is
read along this path is added as an Elementary Bounded Language infix with a Kleene
star. The search for the loop is again implemented using the modified depth-first search.

We decided that the initial path may not be the empty path: If we apply the said
procedure on just the empty path, the result is just of the form w∗ with w a single word.
Instead of the empty path, the run reading w could be chosen as the initial path. The
language w∗ \ {w0} would still be a subset of the resulting language as the loop can still
be found at the initial state.

This design decision requires to treat the empty word separately: Since the empty word
is not in any of the resulting languages, we need to check whether the initial state is an
accepting state. The module offers the function IsTheEmptyWordACounterexample. Its
first parameter is the language of all possible counterexamples as an object of the type
Fare.Automaton. Its second parameter is the list of the Fare.Automaton objects whose
intersection we want to determine. The function checks whether the initial states are
accepting in the automaton of potential counterexamples and all automata that shall
be intersected. The result is returned as a value of the type bool. A positive result
is a proof that the empty word is a counterexample. A negative result means that
the empty word is only a spurious counterexample. It can then be removed from the
language of potential counterexamples. To this end, the module provides the function
EliminateAcceptingInitialState. If the initial state is accepting, the function mod-
ifies the input automaton by setting a copy of the former initial state as the new initial
state. The new copy is not accepting and has no incoming transitions. The incoming
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and outgoing transitions of the former initial state remain unchanged. The new initial
state inherits all outgoing transitions of the former initial state.

The Custom Depth First Search A key technique in this procedure is the frequent use
of a depth first search on the automaton. To this end, we have implemented a variant of
the depth first search in the function DepthFirstSearch. The implementation is strictly
functional, tail recursive and uses immutable data structures. The search runs directly
on an object of the type Fare.Automaton. The automaton, its states and its transitions
are never modified throughout the search.

The most important parameters when calling DepthFirstSearch are the function
parameter criterion and the list of Fare.State objects backwardpath. Initially, the list
backwardpath is a reversed representation of the beginning of the path that is already
known. Typically, it is initialized with a list consisting only of the start state of the
desired path. Throughout the recursive calls, the list contains the reverse prefix of the
path that is currently examined. Hence, the list is also used for backtracking once
all neighbor states of the current state, which is the first state in the list, have been
visited. The backtracking step is done by just omitting the current first state of the list
and calling the function recursively with the tail of the list. Since the list is organized
reversely, adding and removing the current state can be done in constant time. A
suitable path is found, once the current state satisfies criterion. This means that the
function criterion returns true for the current state. The path is returned by just
reversing backwardpath in linear time. Once all neighbor states of the start state have
been examined without success, we know that there is no state satisfying the criterion
and the function returns None.

We keep track of the visited states using the parameter visitedstates. It is a set of
Fare.State objects and marks all states that have been visited. Initially, the function
should be called with visitedstates being an empty set. Since sets in F# are stored
as AVL trees, this produces a logarithmic overhead when checking or storing whether
a state has been visited. A way to reduce the overhead is implemented in the Boolean
parameter revisit: The parameter marks whether the current state had already been
added to the visitedstates set before. This happens when a state is visited again
during backtracking. The parameter must initially be set to false if the first state
is initially not included in the set visitedstates. Setting revisit to true is safely
possible and saves one redundant write access to the set visitedstates if the first state
is initially included in this set.

As we prevent states from being revisited, this means that the paths are actual paths
and never loops. However, we still use the depth first search to close the loops in order
obtain infixes with Kleene stars for the Elementary Bounded Language. This is possible
by adjusting the criterion for the search: The criterion does not check whether the
tested state itself closes the loop but whether the state has an outgoing transition to
a state closing the loop. The missing state is then added to the path that was found
in the depth-first search. This however does not find self-loops since the result of the
depth-first search cannot be an empty path. Thus, self-loops are checked separately.
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Allowing More General Criteria As another way to speed up the depth-first search,
we decided to widen the set of states that is accepted by the criterion of the depth-first
search. When searching for an initial counterexample, all accepting states satisfy the
criterion. When closing the loop, only a single state closes the loop, namely the state q
where we started to search for the loop. Since we move along an initial path and add
loops from every state, we know that there is a path to the current state q from any
state that appears in the path before q. We use this fact to generalize the criterion for
the depth-first search: We just search for a state q′ on the initial path up to the current
state q. We form the word along the loop by concatenating two words: The word that
is read along the path found by the depth-first search and the word along the subpath
of the initial path from q′ to q.

However, a downside of this approach is that it increases the chance that the same
loop is taken several times: If there exists a loop that includes the subpath of the initial
path from q′ to q, the depth-first search can find this loop whenever it is called from a
state between q′ and q on the initial path. By enforcing that a subpath of this path is
taken, it is more likely that the said loop containing it is taken again. Hence, we do not
let the criterion find any state in the previous path. The subpath that is found by the
criterion is dynamically moved throughout the process.

Simplifying the Elementary Bounded Language The resulting Elementary Bounded
Language might use more infixes than necessary. For example, the languages b∗a1a1b∗

and b∗(aa)1b∗ are equivalent. However, the representation does make a difference: Each
infix means a component in the vector when intersecting the languages using Parikh
images. Furthermore, each infix of the Elementary Bounded Language requires a layer
in the automaton that represents the intersection between an input automaton and the
Elementary Bounded Language. Hence, we want to keep the number of infixes low by
uniting two consecutive infixes that both have the exponent 1 to a single one with the
same exponent.

We do this simplification on the fly with a constant overhead. It is implemented
in FindCounterExampleEBL and takes place when building the Elementary Bounded
Language. Whenever a new infix is added, this is done using an inner function. If an
infix without a Kleene star is added, FindCounterExampleEBL calls its inner function
AddNonStarStringToReverseEBL. This function has two parameters: The first param-
eter is the string of the infix that shall be added. The second parameter is the current
list of tuples of infixes of the Elementary Bounded Language and the Boolean value
denoting whether the exponent is the Kleene star. The list is stored in reverse order,
which allows accessing the most recent infix in constant time. The result is represented
in the same way. The function AddNonStarStringToReverseEBL checks whether the
most recent infix has the exponent 1. In that case, it concatenates the most recent infix
and the input prefix. The concatenated word replaces the former most recent infix in
the final result of the function.

Similarly, there is a simplification that can be done when adding an infix with the
Kleene star as the exponent: The languages b∗ and b∗b∗ are equivalent. The approach
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is quite similar to the previous case: An infix with the Kleene star as the exponent is
added using the function AddStarStringToReverseEBL. This function checks whether
the most recent infix has the same string and the same exponent as the input. In that
case, the input will not be added to the Elementary Bounded Language.

In both cases, empty strings as infixes of the Elementary Bounded Language do
not alter it at all. Hence, the inner functions AddNonStarStringToReverseEBL and
AddStarStringToReverseEBL can just omit them: These functions return the unmodi-
fied input list if the given input string is empty.
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8.4 The Module CounterExampleSymbolifier: Generating
Automata with Word-Transitions

Once we have an Elementary Bounded Language of potential counterexamples, we want
to check whether any of them are non-spurious counterexamples. In order to do so, we
need to preprocess the input languages, which are supposed to be intersected, so that we
can use the Parikh Image Presburger Formula to decide whether there are non-spurious
counterexamples in the intersection. This preprocessing includes a transformation of the
automaton and an intersection with the Elementary Bounded Language.

As presented in Section 6, the automaton is transformed in a way that the transitions
do not represent single letters of the original alphabet but an infix of the Elementary
Bounded Language. We introduce a fresh alphabet. Each letter of this alphabet repre-
sents a whole infix. The transitions of the transformed automaton read a letter of the
fresh alphabet and go to a state that can be reached when reading the corresponding
infix in the original automaton.

