
Powered by TCPDF (www.tcpdf.org)

On-Board Software Reference Implementation for Space
Exploration Systems

Master’s Thesis

by

Jens Kolbenschlag

June 15, 2025

University of Kaiserslautern-Landau
Department of Computer Science

67663 Kaiserslautern
Germany

Examiner: Klaus Schneider, Prof. Dr.
Artur Scholz, PhD, M.Sc., Dipl.-Ing.

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema „On-
Board Software Reference Implementation for Space Exploration Systems“ selbst-
ständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig
angegeben habe und dass ich die Stellen der Arbeit — einschließlich Tabellen und
Abbildungen —, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Kaiserslautern, den 15.6.2025

Jens Kolbenschlag

ii

Abstract

In this thesis, we present a reference implementation of
spacecraft onboard software that provides interfaces for on-
board equipment, application software, and mission control
systems. This represents the first open-source implemen-
tation demonstrating the integration of multiple European
standards for onboard architecture and communication pro-
tocols. The system is extended by novel approaches, such
as the use of a redundant CAN bus as the onboard commu-
nication bus, supporting fault-tolerant and scalable config-
urations. The implementation is Python-based and follows
a modular design philosophy, enabling simplified develop-
ment of both hardware and software components, and serv-
ing as a reference for reliable embedded software develop-
ment in the space domain. We demonstrate the successful
integration of the standards into a functional software stack,
which was validated through an integrated system test us-
ing representative onboard components and communication
chains. This work contributes a reproducible and extensible
foundation for CubeSat missions and demonstrates the inte-
gration of space agency standards in small satellite develop-
ments.

Usage of Generative AI

Parts of this thesis were written with the assistance of the language model Chat-
GPT by OpenAI. The AI was used as a tool to support the drafting process through
language generation, rephrasing, or stylistic suggestions. All AI-assisted content
has been critically reviewed, edited, and verified by the author to ensure accuracy,
academic integrity, and compliance with the standards of scholarly work.

iv

Contents

1. Introduction 1
1.1. General Problem Setting . 1
1.2. New Contributions . 4
1.3. Outline of the Thesis . 9

2. Preliminaries 10
2.1. Concerns and Requirements . 10
2.2. Avionics System Architecture Overview 12
2.3. Protocols and Interfaces . 19
2.4. Onboard Software Architecture Overview 25

3. Main Contributions 29
3.1. Onboard Software Implementation 29

3.1.1. Interaction Layer . 32
3.1.2. Monitoring and Control . 37
3.1.3. File System and File Transfer 42
3.1.4. Onboard Bus and Device Access 43

3.2. Reconfiguration Module . 45

4. Experimental Evaluation 50
4.1. System Integration Test . 50
4.2. Compatibility with Mission Control Software 53

5. Conclusions 54
5.1. Summary . 54
5.2. Limitations . 55
5.3. Directions for Future Work . 55

List of Acronyms 57

List of Figures 60

A. PUS Packets and Services 61

B. PUS Service Skeleton Code 63

C. Reconfiguration Module Schematics 65

Bibliography 68

v

1. Introduction

The landscape of space exploration has been revolutionized by the emergence of
CubeSats – standardized, miniature satellites in cubic units of 10x10x10 cm [Cub22].
These compact and cost-effective platforms have significantly broadened access to
space, moving beyond the traditional domain of large governmental space agencies.
Today, CubeSats are developed by a diverse array of organizations, including univer-
sities and educational institutions worldwide, who leverage them for hands-on stu-
dent learning and cutting-edge research [Kul24]. Beyond academia, private compa-
nies and commercial enterprises are increasingly investing in CubeSat development
for various applications, from Earth observation and remote sensing to communi-
cations and in-orbit technology demonstrations. Furthermore, government organi-
zations and research laboratories also utilize CubeSats for scientific investigations,
technology validation, and as a low-cost means to deploy experimental payloads
[Kul24].

1.1. General Problem Setting

In recent years, CubeSat development has risen significantly in popularity with sev-
eral hundred deployments per year [Kul24]. However, the development of satellite
systems and software remains a complex and costly task. In this work, we propose
a reference implementation of a spacecraft Onboard Software (OBSW) specifically
tailored towards the specific needs of a CubeSat mission. This software stack was
developed with the intention to be used as both a reference implementation for
demonstration purposes, but also to form a functioning system for testing of the
newly developed CubeSat hardware platform by LibreCube (see Section 1.2).

Onboard Software Introduction

The term “Onboard Software” formally encompasses all software executing within
a spacecraft. This broad definition includes equipment firmware, network drivers,
operating systems, and higher-level applications, which are often distributed across
various hardware units onboard the spacecraft [Eic12]. In this work, our primary
focus is on the Data Handling System (DHS) portion of the OBSW, specifically the
software that runs on the spacecraft’s Onboard Computer (OBC).

This system plays a crucial role in the spacecraft’s operation, responsible for a mul-
titude of tasks. These include the collection of scientific data and parameters from
onboard equipment, the execution of automations based on the spacecraft’s current

1

Chapter 1: Introduction

DHS
OBSW

Equip-
ment

Commands

Parameters
& Data

Telecommand

Telemetry
MCS

Spacecraft Ground

Figure 1.1.: Onboard Software Overview

state, and the direct execution of commands received from ground control. Further-
more, the DHS manages the storage of all collected data, reports the spacecraft’s
health and status to ground stations, and transmits scientific data back to Earth. Fi-
nally, it is vital for the monitoring and recovery of the spacecraft’s overall health
[Eic12].

The DHS interfaces the onboard-bus to communicate with onboard equipment, such
as scientific instruments, the Attitude and Orbit Control System (AOCS), the Power
Control and Distribution Unit (PCDU) and other hardware. For communication
with the ground-based Mission Control System (MCS), it is also connected to the
antenna communication system, usually through a separate bus with higher band-
width. From ground it receives commands in the form of Telecommand (TC) pack-
ets, and returns data in Telemetry (TM) packets. These packets are encoded by a
chain of different protocols responsible for segmentation, routing, data link control,
error control and finally physical modulation into radio waves. The OBSW must be
able to both decode this protocol chain for telecommand, and to encode telemetry
accordingly [Eic12].

Space systems usually require a common set of features, such as the generation and
modification of housekeeping reports, or executing onboard automation scripts. For
this reason the service-based software architecture became popular in the industry,
where certain feature-sets are integrated into services, which are then commandable
from ground with specifically defined TC packet structures [Eic12], [Eur16]. Our
proposed implementation follows this service-based approach for the DHS and even
expands it to be used over the system-bus for communication with equipment.

Our Proposal

Today, several open-source frameworks for onboard software development in small
satellites are available. Most of these frameworks decouple the software from the
underlying hardware by means of a Hardware Abstraction Layer (HAL), thereby
enabling portability across different hardware architectures. Typically, such frame-
works employ a custom software architecture, are centered around a specific pro-
gramming language – most commonly C++ – and define strict conventions for how
mission-specific software components must be implemented. These design deci-
sions are often highly opinionated and can vary significantly between frameworks.

2

1.1. General Problem Setting

We intended to pursue a different approach. Rather than developing and publishing
yet another framework for onboard software, our objective is to provide a refer-
ence implementation based on standardized architectures and interfaces between
spacecraft onboard components. Our aim is to encourage developers to adopt an
interface-driven design for their CubeSat missions. As demonstrated by European
Space Agency (ESA) and other space agencies, the adoption of international space
standard protocols enables cross-support (e.g., ground stations tracking different
missions) and reusability (e.g., employing a single mission control system for mul-
tiple missions). Furthermore, by adopting established architectures developed by
space agencies, CubeSat developers can benefit from the reliability and robustness
that are inherent in these well-established standards [SM23].

Namely, the standards we intended to follow and implement are:

• Space Avionics Open Interface Architecture (SAVOIR): Reference archi-
tecture for satellite systems, published by ESA [Eur21].

• Packet Utilization Standard (PUS): Standardized onboard services and cor-
responding application layer protocol based on space packets, published by
the European Cooperation for Space Standardization (ECSS) [Eur16].

• CCSDS File Delivery Protocol (CFDP): Application layer protocol for file
transfer, published by the Consultative Committee for Space Data Systems
(CCSDS) [Con20a].

• Space Packet: Network layer protocol used by all major space agencies, pub-
lished by the CCSDS [Con20b].

• CCSDS Frames: Data link layer protocol for segmentation, sequence and
error control, published by the CCSDS [Con21b], [Con21a].

We will discuss these standards in detail in Chapter 2.

Related Work

Two widely used open-source onboard software stacks are the F Prime (F´) frame-
work [Jet] and the Core Flight System (cFS) [Nat], both of which have been devel-
oped and released by NASA.

The F´ framework adopts a component-oriented, modular architecture, allowing
for high configurability and ease of reuse. It comes with a comprehensive set of
pre-developed components that cover many of the basic functionalities required for
spacecraft onboard software, thereby reducing development time and effort.

The cFS, on the other hand, is based on a software bus architecture that follows a
publish/subscribe pattern. It provides a large library of reusable applications and
protocols that are readily available for integration into a mission-specific software
stack. This architecture facilitates loose coupling between components and im-
proves scalability and maintainability.

Both frameworks are implemented in C or C++ and offer an abstraction layer that

3

Chapter 1: Introduction

decouples the application logic from the underlying operating system.

Despite their maturity and broad adoption, these frameworks rely on the use of
custom application-layer protocols that are specific to their ecosystems. Notably,
they do not natively support European standards, such as those defined by the ECSS
and ESA, for standardized monitoring and control services. This lack of compliance
can present integration challenges formissions aiming to adhere to ESA conventions
or to interoperate with ground systems and components based on ECSS standards.

1.2. New Contributions

As discussed in Section 1.1, our main goal is to follow and implement public interna-
tional, and especially European standards. In this section, we will briefly introduce
aspects of our OBSW implementation that are either complete novelties, or stan-
dards that were defined but not (yet) used in our proposed way by the industry.

LibreCube Hardware Platform

LibreCube is a german registered association with the goal to develop open-source
hardware and software for CubeSats, focused on following existing standards to
make them more accessible to a broad audience [Lib]. As of the time of writing,
LibreCube has developed a modular Printed Circuit Board (PCB) design to be used
in CubeSats, which is currently being tested in a fully integrated rover called Libre-
CubeRover (see Figure 1.2). A rudimentary remote control software was developed
for the rover to demonstrate basic hardware functionality, but it offers no support
for space protocol compatibility, robustness or reusability. The OBSW developed
in this work is intended to be a fully functional onboard software, in order to con-
trol this rover through common space protocols and to demonstrate the successful
integration of all systems.

The components of the rover are described by LibreCube as follows [Lib]:

The basic system components of the rover are:

• Structure: It provides housing for the electronic board stack and
fixtures for the wheels.

• Power Module: It supplies the rover with electrical power from
batteries. Can be re-charged.

• Communications Module: For wireless data exchange with the
rover.

• ProcessingModule: The onboard computermanages the rover and
is the central interface.

• Wheel Drive Module: Controls the movement of the wheels.

The additional system components are:

4

1.2. New Contributions

Figure 1.2.: LibreCubeRover, Source: [Lib]

• Camera Module: To capture images, possible stream video.
• Solar Panels: Provide charging power for the rover.
• Battery Expansion Module: Extends the battery capacity of the
rover.

• Navigation Module: Provides position information and heading.

The board dimensions follow the CubeSat Design Specification [Cub22], which de-
fines a standard form factor for CubeSat modules. This ensures compatibility with a
wide range of CubeSat deployers and facilitates integration with other standardized
components. Each module is designed to fit within the 100mm × 100mm footprint
and specified height constraints, allowing for modular stacking and easy expansion
of system capabilities. For the electrical integration of the PCBs into amodular stack,
the design follows the PC/104 Specification [PC108]. It defines a 104 Pin board-to-
board connector, as well as the mechanical mounting of multiple PCBs into a robust
stack.

LibreCube’s board specification allocates a defined set of pins of the 104 pin board-
to-board connector for standard functionality that is shared across the different
modules, such as communication buses and power lines. This allows for straightfor-
ward interchangeability, reusability and expandability of a system, even without the
need to modify a given module design. The connector pin allocation intentionally
reserves parts of the connector to be defined by the user for mission specific signals.

The design uses hot redundant1 UART connections for TM and TC transmission be-
tween the antennamodule and the OBC. For platformmonitoring and commanding,
it uses a novel warm redundant1 CAN bus system called SpaceCAN [Sch+19], which
we will introduce in Section 1.2 and discuss in detail in Section 2.3.

5

Chapter 1: Introduction

For hardware design, LibreCube prioritizes the use of standard components and off-
the-shelf hardware to lower the hurdle for hardware designers to get into CubeSat
development.

SpaceCAN as Onboard Bus

CubeSats historically rely on simple, non-redundant onboard communication pro-
tocols such as I2C, SPI or UART [BLG17]. This however poses a problem, as these
protocols do not offer error detection, error correction or failure recovery mecha-
nisms out of the box. While radiation levels on low earth orbits of typical Cube-
Sat missions are still very low compared to deep space missions, the possibility of
Single Event Upsets (SEUs) as a result of high energy particles or other problems
induced by electromagnetic radiation remains a considerable threat [Lik+10]. In
the event of a failure of an onboard system, the spacecraft must either be capable
of autonomously switching to a redundant system or retain basic Monitoring and
Control (M&C) functionality to enable ground controllers to reconfigure the space-
craft. The onboard communication bus is crucial to maintaining the spacecraft’s
functional integrity and recovery capability. Consequently, a failure in the onboard
bus often results in the failure of the CubeSat mission in practice [BLG17].

In professional satellite missions with high budgets, such as missions from ESA or
NASA, dedicated robust bus systems are used such as MIL-STD-1553 or SpaceWire
[Eura], [Sch+19]. However, these bus systems require specialized hardware and
software that is not readily available on consumer markets so that they are deemed
not feasible for most CubeSat missions.

The CAN bus offers several advantages for use as an onboard communication bus,
including built-in error detection and resilience to electromagnetic interference,
achieved through the use of an isolated differential signal transmitted via a twisted
pair connection. Its robustness has been demonstrated by its widespread adoption
in the automotive industry, where it has been employed for many years to intercon-
nect various vehicle subsystems. Nevertheless, the CAN bus remains susceptible to
electrical failures, such as issues with physical connections or malfunction of the
transceivers responsible for converting the differential CAN signal into a CMOS-
level signal suitable for interfacing with microcontrollers. To qualify the CAN bus
for space applications, the ECSS has defined a redundant extension of the standard
CAN protocol in the specification ECSS-E-ST-50-15C [Eur15], commonly referred
to as ECSS-CAN. This standard also introduces a service-oriented meta-protocol to
enhance communication reliability and structure.

However, LibreCube deemed the ECSS-CAN to be too complex to be used and im-
plemented in small spacecraft, which is why a simpler, but functionally similar pro-
tocol SpaceCAN was developed in 2019 [Sch+19]. It is also based on two redundant
1We will use the redundancy terms of the SAVOIR documents [Eur21], which are defined as follows:

• Cold redundancy: One active part, redundant part is not operating.
• Warm redundancy: One active part, redundant part is operating and ready to take over.
• Hot redundancy: All parts are actively operating in parallel.

6

1.2. New Contributions

CAN-bus systems, that can automatically detect a failure and recover to the other
bus, and it also supports the use of service-based communication similar to PUS.
We will discuss the protocol in detail in Section 2.3.

Open-source SAVOIR Implementation

The Space Avionics Open Interface Architecture (SAVOIR) initiative, led by ESA
in collaboration with European space industry partners, aims to standardize and
harmonize avionics systems for spacecraft. It addresses the increasing complexity
and cost associated with the development of onboard systems by promoting a set
of common building blocks, interfaces, and design principles for spacecraft avionics
[Eur21].

SAVOIR provides a reference architecture for developing avionics subsystems, in-
cluding onboard computers, data handling units, software architecture and commu-
nication interfaces. By defining reusable functional components and standardizing
key interfaces, the initiative enhances modularity, interoperability, and maintain-
ability across missions. This approach not only reduces development time and risk
but also supports long-term sustainability and reusability of avionics designs.

The SAVOIR recommendations have become increasingly influential in European
space projects, especially for institutional and commercial satellite platforms. The
architecture covers both the functional decomposition of avionics systems and guid-
ance for implementing protocols, such as the Packet Utilization Standard (PUS). The
documents are available free of charge on the European Space Software Repository
[Eurb] for institutions in the ESA member states, but distribution to other states
requires the approval of the Industrial Policy Committee (IPC).

In the context of this thesis, SAVOIR serves as a foundational framework to guide
the organization, interface design, communication principles and architecture of our
onboard system and software. In particular, this work will focus on two documents:

• SAVOIR Functional Reference Architecture (FRA):
A reference architecture describing the functional units commonly required
onboard a reliable space system.

• SAVOIR Onboard Software Reference Architecture (OSRA):
A reference architecture for onboard software design.

To the best of our knowledge, this thesis presents the first open-source implemen-
tation based on the SAVOIR architecture.

Onboard Procedures with PLUTO

Onboard Control Procedures (OBCPs) are automation scripts on board of a space-
craft system, to be executed in space. The onboard automation stands in contrast to
the still more usual ground-based automation, which autonomously sends telecom-
mand based on automation scripts from ground. But for most missions, there is

7

Chapter 1: Introduction

no continuous contact to ground, so there is the need of providing automation ca-
pability for the spacecraft system on its own. One option to make the spacecraft
execute commands autonomously without ground contact, is to upload commands
to the spacecraft in advance, together with the time at which thy should be executed.
While this approach may be sufficient in some cases, more complex tasks pose the
need for an automation system that supports control flow. This need is fulfilled by
the onboard OBCP handling system.

OBCPs are scripts that can be executed onboard of a spacecraft, with access to the
onboard system parameters, events and commands. They can be uploaded andmod-
ified from ground without the need of patching the whole OBSW during flight, and
are intended to be easily understandable by the spacecraft operation team and can
be patched in case some functionality has to be extended [Eic12]. Usually they are
written in a domain-specific language that incorporates common monitoring and
control processes, such as confirming correct system status before proceeding, or
including timeouts for certain operations. There currently exists no suggested stan-
dard programming language for OBCPs, but only a standard that defines the capa-
bilities of the OBCP handling system [Eur10].

On the other hand, the ECSS does define the scripting language PLUTO, which
stands for “Procedure Language for Users in Test and Operations” [Eur08]. As the
name and documentation implies, this language is mainly intended to be used in
testing and ground-based mission control operations, where it gained popularity
in recent years. However, the required functionality and spacecraft interaction of
onboard procedures is very similar those of ground-based automation scripts. For
this reason, and in an effort to simplify the development of automation scripts in
general, we decided to experimentally implement an onboard OBCP handler that
works with PLUTO scripts in our system. This approach would make it easier for
the spacecraft operations team to develop and maintain OBCPs, as they are already
familiar with the PLUTO language. To the best of our knowledge, PLUTO has so far
not been used as an OBCP language in a spacecraft system.

File Transfer Coordination

One other, less significant novelty we implemented has to do with the latest exten-
sion, version C of the PUS standard [Eur16]. This extension defined system require-
ments more precisely, and also added new service definitions, such as a new service
dedicated to file operations, Service 23 – File Management. Service 23 provides func-
tionality to modify onboard file and folder entries, but also defines commands for
copying and moving files. While the specifications hints at the usage of this service
for initiating file transfers between ground and spacecraft, it does not provide fur-
ther details about the actual implementation of this feature using only the defined
commands. To the best of our knowledge, our work provides the first implemen-
tation of file transfer coordination using only the standard commands defined by
PUS.

8

1.3. Outline of the Thesis

1.3. Outline of the Thesis

In Chapter 1 – Introduction, we introduced the overall goals and concepts that we
intended to implement in the work, and put them into context within the aerospace
industry.

In Chapter 2 – Preliminaries, we discuss detailed preliminary definitions of system
requirements, architecture decisions, interfaces and communication protocols used
in our implementation. This includes externally defined standards and software
libraries we used, and provides reasoning for the design decisions of our implemen-
tation.

In Chapter 3 – Main Contributions, we present the core contributions of this work,
namely the development of a new onboard software stack with all its submodules.
Additionally, we present the development of an optional hardware module which
integrates advanced reliability mechanisms of agency satellites into our CubeSat
system.

In Chapter 4 – Experimental Evaluation, we discuss the performance of our imple-
mented system based on a simple fully integrated system test, and compatibility to
commonly used mission control software.

In Chapter 5 – Conclusions, we summarize our results and the limitations of our im-
plemented system, and based on this evaluation we present opportunities of future
work based on this thesis.

9

2. Preliminaries

2.1. Concerns and Requirements

In this section, we will define the architecture concerns and the derived architecture
requirements, which guide our work towards a functional implementation. This
process follows industry standard software architecture design approaches, such
as described by the book Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives [RW05]. Although, as this thesis does not aim
to provide a formal architecture documentation, we will follow this method and
their definitions of the terms “concern” and “requirement” only in a generalized and
informal manner.

We will reference these concerns and requirements throughout the following chap-
ters to justify our design decisions, and to ensure traceability between concerns,
requirements, design decisions and implementation.

Concerns

The concerns are derived from the ideas presented in Section 1.1 and express ob-
jectives and intends for the solution that our implementation shall provide. These
concerns do not dictate decisions and are typically not quantifiable, but helped to
steer our work towards the desired direction, as they did not change throughout the
project’s duration.

CON 1 – Onboard Software Stack
The software shall provide common functionality required on a typical CubeSat,
such as M&C from ground, onboard data handling, onboard equipment interaction,
onboard automation, and it should provide an abstraction layer for onboard appli-
cations.

CON 2 – Reference Implementation
The software shall pose as a reference implementation to guide developers on how
to implement open space standards into an OBSW.

CON 3 – Testing Platform
The software should facilitate prototype development by offering a functional on-
board software which can be easily adapted to different system configurations.

CON 4 – Compatibility
The systemmust be compatible with the available hardware platform by LibreCube.

10

2.1. Concerns and Requirements

CON 5 – Modifyability
The system shall allow typical tailoring towards mission specific applications.

CON 6 – Understandability
The implementation must be easy to understand.

CON 7 – Architecture Protability
It shall be possible to port the overall software architecture to different hardware
and languages.

CON 8 – Use of Standards
The system shall adhere to available publicly defined standards and protocols and
shall be compatible to systems that support the respective standards.

CON 9 – Restricted Development Time
The system must be designed, implemented, and evaluated within the six-month
duration of the Master’s thesis project.

Requirements

Based on the concerns, we derive the key requirements that give concrete con-
straints and provide reasoning towards making design decisions.

REQ 1 – Open-Source
The software shall be published in an open-source repository. Derived from CON 2.

REQ 2 – Reproducibilty
The software shall include example code and instructions to reproduce a simple
functional system. Derived from CON 2.

REQ 3 – Hardware Interfaces
The software shall run on an embedded PC that can communicate via two CAN
ports and two UART ports. Derived from CON 4.

REQ 4 – Modularity
Functional parts of the software shall define minimal interfaces towards the rest of
the system, so that it allows exchange and reuse. Derived from CON 3 and CON 5.

REQ 5 – Customizeability
The software shall provide simple means to incorporate mission specific customiza-
tion, such as onboard parameters, events, commands, equipment interaction. De-
rived from CON 5.

REQ 6 – Extendability
The software shall provide simple means to extend the software by mission specific
applications functionality, such as equipment handlers, custom M&C services and
onboard applications. Derived from CON 5.

REQ 7 – Use of the Python Language

11

Chapter 2: Preliminaries

The software shall be written in Python, as it is considered easy to understand, and
offers a large selection of open-source libraries and relevant protocol implementa-
tions by LibreCube. Derived from CON 6 and CON 9.

REQ 8 – Use of Universal Features
The software architecture shall only rely on hardware and software features, that
are supported by typical CubeSat OBC hardware platforms, specifically embedded
PCs running Linux and microcontrollers running FreeRTOS. Derived from CON 7.

REQ 9 – Convention Compliance
The implementation shall conform to established industry best practices and design
patterns. Derived from CON 6 and CON 7.

REQ 10 – SAVOIR-based Architecture
The architecture design and system implementation shall be closely oriented on the
ESA Space Avionics Open Interface Architecture (SAVOIR). Derived from CON 8.

REQ 11 – Monitoring & Control with PUS
The software stack shall provide monitoring and control services and TC decoding
/ TM encoding according to the Packet Utilization Standard (PUS). Derived from
CON 8.

REQ 12 – File Transmission with CFDP
The software stack shall implement the CFDP protocol for file transmission between
ground and space system. Derived from CON 8.

REQ 13 – Onboard Bus with SpaceCAN
The software stack shall incorporate the SpaceCAN protocol for onboard bus com-
munication with equipment. Derived from CON 8.

REQ 14 – Onboard Control Procedures with PLUTO
The software stack shall incorporate onboard procedure handling for scripts written
in the PLUTO language. Derived from CON 8.

2.2. Avionics System Architecture Overview

Although the main focus of this thesis lies on the development of the onboard soft-
ware, to get a better understanding of the required interfaces, we also looked into
the architecture of the whole spacecraft avionics system. In particular, we analyzed
the existing LibreCube hardware architecture in regards of interaction with the on-
board software on the main computer, which we will call Processing Unit.

As a reference, we use the SAVOIR Functional Reference Architecture (FRA) (also
known as Avionics System Reference Architecture (ASRA)), which was defined by
ESA and reflects the functional structure of onboard avionics systems of modern
ESA satellites [Eur21]. However, CubeSats usually have different requirements com-
pared to “bigger” satellites built by the major space agencies, and as such the FRA
does not fully apply to CubeSats. They have limited financial budgets, space, power,

12

2.2. Avionics System Architecture Overview

operate in a less demanding environment, and handle lower volumes of scientific
data, and thus don’t require some advanced features of agency satellite avionics.
Most CubeSats only stay in low earth orbit, where the risk of SEUs due to radia-
tion is comparatively low, so the hardware requirements are less strict and allow
for usage of off-the-shelf hardware [SM23]. In 2023, Szewczyk et al. [SM23] from
ESA published a concept on how to apply the SAVOIR FRA to CubeSat applications,
including a proposed hardware allocation for the required functional blocks. The
functional overview, together with this hardware allocation proposed by ESA for
CubeSats is shown in Figure 2.1.

CubeSat SAVOIR

OBC/Processing Module

o Processing
o Platform Data Storage
o Payload Data Storage
o On-board Time
o Mission Data Links
o Cmd & Ctrl Links
o (Optional) Payload processing
o Parallel I/O

COMMS

o Telecommand
o Platform Telemetry
o Essential TC/Essential TM (by direct

CAN connection to modules)
o Security (optional, for TC

authentication/decryption)

Power Conditioning
and

Distribution Module
(PCDM)

o Power control & distribution
o Reconfiguration (limited. Can power

cycle modules via CAN bus)
o Parallel I/O (if MCU present)

AOCS
Incl. GPS module

o Time reference
o Position and velocity sensor
o AOCS sensors and actuators

Payload TM
(optional)

Payload Telemetry

- Payload Security

(Distributed function) Data Concentrator (RTU)

- Sensor & actuator I/F

(Partial, in
COMMS and PCDM)

Reconfiguration

- Safe Guard Memory

Telecommand

Platform
Telemetry

Time
reference

Security

Reconfiguration

Processing

On-Board
Time

Platform
Data Storage

Safe-Guard
Memory

Essential
TC

Cmd & Ctrl
 Links

Mission
Data Links

TC
CLTUs

Authentication/
Decryption

Encryption

TM
CADUs

Context data,
Boot report

CLCW

CPDU commands

CPDU
commands

Essential
TM

TM
packets

X

Enable/Disable

Alarms

Discrete
signals

System
alarms

Time
and
time
tick

Trig

TM
packets

TM packets

TC
Segments

Platform
sensors and

actuators

Platform
commanding

Payload
commanding

Data
Concentrator

Sensor and
actuator I/F

Sensor and
actuator I/F

Synchronisation

Payload
Data

 Storage

Instruments incl.
ICUs,

Payload I/F Unit

Payload
Data Routing

X

Platform Payload

TC Segments

TM packets,
files

Time tick

Time

TM
frame
sync

Payload
synchronisation

Payload control

Inter
-PM

Platform
synchronisation

Hot redundant operation

Cold redundant operation

Warm or cold redundant operation

Payload
Telemetry TM

CADUs

Security

Encryption

Payload direct monitoring

PIO

PIO

Time & Tick

RM log

TC Segments

TC
Segments

Status

Warm redundant operation

Figure 2.1.: SAVOIR Functional Reference Architecture and Mapping to CubeSat Functional
Blocks. Source: [SM23]

The FRA is divided into two sides: The Platform side and the Payload side.

The Platform side provides critical functionality for the spacecraft system in regards
of communication (both with ground and onboard), data handling, automation, and
Failure Detection, Isolation and Recovery (FDIR). Functional units that are part of
the platform are expected to be present in similar form on all spacecraft systems.
As these units have to be tightly integrated with each other, CubeSat developers
are usually dependant on the platform of a single supplier. Integrating different
platform modules is not easily achievable and requires considerable effort [SM23],
which is why LibreCube aims to develop an open hardware and software system
that provides a robust platform as a basis for CubeSat development.

On the Payload side, there are the mission-specific modules that host scientific hard-
ware, such as sensors, cameras and actuators. While payload hardware is usually
uniquely developed for the cause of the CubeSat mission, it can still benefit from a
standardized interface to the system bus and processing unit towards robust inte-

13

Chapter 2: Preliminaries

gration and reusability.

In this section we will briefly go over the different functional units of the FRA, their
definition according to SAVOIR [Eur21] and their implementation in our system.

Processing

The processing function is the central element of spacecraft avionics, responsible
for data handling and executing the on-board application software, typically hosted
on dedicated OBCs. It interfaces with multiple subsystems, communicating with
ground by encoding and decoding telecommand and telemetry packets, and mon-
itoring and commanding onboard equipment over the onboard bus. Its function-
ality includes general-purpose processing, volatile and non-volatile storage, boot
and self-test mechanisms, automation, time management, error detection and cor-
rection. Redundancy is typically implemented for reliability, with cold redundancy
preferred for power savings and warm redundancy employed in time-critical mis-
sions. Error detection relies primarily on internal mechanisms, such as watchdog
timers, memory checks, and hardware voltage monitoring [Eur21].

Professional satellite systems use special space-qualified hardware to host their pro-
cessing function with maximum reliability. As a notable example, ESA uses a dedi-
cated processor architecture LEON, which features built-in error correction on reg-
isters and cache, redundant I/O communication interfaces for space protocols, and
overall SEU-resistant and -tolerant design [AGW10]. Similarly, Error Detection and
Correction (EDAC)-memory is used for both working memory and data storage
[Eic12].

However, since CubeSats typically have lower reliability requirements, they often
use standard microprocessors on commercial off-the-shelf OBC modules, which
usually provide redundancy through a backup processors.

For this work, since the implementation is only intended to be used as a reference
and for testing purposes, we decided to target a Raspberry Pi 5 single-board com-
puter. It has the advantage of being readily available, and supported by a wide array
of open source software, hardware accessories and instructions, due to its popular-
ity. The hardware would be suitable to be used on a CubeSat as some missions have
already shown [Uta], but further evaluation on the OBC hardware will be necessary
for the final space-worthy system, as described in detail in Section 5.3.

The SAVOIR mapping suggests allocating the processing function to a dedicated
Processing Module which is equivalent to an OBC, which we will also follow in our
system.

Data Storage

The data storage functions describe the onboard memories that hold data collected
onboard throughout the mission. The SAVOIR architecture differentiates between

14

2.2. Avionics System Architecture Overview

Platform Data Storage and Payload Data Storage.

The platform data storage is specifically responsible for storing platform-related
data, such as housekeeping reports when not connected to the ground, as well as
other M&C-related files like automation scripts. Due to its critical role, it is subject
to strict reliability requirements; however, it does not demand significant storage
capacity or bandwidth, as the report data is relatively small [Eur21].

The payload data storage stores scientific data that was collected by the payload
hardware. This memory typically requires high capacity and bandwidth to hold big
datasets, such as high resolution images taken by onboard cameras. However, the
reliability and data integrity constraints are less strict, as partial loss or corruption
of science data does usually no endanger the success of a mission [Eur21].

OnCubeSatmissions, platform and payload data storage functions are typically both
hosted on the same hardware for simplicity, such as a hard drive connected to the
OBC, which matches with the SAVOIR CubeSat mapping. For our test system, the
platform and payload data functions are both hosted on the SD-card that also serves
as the Raspberry Pi’s boot drive.

Safeguard Memory

The Safeguard Memory (SGM) stores critical contextual information for the OBSW,
such as the spacecraft configuration, mission phase, and maneuver data. This al-
lows the OBSW to correctly resume essential tasks following a restart caused by a
switch-over to the redundant OBC. Communication with the SGM is handled via
the onboard bus, and the module is specifically hardened against radiation-induced
errors.

The SGM operates in a hot-redundant configuration, where both the nominal and
redundant memory banks are accessible by both processing units. Any memory up-
date must therefore be applied simultaneously to both memory instances to ensure
consistency.

As indicated by the CubeSat system mapping, an SGM is typically not required for
CubeSat missions, where manual reconfiguration is performed after an OBC switch-
over. In the LibreCube hardware design, however, the SGM has been integrated on
an optional Reconfiguration Module, using an EDAC-protected EEPROM.

Telecommand Decoding & Telemetry Encoding

The telecommand decoding and telemetry encoding functions are responsible for
translating the lower data link layer protocols transmitted by the antenna to the
higher level CCSDS Frames that are generated and consumed by the OBSW. The
data is processed according to the CCSDS protocol chain (see Figure 2.2), which
structures the data handling in layers inspired by the ISO OSI model [Eur21].

15

Chapter 2: Preliminaries

Gnd Ctrl

TransmitterReceiver

OBC Processor

P
a

c
k
e

t
e

n
c
o

d
in

g

P
a

c
k
e

t
d
e

c
o
d

in
g

Segmentation
Layer

Transfer
Layer

Coding
Layer

Physical
Layer

Segmentation
Layer

Transfer
Layer

Coding
Layer

Physical
Layer

CLTU

TC Transfer Frame

CLCW Data
(2 bits)

CLCW
Data

TM Source
Packet

TC Segment

TC Transfer Frame

CLTU

Interconnection Medium

Physical
Layer

Packetization
Layer

Application
Process

(Higher Layers)

Packetization
Layer

Application
Process

(Higher Layers)

TM Source
Packet

TM Source
Packet

Ground SystemSpacecraft
System

Essential
Operational
TM Reports

(Status Data)

Summary of the essential
services provided by
each layer

TC Packet
TC Packet

Segmentation of TC
packets, routing and multi-
plexing of distinct streams
of TC packets.

Transport of application
units to end recipient in
an optimum manner.

Data link control: S/C
identification, error and
sequence control, flow
control, abnormal condition
recovery.

Additional data link error
control (correction) and
synchronization.

Physical connection, modu-
lation activation, idling, CLTU
insertion, modulation deacti-
vation and physical disconn.

TC Segment

Figure 2.2.: CCSDS TC encoding / decoding. Source: [Eic12]

Notably, the standard splits the OSI Data Link Layer into three specialized sub-
layers:

• Channel Coding and Synchronization Sub-layer: Responsible for select-
ing the best quality signal modulation, suitable bandwidths, and multiplexing
of multiple redundant transmitters. The two relevant protocols for this layer
defined by the CCSDS are called Command Link Transfer Units (CLTUs) for
TC uplink, and Channel Access Data Units (CADUs) for TM downlink.

• Data Link: Bundles data into containers, called Frames, which ensure correct
routing between multiple spacecraft by a spacecraft ID, and also detect and
correct sequencing errors. This layer also allocates data streams to Virtual
Channels, which can prioritize data streams based on bandwidth restrictions
on downlink, or target specific decoder hardware on uplink.

• Segmentation: Additional segmentation layer that splits up big data link
frames and provides and additional routing with a MAP ID for targeting spe-
cific onboard TC consumers.