The intersection with the Elementary Bounded Language is hence not done using
the literal language but its representation using letters from the fresh alphabet. The
module CounterExampleSymbolifier implements these two steps and offers a function
that coordinates the execution of these steps on a list of automata.

The main function for this purpose is SymbolifyAutomata. Its two parameters are the
Elementary Bounded Language and a list of finite automata. The Elementary Bounded
Language uses the same format as described in the previous chapter. The automata are
all of the type Fare.Automaton. The result is also a list of Fare.Automaton objects.

The function uses the function SymbolicRegExFromEBL that converts the given El-
ementary Bounded Language to a regular expression of the type Fare.RegExp that
represents each Elementary Bounded Language infix as a different unicode character.
The used unicode range starts with the character with the ID that is specified by the
constant symbolicSymbolRangeStart. The IDs increase by one for each infix. This
regular expression is then converted to an automaton by a built-in method of Fare.

Each automaton in the list is intersected with the said automaton obtained from
the regular expression. Before this can be done, each automaton needs to be pro-
cessed using the function SymbolicWordAutomatonFromEBL. The input is an Elemen-
tary Bounded Language and an automaton of the type Fare.Automaton. The output
is an automaton of the same type. The automaton is traversed using the function
traverseAutomatonAndSymbolize. That function maintains a map from the ID of a
state in the old automaton to the Fare.State object of the corresponding state in the
transformed automaton. A worklist contains all states that occur when traversing the
automaton. A set of already visited states prevents double visits. From every state, we
read each of the infixes of the Elementary Bounded Language. We then add a transition
to each new state that was reached after reading the infix. The transition reads the
symbol that represents the current infix.

If a state is never reached throughout this traversing process, then it does not get a
corresponding state in the new automaton. States in the transformed automaton are
only created when the helper function AddSymbolicCharacterTransition introduces a
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transition between them.
Besides its main functionality, the module offers functions for easier usage of the re-

sults: The function NegatedLiteralRegExFromEBL negates the Elementary Bounded
Language and returns the result as a regular expression. This is useful if the Elementary
Bounded Language is entirely spurious. Then, an intersection of the language of all
potential counterexamples with the said regular expression just ignores these spurious
counterexamples. When generating the Parikh Image Presburger Formula, it is neces-
sary to know the alphabet of the automata. One possibility is to extract it from the
automata by traversing them and tracking all letters at the transition. The function
symbolicCharactersOfEBL offers a more convenient and faster way: It generates the
said fresh alphabet as a list of Unicode characters from a given Elementary Bounded
Language.
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8.5 The Module CounterExampleParikhIntersecter: Parikh Image
as a Presburger Formula

In Section 7, we presented a technique to extract the Parikh Image of an automaton
as a Presburger Formula. As motivated in Section 4.2, the formula is needed in order
to check whether there is a non-spurious counterexample in the Elementary Bounded
Language. The previously presented module transformed the input languages in a way
that each Parikh vector uniquely corresponds to a word in the Elementary Bounded
Language. Hence, we can decide whether there is a non-spurious counterexample by
deciding whether there is a common vector in the Parikh images of each of the trans-
formed input languages. To this end, the module CounterExampleParikhIntersecter

provides functions that create Parikh Image Presburger Formulas. Their satisfiability
can be checked by querying the Satisfiability Modulo Theories solver Z3.

The function ParikhIntersectionFormula returns a Presburger Formula that is sat-
isfiable if and only the intersection of the Parikh Images of the given automata is not
empty. The resulting formula is represented as a type of the library Z3Fs. The pa-
rameters of the function are the alphabet and a list of automata. The alphabet is a
list of Unicode characters. The automata are of the type Fare.Automaton. The func-
tion creates a conjunct of the Parikh Image Presburger Formulas of each of the input
automata and adds constraints for each of the letters to ensure that the corresponding
Parikh variable is consistent with the variables that represent how often each transition
is taken in a run.

The implemented formula differs slightly from the formula presented in Section 7:
There is no existential quantifier. All variables are free variables. However, the vari-
ables of each automaton are distinct. Only the Parikh variables are shared between the
automata. Hence, satisfiability is still the same as for the original formula. Only the
assigned variables differ.

The function ParikhIntersectionFormula computes the conjunct of several con-
straints for each automaton. The constraints are generated by several functions. Each
of these functions gets an object of the type TransitionVariableTable. This custom
data structure stores the variables counting the usage of each transition in a run. It also
stores the helper variables for the distance rating and the accepting state. It is created
by the function createIntVariablesForAutomaton, which works on an object of the
type TransitionTable. This type is generated from a Fare.Automaton object by the
function GetTransitionTable. It is needed in order to access final states and transitions
of certain states without needing to traverse the whole automaton every time.

The said functions for the constraints are:

distanceVariableConstraints Enforces that only connected transitions may be
used by using the distance rating variables of the
states.

createFlowEquationFormulas Requires each state to be left and entered equally
often in the run.
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createFormulasForFiniteStates Ensures that the helper variables for the accepting
states are positive and that their sum is 1.

These functions mainly form sums of variables and constants, build up equations and
inequalities and return them embedded in logic formulas. Parts of those formulas are
organized in inner functions for better readability. The variables of those formulas are
just read from the TransitionVariableTable object. The actual creation of those
variables is done by specific functions for each type of variables. This allows changes to
the variable naming scheme at a single place in the source code.
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8.6 A Note on Coding Style and the Module Common

After clarifying the purpose of the main modules and their functions, we will give a brief
overview on the coding style and the functions provided by the module Common. These
explanations are supposed to help extending the existing source code.

Composing Functions In order to produce more concise code, we tend to define func-
tions implicitly. This means that the function is not implemented literally but composed
out of other functions or the result of a higher-order function. An example is the function
ListCons. It adds an element to the beginning of a list. It is hence equivalent to the
built-in operator :: but since it is a function, it can be composed with other functions,
passed as a parameter, or partially evaluated to new functions.

Reduce if/else Control Flow Commands Manipulating the control flow using the
binary control flow commands if and else breaks the readability of the code. It often
introduces either redundancy or additional fields that store the intermediate result of
the if/else-case distinction. Hence, we try to avoid such constructs. To this end,
we introduce functions like GetMapItemOrPlaceholder. The parameters are a key, a
placeholder and a map. The function always returns an item. If the map contains an
item with the given key, it will be returned. If there is no such item, the placeholder
will be returned. This is typically a neutral element. This allows a single composition
of functions for both cases. We typically use this for maps whose elements are lists and
want to extend the lists: We use the said function and use the empty list as a placeholder.
The addition of an element to a non-existing list in the map becomes the initialization
of the list with this element. If the list has already existed before, the element is added
to the existing list as expected. Hence, whenever we need this kind of case distinction, a
single function call takes care of that without explicitly differentiating these cases every
time.

Immutable Data Structures The default data structures in F# are immutable. This
means that operations on an immutable value or object do not manipulate the object
but formally return a manipulated copy of the object. The idea is to avoid side-effects
on these data structures. Whenever a function is called, its return value is the only value
that was not present before the function call. However, the concept of immutability is
mainly a model for the programmer: If the input value is never used again, the compiler
may optimize such calls so that the data does not actually need to be copied. Libraries
written in programming languages other than F# mostly encourage or require the use
mutable data structures. Hence, objects related to Fare are still mutable in our library.
However, our own data structures are immutable. An example: An object of the type
AnnotatedState is immutable and all information about the object itself will hence
never change. Yet, it does always point to the same Fare.State object although this
object might change its values.
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Built-In Repetition Commands Since F# is a multi-paradigm language, it is possible
to use loops with for and while expressions. However, such expressions are mostly used
for mutable data structures. Since we prefer immutable data structures, the repetitions
are either modelled as recursive functions or as applications of higher-order functions.
The advantage of built-in higher-order functions is that they are typically pre-optimized
and reduce the possible overhead of immutable data structures. We commonly use
functions like map, fold, and filter. These functions apply a given function on every
element in a collection. The function map returns a collection containing the results
of these function calls, filter returns a list containing those elements whose function
calls returned true, and fold uses the return values of the function calls as one of the
parameters of the next call and returns the last return value. An example in the module
common is the function SuccessorFold. This function uses the built-in function fold

to implement a variant that uses two consecutive elements of the list as parameters for
the function call. An example for the usage of the function is the extraction of a word
from a path of states: Both the current and the successor state are needed in order to
determine which transitions could possibly be taken along this path.