Due to its importance to offer recovery in the event of OBC failure, the telecommand
decoding function has to be hot redundant, so that if one decoder fails, the other is
still operational and can be targeted by mission control. Whereas the telemetry
function can be cold redundant, as mission control can blindly send commands to
switch to the redundant encoder in the event of a failure of the nominal encoder.

SAVOIR defines separate functions for Platform Telemetry and Payload Telemetry, as
professional agency satellites often use dedicated high-speed data link for transmit-
ting payload data to ground [Eur21]. Platform communication is usually transmitted
in S-band (2 - 4 GHz), as it offers good tolerance over bad weather conditions. Pay-

16

2.2. Avionics System Architecture Overview

load data links benefit from greater bandwidths, so often the X-band (8 - 12 GHz)
or Ka-band (27 - 40 GHz) is used, which are however more vulnerable to weather
conditions [Eic12].

The CubeSat mapping indicates that telecommand and telemetry transponders can
be allocated to a communication module (COMMS), while the payload telemetry
function is considered optional, as most CubeSats don’t need the extra bandwidth
and transmit payload data through the S-band. Physically, the TC/TM functions
are usually implemented on dedicated microcontrollers, sometimes called CCSDS
processors [Eur21], [Eic12].

The LibreCubeCOMmodule follows a similar approach: Two hot redundant transpon-
der controllers operate in parallel and are both connected to the antenna through
a diplexer, and are both connected to their own UART bus for data transmission to
to the rest of the system. For monitoring and control purposes by the OBSW, the
transponders are also connected to the SpaceCAN onboard bus [Lib].

Essential Telecommand, Telemetry & Reconfiguration

When a critical part of the avionics fails and can not recover on its own, mission
control has to have some controllability over the system to reconfigure and restore
its functionality. For this reason, satellites have Essential Telecommand functions,
which are processed by decoding hardware before the OBC. The essential TC re-
ceives High Priority Command (HPC) sent by ground, which is routed on board to
the essential TC processing function by an associated MAP ID.

The HPCs contains commands to reconfigure the spacecraft – for example it could
command to power cycle the nominal OBC, or to boot up the redundant one. It
acts by manipulating special platform commanding signal lines that have mission-
specific meaning, it could for example enable or disable a relay that powers an OBC.
Historically, the hardware that powers these commanding lines is called Command
Pulse Decoding Unit (CPDU), as in the early days of spaceflight, electrical onboard
reconfiguration was done with bistable mechanical relays which would be tripped
by signal pulses, and they would store their configuration reliably by their mechan-
ical position [Eic12]. Due to the importance of the essential TC function, it is re-
quired to operate in hot redundancy, and it is recommended to be implemented in
hardware of low complexity. Typically in agency satellites it is integrated into the
TC decoding hardware [Eur21].

To monitor a failing spacecraft, there has to be a reliable return channel of essential
onboard parameters to ground that work independently of the OBC. The Essential
Telemetry function collects critical onboard status parameters, such as the current
hardware configuration, voltage levels, temperatures and software reports. This
report, called High Priority Telemetry (HPTM), is then injected into the telemetry
stream in a dedicated virtual channel [Eur21].

SAVOIR also defines a Reconfiguration Function, which monitors system alarms trig-
gered by subsystem failures (e.g. a watchdog detects a crashed OBC), and can re-

17

Chapter 2: Preliminaries

configure the spacecraft autonomously to recover from failures [Eur21]. This level
of autonomy is often disregarded on CubeSats, which is why the reconfiguration
function is not included in the CubeSat mapping [SM23].

Aswe introduced the SAVOIR architecture to compare it against the LibreCube hard-
ware as part of this work, we noticed that the essential telecommand, telemetry and
reconfiguration functions were not yet reflected by the existing LibreCube mod-
ules, so we looked into possible integration options. The SAVOIR CubeSat mapping
suggest to allocate the essential TC & TM to the COMMS module and to disregard
the reconfiguration function. However, as some CubeSat missions disregard these
functions entirely and instead rely on autonomous per-module recovery, we decided
to keep the modular approach and introduce a new Reconfiguration Module. Apart
from the essential TC & TM functions, this module hosts the CPDU, reconfigura-
tion function, Safeguard Memory (SGM), and a reference clock. We describe the
development of this module in Section 3.2.

Data Links

The data links interconnect the onboard hardwaremodules through communication
bus systems. SAVOIR defines two distinct types of onboard data links:

• Command & Control Data Link: Connects all onboard hardware for trans-
mission monitoring and control data, such as sensor parameters or actuator
commands.

• Mission Data Links: Used for high-volume or auxiliary onboard data trans-
fers, such as scientific payload data.

Agency satellites typically use a combination of MIL-STD-1553B, SpaceWire and
CAN for both data link types [Eur21].

But for CubeSats, specialized hardware for space bus protocols such as MIL-STD-
1553B or SpaceWire is not viable, so they typically use a combination of more easily
available bus hardware such as I2C, SPI, USB and UART [BLG17], with more recent
developments towards CAN and Ethernet [Cho+20].

OBC N

OBC R

ReconCOM

Transponder 2

Transponder 1 Recon Mod. 1

Recon Mod. 2

OBSWDiplexerAntenna

optional

UART

1

2

OBSW
1

2

UART

Payload

1

2

1

2
UART

Payload BusOnboard Bus
SpaceCAN

COM Bus

Figure 2.3.: Bus Systems on the LibreCube Platform
The two hot redundant communication chains to the antenna are shown in red and orange
on the left side; the two redundant mission data links to the payload modules are shown in

green and blue on the right side.

18

2.3. Protocols and Interfaces

The bus communication concept implemented on the LibreCube hardware platform
is illustrated in Figure 2.3.

We use a SpaceCAN bus as the command & control data link, and two redundant
UART connections for mission data transmission. According to the SAVOIR recom-
mendations, command & control data links should be operated in cold redundancy,
with switch-over either detected and commanded from ground or by the OBSW
[Eur21]. However, the LibreCube SpaceCAN bus operates intrinsically in warm re-
dundancy, allowing the active bus to be switched either automatically – based on
bus activity and detected errors – or manually by the OBSW[Sch+19].

In contrast, the operation of the mission data links is highly dependent on the spe-
cific mission payload. Consequently, we have not yet developed standardized access
protocols; however, we have identified this topic as a potential area for future de-
velopment.

For communication between the onboard computer and the COMmodule, we utilize
two hot-redundant communication chains via UART. Both the nominal and redun-
dant OBCs are connected to both COM chains. No special handling is required in
this setup, as the OBCmodules operate in cold redundancy – meaning that only one
module is active at any given time.

Onboard Time

To orchestrate the different parts of the system synchronously, and to get a trace-
able view of onboard events, it is important to keep a consistent time distributed
through the entire avionics system. The onboard time is managed by the Onboard
Time function which is responsible for keeping and distributing the onboard time,
and allow for synchronization with ground or a separate Time Reference. This time
reference could be for example a high precision clock on board, or a receiver of other
external reference time systems such as GPS.

For our system, the onboard time function is integrated into the OBSW. As we use
a Raspberry Pi computer, we can use its built-in real time clock for time keeping,
and the time synchronization methods of the SpaceCAN bus for time distribution
through the system. We decided to also include a high precision clock as an experi-
mental time reference as part of our Reconfiguration Module, which can be synchro-
nized with the onboard time of the OBC.

2.3. Protocols and Interfaces

In this section we describe the relevant protocol and interface specifications that we
implemented in our software stack.

19

Chapter 2: Preliminaries

Packet Utilization Standard (PUS)

The Packet Utilization Standard (PUS) standardizes the service-based monitoring &
control aspect of the onboard software. It defines sets of functionality bundled into
services and their associated application-layer protocol to monitor and command
the spacecraft system from ground. For a mission specific implementation of PUS,
it is not expected to fully implement all parts of it, but to taylor the implementation
towards specific demands, and to extend it with desired functionality [Eur16].

The PUS architecture consists of the following parts [Eur16]:

• Application Process: The application process is responsible for hosting the
services, and the encoding, decoding and routing of packets. It is uniquely
identified by the Application Process Identifier (APID). A satellite system can
host multiple such application services to distribute the M&C system, but for
our implementation just one is sufficient.

• Service: A service defines a set of functionality and its required system in-
terfaces. It is identified by the Service Type ID, with ID < 128 reserved for
predefined services, and ID ≥ 128 free to be used by custom services. The
latest revision C of PUS defines 20 of such predefined services which can be
found in Appendix A.

• Subservice: A subservice is a part of a service that concretely defines the
functions and the structure of the TC and TM packets used to for communi-
cation with ground. The packets defined by a subservice are called Messages
and use predefined Message Subtype IDs to identify the type of message. The
subdivision of services into subservices can be regarded more as an organiza-
tional tool rather than a technical function, as this distinction is not relevant
for the implementation.

In a typical satellite scenariowith one spacecraft and one ground-basedmission con-
trol instance, there is one onboard application process and one ground application
process which communicatewith each other through TC and TMpackets (see Figure
2.4). The onboard application process hosts subservice providers, which implement
their predefined functionality, can be commanded with TC packets and report back
with TM packets. The ground application process hosts subservice users, which
generate the TC packets in order to request the desired onboard functionality, and
interpret the responded TM packets and extract the report data [Eur16].

The packets used for communication by PUS are based on Space Packets: The Space
Packet Protocol is an internationally recognized and widely adopted standard for
data transmission in space applications, defined by the CCSDS [Con20b]. A Space
Packet consists of a primary header, an optional secondary header, the data field and
an optional error control field. The list of PUS packet header fields can be found in
Appendix A.

As the data contained in a packet’s data field typically consists of multiple concate-
nated values that must be serialized into bytes, the PUS standard specifies how this

20

2.3. Protocols and Interfaces

Figure 2.4.: The space to ground PUS service system context. Source: [Eur16]

serialization is to be performed. The specification defines the structure of data fields
for specific service requests and responses, which include individual basic data type
fields as well as more complex constructs such as lists and deduced structures. The
serialization rules for basic data types – such as booleans, numbers, and strings –
are described in detail using so-called Packet Field Types.

When a service receives a command, it provides feedback on the progress, success,
or failure of the execution to the ground segment in the form of Verification Reports.
These reports, transmitted as TM packets generated by Service 1 – Request Verifica-
tion, reference the corresponding TC packet that initiated the request by including
the unique packet count number of the TC packet’s header. By correlating verifi-
cation reports to previous requests, the ground segment can track and verify the
correct execution of sent commands.

CCSDS File Delivery Protocol (CFDP)

Modern satellites collect and store data not anymore in tape recorders, but in digital
files onmass memory. There is therefore the need to reliably exchange files between
the spacecraft and the ground segment. Many satellite missions implement custom
file transmission protocols, for example by utilizing PUS Service 13 – Large Packet
Transfer, which in turn requires additional development and testing. For this reason
the CCSDS developed a standardized file transmission protocol for space applica-
tions, the CCSDS File Delivery Protocol (CFDP) [Con20a].

CFDP defines a Protocol Entity, which describes a softwaremodule instance that han-
dles the protocol and interfaces with the onboard software. This entity works on a
virtual filestore, which is a mapping to a physical filestore on the hosting system,

21

Chapter 2: Preliminaries

Protocol Entity

Communication System

User

MIBFilestore

Figure 2.5.: Architectural Elements of the File Delivery Protocol.
Source: [Con20a]

and which is exposed to CFDP file operations. The entity communicates to remote
entities through a communication system. It can work with any packet based com-
munication protocol, but for space applications typically Space Packets are used,
which we will also use in this work. The protocol can be configured with param-
eters stored in a Management Information Base (MIB). CFDP entities get assigned
a unique identifier, which may be mapped to any identifiers used by underlying
protocols, and it does not differentiate between ground or space entities.

CFDP offers two modes of file transmission:

• Unacknowledged: The sender sends file data without any feedback from the
receiver; the receiver may detect errors and discard the erroneous file, but no
automatic retransmission is triggered.

• Acknowledged: The receiver sends Negative Acknowledgments (NAKs) to
the sender if it detects any errors or missing file segments in order to trigger
the retransmission of the affected segments.

Apart from file transmission, CFDP offers other filesystem operations such as re-
naming, deletion and creation of files and directories on remote entities. However,
this functionality overlaps with the PUS Service 23 – File Management, which we de-
cided to prefer over the CFDP filesystem operations. One interesting quirk of CFDP
is that it only offers a Put request to initiate an upload towards a remote entity, but
no Get request to initiate a download from a remote entity. This functionality is
instead covered by Proxy Operations, which allow one entity to command another
entity to perform an operation. In order to download a remote file, the local entity
sends a proxy operation request to the remote entity to perform a Put operation of
a desired file towards the local entity [Con20a].

As both, the PUS protocol and the CFDP protocol communicate through Space Pack-
ets in our system, the individual packets have to be routed to their designated pro-
cess. This is done with the APID field in the Space Packet header (see Appendix A),
with the PUS process and CFDP entity both having individual APIDs.

22

2.3. Protocols and Interfaces

SpaceCAN

SpaceCAN was developed by Artur Scholz et al. in 2019 as an extension of the
CAN bus protocol, with the aim of adapting it to the specific requirements of on-
board communication systems while avoiding unnecessary complexity [Sch+19].
The protocol uses two CAN buses in warm redundancy, meaning that communica-
tion is performed on one active bus, while the other bus is on stand-by and can be
switched to in case of a communication problem on the active bus.

The CAN bus interconnects multiple nodes, all of which are capable of broadcasting
and receiving messages transmitted over the bus. To prevent access conflicts, the
protocol employs a message arbitration mechanism based on message identifiers:
lower numerical values correspond to higher priorities. If two nodes attempt to
transmit simultaneously, arbitration ensures that the node with the lower-priority
message (i.e., the higher ID value) ceases transmission as soon as it detects that one
of its identifier bits is overwritten by a dominant bit (logical zero) from a higher-
priority message. CAN incorporates mechanisms for reliable data transmission: a
message includes a checksum field to check data integrity, and in case a node re-
ceives an erroneous message, a NAK error frame is sent to initiate a retransmisssion.

Topology-wise, SpaceCAN follows a master/slave architecture, including exactly
one master node and multiple responder (slave) nodes. The master is responsible
for sending commands to the responder nodes, which in turn report responses and
status updates back to the master.

SpaceCAN overlays a communication protocol on top of the CAN standard, using
CAN message identifiers to encode protocol-specific information. It includes mech-
anisms for addressing nodes individually and transmitting fragmented data across
multiple CAN messages, thereby overcoming the eight byte size limitation of stan-
dard CAN frames.

In addition to basic command/response communication, SpaceCAN supports op-
tional service-based interactions inspired by the PUS protocol, offering functional-
ities such as parameter reporting and request verification.

To ensure system-wide time synchronization, the master node periodically trans-
mits dedicated messages containing the current system time. Furthermore, it sends
regular Heartbeat messages, which are monitored by the responder nodes to de-
termine the currently active communication bus. If heartbeat messages are not
received for an extended period, the responder nodes automatically switch to an
alternative bus to maintain connectivity and redundancy.

Procedure Language for Users in Test and Operations (PLUTO)

The Procedure Language for Users in Test and Operations (PLUTO) language pro-
vides several domain-specific features that are particularly well-suited for space-
craft monitoring and control tasks [Eur08]. Spacecraft are highly sensitive systems
in which incorrect commands may result in erroneous configurations. Such faults

23

Chapter 2: Preliminaries

could necessitate complex recovery procedures and, in the worst case, lead to mis-
sion failure. Therefore, any automation implemented within the spacecraft system
must ensure that the correct execution and response of the avionics system to auto-
mated actions are verified. To this end, PLUTO includes mechanisms to confirm the
expected system state before, during, and after the execution of automation scripts.

Preconditions Body

Main Body
Sequential
sub-goals

Parallel
sub-goals

Watchdog Body

Confirmation Body

Watchdog

Step
Watchdog

Step

Declaration Body

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Figure 2.6.: PLUTO procedure and its elements. Source: [Eur08]

A PLUTO script defines a Procedure, which resembles a program that can be in-
voked and managed by an execution engine. Such a Procedure consists of multiple
distinct body blocks – as illustrated in Figure 2.6 – that specify various aspects of
its behavior, although only the main body is mandatory.

The first block is the Declaration Body, in which custom local events can be defined.
These events can be raised to trigger contingency actions, which are handled imme-
diately and meanwhile pause the procedure execution similar to system interrupts.

In the next block, the Preconditions Body defines the conditions that must be satis-
fied prior to execution. These preconditions may, for instance, specify that certain
parameters must lie within defined limits or that a device is set to a required config-
uration. The precondition declarations allow to either wait until the precondition is
met, or to immediately reject the launch of the procedure.

The logic of the procedure is implemented in the procedure’sMain Body. It consists
of statements that are, by default, executed sequentially. However, the procedure
may also include blocks of statements that are executed in parallel. Such a procedure
statement could involve initiating an operation of the onboard system or to execute
a Step.

A Step is a chunk of work to be executed within a procedure and is defined similarly

24

2.4. Onboard Software Architecture Overview

to a procedure, with the key difference that statements within a step may include
control flow logic, which is not permitted directly in the main body of a procedure.
This design choice wasmade to clearly distinguish the sub-goals a procedure aims to
achieve, while the implementation details of how to reach these goals are contained
within the individual step definitions.

A procedure or step can additionally define aWatchdog Body, defining contingency
conditions to monitor during the execution of theMain Body. If a contingency con-
dition is triggered, the execution of the main body is paused and further steps to
resolve the situation or to abort execution are defined in further statements in the
watchdog body.

Finally, a procedure or step can define aConfirmation Body, which checks conditions
to confirm if the execution was successful. If the confirmation conditions were not
satisfied, the procedure or step returns a “not confirmed” status. An “initiate
and confirm” statement to execute a step can be followed by a continuation test,
which defines if non-confirmed step should be restarted, or if the procedure should
resume or abort execution.

PLUTO offers features that are typically found in scripting languages, such as local
variables, basic data types, logging and flow control statements such as if/else
branching and while/for loops. To interface with the spacecraft system, PLUTO
includes statements to read onboard parameters, launch onboard operations and
react to onboard events.