Tail Recursive Functions Whenever built-in functions are not suitable, the needed
repetitions are performed using recursive functions. Recursive functions perform better
if they are tail recursive. If the recursive call is the last call in the function body, only
the current call and not the whole history of recursive calls needs to keep its data in the
memory. The needed time can also be reduced: The data of a previous call can safely be
reused during the next calls. This allows compiler optimizations regarding the mutation
of immutable objects.

Reversed Lists Adding an element to the end of a list typically costs linear time as
the end of the list needs to be found every time. Since the beginning of a list can be
retrieved in constant time, adding elements to the beginning of the list performs much
better. We make use of this property whenever we construct a list: Throughout the
process, we use a reversed list and add the elements to beginning. The final result will
be inverted once in linear time and returned.

Inner Functions Inner functions have implicit access to the parameters of the outer
function. One advantage is that this keeps the number of explicit parameters low. We
use them to hide complexity: Many recursive functions and functions that are supposed
to be used as a parameter of fold are implemented as inner functions. The outer
function has less parameters and only prepares the call of fold or the initial call of the
recursion. Inner functions also allow to split the task to several smaller inner functions
without increasing the effort when using the function.

The function SplitListAtCondition is an example for the use of tail recursive inner
functions and reversed lists. Its parameters are a condition and list. It splits the input
list and returns a tuple of two lists. The first element of the input list that satisfies the
given condition separates the two output list: It is the last element of the first list and
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the first element of the second list. This is implemented using the tail recursive inner
function SplitSequenceAtConditionHelper. Its parameters are two lists. Initially, the
first list is empty and the second list is the input list of the outer function. Each recursive
call moves the first element of the second list to the beginning of the first list until the
condition is satisfied. Once this happens, the first list is reversed. The return value is a
tuple of the reversed first list and the second list.

A special case of lists are strings. The performance problem is similar: Appending
characters or strings to strings usually requires to follow the first string to its end in
linear time. Thus, the built-in class System.Text.StringBuilder is offered by the
.net/mono environment. Its mutable objects collect strings that are passed through the
method Append. Once the method ToString() is called, the whole string is created in
linear time. We use this way of concatenating strings for example when creating regular
expressions of negated Elementary Bounded Languages or when extracting words along
paths in the automaton.
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8.7 Using and Integrating the Tool

There are three ways to use the tool: The modules can be accessed using F# Interactive
or embedded in other mono projects. There is also a binary file that randomly generates
instances according to the command-line parameters examples and runs them with debug
output on the time consumption.

The module IntersectionCegar provides the simplest way of accessing the modules.
This module offers implementations of the full CEGAR loop for regular inclusion of reg-
ular intersections. The implementation is split into two kinds of functions. The function
IsEmptyAfterNRefinements extracts the Elementary Bounded Language, checks it for
non-spurious counterexamples, and refines the language for a given number of times.
Besides the number of allowed repetitions, the list of intersected automata and an au-
tomaton are given as parameters. This automaton will be searched for counterexamples
and refined iteratively. The result is None if the number of loops did not suffice to
prove the existence or absence of counterexamples. If the number of loops does suffice,
the returned Some value carries a bool value denoting whether the input language only
contained spurious examples.

The other kind of functions is called with the input languages, the specification, and
the desired number of repetitions. These functions create an initial counterexample
automaton and pass it to IsEmptyAfterNRefinements. This design allows to solve our
regular inclusion problem and a related problem:

The function RegularInclusionsNStepsEmptinessVariant implements the proce-
dure as introduced: First, it creates an over-approximation of the intersection, then
it intersects it with the complement of the specification. This language of potential
counterexamples is then examined for non-spurious counterexamples.

The function RegularIntersectionNSteps does not solve regular inclusion but empti-
ness of regular intersections. It over-approximates the intersection of a given list of
automata and directly passes the result to RegularIntersectionNSteps without in-
tersecting with a complement of any specification. It is possible to use this function
for regular inclusion: Instead of over-approximating just the intersection, the function
over-approximates the language of counterexamples.

The function RegularInclusionNStepsEmptinessVariant complements the coun-
terexample language, adds it to the list of languages to intersect, and passes the extended
list to RegularIntersectionNSteps. The advantage is that this variant uses the fact
that the over-approximation can preserve emptiness in some cases. The intersection
itself is typically not empty. The counterexample language is per definition empty if and
only if the intersection is included in the specification. Hence, this variant aims to prove
the inclusion without encountering any spurious counterexample. The intuition is that
this variant might already rule out spurious counterexamples at an earlier stage before
much information is lost by the over-approximation.

However, this variant requires one additional intersection and over-approximation
step. This can be costly depending on the location in the tree of intersections and
over-approximations. In our implementation, the worst case happens when the number
of languages to intersect is already a power of two. Then, there is a single language left
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in each layer that cannot be intersected and the additional intersection happens in the
end. This means that the newly added intersection step adds more states that need to
be compared and united than any other intersection in the original procedure.

The additional intersection and over-approximation step is of course comparably cheap
if the number of all automata including the complemented specification automaton is
a power of two. Then, the additional intersection is just an intersection between the
negated specification and one of the input automata.

An Example in F# Interactive We now provide an easy example that illustrates
how to use our tool directly from F# Interactive. We assume that the package Fare,
the required external files z3FS.dll, libz3.so, and Microsoft.Z3.dll, and the used
references are already sent to F# Interactive.

In this example, we intersect the languages ab∗c∗d∗, a∗bc∗d∗, a∗b∗cd∗, and a∗b∗c∗d.
Then, we check whether the intersection abcd is included in (abcd)∗, aa∗, and aa∗. The
second check is supposed to fail. The other two checks are intended to succeed.

We first load the needed modules of our tool. It is possible to automatically measure
the time consumption of every command in F# Interactive. In this example, we chose
to activate this feature:

> #load "Common.fs"

#load "Intersect.fs"

#load "CounterExample.fs"

#load "CounterExampleSymbolifier.fs"

#load "CounterExampleParikhIntersecter.fs"

#load "IntersectionCegar.fs"

#time "on";;

The output is a very long list of all signatures of loaded types, fields, and functions.
We can now use the regular expression feature of Fare to create the example automata:

> let anostarbcd = Fare.RegExp("ab*c*d*").ToAutomaton()

let abnostarcd = Fare.RegExp("a*bc*d*").ToAutomaton()

let abcnostard = Fare.RegExp("a*b*cd*").ToAutomaton()

let abcdnostar = Fare.RegExp("a*b*c*d").ToAutomaton()

let spec = Fare.RegExp("((abcd)*)").ToAutomaton();;

These five commands create the desired automata from their regular expressions.
Technically, Fare interprets the regular expression string, parses it to a regular expres-
sion object, and constructs an automaton from it. It is also possible to construct an
automaton directly:

> let aastar = new Fare.Automaton()

let accstate = new Fare.State()

accstate.Accept <- true

accstate.AddTransition(new Fare.Transition(’a’, accstate))
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aastar.Initial.AddTransition(new Fare.Transition(’a’, accstate))

let notaastar = aastar.Complement();;

This example illustrates two ways to construct automata: The Fare.Automaton object
aastar represents an automaton accepting the language aa∗. It is created by making
the Fare.State object accstate accepting, adding a Fare.Transition object to the
state itself reading ’a’, and a transition reading the same character from the initial state
of the automaton to accstate. The Fare.Automaton object notaastar is not created
state-by-state but as a composition of automata: It is the complement of aastar. We
can now use these automata as the input of our procedure.