2.4. Onboard Software Architecture Overview

The onboard software serves multiple purposes. It hosts software which controls
vital automations of the satellite system in order to gather scientific data, perform
maneuvers, and to keep the system working. But it also provides access for Moni-
toring and Control (M&C) from the ground segment. The SAVOIR OSRA specifies
a reference architecture with all the functional parts for such an onboard software.
While traditional CubeSats typically do not conform to established space agency
standards – often relying instead on custom software architectures or specialized
CubeSat frameworks – this work aims to demonstrate the feasibility of applying
open European standards for satellite technology to CubeSats. To that end, we
present an implementation that closely follows the OSRA architecture, which we
specifically tailored for CubeSat platforms. In this section, we briefly introduce the
key aspects and functional units of the SAVOIR OSRA, and how they transfer to our
implementation, which we discuss in detail in Section 3.1.

As shown in Figure 2.7, the OSRA architecture is structured into three layers: the
Component Layer, the Interaction Layer, and the Execution Platform.

The Component Layer contains applications that perform tasks highly dependent
on the specific mission profile and the spacecraft’s hardware. For instance, this in-
cludes software responsible for controlling the satellite’s attitude in orbit (the AOCS)

25

Chapter 2: Preliminaries

Figure 2.7.: OSRA Three-Layer Architecture. Source: [Eur21]

or a state machine that reconfigures the spacecraft through various mission phases.
These applications require access to the entire spacecraft system in order to monitor
and control hardware components and to collect scientific data.

To support the development and verification of such applications, and to promote
software reusability, the OSRA introduces an abstraction of system access through
an Interaction Layer. Specifically, the OSRA suggests to structure the onboard
software into Components, which define a component interface made of Attributes
and Operations, which then communicate with each other through connectors as
part of the interaction layer. These connectors are recommended to be tool-genera-
ted, based on predefined component connections, whichmakes sense for thoroughly
planned and tested agency missions. However, as our reference implementation is
intended to be used as an easilymodifiable platform for testing purposes, such a rigid
component structure would hinder agile development processes in the prototype
phase of a CubeSat system’s development as stated in Concern CON 3 – Testing
Platform. To this end, we decided to implement the interaction layer as a software
bus on which components can independently connect to each other without the
need of additional configuration, as described in detail in Section 3.1.1.

Finally the third layer – the Execution Platform – hosts basic spacecraft software
functionality required for reliable software execution, system access, and monitor-
ing and control from ground. The OSRA groups the various functions of the exe-
cution platform into distinct functional groups, which are briefly introduced in the
following. While we outline our implementation approaches for these functions
here, a detailed discussion of the design rationale and implementation specifics is
provided in Section 3.1.

Runtime: The runtime refers to the operating system on which the onboard soft-
ware stack executes. It includes basic device drivers, a file system, and provides
mechanisms for concurrent task execution. As an alternative to a classical runtime,

26

2.4. Onboard Software Architecture Overview

the OSRA defines the option of employing a Time and Space Partitioned (TSP) sys-
tem, which enforces strict partitioning of hardware resources – such as processor
runtime and memory space – on a per-task basis.

For our implementation, we opted to use a Linux kernel, which uses concurrent
software processes and includes drivers for the CAN and UART interfaces required
for our system.

Network & Device Access: This group is responsible for communication with on-
board equipment and data acquisition via the onboard bus systems. The CCSDS
has developed a specialized framework for this purpose – the Spacecraft Onboard
Interface Services (SOIS) [Con13]. SOIS is a comprehensive framework including
multiple communication layers and protocols, designed to support a wide variety of
hardware and bus systems in a modular and reusable manner. While this approach
is well-suited for professionally developed satellite systems by space agencies, it
represents an unnecessary level of complexity for CubeSat-class missions. For this
reason, we adopt a simplified alternative in our implementation. In our approach,
each onboard device is represented by an Equipment Component that manages com-
munication with the respective hardware and exposes its functionality to the inter-
action layer via a component interface. Since our system relies on SpaceCAN as
the onboard system bus, the communication handled by the equipment component
is reduced to generalized SpaceCAN service interactions. To support this design,
our software stack includes a dedicated SpaceCAN driver module – the SpaceCAN
Master. This module manages the underlying CAN communication and provides a
simplified API for performing SpaceCAN operations.

Protocol Handling: This group provides the functionality required to manage the
communication protocols with the ground segment for Monitoring and Control
(M&C) and file transfer, as well as for packing and unpacking the corresponding
data packets into and from data link protocols. In our software stack, we employ
the PUS protocol forM&C, CFDP for file transfer, and CCSDS Frames as the data link
protocol. Our stack includes a Frame Processor module, which unpacks the frames
received from the COMmodule and routes the contained packets to their respective
destination processes. Subsequently, the PUS and CFDP packets are processed by
their dedicated modules.

Hardware Execution Environment: This group provides core infrastructure ser-
vices essential for the operation of onboard software, including monitoring of the
OBC and its OS, time management, and data storage. Access to the onboard time is
provided, and its distribution across the system is ensured via the onboard bus in-
frastructure; this is realized by using the Linux kernel’s system clock in combination
with the time synchronization services of SpaceCAN. Additionally, this functional
group includes access to an onboard file system used by internal software compo-
nents and the file transfer protocol, which is provided by the Linux kernel in our
implementation.

Monitoring andControl: TheMonitoring and Control (M&C) aspect is a vital part
of the onboard software, as it provides functionality to service and command the

27

Chapter 2: Preliminaries

spacecraft from the ground segment. Notably, the M&C system includes functions
to access onboard parameters (voltages, temperatures, etc.), reporting of onboard
events (errors, out-of-limits, etc.), and commanding. As the OSRA suggests, we are
using our own PUS implementation as our M&C system, which defines dedicated
services for the mentioned functions. In particular the parameter access and report-
ing is provided by Service 3 – Housekeeping and Service 20 – Parameter Manage-
ment, event reporting is provided by Service 5 – Event Reporting, and commanding
is provided by custom services.

External System Access: In order to allow advanced, low-level system mainte-
nance beyond dedicated service interactions, the system has to be accessible at a
low level from ground. This is provided by PUS Service 2 – Device Access, which
allows raw byte-level communication with onboard equipment.

Automation: Satellites are typically not always connected to a ground stations
which can execute commands whenever desired in order to react to onboard events
or to reconfigure at predefined points in the mission. Therefore, the onboard soft-
ware must provide mechanisms for autonomous operation. In this context, the PUS
standard includes several services designed to support automation. PUS Service 11
– Time-Based Scheduling, Service 22 – Position-Based Scheduling, and Service 19 –
Event-Action offer fundamental capabilities for implementing reactive automation
onboard the spacecraft. For more sophisticated automation tasks, an Onboard Con-
trol Procedure (OBCP) engine is employed. This engine allows interaction with
onboard systems through automation scripts that support advanced control flow
logic. To facilitate the management of such scripts, PUS Service 18 – On-Board Con-
trol Procedure provides functionalities to upload and manage OBCP scripts, and to
control the execution engine. For our system, we implemented an OBCP engine
capable of executing PLUTO scripts.

Software Execution Environment: The software execution environment encom-
passes various supporting functionality for the software stack. This includes con-
text management, error reporting, support libraries and life-cycle management. The
contextmanagement describes the software’s capability to store and recall vital state
information in non-volatile memory in order to recover from a restart. Our PUS im-
plementation incorporates mechanisms for services to store and recall context data
in form of atomic file operations, which can be used in a similar fashion by custom
application software. The life-cycle management is responsible for initializing the
onboard software on system start-up, monitoring it for faults, and restarting any
components that crash. In our current implementation, a simple starter script is
used to bring up all system components, although further development is planned
to enable launching and monitoring each component in independent processes.

28

3. Main Contributions

3.1. Onboard Software Implementation

Linux Kernel

Frame
Processor

Interaction Layer

Application
Component

Application
Component

Application
Component

Equipment
Component

Equipment
Component

Equipment
Component CFDP

File
System

Frames

File Access

SpaceCAN Master

SocketCAN UART

Commands &
Parameters

Commands &
Parameters

CAN
Messages

Platform
Management

PUS
OBCP Engine

Parameter Pool
Event Manager

Packets

Figure 3.1.: Structural Overview of our Software Stack

For the software stack, we designed an architecture that fulfills the requirements
outlined in Section 2.1, while also adhering closely to the recommendations of the
SAVOIR OSRA. In fact, nearly all functional components defined by the OSRA can
be directly mapped to corresponding functional units within our software stack, as
demonstrated in Section 2.4. The overall structure of our software stack is illustrated
in Figure 3.1, which we will elaborate in this section.

Similar to the OSRA, our software stack can be divided into three layers:

• Application Layer: This layer includes the mission specific applications that
control the onboard equipment and collect scientific data according to the
mission profile. Our software provides all the required interfaces for custom
application components to interact with the spacecraft system.

• Interaction Layer: This layer acts as a software communication bus to con-
nect the various component processes. It offers a generalized way to access

29

Chapter 3: Main Contributions

parameters, events, and commands from one process to another. OSRA pro-
poses connectors between specific components, but we chose to implement
an interaction layer that allows any component to communicate to any other
component.

• Execution Platform: This layer provides basic platform functionality re-
quired by the application components, as well as monitoring and control ca-
pabilities for ground control. It includes the runtime environment – specif-
ically, a Linux kernel in our case – along with components responsible for
handling communication protocols such as SpaceCAN, CCSDS frames over
UART, and CFDP. Moreover, it integrates the PUS implementation, including
all its services and sub-components. In our architecture, this layer additionally
incorporates equipment components that manage equipment-specific device
access protocols, making them accessible to the interaction layer. It also com-
prises a platform management component, which is responsible for starting
and monitoring the software processes and the OBC hardware platform.

In the following subsections, we discuss the purpose and implementation details of
each component of our software stack.

Runtime

The runtime provides drivers to access the OBC hardware, and also provides an op-
erating system that can run and manage multiple software tasks concurrently. The
OSRA suggests either of two options, a Time and Space Partitioned (TSP) system or
a classical runtime. A TSP system operates by strictly allocating system resources
into distinct partitions for each application. This partitioning encompasses both
memory space and processor time, thereby ensuring maximum isolation with min-
imal inter-partition interfaces. Such an architecture significantly aids verification
and validation processes during the development phase [Eur21]. The other option
of a classical runtime includes does not impose such restrictions and includes typical
embedded operating systems such as Linux or FreeRTOS.

Due to our requirement REQ 7 – Use of the Python Language, we were limited in
the selection of our operating system. To run Python on embedded hardware, there
are essentially only the two options of using MicroPython or a Linux kernel. Both
options offer the required functionality of hardware drivers, file system and task
switching. But we opted to use a Linux kernel, as it offers greater flexibility and the
option to exchange parts of the systemwith implementations in a different language
than Python which better satisfies the requirement REQ 5 – Customizeability.

As our software only serves as a reference implementation, we simply chose to use
the Raspbian operating system, as it integrates a solid driver foundation for the
hardware of the Raspberry Pi computer, and various customization modifications
are well documented due to its popularity. However for future developments, a
real-time capable distribution could be considered.

30

3.1. Onboard Software Implementation

Platform Management

This component is derived from the OSRA functional blocksHardware Execution En-
vironment and Software Execution Environment. It is responsible for initializing the
software stack during start-up and for monitoring the OBC hardware, the operating
system, and the running software processes.

In the current version of our implementation, the platformmanagement component
is realized as a simple start-up script, which initializes and configures all software
components. More advanced functionalities have been deferred, as implementing
automatic recovery mechanisms requires the integration of a potentially mission-
specific FDIR concept. For basic prototype development, the current implementa-
tion is sufficient; however, we plan to extend the platformmanagement component’s
functionality as needed.

A detailed insight into the starter script of our integrated system test is provided in
Section 4.1.

Frame Processor

The frame processor serves as the interface between the onboard software and the
antenna module for communication with the ground segment. In our system, it is
responsible for decoding CCSDS frames and routing the contained Space Packets
to the appropriate software processes based on their APID. Similarly, it collects
packets from these processes, encodes them into frames, and transmits them to the
antenna module.

To interface with the Communications (COM) bus connected to the antenna mod-
ule, the frame processor transmits and receives frames via two hot-redundant UART
connections. When a frame is received on either channel, its data integrity is veri-
fied, and its identifier is marked as received. Given the hot-redundant configuration
of the COM connections, it is expected that each frame is received twice; the frame
processor therefore discards any duplicate frames. The frame is then decoded using
the CCSDS TC Space Data Link Protocol [Con21a], and the contained Space Packets
are forwarded to the respective application processes via UDP sockets. To determine
the UDP port corresponding to a given Space Packet’s APID, we apply the simple
formula Port = 5000 + APID .

Similarly, the frame processor listens on a dedicated UDP port for incoming TM
packets, which are then bundled into TM frames using the CCSDS TM Space Data
Link Protocol [Con21b]. These TM frames are subsequently transmitted over both
COM UART buses.

The frame processor is currently still under development. Nevertheless, the system
can already be used for testing by sending packets directly from the ground segment
process to the UDP ports of the onboard software processes.

31

Chapter 3: Main Contributions

3.1.1. Interaction Layer

The interaction layer is an integral part of our architecture as it connects the differ-
ent software components together. Therefore, it was of utmost importance to de-
velop a robust and flexible implementation, which preferably can be implemented
similarly on other operating systems, such as FreeRTOS. According to the OSRA, the
interaction layer must support the inter-component-access of component interfaces
which are comprised of Attributes, Operations, Events and Datasets [Eur21].

Attributes are parameters of a defined type, which can be either read-only as a
Data Attribute, or read-write as a Configuration Attribute. The parameter access
is typically implemented with get and set accessor functions. In our implementa-
tion we chose to not only support these accessor functions, but additionally support
a publish-subscribe pattern, which allows for faster parameter update distribution
compared to polling, and also eases the development of reactive software compo-
nents. Component attributes are typically mapped to M&C parameters to be ac-
cessible by ground control. This mapping is configured in a so called Spacecraft
Database.

Operations are functions that can be called with a defined set of parameters, with
direction in, in out or out. An operation can be defined as synchronous where the
call is blocking and either returns a success or an error, or asynchronously where the
caller can resume its operation and gets notified over the execution status through
status provision messages. For our implementation, as python does not support
multiple function return parameters, we chose to restrict operations to return only
one output parameter, which can however be a complex type with multiple fields.
Due to requirement REQ 9 – Convention Compliance, we chose to not support in out
function parameters, as they are generally regarded as bad practice [Mar08].

In M&C with PUS, there is no standardized way to call component operations from
ground. Instead, the usual approach to expose operations to PUS is to define custom
services with custommessage types for each operation. As the definition and imple-
mentation of these custom services could be derived from the operation’s function
signature, this process could be automated by a specialized tool. However, this tool
was not developed as part of this work and can be considered as a direction for
future work.

Events are small sets of data that components can emit to connected components.
Since our implementation does not rely on specific connections, we decided to emit
events using a publish-subscribe pattern. Similar to events, the OSRA specifies that
components can emit large datasets. In our implementation, we chose not to distin-
guish between events and datasets; instead, we allow events to carry large amounts
of data. As with parameter mapping, component events are typically mapped to
M&C events in the spacecraft database.

32

3.1. Onboard Software Implementation

Communication Framework

For the implementation of the interaction layer in our software stack, we had to
choose a suitable Interprocess Communication (IPC) framework to serve as a com-
munication basis. It must support both the request-response pattern for synchronous
function calls, and the publish-subscribe pattern for event emissions. For a Linux
system, there are multiple solutions that we considered:

• D-Bus: The D-Bus is software bus used by the Linux system for interprocess
communication [fre]. It allows the transmission of predefined message struc-
tures with both request-response and publish-subscribe pattern. However,
implementations of the D-Bus are reportedly difficult to work with, which
contributes to a lack of popularity and supporting documentation [Bes18].

• MQTT: MQTT is a messaging protocol developed for machine-to-machine
networks, prominently used in IoT applications. In anMQTT network, a node
publishes its parameter states, which are grouped into Topics. Other nodes can
subscribe to these topics, but they can also publish to these same parameters,
which could be interpreted as set-operations or a function calls. The protocol
at its core works using the publish-subscribe pattern, but the latest version
5 also supports request-response patterns by using dedicated response topics
and correlation data [Org19]. As result, MQTT appears to be a suitable can-
didate for our purpose, even if it is not typically used as an IPC mechanism.

• Python Remote Objects: The remote python objects of the Pyro library
[Jon21] offer a simpleway to expose python objects to other processes through
network connections. An object exposed with Pyro is mirrored to proxy ob-
jects in the remote processes, which transmit operations performed on it to
the exposed object, and receive result values in return. This would allow for
a very simple implementation of the interaction layer, as components could
simply expose their interface as a remote object. However, our experiments
with Pyro encountered the issue that remote objects do not natively support
the registration of callback functions in a straightforward manner, which is
required for implementing the publish-subscribe pattern. Additionally, the
communication mechanisms would be entirely hidden in the external library,
which defeats the purpose of our work to serve as a reference implementation.

• Native Network Sockets: Communication with network sockets such as
TCP and UDP is a very popular approach to IPC. It allows for full flexibility by
implementing custom protocols, which however requires the development of
such a protocols, including a form of data serialization. To communicate with
native sockets, the process has to manually establish andmonitor connections
to sockets of other processes, and the extraction of message structures from
a raw byte stream in case of TCP or multiple packages in case of UDP. This
makes native network sockets difficult to work with, which is why we tried
to avoid this approach.

• ZeroMQ: ZeroMQ is an asynchronous messaging library, which serves as
a middleware to abstract the complexity of native sockets [Hin]. It offers
simplified socket communication with messaging queues, that can be asyn-

33

Chapter 3: Main Contributions

chronously processed by the software process. The library handles the con-
nections and data segmentation of the underlying native sockets, to allow for
the transmission and processing of messages with large data capacity, and
optional partitioning into multiple parts. ZeroMQ has specialized sockets for
different messaging patterns, such as request-response and publish-subscribe.

Based on our evaluation, we identified MQTT and ZeroMQ as the most viable can-
didates for our implementation. Ultimately, ZeroMQ was selected, as its message
queue mechanism closely resembles the inter-task communication using xQueues
in FreeRTOS. Consequently, the implementation with ZeroMQ can serve as a ref-
erence for designing an interaction layer on FreeRTOS, satisfying REQ 8 – Use of
Universal Features.