> [ anostarbcd ; abnostarcd ; abcnostard ; abcdnostar ] |>

IntersectionCegar.IntersectionCegar.RegularInclusionNSteps 100 spec;;

... Real: 00:00:00.003, CPU: 00:00:00.003, GC gen0: 0, gen1: 0

val it : bool option = Some true

We use the function RegularInclusionNSteps in order to perform our standard ap-
proach on the given automata. The parameters are the maximal number of repetitions
of the CEGAR loop, the specification, and a list of the automata to intersect. The
intersection is abcd. It is included in the specification (abcd)∗. Our algorithm took three
milliseconds to agree on that. We can also use the approach that reduces the problem
to emptiness of an intersection:

> [ anostarbcd ; abnostarcd ; abcnostard ; abcdnostar ] |>

(IntersectionCegar.IntersectionCegar.

RegularInclusionNStepsEmptinessVariant 100 notaastar);;

Real: 00:00:00.003, CPU: 00:00:00.002, GC gen0: 0, gen1: 0

val it : bool option = Some true

The function call is quite similar. The parameters work in the same way. This time,
we chose to check the intersection against the specification aa∗. The output shows
that our algorithm took two milliseconds to show that the intersection does satisfy this
specification as well. We can also check whether our intersection is empty:

> [ anostarbcd ; abnostarcd ; abcnostard ; abcdnostar ] |>

IntersectionCegar.IntersectionCegar.RegularIntersectionNSteps 100;;

... [

p_A = 1,

f_1395 = 1,

x_1394,A,1395 = 1,

z_1395 = 2,

z_1394 = 1,

... ]

Real: 00:00:00.029, CPU: 00:00:00.022, GC gen0: 0, gen1: 0

val it : bool option = Some false
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This function call is similar to the previous two. The difference is that there is no
more parameter for the specification. Our algorithm takes 22 milliseconds to find a
counterexample showing that the intersection is not empty. The output also shows that
Z3Fs prints the satisfying model for the formula that was generated by our algorithm.
The output was shortened in order to just show variables concerning a single automaton
of the four automata.

These automata represent the intersection of an input automaton with the Elemen-
tary Bounded Language of counter examples by representing each Elementary Bounded
Language infix as a single letter. In this example, the only Parikh variable is p A and it
is set to 1. This means that the Elementary Bounded Language has a single infix. It is
represented by the unicode character A. The state distance variables z 1395 and z 1394

tell us that the two states of the automaton have the IDs 1394 and 1395. The value
1 indicates that the state with the ID 1394 is the initial state. A transition from this
initial state to the other state is apparently used in the run since the other state has the
distance marking 2. The variable x 1394,A,1395 tells us that the only transition in the
automaton leads from the initial state to the other state and reads A. This transition is
taken exactly once. This is consistent with the Parikh variable pA. The non-initial state
is the only accepting state since f 1395 is the only f ... variable. The run also ends
there since it is set to 1.

Running the Algorithm Step-By-Step The previous specifications did include the
intersection. We now examine a specification that does not include the intersection. This
can of course be done using the previously introduced functions. In order to demonstrate
the algorithm and how its various functions are used, we apply these functions step-by-
step. We show the difference between the positive case and the negative case: The
intersection is included in aa∗ but it is not included in aa∗.

We have already prepared the input automata, two specifications, and implicitly also
their complements since the two specifications are complements of each other. First, we
apply the IntersectAutomataList of the module Intersect on the list of automata:

> let overapproximatedIntersection =

[ anostarbcd ; abnostarcd ; abcnostard ; abcdnostar ] |>

Intersect.Intersect.IntersectAutomataList;;

...

Real: 00:00:00.003, CPU: 00:00:00.001, GC gen0: 0, gen1: 0

val overapproximatedIntersection : Fare.Automaton

The result is computed after a millisecond. It is a single Fare.Automaton object
whose language contains the intersection. We now intersect the automaton with the
complement of the specification. We have already shown that the intersection is included
in aa∗. If we want to check that manually, we need to intersect the over-approximation
with the complement of the specification. The complement aa∗ is already prepared
as aastar. We can intersect the over-approximation with aa∗ to get the language of
potential counterexamples:
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> let counterex1 = overapproximatedIntersection.Intersection(aastar)

let numStatesOverapprox = overapproximatedIntersection.NumberOfStates

let numStatesCex1 = counterex1.NumberOfStates

let cex1initAccept = counterex1.Initial.Accept

let cex1ebl = counterex1 |>

CounterExample.CounterExample.FindCounterExampleEBL ;;

...

Real: 00:00:00.008, CPU: 00:00:00.009, GC gen0: 1, gen1: 0

val counterex1 : Fare.Automaton

val numStatesOverapprox : int = 5

val numStatesCex1 : int = 1

val cex1initAccept : bool = false

val cex1ebl : (string * bool) list option = None

We used several built-in methods of Fare to intersect the automata and examine
the result. The over-approximated intersection has five states. The automaton of the
language of potential counterexamples has a single state. It is not accepting. Hence,
the language is empty. If it was accepting, we would need to check whether the empty
word is a counterexample and remove the initial accepting state. After that, we can use
the module CounterExample to create an Elementary Bounded Language of potential
Counter Examples. Since our counterexample automaton accepts no word, there is no
Elementary Bounded Language either. Hence, the return value is None.

After proving again that the intersection is contained in aa∗, we show that it is not
contained in aa∗. To this end, we intersect the over-approximated intersection with the
complement aa∗. We apply the same steps as before:

> let counterex2 = overapproximatedIntersection.Intersection(notaastar)

let numStatesCex2 = counterex2.NumberOfStates

let cex2initAccept = counterex2.Initial.Accept

let cex2ebl = (CounterExample.CounterExample.FindCounterExampleEBL

counterex2);;

...

Real: 00:00:00.000, CPU: 00:00:00.000, GC gen0: 0, gen1: 0

val counterex2 : Fare.Automaton

val numStatesCex2 : int = 5

val cex2initAccept : bool = false

val cex2ebl : (string * bool) list option = Some [("abcd", false)]

This time, the automaton of the language of potential counterexamples contains five
states. The initial state is not accepting again. Yet, the language might not be empty
if one the five states is accepting. Indeed, there is an Elementary Bounded Language of
potential counterexamples. Its only infix is abcd. Since the infix is not looped, this is
also the only word in the language. In order to demonstrate the procedure, we will not
just check whether this word is included in all of the intersected languages but perform
the actual procedure:
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> let eblv = cex2ebl.Value

let alphabet = (CounterExampleSymbolifier.CounterExampleSymbolifier.

symbolicCharactersOfEBL eblv)

let oneAut::otherAut = (CounterExampleSymbolifier.

CounterExampleSymbolifier.SymbolifyAutomata eblv

[ anostarbcd ; abnostarcd ; abcnostard ; abcdnostar ])

let autNumOfStates = oneAut.NumberOfStates

let autInitAcc = oneAut.Initial.Accept

let trans = oneAut.Initial.Transitions |> Seq.head

let otherStateAcc = trans.To.Accept;;

... Real: 00:00:00.002, CPU: 00:00:00.002, GC gen0: 0, gen1: 0 ...

val otherAut : Fare.Automaton list =

[Fare.Automaton; Fare.Automaton; Fare.Automaton]

val alphabet : char list = [’A’]

val oneAut : Fare.Automaton

val autNumOfStates : int = 2

val autInitAcc : bool = false

val trans : Fare.Transition = A -> 0

val otherStateAcc : bool = true

Since the Elementary Bounded Language was encapsulated in an option type, we had
to extract it first. Then, we could pass it to a function that prepares the automata for
the intersection using the Parikh Image Presburger Formula. We inspected one of the
four automata. It has a non-accepting initial state and an accepting state. A transition
from the initial to the accepting state reads the Unicode character A. This character
represents the only Elementary Bounded Language infix

We can now extract the Parikh Image Presburger Formula from the automata and
the Elementary Bounded Language using the function ParikhIntersectionFormula:

> let parikh = oneAut::otherAut |> (CounterExampleParikhIntersecter.

CounterExampleParikhIntersecter.ParikhIntersectionFormula alphabet);;

Real: 00:00:00.001, CPU: 00:00:00.002, GC gen0: 0, gen1: 0

val parikh : Z3.FSharp.Bool.Bool = ...

The output is a massive Presburger formula in prefix notation. We can now check
satisfiability of this formula:

> let z3result = Microsoft.Z3.FSharp.Bool.Z3.Solve parikh;;

[ p_A = 1 ... ]

Real: 00:00:00.013, CPU: 00:00:00.012, GC gen0: 0, gen1: 0

val z3result : Z3.Status = SATISFIABLE

The library Z3Fs outputs a satisfying assignment for every variable in the formula.
Since we have already discussed how to interpret these solutions, only the assignment of
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the Parikh variable is shown. A counterexample is a word consisting of one occurrence
of the Unicode character A. As mentioned before, this represents abcd.

If we had not found a counterexample, we would have needed to exclude the Ele-
mentary Bounded Language of spurious counterexamples from our language of potential
counterexamples and search for another Elementary Bounded Language. This could be
done in this way:

> let newCexAut = counterex2 |> ((CounterExampleSymbolifier.

CounterExampleSymbolifier.NegatedLiteralRegExFromEBL eblv).

ToAutomaton().Intersection);;

The function NegatedLiteralRegExFromEBL generates the negation of the Elementary
Bounded Language as a regular expression. After a conversion to an automaton, it can
be intersected with the specification. The result is a specification without the spurious
counterexamples from that Elementary Bounded Language.
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9 Benchmarks

We benchmarked our implementation against randomly generated instances of the prob-
lem. Three problems arise when benchmarking randomly generated automata:

It is difficult to group instances of notably large instances that are similarly challeng-
ing. For example, an instance might be solved quickly if the first intersection of two of
the input automata is already empty. An instance of the same number of automata,
states, letters in the alphabet, transitions, and accepting states might require considering
the whole set of input automata and several refinement steps.

Instances are non-trivial once the tree over intersected and over-approximated lan-
guages has two or more layers. Furthermore, the automata should be chosen so that
they are not immediately empty. Some of these instances already require hours of compu-
tation time. This makes it practically infeasible to run the benchmarks on high numbers
of instances in order to compensate different difficulties of specific instances.

The state space in the classical approach to intersect regular languages grows exponen-
tially with the number of automata to intersect. This means that it is also not feasible
to use the classical approach to group problem instances of similar difficulty.

Hence, we decided to run benchmarks on various types of automata rather. The
goal was to get insights rather on general properties of the algorithm than on exactly
quantified runtime behavior.

Generation of Test Instances We implemented a random automata generator that
created non-deterministic automata according to the Vardi-Tabakov model as introduced
in [TV05]. Our function VardiTabkov needs five parameters: The size of the state
set, the alphabet size, the density of accepting states, the density of transitions, and
a System.Random object. The density of accepting states is given as a double value
between 0.0 and 1.0. It specifies the desired ratio between the number of accepting
states and the number of all states. The transition density is also a non-negative double
value. For each letter, it describes the average of outgoing transitions per states. Since
it is fixed for all letters of the alphabet, this means that each letter is read by equally
many transitions in the automaton. Intuitively, it is a measure for the average non-
determinism: If the transition density is 2.0, then an average state has two outgoing
transitions reading the letter the same letter.

The function generates an array of states, sets a random state in this array as the
initial state, marks the desired number of states as accepting states, and adds random
transitions between any pair of states until the given density of transitions is reached
for each of the letters. It keeps track of the existing transitions for each of the letters in
order to prevent the multiple generation of the same transition.

Whenever the algorithm needs a random number, it is generated using the random
number generator that is provided as the System.Random object. If we generate two
automata using the same parameters and two System.Random objects that are initialized
with the same seed, we get two identical automata. This allows to just store the random
seed while still being able to reproduce a test instance.
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The problem is that the result is not always connected. This means that some states
might not be reachable in a graph-theoretical sense. This influences benchmark results
in two ways: Only the reachable parts of the automata are considered by our algorithms.
If the function produces two automata for the same parameters, one of them could still
consist of a single reachable state whereas all states in the other automaton are reach-
able. Another problem is the unpredictable distribution of the parameters: The given
parameters described the global characteristics of the automaton. The characteristics of
the reachable parts of the automaton might differ. Even if half of the states are accept-
ing states, the language might still be empty if the set of reachable state is a subset of
the non-accepting states.

The Benchmarking Set-Up The benchmarks were run in a virtual machine. We
created an executable file that runs a variant of our implementation of the CEGAR
loop. In contrast to the previously presented functions, it measures the time for the
complete procedure and various specific steps. It does not only print the result of the
inclusion check but also the reason that indicates at which step in the procedure the
result was concluded. The executable file has several parameters. These are the number
of automata to intersect and the parameters of our function VardiTabkov. The random
number generator is initialized with a given integer parameter and then passed to the
function VardiTabkov as a System.Random object. The automata to intersect and the
specification automaton are generated with the same parameters. The random number
generator will not be reset after the generation of each automaton. The automata in the
instance are hence different.

A shell script calls the executable file with several different parameters and stores the
parameters and the output. Since the instances are created from the given random seed,
the results can be reproduced. The stored output allows to analyze the behavior of the
algorithm on this instance.

The shell script combines two alphabet sizes (2, 3), three accepting state densities
(1.6, 1.8, 2.0), two numbers of automata (4, 8), two numbers of states (5, 10), and sixteen
random seeds (0− 15).

The virtual machine had eight gigabyte of RAM and eight virtual processors at
2.26GHz. The host had eight gigabyte of RAM as well and two Intel processors, each
of them with four cores at 2.27GHz. The configuration of the memory was a problem:
Since the host was running other services besides the virtual machine, it ran out of
memory for the guest system so that some of the memory had to be swapped to the
hard drives. Also, the guest system was short on virtual memory as well. The whole
system got unacceptably slow. Hence, some of the planned benchmark instances had to
be terminated without begin executed. Additionally, some instances were started but
not finished. There were several reasons. Some executions were terminated externally
due to a lack of resources. In others, the mono runtime crashed when trying to allocate
even more memory. Sometimes, Z3 refused to continue due to a lack of memory.
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Success Rate In total, our shell script was supposed to generate 1152 instances. Out
of those, 881 instances were actually started. During their runtime, 55 instances did
not finish successfully. Hence, 826 out of 1152 (∼ 71.7%) instances were executed as
intended. The limit of 100 refinement steps was reached in in 41 cases. This means that
our tool was able to prove or disprove the claim in ∼ 94.4% of the finished executions,
∼ 77.8% of the started executions, and ∼ 59.5% of the intended executions.

Interestingly, only a single instance was stopped during the over-approximation phase.
The others were terminated after at least one Elementary Bounded Language had been
extracted. There were 15 executions that could not finish the first refinement step.