IL Implementation

We divided our implementation of the interaction layer into two parts, a Transport
module which handles message transmission and the overlaying Interaction Layer
module, which uses this transport and provides a simple API for the application
code, as can be seen on Figure 3.2.

Provider ProcessUser Process Interface
Provider

+ Attributes
+ Commands()

Interface
Proxy

+ Attributes
+ Commands()

Component
Interface

+ Attributes
+ Commands()

Interaction
Layer

Transport

create register

implement

Code Code

Figure 3.2.: Interaction Layer Architecture Overview

We took inspiration from the Pyro library, and implemented the support for proxy
objects for simple remote access. A software component has to define an abstract
Component Interface class, which includes attribute definitions, operation function
stubs and event emitter definitions. This component interface should be part of a
system-wide accessible library, so that any process could use this interface to create
a proxy object.

The functional implementation of a component interface has to be provided by ex-
actly one process of the system, which we will call Interface Provider. The compo-
nent registers its interface provider to its interaction layer instance to expose it for
remote access. Other tasks which want to access this component request the cre-
ation of a proxy object on their interaction layer instance with a reference to the
abstract interface class. The interaction layer module then automatically builds an
instance of this interface class with proxy attributes and functions, which redirect

34

3.1. Onboard Software Implementation

interactions to the transport and ultimately to the interface provider. The creation
and usage of proxy instances is however optional, and a user process could directly
call the remote function using the transport module.

The transport module must support the following features:

1. Send function calls and receive its result
2. Receive function calls, call the corresponding application code and send the

result
3. Subscribe to attributes and events
4. Publish attribute updates and events
5. Receive attribute updates and events and notify the application code

We designed our implementation in a modular fashion, so that as long as a trans-
port implementation supports the mentioned features, it can be used with our in-
teraction layer. However as mentioned previously, we decided to implement the
transport with ZeroMQ. As the transport requires both request-response and the
publish-subscribe pattern, the interaction layer has to create a Response-socket and
a Publish-socket for each interface provider. To interact with these sockets, the in-
teraction layer instance which hosts interface proxies on a user process creates a
Request-socket and a Subscribe-socket (see Figure 3.3)

Interface
Provider

Interface
User

PUBREP

REQ SUB

Interface
User

REQ SUB

R
e
q
u
e
s
t

R
e
s
p
o
n
s
e

U
p
d
a
te

Update

Interface
Provider

PUBREP

Figure 3.3.: Component Sockets with ZeroMQ

For the implementation of the required functionality of the transport, we developed
a simple communication protocol using multipart messages transmitted through
the ZeroMQ sockets. A request message is split into 2 parts: the function name to
call, consisting of the component name concatenated with the function name (e.g.
SolarPanel.set_angles), and a list of arguments (e.g. [42, 29]). The function
name can be either the name of an component interface operation, or an access
function of an attribute. A responsemessage has 3 parts: the function name, a return
code which indicates either success or an error, and a data field which contains the
return value in case of success, or additional error data in case of an error. A publish
message is similarly defined: its first part is the name of the publishing attribute,
event, or asynchronous operation, followed by the published value.

The transport instance is responsible for the generation and interpretation of these

35

Chapter 3: Main Contributions

messages and to route the interaction between the designated component interfaces.

While ZeroMQ handles the segmentation and transport of messages via the un-
derlying network protocol, the application still has to take care of the data serial-
ization and deserialization from and to byte strings. For our implementation we
decided to use JSON for this purpose, as it is widely supported in different soft-
ware frameworks, is human readable, and requires no specific configuration, which
simplifies development and especially verification and validation processes. JSON
supports serialization of the basic data types String, Number (integer and floating
point), Boolean and Null, as well as more complex structures such as Arrays and
string-indexed dictionary structures known as Objects.

For our purposes, the provided data types are largely sufficient. However, we en-
countered two notable limitations: raw bytes (e.g., CAN messages) must be manu-
ally converted into character strings to be transmitted via JSON; and the object data
type only supports string-based keys, which prevents the application from transmit-
ting Python dictionaries that use other key types, such as integers. These problems
can be avoided in practice, but may justify a directive for future work in order to
find a replacement.

With ZeroMQ, a request message has to be sent to a specified response socket at a
specified port. When a user process wants to interact with a component, it calls the
request function of its interaction layer instance with the name of the desired com-
ponent concatenated with the name of the desired function. The transport instance
then has to determine the port of the response port of the component’s interface
provider to send the request message to. We implemented this name-to-port lookup
as a dictionary included in the spacecraft database. This approach is functional but
not flexible, as the all component interface providers require a predefined static port
mapping. An alternative approach would be to implement the Service-Oriented Re-
liable Queuing (Majordomo Pattern) as described in the ZeroMQ guide [Hin], which
adds a broker instance that automatically discovers service providers and routes
requests based on service names.

While ZeroMQ automatically handles reconnections when a process restarts, a user
process still has to manually handle timeouts when a socket does not respond. A
non-responding socket would indicate a hung component. As the handling of this
problem is dependant on themission defined Failure Detection, Isolation and Recov-
ery (FDIR) concept, we decided to only implement a simple finite retry approach,
as described in the ZeroMQ guide as Basic Reliable Queuing (Simple Pirate Pattern)
[Hin]. An approach for a more advanced handling of interaction layer timeouts
would be to report the non-responding component to the platform management
component or a dedicated FDIR application, which could for example restart the
component process, the OBSW, the OBC, or command a switch to the redundant
OBC.

An additional property of the ZeroMQ implementation must be taken into account:
When a socket receives a request, this request must be fully handled before the next
one can be processed. Consequently, a single socket does not support concurrent

36

3.1. Onboard Software Implementation

request handling but instead enforces strictly sequential processing. This leads to
the hazard of a deadlock: When a Process A requests Process B, and during the
handling of this request, Process B in turn requests Process A, they will both be
stuck waiting for the response of each other. However, in practice this hazard can
be avoided with static analysis of the interactive structure of the system over the
interaction layer. If a request has the potential to trigger a cycle of synchronous
requests, such a cycle must be broken. This can be achieved either by converting one
of the involved operations into an asynchronous call or by reassigning functional
responsibilities to eliminate the cycle altogether.

3.1.2. Monitoring and Control with PUS

In accordance with Requirement REQ 11 – Monitoring & Control with PUS, we use
Packet Utilization Standard (PUS) [Eur16] as our Monitoring and Control (M&C)
system. We found one open-source Python-based implementation of PUS during
our research – the puslib [pxn24] – but in order to provide an optimal integration
with our interaction layer, we decided against a custom tailoring of this library and
decided to develop an own implementation.

PUS Library

Application Process

Services

ST01: Request Verification

PUS Header Serialization

ST03: Housekeeping

ST05: Event Reporting

ST18: OBCP

ST20: Parameter Management

ST23: File Management

Application
Component

Application
Component

Equipment
Component

Equipment
Component

Sp
ac

e
Pa

ck
et

Li
br

ar
y

UDP Socket

SpacePacket Entity

In
te

ra
ct

io
n

La
ye

r

PUS
Packets

Space
Packets

UDP
Packets

Ve
rif
ic
at
io
n

R
ep

or
ts

Components

Parameter Pool

Event Manager

OBCP Engine

File Copy Service

Frame
Processor

TC TM

Shared
Functions

Packet Field Types

Spacecraft DB

Errors

Serialization

Figure 3.4.: Structural Overview of our PUS Implementation

The structure of our PUS implementation is illustrated in Figure 3.4, of which we
will elaborate key elements in the following.

37

Chapter 3: Main Contributions

Application Process

The application process hosts the services and is responsible for serializing the sec-
ondary PUS header contained within the underlying Space Packets. It also incorpo-
rates a communication interface with the frame processor, which serves as a gate-
way for packet exchange with the ground segment.

The primary function of the application process is to manage packet communica-
tion. Since the services predominantly rely only on the data field of the packets,
the handling of headers and routing is delegated to the application process. To re-
ceive and transmit packets to and from the ground segment, the application process
communicates with the frame processor module via UDP sockets. The communi-
cation of Space Packets over UDP is handled by the spacepacket library, developed
by LibreCube [Lib24c], which provides a simple API through a Space Packet Protocol
Entity.

To support our PUS implementation, we developed PUS Packet classes for both TC
and TM packets. These classes extend the Space Packet class by including the rele-
vant secondary header fields (see Appendix A) and by providing dedicated encod-
ing and decoding functionalities. Furthermore, the PUS packet decoder verifies the
integrity of received packets using the checksum algorithms defined by the PUS
standard.

In a mission tailored startup script, service instances are created and configured,
including mission-specific custom services. These service instances are then regis-
tered on an application process instance, which aggregates the service instances in
a lookup table. When the application process receives a TC packet, it is routed to
the appropriate service to process it. According to the PUS specification, the task
of forwarding these packets to the correct service is handled by Service 1 — Re-
quest Verification. Therefore, the application process passes all received TC packets
to this mandatory service. To send TM packets back to the ground, the application
process provides a function that services can call by passing the data field, service ID,
and message type ID. The application process then generates the necessary packet
header fields and forwards the completed Space Packet to the Space Packet Protocol
Entity.

Some services require continuous cyclic processing, such as Service 3 – Housekeep-
ing, which is responsible for the ongoing recording of parameter values and the
autonomous transmission of reports. To support this, our application process in-
corporates an activity loop that executes the services’ cyclic loop functions concur-
rently at a predefined interval, using Python’s built-in asyncio library. Since there
is a risk of system lock-up if a service fails to complete its loop execution within
the allowed cycle time, the application process includes a safeguard: it checks in
each cycle whether a service is still executing its previous loop. If this is the case,
the process forcefully terminates the overdue execution. Such a forced termination
may lead to an inconsistent system state, and therefore must be reported as an er-
ror. This allows either FDIR automation or the ground segment to take appropriate
corrective actions.

38

3.1. Onboard Software Implementation

Serialization

An important aspect of the PUS standard is the specification of reliable and unified
transmission of telecommands and telemetry data. To this end, PUS defines the exact
serialization of data values to be transmitted as bytes in the data field of the PUS
packets. The data field of a PUS packet is made up of predefined message structures
based on the message type, distinguished by the message subtype ID. This structure
consists of multiple fields of specified data types, called Packet Field Types, such as
booleans, integers, floating-point numbers, strings and timestamps. PUS defines
12 of these data types (identified by the Packet Field Type Code (PTC)), of which
there are multiple variations (identified by the Packet Field Format Code (PFC)).
Different PFC per packet field type offer options such as different integer bit-lengths,
floating-point resolutions, or string lengths. We fully implemented all packet field
type encodings using test-driven development, as the PUS documents offer detailed
and testable serialization definitions.

In our library, we developed a serialization framework which includes an abstract
Serializer class. Each packet field type implements a serializer class, which can en-
code a value into bytes, or decode bytes into a value. As PUS defines packet field
types that serialize into odd numbers of bits, we incorporated mechanisms to sup-
port variable length bit-lengths and bit-offsets, which are always passed and pro-
cessed together with serialized data. The data bits can then be correctly extracted
from a byte string, and concatenated with other data.

In order to concatenate and extract values from concatenated data fields while keep-
ing track of in-byte bit offsets, two helper classes were developed: the Progressive
Encoder and the Progressive Decoder.

The Progressive Encoder provides functionality to sequentially construct a byte string
composed of serialized data segments. It is initialized with an empty byte string, to
which it subsequently appends data. To append a value, the value to be serialized
and an appropriate serializer instance must be provided. The encoder then uses the
given serializer to serialize the value and appends the resulting data to its internal
byte string, correctly handling in-byte bit offsets during the process. It is used by
services in order to built TM packet data, following a PUS-definedmessage structure
with the associated packet field type serializers.

The Progressive Decoder operates in a similar manner, with the key difference that
it is initialized with an existing byte string to be decoded. From this string, values
can then be sequentially decoded using appropriate serializer instances. It is used
by services to decode TC packet data according to PUS-defined message structures.

We considered an alternative approach during development, to definemessage struc-
ture classes which could be fully serialized and deserialized from and to python
objects. However, the dynamic nature of certain message definitions made this ap-
proach overly complex. Consequently, we reverted to providing tools for sequential
encoding and decoding, to be used within the service implementations.

39

Chapter 3: Main Contributions

PUS Components

The componentswithin our PUS library serve as independent functional unitswhich
interface with the rest of the system through the interaction layer, thereby providing
crucial functionality used by various services. Currently, these component instances
are created and hosted by the application process, but – as they are accessed through
component interfaces – they could be moved to independent processes and access
by the PUS-Services could be replaced by proxy objects from the interaction layer.

Our library currently includes four such components:

• Parameter Pool: Collects and caches parameter values broadcasted over the
interaction layer. As these values are of attributes of components interfaces,
their names have to then be mapped to a corresponding parameter ID num-
bers, which is how parameters are addressed in PUS. This mapping is stored
in the spacecraft database, which the parameter pool accesses.

• Event Manager: Similar to the parameter pool, the event manager monitors
events broadcasted on the interaction layer. It looks up the event ID number
and the event’s severity classification as defined in the spacecraft database,
and in turn broadcasts the event in severity channels with the correct ID for
PUS service to listen to.

• OBCP Engine: Executes Onboard Control Procedure (OBCP) scripts and
provides them with system access through the interaction layer. As we use
PLUTO as our OBCP language, we implemented an engine that parses PLUTO
scripts into Python scripts, and then executes them step by step. Apart from
the correct execution of the scripts data and control flow, the engine must also
provide access to system parameters, events and operations, which the scripts
depend on. LibreCube had already developed such an engine, the python-
pluto-engine [Lib24b], which however only implemented system interactions
through HTTP calls. To integrate this engine with our interaction layer, we
modified the engine to abstract system access to a System Interface class, with
which we then implemented an adapter to access attributes, events and op-
erations on the interaction layer. This was done using the Transport module
of our interaction layer directly without proxy objects. For example a pa-
rameter access written in PLUTO “angle of SolarPanel” would be trans-
lated into a request on the interaction layer by calling the component function
“SolarPanel.angle.get”.

• File Copy Service: This component handles file copy and file transfer op-
erations. It determines the type of copy operation (local, remote-to-local or
local-to-remote) and interfaces with the CFDP protocol entity to coordinate
file transfer operations. Further details on the file transfer implementation
are provided in Section 3.1.3.

40

3.1. Onboard Software Implementation

Services

The services implement the actual M&C functionality as defined in the PUS specifi-
cation. They receive TC packets, process the contained instructions, and send data
back in form of TM packets. During processing, a service generates verification re-
ports, which provide feedback towards the ground segment over the progress and
potential failures of a request. A skeleton code of such a service provider implemen-
tation can be found in Appendix B.

A notable special case is Service 1 – Request Verification, which routes TC packets to
the destined service and monitors its execution through verification reports gener-
ated by the executing services. To route a TC packet, it looks up the service instance
in the service lookup table by the service ID in the PUS packet header. It then calls its
handle_command function in a new thread, so that command processing can be per-
formed concurrently. This can be done in a safe manner, as any system interactions
are performed over the interaction layer, which queues requests to be processed se-
quentially. If a service’s command handler raises an exception during processing, it
is catched by Service 1, which then generates a failure report TM packet to inform
the ground segment about the failed execution. As Python does not offer a similar
method to raise notifications about successful progress to a function caller, the Ser-
vice 1 instead offers functions to generate success reports TM packets for service
handlers to call. PUS defines four such steps in the processing of a command, for
which such verification reports should be generated to inform about their success
or failure:

1. Acceptance: The command was accepted and decoded by the corresponding
service.

2. Start: The command parameters were verified and the command execution
started.

3. Progress: Marks service-defined points of progress during processing; rarely
used by PUS standard services.

4. Completion: The command processing was completed.

Some services require the persistent storage of context information, which should
survive a system restart. For example, the event reporting service should store if the
reporting for a given event is enabled or disabled. To this end, we implemented the
functionality for services to safely load and store context data. As a sudden system
shutdown could be triggered at anymoment, the context storage operations must be
protected from data corruption in this situation. We implemented this by leveraging
atomic nature of the file rename operation of the Linux system [Lin24]. The context
data is first written into a temporary file, with is then renamed to replace the context
data file in an atomic manner.

We implemented the following services in our library, with more still under devel-
opment:

• Service 1 – Request Verification: Handles command routing and the gen-
eration of verification reports as described previously.

41

Chapter 3: Main Contributions

• Service 3 – Housekeeping: Generates parameter reports at regular inter-
vals. The report composition and reporting intervals can be configured through
dedicated commands. It uses the parameter pool to collect current parame-
ter values, and the cyclic loop function to autonomously trigger the report
generation.

• Service 5 – Event Generation: Generates reports on onboard events with
the option to enable and disable the report on specific events. It subscribes to
the events channels of the event manager to get event reports classified with
event IDs and severity.

• Service 18 – OBCP: Controls the execution of Onboard Control Procedures
(OBCP) in the OBCP Engine, and allows for uploading of OBCP scripts.

• Service 20 – Parameter Management: Provides direct access to onboard
parameters in order to read specific parameters, and to set parameters to new
values. This service interacts with the parameter pool to execute these tasks.

• Service 23 – FileManagement: Executes operations on the onboard file sys-
tem, and coordinates file transfers. The filesystem operations such as renam-
ing, deletion, discovery and metadata analysis are implemented using the os
module of the Python language, which in turn calls the corresponding Linux
filesystem commands. For the file copy and transfer operations, the service
commands the file copy service component, which then either performs a lo-
cal file copy operation, or initiates a file transfer with CFDP.

To generate PUS telecommand packets as part of a test ground segment installa-
tion, we developed a Service User for each service. These service user instances
provide functions to remotely call PUS service providers by sending TC packets,
and they extract data from received TM packets and make them observable for test
scripts. These service user instances can be created and registered in an application
process in a similar fashion to service provider instances. The application process
implementation supports the decoding and routing of TM packets to the designated
service user instances, which is only used in the ground segment process.