Refinement Steps The refinement steps are expensive in the sense that every finished
refinement requires an actual intersection. This leads to automata that get bigger and
hence consume more resources. This might be part of the reason for the effect that 25
out of 55 aborted executions ended after refinements took place. Hence, we want to
know how many refinement steps are actually needed.

Of the 826 finished executions, 773 (∼ 93.6%) concluded a result during, before, or
right after checking the first Elementary Bounded Language. As we mentioned before,
41 (∼ 5%) of the executions did not manage to conclude a result using at most 100
refinement steps. This means that only 12 (∼ 1.5%) executions started more than one
refinement step and reached a result. The exact numbers of refinements in these cases
were:

• one refinement: five times (counterexample: three times, no more counterexamples
candidates: twice)

• two refinements: twice (no more counterexamples)

• 1× 22, 2× 23, 1× 46, 1× 48 refinements (counterexample found)

Interestingly, this means that we could have reduced the number of allowed loops
from 100 to 48 without losing any result. Furthermore, there are actually cases where
we could rule out all counterexample candidates. However, this did not happen in any
case that needed more than two refinement steps. A reason might be that there are
languages of potential counterexamples that include infinitely many disjoint Elementary
Bounded Languages.

In total, there are eight counterexamples that were found after the first refinement.
There are 22 instances where the counterexample was found before refining the language.
This means that our test instances consisted of mainly positive instances.

Time Consumption We computed the minimum, average, and maximum execution
time of the finished test instances. The results are grouped by the parameters of the
input sizes. The three columns represent the density of accepting states. The rows
group the number by the parameters concerning the transitions: Each row addresses a
different combination of transition density and alphabet size. Each different combination
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of parameters was tested on four input sizes. The different problem sizes are shown in
different the lines per cell: The first line in a cell contains the results for four automata
with five states, the second line four automata with ten states. The last two lines
consider eight automata with five and ten states. There are three numbers in a line of a
cell. These are the minimum, average, and maximum runtime in milliseconds of the up
to 16 instances with the same parameters and input sizes.

AD = 0.25 AD = 0.5 AD = 0.75
|Σ| = 2,
TD = 1.6

69, 619, 3157
71, 443, 1407
70, 272, 816
71, 478, 1551

76, 328, 1354
84, 1039, 4006
78, 348, 1062
89, 2739, 24489

105, 9768, 68349
116, 727, 2607
115, 338, 712
114, 695, 1584

|Σ| = 2,
TD = 1.8

69, 55714, 718981
70, 393, 1026
70, 167, 312
72, 433, 1698

84, 514, 4141
77, 1489, 4510
79, 311, 1051
75, 4199, 42445

114, 21566, 208540
116, 748, 2730
111, 596, 2588
114, 962, 2820

|Σ| = 2,
TD = 2.0

251, 39527, 284061
6856, 14393, 24201
207, 359, 589
12238, 23443, 32681

761, 38449, 178672
10129, 14594, 26592
336, 9224, 69260
10274, 115519, 1147858

491, 17310, 95101
8379, 9128918, 80948391
220, 1425, 8769
13920, 171923, 1855200

|Σ| = 3,
TD = 1.6

74, 730, 2157
72, 1880, 6047
74, 441, 1386
71, 1751, 5799

81, 172328, 2042411
71, 1537, 2922
75, 364, 2164
72, 1688, 3090

120, 13852, 87983
72, 2793, 8430
73, 1189, 8682
72, 4157, 11701

|Σ| = 3,
TD = 1.8

73, 343, 1268
71, 1795, 5494
74, 215, 576
72, 1426, 3891

74, 94751, 1124332
71, 1406, 2583
74, 428, 2157
71, 1882, 3814

95, 10858, 82284
83, 2537, 6008
71, 974, 4875
71, 3117, 5850

|Σ| = 3,
TD = 2.0

74, 33447, 299805
12141, 20165, 23438
73, 390, 732
12807, 232549, 2372890

290, 87640, 647013
9565, 23479, 45685
464, 56581, 516770
9078, 34994, 53096

403, 18690, 68120
13687, 30634, 109120
647, 4029, 26916
25708, 122052, 1155320

We observe several patterns about the minimal runtimes: For most parameter con-
figurations, the minimum runtimes for different input sizes differ by less than ten mil-
liseconds. Furthermore, the runtime increases in many of theses cases stronger when
doubling the state set than when doubling the number of automata. This indicates that
our algorithm is not affected by the exponential state space as it is the case for the
conventional approach. The minimal runtimes are most likely to be caused by instances
with empty intersections. This explains similar runtimes for doubled numbers of au-
tomata: If the intersection is empty after considering a few automata, it remains empty
no matter how many other automata are left. Hence, the number of additional steps is
rather low.
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The extreme values for the maximum runtimes show an interesting, counter-intuitive
behaivor: The extreme values often occur when only four automata are intersected. If
we increase the number of intersected automata, the chances rises that the intersection
becomes empty. Hence, the said cases are more likely to actually contain counterex-
amples. The search for these counterexamples is expensive – especially if this search
requires many refinement steps. We can also observe remarkably longer runtimes if the
transitions density is 2.0. If there are more transitions, the likeliness of unreachable
states decreases. Hence, the relevant part of the automaton is bigger and the runtime
increases. Furthermore, the chance of a non-empty intersection increases. We analyze
this assumption by only considering the instances where our procedure found counterex-
amples:

AD = 0.25 AD = 0.5 AD = 0.75
|Σ| = 2,
TD = 1.6

335, 1280, 3157 1354, 1354, 1354 511, 511, 511

|Σ| = 2,
TD = 1.8

335, 383, 432 373, 373, 373 1152, 1152, 1152

|Σ| = 2,
TD = 2.0

284061, 284061, 284061 761, 870, 979 736, 2133, 4694
12108, 20478929, 80948391

|Σ| = 3,
TD = 1.6

2117, 2117, 2117 4184, 4184, 4184

|Σ| = 3,
TD = 1.8

358, 358, 358 376, 376, 376

|Σ| = 3,
TD = 2.0

299805, 299805, 299805 849, 1463, 2042

516770, 516770, 516770

8844, 8844, 8844

11021, 11021, 11021

There are only two cases where a counterexample was found in an intersection of
eight automata. This supports the assumption that these kinds of instances tend to
have empty intersections. The assumption that the worst cases are the ones where a
counterexample is found does not hold. However, the minimum runtimes for finding
a counterexamples are still always several times higher than the minimum runtimes in
general for comparable cases. This indicates that the successful search for a counterex-
ample is indeed an expensive case although it it not always the most expensive one.
Thus, we examine these instances that required 100 refinement steps without proving or
disproving the inclusion. The table shows the runtimes of such unsuccessful executions:
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AD = 0.25 AD = 0.5 AD = 0.75
|Σ| = 2,
TD = 1.6

2680, 2680,2680 46174, 57261, 68349
2607, 2607, 2607

|Σ| = 2,
TD = 1.8

3286, 361133, 718981 46330, 127435, 208540
2730, 2730, 2730

|Σ| = 2,
TD = 2.0

10977, 36007,77284 5512, 73235, 178672

29024, 49142, 69260

6118, 33111, 95101
201762, 201762,201762

|Σ| = 3,
TD = 1.6

18701, 1030556, 2042411 50774, 69378, 87983

|Σ| = 3,
TD = 1.8

10864, 567598, 1124332 32321, 57302, 82284

|Σ| = 3,
TD = 2.0

64439, 64439,64439 7374, 195726, 647013

112418, 112418,112418

25358, 46739, 68120
109120, 109120, 109120

There are only five configurations of parameters and input sizes where the maximum
runtime without a result is not the maximum runtime of the general case. We highlighted
these runtimes. In all five highlighted configurations, the worst-case is one where a
counterexample was found. Only four of the worst-cases when finding a counterexample
were not exceeded by an unsuccessful execution but by a successful one that ruled out
all counterexamples.