3.1.3. File System and File Transfer with CFDP

In accordance with REQ 12 – File Transmission with CFDP, we chose the CCSDS
File Delivery Protocol (CFDP) for file transmission between the onboard file system
and the ground segment. In our system, its intended use is the transmission of files
containing scientific data, OBCP code, or potentially system files in order to patch
the OBSW in flight. LibreCube had already developed a Python library python-cfdp
which implements the CFDP protocol with Space Packets transmitted through a
UDP socket [Lib24a]. This implementation could be used without modification in
our software stack by assigning a unique APID to the CFDP process and routing
Space Packets with this APID to the CFDP port. However, as we intended to use
PUS Service 23 File Management to initiate file transmissions, we had to develop an
interface for the PUS service to communicate with the CFDP entity.

42

3.1. Onboard Software Implementation

In terms of modularity and to enable parallel processing, CFDP should remain in a
separate process from the PUS process. Consequently, communication between the
two must occur via the interaction layer. For this reason, we developed a general-
ized component interface for remote file copy services, with an interface provider
implementation for the CFDP entity. Through this component interface, the PUS
service can command CFDP file transfers from and to ground, suspend, resume and
abort operations, and get status information. Local file operations are handled by
the PUS service itself and do not inquire the CFDP entity.

Strangely, the specification of PUS Service 23 states that the service can be used to
coordinate file transfers between ground and spacecraft, but it does not provide a de-
tailed definition of the corresponding commands intended for this purpose [Eur16].
Therefore, we considered how the existing commands of the service could be utilized
to implement this functionality. The service defines a command to initiate a file copy
operation, which requires the source file path and the target file path. We decided
to extend the interpretation of these paths by introducing an optional prefix which
differentiates between the file systems of the spacecraft or the ground segment. For
example, to initiate a file transfer from space to ground, the MCS would send file
copy command with the source file path SAT:science/file.txt and the target file
path GROUND:science/file.txt. The spacecraft database includes a mapping from
prefix to CFDP entity ID, which the PUS service then uses to determine the type of
copy operation and – in case of a file transfer – passes the corresponding remote ID
to the CFDP entity.

To abstract the folder structure of a Linux system and provide unified access to
the onboard file system across the entire system, we aimed to implement a form
of virtual file system. This virtual file system would serve as a dedicated location
for files created and used by the OBSW during operation. Through our research,
we identified a straightforward solution to this requirement: creating a dedicated
directory within the system’s file system and defining a system-wide environment
variable that holds the path to this directory. Any application requiring access to this
location can then read the environment variable and append the relevant file paths
as needed. This approach enables the use of standard Linux file system operations
and supports compliance with REQ 8 – Use of Universal Features.

3.1.4. Onboard Bus and Device Access

In our software stack, equipment access is handled by dedicated Equipment Compo-
nents to leverage the flexibility provided by our interaction layer. These equipment
components expose the equipment’s functionality through attributes, operations
and events in their component interface. The inner workings and communication
handling of data acquisition and command execution over the underlying proto-
cols with the onboard device is thereby abstracted away and simplified. For on-
board software to monitor and command a device, it can simply call the interface
operations and subscribe to attribute updates and events, without the need of im-
plementation specific coding. This approach allows for rapid integration of new or

43

Chapter 3: Main Contributions

modified hardware modules into the system, which is a concern defined in CON 3 –
Testing Platform. It also facilitates the reusability and exchangeability of hardware
integrations, further satisfying REQ 4 – Modularity.

Equipment components could generally implement any means of device commu-
nication. However, as our system uses SpaceCAN as the main onboard bus, we
implemented a SpaceCAN Master component which handles SpaceCAN communi-
cation and thereby simplifies the implementation of our equipment components.
The SpaceCAN master handles encoding and decoding of SpaceCAN interactions
over the underlying CAN bus with the Linux CAN driver SocketCAN.

The master exposes operations to generate SpaceCAN commands targeted at spe-
cific nodes and interpret their responses with long data strings fragmented over
multiple CAN frames, as specified by the SpaceCAN protocol [Sch+19]. This basic
SpaceCAN protocol handling is implemented in the python-spacecan library, previ-
ously developed by LibreCube [Lib25b].

SpaceCAN implements an optional service layer similar to PUS, which we decided
to use as a generalized way of communication with onboard equipment. The ser-
vices currently supported by SpaceCAN are equivalent to the respective PUS ser-
vices, namely Service 1 – Request Verification, Service 3 – Housekeeping, Service 8 –
Function Management, Service 17 – Test and Service 20 – Parameter Management.

Services 3 & 20 are used to get regular parameter updates and to request specific pa-
rameters. Service 8 is used to perform operations; this service is regarded as mostly
obsolete in PUS as integrators favor custom services to perform custom operations
as they offer grater flexibility. However, in SpaceCAN it makes sense to use this
service in the context of specific device access, as device interactions are generally
less complex so that the more limited nature of Service 8 functions is sufficient and
offers a more unified interface.

Apart from generic functions to generate and receive SpaceCAN packets, the Space-
CAN master exposes functions to generate service-specific commands, and emits
service specific response data as events. For example the master exposes the fol-
lowing function to request node parameters:

def request_parameters(self, node_id: int, parameter_ids: List[int]):
req_data = bytearray([len(parameter_ids)])
req_data.extend(parameter_ids)
self.send_command(node_id, 20, 1, req_data.decode("latin-1"))

This function builds the command’s request data field, consisting of a length byte,
followed requested parameter identifiers. The generation of the CAN frames to
transmit the command with the SpaceCAN protocol is then handled by the more
generic send_command function. Note the need to pass the req_data-bytes decoded
into a character string using the bijective “latin-1” encoding, as this encoding sup-
ports the the full byte range. This is a result of the limitations of the JSON-based
serialization approach we use in the interaction layer (see Section 3.1.1), which pre-
vents the use byte-type arguments in functions exposed to the interaction layer.

44

3.2. Reconfiguration Module

Any command request performed by the SpaceCANmaster automaticallywaits for a
verification report returned by the responder node to confirm successful execution.
In the event of a timeout or a failed verification report, themaster raises an exception
via the interaction layer’s built-in error propagation mechanism. This exception,
which includes the type of error and additional error data, is propagated to the
calling process to enable appropriate handling of the failure.

Using the SpaceCAN master, the implementation of an equipment components is
greatly simplified. The equipment component subscribes to the parameter report
event of the SpaceCAN master and publishes any contained parameter values asso-
ciatedwith the equipment as a component interface attribute update. When a equip-
ment component’s operation is called, it can simply call themaster’s call_function
operation to execute the associated Service 8 function of the node. Potentially,
equipment components could even be tool-generated using amapping of SpaceCAN
parameter IDs to component interface attributes, and SpaceCAN Service 8 functions
to component interface operations.

3.2. Reconfiguration Module

As mentioned in Section 2.2, we decided to develop an optional hardware module
that implements additional features of the SAVOIR architecture as part of this work.
This Reconfiguration Module hosts the reconfiguration function, essential TC and
TM, Safeguard Memory (SGM) and time reference. For our integrated system test,
it also served as a hardware platform to validate the SpaceCAN communication with
the OBC.

Requirements

The requirements for the newly developed module are as follows. The module must
perform its processing using two hot-redundant controllers to ensure reliability. It
shall provide interfaces to four UART buses - specifically, for each controller one
connection to the Communications (COM) module and one to the Onboard Com-
puter (OBC) module. Furthermore, the module must interface with the SpaceCAN
bus, twelve system-control lines, a 5 V supply bus, and an arbitrary number of
General Purpose Input / Output (GPIO) lines. The system-control lines are equiva-
lent to the CPDU pulse lines of the SAVOIR FRA, as they enable or disable onboard
hardware for reconfiguration.

For timekeeping, the module is required to host two precise clocks operating in hot
redundancy, serving as the system’s time reference. It shall also incorporate two
EDAC-protected memory units in hot redundancy to host the SGM. Additionally, a
power control switch unit must be included, capable of driving system-control lines
and accessible by both controllers without collision.

Finally, the module must be capable of detecting processor failures and initiating

45

Chapter 3: Main Contributions

automatic recovery actions by restarting the affected processor to restore its func-
tionality.

Parts Selection

We began the module’s design process by identifying suitable Integrated Circuits
(ICs) to meet the defined requirements. Although this design is intended for testing
purposes only, we selected hardware that would viable to be used in a CubeSat
system, in order to assess their suitability for the final system.

For the processing tasks, microcontrollers are required that supports twoCAN inter-
faces and two UART interfaces. Additionally, the microcontroller should be easy to
program for testing purposes and ideally compatible with a variety of development
toolchains. The Pyboard was quickly identified as a strong candidate, as it is already
used for testing within the LibreCube initiative, and several software modules have
been developed specifically for it. The Pyboard v1.1 supports programming in Mi-
croPython, a Python implementation designed for embedded systems. This also
enables interactive debugging via a serial USB interface, which further facilitates
development and testing. The board is a small development module based on the
STM32F405RG microcontroller, that comes preloaded with a bootloader to run Mi-
croPython code, but also supports other toolchains such as C/C++ with the STM32
HAL or the Arduino framework, or Rust with open-source frameworks such as the
Embassy project [Emb].

For the Safeguard Memory (SGM), we chose the M24512-DRMN EEPROM, as it
features a built-in Error Correction Code (ECC) and a relatively large capacity of
512 Kbits. This ECC can detect and correct flipped bits in its memory, which is au-
tomatically applied on read operations. However, it only supports raw, unprotected
data transmission via I2C, which means that data corruption during transmission
remains a possibility. Therefore, additional error correction mechanisms should be
considered, such as appending Hamming codes to data chunks to ensure integrity.

For the reference time source, the DS3231SN real-time clock was selected. This
device integrates a Temperature-Compensated Crystal Oscillator (TCXO), thereby
reducing design complexity by eliminating the need for an external oscillator. Addi-
tionally, it provides programmable alarm functions that can assert interrupt signals,
enabling accurate time synchronization. The DS3231SN also supports an optional
backup power supply input, ensuring reliable timekeeping in the event of a main
power failure. This backup supply can be provided either by a dedicated battery or
by a redundant power rail from the Power Control and Distribution Unit (PCDU).
An other option we considered was to use an elapsed time counter instead of a
real-time clock, as the transmission of a timestamp is more complex than that of a
counter value. However, due to the limited options of accurate elapsed time counter
ICs, we decided to use a clock for this test revision module instead.

To detect processor failures, we decided that a simple watchdog timer implemen-
tation would be sufficient for our cause. A watchdog timer listens for heartbeat

46

3.2. Reconfiguration Module

signals that have to be sent in regular intervals by the processor, triggered in the
main loop of the software. If the software hangs or the processor enters an error
state, the heartbeat signal is not sent and the watchdog timer resets the processor by
pulling down its reset line. We selected the TPS3813K33 processor supervisory cir-
cuit with window-watchdog for this task, as it offers great customizability regarding
the heartbeat window timings.

For the power control switch unit, we had to design a custom circuit which lets us
control multiple output lines independently by two controllers. This unit resembles
the Command Pulse Decoding Unit (CPDU) of the SAVOIR architecture, with the
major difference that the CPDU specifically distributes electrical pulses, whereas
our unit is intended to distribute steady signals which control the on / off state of
the onboard equipment. In lack of a better name, we regardless adopted the name
“CPDU” for our power control switch unit in some parts of this work.

SAVOIR proposes to keep the complexity of the CPDU to a minimum in order to
ensure maximum reliability, so we decided to implement it using simple flip-flops.
The processors take turns at writing to the flip-flops, whose outputs subsequently
drive the system-control lines. In order to keep the number of interfacing lines
between flip-flops and processors to aminimum, we decided to use D-type flip-flops,
as they only require one input line per gate, and a data transfer can be triggered by a
shared clock line. For ease of debugging and manufacturing, we decided to use two
CD74HCT273E octal D-type flip-flops in the large DIP housing. As by the design
requirements, we only use 12 of the resulting 16 flip-flop gates. To decouple the
potential load on the system-control lines from the flip-flop outputs, we decided to
use three CD4066BE quad bilateral switches.

Circuits

The Pyboard controller operates at 3.3 V, while the available power rail of the Libre-
Cube platform provides 5 V. To accommodate this, the Pyboard is equipped with an
onboard Low-Dropout (LDO) regulator that converts the 5 V supply to 3.3 V. Since
the Pyboard’s I/O signal levels are at 3.3 V, all circuitry on the module was designed
to operate at the same voltage level. Consequently, a reliable 3.3 V power source is
required. Given that both Pyboards independently generate their own 3.3 V supply,
we opted to combine them into a single 3.3 V rail powered by both controllers. To
achieve this, twoMAX40200AUK ideal diodes were used to safely merge the outputs
without introducing backfeeding or contention between the two sources.

As SpaceCAN requires two Controller Area Network (CAN) connections per node,
we added two transceivers to each controller that translate the differential signal to
CMOS-level signals. Additionally, each controller was connected to one EEPROM
and one clock via an I2C-bus.

For the CPDU, we connected 12 GPIO lines from the controllers to the flip-flops D-
input pins, and one line to both clock pins. There is a risk of both controllers trying
to access the CPDU at the same time, which would lead to an inconsistent state and

47

Chapter 3: Main Contributions

short-circuits on mismatching signals. For this reason, we implemented two safety
features to avoid signal collisions:

1. To avoid short-circuits on conflicting signal levels, we connected the nomi-
nal controller directly to the flip-flops, and the redundant controller through
resistors. If they set their outputs at the same time to conflicting states, only
a small current flows through the resistors, and the signals of the nominal
controller have priority.

2. To avoid an access conflict in the first place, we implemented Dekker’s algo-
rithm [Dij65] to ensure mutually exclusive access.

In Dekker’s algorithm, both processors raise flags when theywant to access a shared
resource. In our implementation, those flags are represented by request signal lines
(CPDU_REQ). SAVOIR states, that on a conflict of CPDU access, the controllers have to
negotiate based on a determined command priority [Eur21]. As Dekker’s algorithm
follows turn-taking instead of priority based negotiation, we had to modify it to fit
our needs. To get access to the CPDU, our algorithm follows these steps:

1. Wait until the flag of the other controller is lowered.
2. Raise the own flag and wait until capacitive loads are settled.
3. If the other controller has not risen its flag, access is now granted.
4. Otherwise, enter a battle for priority: Wait an amount of time, dependant on

the priority.
5. Check if the other flag is still up. If it is, the battle is lost, the other controller

is granted access and this controller has to retry. If the other flag is down, the
battle is won and access is granted.

To avoid both controllers entering a battle with equal priority, the nominal con-
troller always has a slightly higher base priority than the redundant one.

One hazard of Dekker’s algorithm in our application would be, that if a controller
due to an error never lowers its request signal, the other controller also waits in-
definitely and can’t access the CPDU either. As the module could not recover from
this condition, it represents a single point of failure that we want to avoid. For this
reason we implemented an additional safety circuit, which detects if a request signal
is stuck on high, and in that case resets the controller. The request signal charges a
capacitor through a resistor, with the capacitor connected to a Schmitt trigger input.
If the request signal remains high for an extended period, the capacitor charges up
to the high threshold voltage of the Schmitt trigger. Once this threshold is reached,
the Schmitt trigger drives the controller’s reset line low via an N-channel MOSFET,
initiating a reset. During the reset process, the controller places its request pin in
a high-impedance state, allowing the capacitor to discharge through an additional
resistor. When the voltage across the capacitor drops below the Schmitt trigger’s
lower threshold, the reset signal is released, and the controller enters its boot se-
quence.

The complete schematic of the module can be found in Appendix C.

48

3.2. Reconfiguration Module

Evaluation

Figure 3.5.: Reconfiguration Module Circuit Board

To evaluate our circuit design, we designed a PCB using KiCad (see Figure 3.5),
which was then manufactured and tested for functionality. All circuits performed
as expected, and we encountered only two problems with our electrical design:

1. The flip-flops encountered spurious gate flips when no controller was actively
driving the gate inputs and clock signal. Themain cause of this was the lack of
a pull-down resistor on the clock line, which leads to random floating gate be-
havior. But even when a pull-down resistor was added, the problem persisted.
Only after the addition of a ceramic capacitor on the clock line to absorb low-
energy voltage spikes, the problem was mitigated. The root cause of these
spikes is left undetermined, but the floating gate input lines may contribute
to this unexpected behavior, which is why the design should be improved by
additional pull-down resistors on the input lines.

2. As the control pulse lines of both controllers are coupled through 10 kΩ resis-
tors, the second controller has to drive the flip-flop gates through these resis-
tors. Due to the increased pin capacitance of the large DIP package flip-flops,
the signal rise timings as specified in the datasheet were not sufficient and
had to be increased significantly. This problem could be improved by choos-
ing smaller coupling resistors, different coupling approaches, and smaller flip-
flop packages.

In order to test the SpaceCAN communication, we installed LibreCube’s MicroPy-
thon library micropython-spacecan on the Pyboards [Lib25a], which we then con-
figured to act as SpaceCAN responders. With this approach, we could successfully
establish SpaceCAN communication with our Raspberry Pi OBC.

49

4. Experimental Evaluation

4.1. System Integration Test

In order to test all capabilities of our system in practice, we built a small integrated
setup, consisting of an Onboard Computer (OBC) and our reconfiguration module
acting as a responder node (see Figure 4.1).

Reconfiguration Module Raspberry Pi

MCP2515

Desktop Computer

CAN SPI Ethernet

MCP2515

Figure 4.1.: System Integration Test Layout

For the OBC, we used a Raspberry Pi 5 computer, running the Raspberry Pi OS
Lite with our software stack installed. The Lite variant includes only a minimal set
of pre-installed software and includes no desktop environment, which is however
not needed for our purpose. Instead, we use SSH connections and the remote de-
velopment capabilities of the Visual Studio Code editor to deploy and monitor our
software.

The OBC and reconfiguration module communicate via SpaceCAN, which requires
two CAN connections. As the Raspberry Pi does not feature built-in CAN capabili-
ties, we used two MCP2515 modules, which translate the CAN bus to SPI.

Both MCP2515 modules are connected to the SPI pins on the Raspberry Pi’s GPIO
header with different Chip Select (CS) pins. The Raspbian operating system features
a built-in driver for theMCP2515module, which has to be loaded by a corresponding
modification to the boot configuration file. After that, the can interfaces are avail-
able as network devices in the Linux system, which can then be set-up as network
sockets with the ip link command.

Our software stack requires Python of version 3.10 or newer, which is installed by
default in the Raspbian operating system.

On the software side, we developed a small System Test package which includes con-
figurations and components to operate our system set-upwith our onboard software

50

4.1. System Integration Test

stack. It serves as an example on how to set up our software on a real avionics sys-
tem. This test however is a bit simplified compared to how an installation on a
real integrated spacecraft system is planned: we are feeding Space Packets directly
to the application processes instead of the planned CCSDS Frame communication
over UART. This was done as the frame processor component – responsible for the
unpacking of frames – is still under development during time of writing.

The system test package consists of the following files:

• sdb.py: This file poses as the spacecraft database. It includes component
interface classes, parameter and event mappings, the APIDs of the space and
ground segment processes, and the ZeroMQ ports of all components.

• cpdu.py: In this file, the equipment component interface provider of the re-
configuration module is implemented. For this test set-up, we only imple-
mented the functionality to control and monitor the state of CPDU lines.

• controller.json: This file is used by the python-spacecan library to initial-
ize the SpaceCAN master controller. It includes the definition of the CAN
network sockets to use, and the configuration of the heartbeat generation.

• services_cpdu.json: This file defines the parameters, functions, and house-
keeping report structures provided by the CPDU responder node. The Space-
CAN master uses this file to look up the data type of parameters and function
arguments in order to choose the correct serialization.

• test_sys.py: This script serves as the entry point for the software, as it
configures and initiates all components of the software stack.
First, it initializes the CFDP entity along with its UDP socket. Subsequently,
an instance of the interaction layer is created to facilitate communication be-
tween the component instances. In the future, the platformmanagement com-
ponent will launch each component in a separate process, necessitating indi-
vidual interaction layer instances. However, for this initial test setup, a single
process – and thus a single interaction layer instance – is sufficient.
Once the interaction layer is initialized, the script starts the SpaceCAN mas-
ter and the equipment components for both the nominal and the redundant
CPDU.
Following this, the PUS module is set up. This involves initializing the Space
Packet protocol entity and its associated UDP socket. These, together with the
spacecraft database, the interaction layer instance, and theAPID, are passed to
the constructor of the PUS application process. The relevant service provider
instances are then instantiated and registered with the application process.
At this stage, all components are fully initialized, and the script proceeds to
execute the main loop of the PUS application process, which runs continu-
ously until the program is terminated.

We tested this setup by running a ground segment PUS process on a separate com-
puter, which connected to the onboard PUS process through UDP. The ground seg-
ment runs a script, which runs the service user functions to test the various PUS
services. The most advanced test of this routine is to start an OBCP from ground,
which then calls the CPDU to set its lane states. This test demonstrates how al-

51

Chapter 4: Experimental Evaluation

most all parts of our software work together as the commanding has to successfully
traverses through all communication layers:

1. A TC Space Packet is generated by the PUS ground process to command the
execution of an OBCP script.

2. The TC packet is sent to the onboard PUS process through UDP.
3. The TC packet is decoded and interpreted by the onboard application process

and the OBCP service.
4. The OBCP service commands the OBCP engine component to start the pro-

cedure.
5. The OBCP engine executes the PLUTO script, which contains an instruction

to “initiate and confirm set_state_bits of CpduN”.
6. This activity call is converted by the System Interface adapter to an interaction

layer remote function call of “CpduN.set_state_bits”.
7. The interaction layer instance then sends a ZeroMQ request message to the

response port of the CpduN equipment component.
8. The CpduN equipment component then calls the call_function operation

of the SpaceCAN master component.
9. The SpaceCAN master then generates the corresponding CAN messages to

the CpduN responder node on the Pyboard of the reconfiguration module.
10. The CpduN responder node implementation receives the messages and then

calls the user-defined set_state_bits function.
11. In this function, the Pyboard then acquires CPDU access according to our

implementation of the Dekker’s algorithm, sets its GPIO pins according to
the commanded state, and toggles the flip-flop clock line.

12. The flip-flops adopt the commanded gate inputs and latch their outputs ac-
cordingly, so that the commanded state can be observed on the output LEDs.

While this communication chain may appear extensive, it is simply a consequence
of the abstraction layers required to achieve the targeted level of modularity as de-
fined by the relevant standards. Introducing shortcuts in this chain would necessi-
tate deeper implementation-specific knowledge and implicit assumptions between
system components, leading to tighter coupling, reduced modularity, and increased
overall complexity. Conversely, when these communication mechanisms operate
reliably, the minimal interfaces at the application layer help to reduce system com-
plexity and enhance extensibility.

In addition to the OBCP test, other significant test cases include successful file trans-
fers via CFDP as well as parameter and event reporting. All tests have consistently
performed reliably within our test environment, demonstrating the effective inte-
gration of the system components.

52

4.2. Compatibility with Mission Control Software

4.2. Compatibility with Mission Control Software

To verify that our system is capable of communicating with dedicated mission con-
trol systems, we connected it to an instance of the open-source mission control
system Yamcs [Spa]. Yamcs supports a variety of communication protocols and in-
cludes functionality for handling Space Packets, and specifically the decoding of PUS
packets. It can establish connections via network sockets, such as User Datagram
Protocol (UDP).

Since our onboard software transmits and receives packets via UDP ports, connect-
ing Yamcs to our system was straightforward. Out of the box, we were able to
receive and display PUS packets generated by our software. This confirms that the
relevant protocols are correctly implemented and processed by our system and that
it would be compatible with European satellite control terminals.

To configure Yamcs for displaying mission-specific data such as parameter values or
sending mission-specific commands, it utilizes configuration files in the XTCE for-
mat. XTCE stands for XML Telemetric and Command Exchange; it is a standardized
configuration file format that defines the structure of telemetry and telecommand
data, as specified by the CCSDS [Con21c]. Since its structure closely resembles the
spacecraft database used in our system, the development of an automated conversion
tool could be considered for future work.

53

5. Conclusions

5.1. Summary

In this work, we successfully developed a functional implementation of a spacecraft
onboard software stack. Our open-source implementation demonstrates the feasi-
bility of employing European and international architecture standards and commu-
nication protocols in CubeSat applications. We adapted the relevant specifications
to better suit the simplified requirements typical of CubeSat systems and introduced
a novel approach to onboard device communication, further streamlining system in-
tegration.

The software stack offers a modular design that facilitates rapid prototyping, as the
integration and modification of hardware components is greatly simplified through
the use of generalized and minimal component interfaces. It will be adopted by
LibreCube to support the development of their CubeSat hardware platform, with an
integration into the LibreCubeRover planned in the near future.

Moreover, our software stack serves as a demonstration platform for CubeSat de-
velopers and students, enabling them to explore the structure of modular onboard
software systems. In the long term, the architecture is intended to serve as a refer-
ence for a robust, space-capable embedded implementation – written in Rust and/or
C++ – designed to run on a real-time operating system.

Our software represents the first open-source implementation based on the Euro-
pean SAVOIR Onboard Software Reference Architecture (OSRA), integrating both
the monitoring and control system PUS and the recently published file transfer pro-
tocol CFDP. We also proposed a novel hardware module that can be integrated
into typical CubeSat hardware platforms to incorporate reliability features of the
SAVOIR Functional Reference Architecture (FRA). By incorporating these agency-
level standards, CubeSat systems can benefit from the proven, reliable foundation
these standards offer, serving as a basis for developing robust and dependable sys-
tems. This integration brings the CubeSat developer community and institutional
space agencies closer together, facilitating more effective knowledge transfer across
these traditionally separate domains.

The newly developed SpaceCAN onboard bus system provides a reliable and cost-
effective alternative to the traditionally unreliable onboard communication systems
used in CubeSat platforms. Our software stack demonstrates that this bus system
integrates seamlessly into onboard software architectures and even supports tool-
generated equipment integrations with only minimal configuration effort. This ap-

54

5.2. Limitations

proach promotes the reusability and compatibility of hardware modules developed
by different suppliers – an aspect that has traditionally posed significant challenges
for CubeSat developers.

5.2. Limitations

While our software stack serves as a functional implementation, it should not be
considered viable for use in space. Beyond the fact that the system components have
not undergone the rigorous testing required for deployment on an actual satellite,
the use of Python in space systems presents critical drawbacks. As an interpreted
language, Python imposes a significant overhead in system resource usage com-
pared to implementations in compiled languages such as C++ or Rust: studies have
shown that Python is, on average, three to four times slower than C++ [Pre00],
[Zha24]. Given the limited energy budgets available on CubeSats, the resulting in-
crease in energy consumption by the OBC could present a serious constraint.

However, our software is already usable for deployment on prototype systems. To
fully integrate communication with the antenna system based on CCSDS frames,
the development of the frame processor must be completed. Certain implementa-
tion details currently impose minor constraints on the component interface defini-
tions, such as the use of JSON serialization and the rigid port assignments in our
implementation of the interaction layer. It remains to be seen whether these con-
straints will pose actual challenges during prototype development; if so, appropriate
refinements can be made.

Due to the modular nature of our software stack, any limiting components can be
replaced with alternative implementations to overcome existing constraints. Fur-
thermore, it would even be feasible to gradually substitute all components with
implementations in compiled languages, thereby transforming the system into a
software stack suitable for deployment in a real satellite system.

5.3. Directions for Future Work

As previously discussed, the development of the proposed software stack will be
continued in order to further enhance its capabilities.

Planned extensions include:

• Integration of CCSDS frame encoding and decoding within the frame proces-
sor component.

• Implementation of additional PUS services, such as Service 2 – Device Access
and Service 15 – Onboard Storage and Retrieval.

• Development of application components to demonstrate their interactionwith
our execution platform.

55

Chapter 5: Conclusions

• Design of a robust high-speed communication protocol over the payloadUART
bus for onboard transfer of scientific data.

• Full integration of the reconfiguration module and its functionalities into the
software stack.

Additionally, the reconfiguration module will be further refined with the aim of
integrating it into the LibreCube hardware platform as a CubeSat module, compliant
with standard size and interface specifications.

Looking ahead, we anticipate porting our software stack to a space-ready imple-
mentation based on Rust and FreeRTOS, intended for deployment on a CubeSat
utilizing the LibreCube hardware platform. This work thus serves as an architec-
tural guideline, an implementation reference, and a functional comparison system
for verification purposes.

56

List of Acronyms

AOCS Attitude and Orbit Control System . 2
API Application Programming Interface . 38
APID Application Process Identifier . 20
ASRA Avionics System Reference Architecture 12
CADU Channel Access Data Unit . 16
CAN Controller Area Network . 47
CCSDS Consultative Committee for Space Data Systems 3
CFDP CCSDS File Delivery Protocol . 3
cFS Core Flight System . 3
CLTU Command Link Transfer Unit . 16
CMOS Complementary metal-oxide-semiconductor 47
COM Communications . 31
CPDU Command Pulse Decoding Unit . 17
CS Chip Select . 50
DHS Data Handling System . 1
DIP Dual In-Line Package . 49
ECSS European Cooperation for Space Standardization 3
ECC Error Correction Code . 46
EDAC Error Detection and Correction . 14
EEPROM Electrically Erasable Programmable Read Only Memory 47
ESA European Space Agency . 3
FDIR Failure Detection, Isolation and Recovery 13
F´ F Prime . 3
FRA Functional Reference Architecture . 7
GPIO General Purpose Input / Output . 45
GPS Global Positioning System . 19
HAL Hardware Abstraction Layer . 2
HPC High Priority Command . 17
HPTM High Priority Telemetry . 17
HTTP Hypertext Transfer Protocol . 40

57

Chapter 5: Conclusions

I/O Input / Output . 47
I2C Inter-Integrated Circuit . 47
IC Integrated Circuit . 46
IL Interaction Layer . 34
IoT Internet of Things . 33
IPC Interprocess Communication . 33
ISO International Organization for Standardization 15
JSON JavaScript Object Notation . 55
LDO Low-Dropout . 47
LED Light Emitting Diode . 52
MCS Mission Control System . 2
MIB Management Information Base . 22
M&C Monitoring and Control . 6
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor 48
MQTT Message Queuing Telemetry Transport 34
NAK Negative Acknowledgment . 22
NASA National Aeronautics and Space Administration 6
OBC Onboard Computer . 1
OBCP Onboard Control Procedure . 7
OBSW Onboard Software . 1
OS Operating System . 27
OSI Open Systems Interconnection . 16
OSRA Onboard Software Reference Architecture 7
PC Personal Computer . 12
PCB Printed Circuit Board . 4
PCDU Power Control and Distribution Unit 2
PLUTO Procedure Language for Users in Test and Operations 23
PTC Packet Field Type Code . 39
PFC Packet Field Format Code . 39
PUS Packet Utilization Standard . 3
UART Universal Asynchronous Receiver/Transmitter 56
SAVOIR Space Avionics Open Interface Architecture 3
SEU Single Event Upset . 6
SGM Safeguard Memory . 15
SOIS Spacecraft Onboard Interface Services 27
SPI Serial Peripheral Interface . 50

58

5.3. Directions for Future Work

SSH Secure Shell . 50
TC Telecommand . 2
TCP Transmission Control Protocol . 33
TCXO Temperature-Compensated Crystal Oscillator 46
TM Telemetry . 2
TSP Time and Space Partitioned . 30
UDP User Datagram Protocol . 53
USB Universal Serial Bus . 46
XML Extensible Markup Language . 53
XTCE XML Telemetric and Command Exchange 53

59

List of Figures

1.1. Onboard Software Overview . 2
1.2. LibreCubeRover . 5

2.1. SAVOIR Functional Reference Architecture 13
2.2. CCSDS TC encoding / decoding . 16
2.3. Bus Systems on the LibreCube Platform 18
2.4. The space to ground PUS service system context 21
2.5. Architectural Elements of the File Delivery Protocol 22
2.6. PLUTO procedure and its elements 24
2.7. OSRA Three-Layer Architecture . 26

3.1. Structural Overview of our Software Stack 29
3.2. Interaction Layer Architecture Overview 34
3.3. Component Sockets with ZeroMQ 35
3.4. Structural Overview of our PUS Implementation 37
3.5. Reconfiguration Module Circuit Board 49

4.1. System Integration Test Layout . 50

C.1. Reconfiguration Module Schematics Sheet 1 66
C.2. Reconfiguration Module Schematics Sheet 2 67

60

A. PUS Packets and Services

The primary Space Packet header includes the following fields [Eur16]:

Packet Version Number Number of the space packet protocol version in use.
Packet Type Differentiates TC and TM packets.
Secondary Header Flag States if the packet has a secondary header.
Application Process Identi-
fier (APID)

Identifies the targeted process.

Sequence Flags Used for sequencing, but unused by PUS.
Packet Sequence Count Number that increments per packet, used to

uniquely identify packets.
Packet Data Length Number of bytes in the data field (including sec-

ondary header).

PUS defines a secondary header to be used on its message packets, which is different
on TC and TM packets.

The PUS secondary header on TM packets includes the following fields [Eur16]:

PUS Version Number Number of the PUS version in use.
Spacecraft Time Reference
Status

Indicates the quality status of the onboard time, e.g.,
synchronization.

Service Type ID ID of the service that generated this packet.
Message Subtype ID ID of the message type of this packet.
Message Type Counter Counter that increments per message sent of this

type.
Destination ID APID of the destination process to receive this

packet.
Time Onboard timestamp of the time this packetwas gen-

erated.

The PUS secondary header on TC packets includes the following fields [Eur16]:

PUS Version Number Number of the PUS version in use.
Acknowledge Flags Indicates if acknowledge reports shall be generated

throughout the processing of this request.
Service Type ID ID of the service that generated this packet.
Message Subtype ID ID of the message type of this packet.
Source ID APID of the process that generated this packet.

61

Appendix A: PUS Packets and Services

PUS defines the following services [Eur16], [Eic12]:

1 Request Verification:
Sends status reports on the progress and success of request processing.

2 Device Access:
Provides direct onboard hardware access.

3 Housekeeping:
Sends periodic parameter reports.

4 Parameter Statistics Reporting:
Provides statistics on onboard parameters.

5 Event Reporting:
Reports onboard events.

6 Memory Management:
Provides direct access to onboard memories.

8 Function Management:
Executes mission-defined functions.

9 Time Management:
Onboard time reporting. Often extended by custom time synchronization.

11 Time-Based Scheduling:
Schedules and executes lists of prepared commands at defined times.

12 On-Board Monitoring:
Monitors onboard parameters and sends out-of-limit reports.

13 Large Packet Transfer:
Transmission of large data.

14 Real-Time forwarding Control:
Configures realtime transmission of reports on ground contact.

15 Onboard Storage and Retrieval:
Configures transmission of stored reports.

17 Test:
Performs a simple connection test.

18 On-Board Control Procedure:
Upload and execution of OBCPs.

19 Event-Action:
Configures automatic actions based on onboard events.

20 Parameter Management:
Sets and redefines onboard parameters.

21 Request Sequencing:
Upload and execute sequences of TC packets.

22 Position-Based Scheduling:
Upload and execute commands and defined positions.

23 File Management:
Copy, delete and discover onboard files.

62

B. PUS Service Skeleton Code

1 class ServiceName(ServiceProvider):
2 SERVICE_ID = 42 # put service ID here
3
4 def __init__(
5 self,
6 process: "ApplicationProcess",
7):
8 super().__init__(process)
9
10 def handle_command(self, packet: PusTcPacket) -> bool:
11 """Call the appropriate handler function to handle the TC packet.
12 Return True if package was handled."""
13
14 msg_id = packet.message_subtype_id
15 if msg_id == 1:
16 # put TC handlers here
17 self.tc_handler_name(packet)
18 else:
19 return False
20
21 return True
22
23 def tc_handler_name(self, packet: PusTcPacket):
24 # Decode
25 decoder = ProgressiveDecoder(packet.application_data_field)
26 # do decoding here
27
28 # raise AcceptError(
29 # packet, FailureCode.
30 #)
31 self.rv.send_success_acceptance_report(packet)
32
33
34 # Validate
35 # do validation here
36
37 # raise StartError(
38 # packet, FailureCode.
39 #)
40 self.rv.send_success_start_report(packet)
41
42
43 # Execute
44 # execute the instructions here
45
46 # raise CompletionError(
47 # packet, FailureCode.
48 #)
49 self.rv.send_success_completion_report(packet)

63

Appendix B: PUS Service Skeleton Code

1 class ServiceNameUser(ServiceUser):
2 SERVICE_ID = 42 # put service ID here
3
4 def __init__(
5 self,
6 process: "ApplicationProcess",
7 provider_apid: int,
8):
9 super().__init__(process, provider_apid)
10
11 self.example_observable = Observable[int]()
12
13
14 def handle_telemetry(self, packet: PusTmPacket):
15 """Call the appropriate handler function to handle the TM packet."""
16
17 msg_id = packet.message_subtype_id
18 if msg_id == 2:
19 # put TM handlers here
20 self.tm_some_message(packet)
21
22
23 def some_command(
24 self,
25) -> Queue[VerificationReport]:
26 # do some preparation work here
27
28 # Encode
29 encoder = ProgressiveEncoder()
30 # encode the TC message here
31
32 # send TC packet and create verification report receiver queue
33 return self.start_transaction(42, 1, self.provider_apid, encoder.data)
34
35
36 def tm_some_message(self, packet: PusTmPacket):
37 # Decode
38 decoder = ProgressiveDecoder(packet.source_data_field)
39 # decode the message here
40
41 # Publish
42 # publish received data to observables
43 self.example_observable.fire(42)

64

C. Reconfiguration Module
Schematics

The following schematics of our reconfiguration module as described in Section 3.2
were created with KiCad 9.0.0. They utilize the hierarchical sheets feature of KiCad:
since some hardware of this module is duplicated to provide both nominal and re-
dundant instances, we created a controller sheet containing all redundant hardware.
This sheet is then instantiated twice as MC_N and MC_R in the outermost Sheet 1.
Interfacing connections into and out of the nested controller sheet are highlighted
as labels with arrows on Sheet 2.