Longest Runtime The absolute worst-case of all finished executions is an instance
that took 80, 948, 391 milliseconds (∼ 22.5 hours) to find a counterexample. It had the
alphabet size 2, the transition density 2.0, and a density of accepting states of 0.75.
The random number generator was initialized with 10. Four automata with ten states
were intersected. For comparison, we intersected the automata using the conventional
method. Intersecting the two pairs of automata took 41 milliseconds and generated
two automata of 100 states. Intersecting these automata took 2410 milliseconds. The
intersection automaton has 9615 states and 454482 transitions. Complementing the
specification and intersecting it with the intersection took a minute and 14.129 seconds.

There is a mismatch between almost a day of runtime using our approach and about
two minutes of runtime when using the conventional approach. We wanted know reasons
for this drastic difference. Since there is a counterexample, the last step of the compu-
tation was solving the Presburger Formula. This happened after the 46th intersection
step and took 80, 464, 352 milliseconds. This means that all parts of the program except
for the last one took about eight minutes. This impressively long runtime of Z3 can be
explained by the number of variables: The satisfying solution assigns values to 589, 958
variables. However, 589.892 of them are set to 0. Interestingly, the formula contains
only seven Parikh variables that are barely used. In total, there are 36 state distance
variables and four accepting state variables. This means that there is a single accepting
state in each of the four automata that were preprocessed for intersection with the Ele-
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mentary Bounded Language. The massive size of the formula occurred apparently due
to fail states: Thousand of transitions do only read letters for which there is no Parikh
variable. This means that these letters are none of the freshly introduced letters. The
said transitions are connected to two non-accepting states. Hence, the purpose of these
transitions is filtering out illegal letters. We assume that this effect was introduced by
the automaton that was generated from the regular expression representing the Elemen-
tary Bounded Language. However, we did not observe this effect in any other example.
A possible way to address this problem is disallowing transitions reading letters that are
not in the language of the automaton.

Although the longest runtime was caused by an edge-case, we can still learn from
it. The initial over-approximation and the first eight refinement steps took less than
eight seconds. Also, the over-approximated automaton was obtained using about a
thousand states. The explicit computation of the exact counterexample language took
about twice as long. The automaton consists of almost ten thousand states. Although
the computation of the initial-over-approximation and the first refinement steps is faster
than the exact solution, our approach loses the race against the conventional approach
due to the refinement steps. For example, excluding the spurious counterexamples in
the 35-th refinement step took 872 milliseconds.

The following section presents an overview how variants of the procedure could be
designed. One of the goals is avoiding the expensive and wasteful refinement steps. If
we could find the counterexample in the presented instance using only a few refinement
steps, even this extreme case would perform better than the conventional one.
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10 Conclusion and Future Work

This work presented a way to transfer the concept of Counterexample-Guided Abstrac-
tion Refinement to regular inclusion and intersection. Our contribution includes methods
to over-approximate the intersection and to extract Elementary Bounded Languages of
potential counterexamples. Our work makes use of the existing approach to intersect
Parikh Images using satisfiability of Presburger Formula. We also derived methods that
are necessary to integrate these components, such as the algorithm that replaces infixes
of Elementary Bounded Languages by fresh letters in order to obtain unique Parikh vec-
tors. We implemented the whole procedure and demonstrated that the concept allows
to solve instances whose explicit solutions would require millions to billions of states.

The goal of the implementation was to show that the whole procedure is generally fea-
sible. Hence, the implementation is not tailored for specific classes of instances. Actual
applications using the algorithm could customize steps to make use of properties of the
expected instances. In this section, we will give an overview on conceptual limitations
of the procedure and potential improvements. We will also cover potential modifica-
tions and uses of the offered tools besides the original CEGAR-like algorithm. These
modifications address the question whether the approach can be a (semi-)decider. Also,
bottlenecks as shown in the previous sections on benchmarks are tackled.

Being Lost in Nested Loops Since our approach relies on the extraction of Elementary
Bounded Languages, it can not be a decider for all classes of regular languages. If
the language of potential counterexamples has a nested loop like (ac∗b)∗, our procedure
would find infinitely many Elementary Bounded Languages of the form ac∗b, (ackb)∗, and
concatenations of such languages. If all of these words are spurious, then the language
of possible counterexamples will never be empty.

Even if there are actual counterexamples, our algorithm might still never terminate:
The algorithm does not detect nested loops. Hence, there is no mechanism to ensure
that the inner and outer loops are unrolled fairly. For example, the algorithm might find
infinitely many Elementary Bounded Languages of the form (acb)∗, (accb)∗, (acccb)∗

. . . while the counterexample is the word acbaccb.

A similar problem occurs for loops containing any kind of choice operator: If the
language is a {c, d}∗ b, then the algorithm might produce the Elementary Bounded Lan-
guages ac {d}∗ b, acc {d}∗ b, . . . and never find the word adcb.

Conceptually, our algorithm can decide the problem in finite time if the language of
potential counterexamples is a union of finitely many Elementary Bounded Languages.
Practically, every refinement causes an additional intersection and therefore increases
the state space. Thus, there are even conceptually decidable instances that still require
more memory consumption than physically feasible.

Furthermore, our algorithm can also be embedded in a deciding procedure. This
procedure executes our program repeatedly but alters several parameters: If an execution
does not find a solution, the number of reduction steps will be reduced and the number
of refinement steps will be increased. Eventually, number of allowed reduction steps
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will be reduced to 0. Then, the procedure is a decider since this is equivalent to the
conventional approach. Practically, this is of course limited by physical boundaries.

Wrong Alphabets Actual implementations suffer from a problem that does not exist
conceptually: In theory, every automaton has a specified alphabet. If we unite two
automata, the alphabet is the union of the previous alphabets. If we intersect them,
the alphabet is the intersection of the alphabets or a subset. Knowing the alphabet is
important when introducing fail states. If a letter can never occur at a certain place in
a run, then the fail states mark a dead end in the automaton. To this end, we introduce
transitions to the fail states reading all letters of the alphabet that are not allowed.

A problem arises when the assumed alphabet is not the actual alphabet of the inter-
sected languages: The automata might get transitions reading letters that never occur
in any word that could possibly be in the intersection. Yet, these words are consid-
ered as potential counterexamples. Our algorithm then produces Elementary Bounded
Languages that will be immediately rejected as spurious.

Since the underlying automata library Fare assumes the alphabet to be entire Unicode,
this leads to two problems: It is impossible on actual hardware to actually refine the
counterexample automaton until all Unicode character have been excluded. Some of the
Unicode characters are control symbols or special characters for Regular Expressions.
If the resulting regular expression is syntactically invalid, the counterexample language
cannot be refined at all. If it is syntactically valid, the resulting regular expression
might still exclude other counterexamples than intended. For example, parentheses at
the place of letters change a language like abc∗ to (b)∗ = b∗. In the worst case, we would
exclude actual counterexamples, which possibly renders the result wrong.

We work around these problems by only considering counterexamples on a defined,
limited range of Unicode characters. Currently, this range is set to a-z. It can be set
to any range that is suitable for the intended application if the range does not contain
Unicode control symbols and special characters of regular expressions.
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10.1 Possible Modifications and Alternative Use-Cases

We now discuss various options how our library and our techniques enable the develop-
ment of tools aside the classical CEGAR loop. We also consider possible modifications
and improvements of the procedure that were not covered in this work as the goal was
to show feasibility for the general case.

Automatic Detection of Alphabets As said before, the implementation currently
restricts the alphabet to a fixed character range when testing counterexamples. This is
not an ideal solution as there are Elementary Bounded Languages that contain characters
that never occur in the actual intersection. A better solution is a dynamic specification
for the alphabet. The search for the Elementary Bounded Language could then be
restricted to characters that are specified in the alphabets of every input automaton.
The actual alphabet of the intersection might still be smaller: The languages a∗b and
ba∗ share the alphabet {a, b} while the alphabet of the intersection b is just {b}. Yet,
the intersection of the input automata is an over-approximation for the alphabet of the
intersection.

However, it is not always clear which characters appear in the language of an au-
tomaton if the automaton is automatically generated. If the automaton is generated
from a regular expression using complementation, the language might use letters that
never occur in the regular expression itself. Thus, there are cases where an automatic
detection of the used alphabet of an automaton is needed.

The alphabet could be determined by considering live transitions. A state is live if
there is an accepting run using this state. The method GetLiveStates of the class
Fare.Automaton determines these. A live transition is a transition between such states.
The alphabet of a language is certainly the set of letters that are read along live transi-
tions.

Parikh Image Pre-Check Parikh Images only consider the frequency of letters, not
their order. In our procedure, we prepare the languages so that the order of letters is
fixed and each Parikh vector represents a single word. To this end, we used Elementary
Bounded Languages. They enforce the order of infixes.

We can use the procedure without over-approximation and Elementary Bounded Lan-
guages to rule out some negative cases. If we find empty intersections of the Parikh
Images, then the actual intersection is empty as well. If the intersection of the Parikh
Images is non-empty, then the actual intersection might still be empty although there
are words in all of the intersected languages with the same frequency of the letters. We
could use the existing module to extract of the Parikh Image Presburger Formula in a
different way:

Before over-approximating the intersection L (Reg1) ∩ · · · ∩ L (Regk), we can check

P (L (Reg1)) ∩ · · · ∩ P (L (Regk)) ∩ P
(
L (Reg)

)
?
= ∅. If it holds, we know that the

intersection satisfies the specification L (Reg).

If it does not hold, we need to compute the over-approximation and intersect it
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with the complement of the specification to get the language of counterexample can-
didates LC . Since the counterexample candidates are included in the complement of the
specification LC ⊆ L (Reg), we might have ruled out the words whose Parikh vectors

are ambiguous. Thus, we check P (L (Reg1)) ∩ · · · ∩ P (L (Regk)) ∩ P (LC)
?
= ∅ again.

If it holds, the specification was satisfied. If it does not, we just continue with the
CEGAR-loop as before. The additional checks do not alter any of the languages, the
rest of the procedure will continue in the same way. However, the checks might help to
avoid the CEGAR-loop.

CEGAr (Less Refinement) Our procedure currently refines the language of potential
counterexamples after every spuriousness check. The refinement is rather expensive as
it requires an actual intersection in each step. The advantage is that certainly no poten-
tial counterexample is ever checked twice in the spuriousness check. Every Elementary
Bounded Language is free of any words that had been in a previous Elementary Bounded
Language. However, the required state space to keep track of the potential counterex-
amples might exceed the cross-product automaton of the actual intersection after a few
loops.

Hence, it might pay off to run several spuriousness checks without refining the lan-
guage. The idea is to enumerate paths to accepting states: There are finitely many
accepting runs that use every state at most once. There are also finitely many repetition-
free runs from each state that return to the state itself. We can then build Elementary
Bounded Languages by adding the loops at the corresponding places in the words that
are read by the accepting runs. If we limit the number of loops added at a single state,
we get finitely many Elementary Bounded Languages for the spuriousness check.

A practical advantage is the ability to run the spuriousness checks in parallel: If we
extract several Elementary Bounded Languages from the same automaton, then we can
just copy the automata and test several Elementary Bounded Languages at once.

The question whether and how often we refine is a trade-off: We can easily gener-
ate more Elementary Bounded Languages in an automaton than we compute possible
refinements. Yet, it might still be appropriate to refine the automaton occasionally in
order to reduce the number of overlapping Elementary Bounded Languages.

A conceptual advantage is that a structured enumeration of all Elementary Bounded
Languages in the language of potential counterexamples makes the procedure a semi-
decider for non-inclusion: Whenever an intersection is not included in the specification,
there is a shortest counterexample and an Elementary Bounded Language. If the pro-
cedure considers all Elementary Bounded Languages in a fixed order, the language con-
taining the shortest counterexample will be found in finite time. A possible order is the
lexicographic order on the regular expression of the Elementary Bounded Languages.

CEGaR (Less Abstraction) The Elementary Bounded Languages are subsets of a lan-
guage of potential counterexamples. We obtained this language by over-approximating
the intersection and intersecting it with the complement of the specification. The idea
of the over-approximation is to restrict the Elementary Bounded Languages to coun-
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terexamples that are likely to be non-spurious. If we can increase the throughput of
Elementary Bounded Languages in the spuriousness check, we can afford a lower likeli-
ness of non-spurious counterexamples.

Hence, it might be worth trying to use the previously mentioned variant with less
refinement steps together with a variant that works without any over-approximation:
We extract the Elementary Bounded Language right from the complement of the speci-
fication. A high frequency of spuriousness checks might then help to still find counterex-
amples or even entirely rule out the counterexample language.

Elementary Bounded Anti-Specifications An application of a variant without an
initial over-approximation and without refinement steps are Elementary Bounded Anti-
Specifications. Instead of giving the specification as a regular language that needs to
include every word in the intersection, we define finitely many languages that are forbid-
den. These anti-specifications need to be Elementary Bounded Languages. Hence, we
can use the existing modules of the implementation to check whether any of the finitely
many anti-specifications contains non-spurious counterexamples. Our tools therefore
serve as a decider for this class of problems.

Non-Regular Elementary Bounded Languages Currently, our procedure only ex-
tracts regular Elementary Bounded Languages. The reason is the way we prepare the
input languages before generating the Parikh Image Presburger Formula: We first replace
the infixes of the Elementary Bounded Language by single letters. We then intersect the
modified automata with Elementary Bounded Languages. We do so in order to enforce
the correct order of the letters representing infixes. Since our implementation for the
extraction of the Parikh Images relies on finite automata, we need the intersection to be
regular. This cannot be guaranteed if the Elementary Bounded Language is non-regular.

However, we can still enforce the correct order of the infixes by intersecting with a
superset of the Elementary Bounded Language: If the Elementary Bounded Language
{wx1

1 . . . wxll | (x1, . . . , xl) ∈ L} is represented as {ax1
1 . . . axll | (x1, . . . , xl) ∈ L}, we inter-

sect each of the input automata with a∗1 . . . a
∗
l .

The resulting languages still represent words that are not in the Elementary Bounded
Language although the order of the infixes is the same. We still need to consider the
frequencies of the infixes and their relation. In order to intersect the Parikh Image of
the intersection with the one of the Elementary Bounded Language, we need to modify
the Presburger Formula: If the set L is semi-linear, we can express it by a Presburger
Formula. The conjunct of the Parikh Image Presburger Formula of the intersection of
the modified input automata and the Presburger Formula of L describes those words
that are both in the intersection and in the Elementary Bounded Language.

A difficulty is the exclusion of spurious Elementary Bounded Languages. If they are
non-regular, their complement will not be regular. Hence, we cannot always intersect the
language of potential counterexamples with the complement of the Elementary Bounded
Languages and still maintain a regular language of potential counterexamples. Thus, we
either choose an approach with no refinement steps or refine by only excluding a regular
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subset of the Elementary Bounded Language.
Therefore, our procedure can be extended to also consider non-regular Elementary

Bounded Languages of potential counterexamples.

We have shown that our procedure is extensible in many ways. It can easily be adapted
to address related problems. The suggested variants offer opportunities to avoid the
bottlenecks we identified. Together, the procedure itself and its variants extend the range
of the practically computable instances of our language-theoretic problem. Hence, the
techniques we introduced and suggested can be used to solve many classes of verification
problems.
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