65

Appendix C: Reconfiguration Module Schematics

Figure C.1.: Reconfiguration Module Schematics Sheet 1

66

Appendix C: Reconfiguration Module Schematics

Figure C.2.: ReconfigurationModule Schematics Sheet 2: Controller Module MC_N (redundant
module MC_R similar)

67

Bibliography

[AGW10] Jan Andersson, Jiri Gaisler, and RolandWeigand. “Next generation mul-
tipurpose microprocessor”. In: Int. Conf. on Data Systems in Aerospace
(DASIA), Hungary. 2010.

[Bes18] Valentin Le Bescond. ZeroMQ vs DBus for Pub-Sub pattern. Jan. 2018.
url: https://hackaday.io/project/279-sonomkr-noise-monitoring/
log/86364- zeromq- vs- dbus- for- pub- sub- pattern (visited on
06/15/2025).

[BLG17] Jasper Bouwmeester, Martin Langer, and Eberhard Gill. “Survey on the
implementation and reliability of CubeSat electrical bus interfaces”. In:
CEAS Space Journal 9.2 (2017), pp. 163–173. issn: 1868-2510. doi: 10.
1007 / s12567 - 016 - 0138 - 0. url: https : / / doi . org / 10 . 1007 /
s12567-016-0138-0.

[Cho+20] MenguCho, Takashi Yamauchi,Marloun Sejera, YukihisaOhtani, Sangkyun
Kim, and Hirokazu Masui. “CubeSat Electrical Interface Standardiza-
tion for Faster Delivery and More Mission Success”. In: Proceedings of
the 2020 AIAA/USU Conference on Small Satellites. 2020. url: https :
//digitalcommons.usu.edu/smallsat/2020/all2020/3/.

[Con13] Consultative Committee for Space Data Systems (CCSDS). Spacecraft
Onboard Interface Services. CCSDS 850.0-G-2, Green Book, Issue 2. Dec.
2013. url: https://ccsds.org/wp- content/uploads/gravity_
forms/5-448e85c647331d9cbaf66c096458bdd5/2025/01//850x0g2.
pdf (visited on 05/15/2025).

[Con20a] Consultative Committee for Space Data Systems (CCSDS). CCSDS File
Delivery Protocol (CFDP). CCSDS 727.0-B-5, Blue Book, Issue 5. July 2020.
url: https://public.ccsds.org/Pubs/727x0b5e1.pdf (visited on
05/15/2025).

[Con20b] Consultative Committee for Space Data Systems (CCSDS). Space Packet
Protocol. CCSDS 133.0-B-2, Blue Book, Issue 2. Recommended Standard.
June 2020. url: https://public.ccsds.org/Pubs/133x0b2e2.pdf
(visited on 05/15/2025).

[Con21a] Consultative Committee for Space Data Systems (CCSDS). TC Space
Data Link Protocol. CCSDS 232.0-B-4, Blue Book, Issue 4. Oct. 2021. url:
https://ccsds.org/Pubs/232x0b4e1c1.pdf (visited on 06/14/2025).

[Con21b] Consultative Committee for Space Data Systems (CCSDS). TM Space
Data Link Protocol. CCSDS 132.0-B-3, Blue Book, Issue 3. Oct. 2021. url:
https://ccsds.org/Pubs/132x0b3.pdf (visited on 06/14/2025).

68

https://hackaday.io/project/279-sonomkr-noise-monitoring/log/86364-zeromq-vs-dbus-for-pub-sub-pattern
https://hackaday.io/project/279-sonomkr-noise-monitoring/log/86364-zeromq-vs-dbus-for-pub-sub-pattern
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://digitalcommons.usu.edu/smallsat/2020/all2020/3/
https://digitalcommons.usu.edu/smallsat/2020/all2020/3/
https://ccsds.org/wp-content/uploads/gravity_forms/5-448e85c647331d9cbaf66c096458bdd5/2025/01//850x0g2.pdf
https://ccsds.org/wp-content/uploads/gravity_forms/5-448e85c647331d9cbaf66c096458bdd5/2025/01//850x0g2.pdf
https://ccsds.org/wp-content/uploads/gravity_forms/5-448e85c647331d9cbaf66c096458bdd5/2025/01//850x0g2.pdf
https://public.ccsds.org/Pubs/727x0b5e1.pdf
https://public.ccsds.org/Pubs/133x0b2e2.pdf
https://ccsds.org/Pubs/232x0b4e1c1.pdf
https://ccsds.org/Pubs/132x0b3.pdf

Bibliography

[Con21c] Consultative Committee for Space Data Systems (CCSDS). XML Tele-
metric and Command Exchange (XTCE). CCSDS 660.2-G-2, Green Book,
Issue 2. Tech. rep. Informational Report. Feb. 2021. url: https://ccsds.
org/Pubs/660x2g2.pdf (visited on 06/14/2025).

[Cub22] The CubeSat Program, Cal Poly SLO. CubeSat Design Specification Rev.
14.1. Tech. rep. Revision 14.1. California Polytechnic State University,
Feb. 2022. url: https://www.cubesat.org/s/CDS-REV14_1-2022-
02-09.pdf (visited on 05/15/2025).

[Dij65] E.W. Dijkstra. “Solution of a Problem in Concurrent Programming Con-
trol”. In: Communications of the ACM 8.9 (1965), pp. 569–573.

[Eic12] Jens Eickhoff. Onboard Computers, Onboard Software and Satellite Oper-
ations. Jan. 2012. isbn: 978-3-642-25169-6. doi: 10.1007/978-3-642-
25170-2.

[Emb] Embassy project contributors. Embassy Project. url: https://embassy.
dev/ (visited on 05/30/2025).

[Eura] European Space Agency (ESA). Architectures of Onboard Data Systems.
url: https://www.esa.int/Enabling_Support/Space_Engineering_
Technology/Onboard_Computers_and_Data_Handling/Architectures_
of_Onboard_Data_Systems (visited on 05/16/2025).

[Eurb] European Space Agency (ESA). European Space Software Repository. url:
https://essr.esa.int/ (visited on 05/19/2025).

[Eur08] European Cooperation for Space Standardization (ECSS). ECSS-E-ST-70-
32C: Space Engineering – Test and Operations Procedure Language. De-
fines the PLUTO language for automated test and operations proce-
dures. July 2008. url: https://ecss.nl/standard/ecss- e- st-
70-32c-test-and-operations-procedure-language/ (visited on
05/15/2025).

[Eur10] European Cooperation for Space Standardization (ECSS). ECSS-E-ST-70-
01C: Spacecraft on-board control procedures. Standard. Apr. 16, 2010. url:
https://ecss.nl/standard/ecss- e- st- 70- 01c- on- board-
control-procedures/.

[Eur15] European Cooperation for Space Standardization (ECSS). ECSS-E-ST-50-
15C: CANbus extension protocol. Standard. May 1, 2015. url: https://
ecss.nl/standard/ecss- e- st- 50- 15c- space- engineering-
canbus-extension-protocol-1-may-2015/.

[Eur16] European Cooperation for Space Standardization (ECSS). ECSS-E-ST-
70-41C: Space Engineering – Telemetry and Telecommand Packet Utiliza-
tion. Standard ECSS-E-ST-70-41C. Apr. 2016. url: https://ecss.nl/
standard/ecss-e-st-70-41c-space-engineering-telemetry-
and-telecommand-packet-utilization-15-april-2016/.

[Eur21] European Space Agency (ESA). Space Aionics Open Interface Architecture
(SAVOIR). Issue 1 Rev 2. Nov. 2021. url: https://savoir.estec.esa.
int/ (visited on 05/15/2025).

69

https://ccsds.org/Pubs/660x2g2.pdf
https://ccsds.org/Pubs/660x2g2.pdf
https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf
https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf
https://doi.org/10.1007/978-3-642-25170-2
https://doi.org/10.1007/978-3-642-25170-2
https://embassy.dev/
https://embassy.dev/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://essr.esa.int/
https://ecss.nl/standard/ecss-e-st-70-32c-test-and-operations-procedure-language/
https://ecss.nl/standard/ecss-e-st-70-32c-test-and-operations-procedure-language/
https://ecss.nl/standard/ecss-e-st-70-01c-on-board-control-procedures/
https://ecss.nl/standard/ecss-e-st-70-01c-on-board-control-procedures/
https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-canbus-extension-protocol-1-may-2015/
https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-canbus-extension-protocol-1-may-2015/
https://ecss.nl/standard/ecss-e-st-50-15c-space-engineering-canbus-extension-protocol-1-may-2015/
https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/
https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/
https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-and-telecommand-packet-utilization-15-april-2016/
https://savoir.estec.esa.int/
https://savoir.estec.esa.int/

Bibliography

[fre] freedesktop.org Project.D-Bus Homepage. url: https://freedesktop.
org/wiki/Software/dbus/ (visited on 06/15/2025).

[Hin] Pieter Hintjens. ØMQ - The Guide. url: https://https://zguide.
zeromq.org/ (visited on 06/01/2025).

[Jet] Jet Propulsion Laboratory. F Prime. url: https://fprime.jpl.nasa.
gov/ (visited on 06/15/2025).

[Jon21] Irmen de Jong. PYRO4 - Python Remote Objects. https://github.com/
irmen/Pyro4. 2021.

[Kul24] Erik Kulu. “CubeSats & Nanosatellites - 2024 Statistics, Forecast and Re-
liability”. In: 75th International Astronautical Congress. Nanosats Database.
IAF, Oct. 2024.

[Lib] LibreCube e.V. LibreCube Docs Website. url: https : / / librecube .
gitlab.io/ (visited on 05/15/2025).

[Lib24a] LibreCube e.V. Python CFDP. https://gitlab.com/librecube/lib/
python-cfdp. 2024.

[Lib24b] LibreCube e.V. Python Pluto Engine. https://gitlab.com/librecube/
prototypes/python-pluto-engine. 2024.

[Lib24c] LibreCube e.V. Python Space Packet. https://gitlab.com/librecube/
lib/python-spacepacket. 2024.

[Lib25a] LibreCube e.V.MicroPython SpaceCAN. https://gitlab.com/librecube/
lib/micropython-spacecan. 2025.

[Lib25b] LibreCube e.V. Python SpaceCAN. https://gitlab.com/librecube/
lib/python-spacecan. 2025.

[Lik+10] Justin Likar, Stephen Stone, Robert Lombardi, and Kelly Long. “Novel
Radiation Design Approach for CubeSat Based Missions”. In: Proceed-
ings of the 2010 AIAA/USU Conference on Small Satellites. 2010. url:
https://digitalcommons.usu.edu/smallsat/2010/all2010/15/.

[Lin24] The Linux Foundation. rename(2) Linux User’s Manual. Version 6.10.
July 2024.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 1st ed. USA: Prentice Hall PTR, 2008. isbn: 0132350882.

[Nat] National Aeronautics and Space Administration (NASA). core Flight Sys-
tem (cFS). url: https://etd.gsfc.nasa.gov/capabilities/core-
flight-system (visited on 06/15/2025).

[Org19] Organization for the Advancement of Structured Information Standards
(OASIS). MQTT Version 5.0. Mar. 2019. url: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (visited on 05/30/2025).

[PC108] PC/104 Consortium. PC/104 Specification Version 2.6. Tech. rep. Revision
2.6. PC/104 Consortium, Oct. 2008. url: https://pc104.org/wp-
content / uploads / 2015 / 02 / PC104 _ Spec _ v2 _ 6 . pdf (visited on
05/15/2025).

70

https://freedesktop.org/wiki/Software/dbus/
https://freedesktop.org/wiki/Software/dbus/
https://https://zguide.zeromq.org/
https://https://zguide.zeromq.org/
https://fprime.jpl.nasa.gov/
https://fprime.jpl.nasa.gov/
https://github.com/irmen/Pyro4
https://github.com/irmen/Pyro4
https://librecube.gitlab.io/
https://librecube.gitlab.io/
https://gitlab.com/librecube/lib/python-cfdp
https://gitlab.com/librecube/lib/python-cfdp
https://gitlab.com/librecube/prototypes/python-pluto-engine
https://gitlab.com/librecube/prototypes/python-pluto-engine
https://gitlab.com/librecube/lib/python-spacepacket
https://gitlab.com/librecube/lib/python-spacepacket
https://gitlab.com/librecube/lib/micropython-spacecan
https://gitlab.com/librecube/lib/micropython-spacecan
https://gitlab.com/librecube/lib/python-spacecan
https://gitlab.com/librecube/lib/python-spacecan
https://digitalcommons.usu.edu/smallsat/2010/all2010/15/
https://etd.gsfc.nasa.gov/capabilities/core-flight-system
https://etd.gsfc.nasa.gov/capabilities/core-flight-system
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf
https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf

Bibliography

[Pre00] Lutz Prechelt. “An Empirical Comparison of Seven Programming Lan-
guages”. In: Computer 33 (Nov. 2000), pp. 23–29. doi: 10 . 1109 / 2 .
876288.

[pxn24] GitHub-User “pxntus”. Puslib. https://github.com/pxntus/puslib.
2024.

[RW05] Nick Rozanski and Eóin Woods. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley
Professional, 2005. isbn: 0321112296.

[Sch+19] Artur Scholz, Jer-Nan Juang, Peter Mader, Jesper Schlegel, and Milenko
Starcik. “SpaceCAN - A low-cost, reliable and robust control and mon-
itoring bus for small satellites”. In: Acta Astronautica 161 (2019), pp. 1–
11. issn: 0094-5765. doi: https://doi.org/10.1016/j.actaastro.
2019.05.010. url: https://www.sciencedirect.com/science/
article/pii/S0094576519302450.

[SM23] Tomasz Szewczyk and Kostas Marinis. “Standardization concepts for
CubeSat applications”. In: 2023 European Data Handling & Data Process-
ing Conference (EDHPC). 2023, pp. 1–5. doi: 10.23919/EDHPC59100.
2023.10396512.

[Spa] Space Applications Services. Yamcs Mission Control. url: https : / /
yamcs.org/ (visited on 06/15/2025).

[Uta] Utah State University.GASPACS - Get Away Special Passive Attitude Con-
trol Satellite. url: https://www.usu.edu/physics/gas/projects/
gaspacs (visited on 06/15/2025).

[Zha24] Yuwei Zhang. “Comparative study of the execution efficiency of Python
and C++—Based on topological sorting”. In: Applied and Computational
Engineering 34 (2024), pp. 13–17. doi: 10 . 54254 / 2755 - 2721 / 34 /
20230288.

71

https://doi.org/10.1109/2.876288
https://doi.org/10.1109/2.876288
https://github.com/pxntus/puslib
https://doi.org/https://doi.org/10.1016/j.actaastro.2019.05.010
https://doi.org/https://doi.org/10.1016/j.actaastro.2019.05.010
https://www.sciencedirect.com/science/article/pii/S0094576519302450
https://www.sciencedirect.com/science/article/pii/S0094576519302450
https://doi.org/10.23919/EDHPC59100.2023.10396512
https://doi.org/10.23919/EDHPC59100.2023.10396512
https://yamcs.org/
https://yamcs.org/
https://www.usu.edu/physics/gas/projects/gaspacs
https://www.usu.edu/physics/gas/projects/gaspacs
https://doi.org/10.54254/2755-2721/34/20230288
https://doi.org/10.54254/2755-2721/34/20230288

	Eigenständigkeitserklärung
	Abstract
	Usage of Generative AI
	Contents
	1 Introduction
	1.1 General Problem Setting
	1.2 New Contributions
	1.3 Outline of the Thesis

	2 Preliminaries
	2.1 Concerns and Requirements
	2.2 Avionics System Architecture Overview
	2.3 Protocols and Interfaces
	2.4 Onboard Software Architecture Overview

	3 Main Contributions
	3.1 Onboard Software Implementation
	3.1.1 Interaction Layer
	3.1.2 Monitoring and Control
	3.1.3 File System and File Transfer
	3.1.4 Onboard Bus and Device Access

	3.2 Reconfiguration Module

	4 Experimental Evaluation
	4.1 System Integration Test
	4.2 Compatibility with Mission Control Software

	5 Conclusions
	5.1 Summary
	5.2 Limitations
	5.3 Directions for Future Work

	List of Acronyms
	List of Figures
	A PUS Packets and Services
	B PUS Service Skeleton Code
	C Reconfiguration Module Schematics
	Bibliography

