

Control-flow Guided Property Directed Reachability for Imperative Synchronous Programs

Xian Li

Embedded Systems Chair
Department of Computer Science
University of Kaiserslautern, Germany

Synchron 2016 at Bamberg, December 5 – 9, 2016

Table of Contents

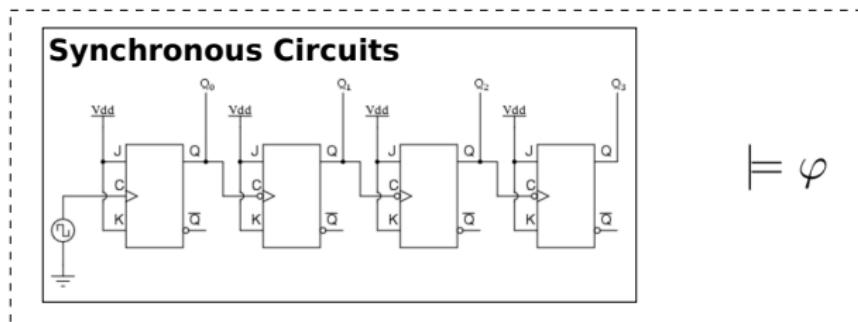
1. Motivation
2. Property Directed Reachability
3. Control-flow Guided PDR for Imperative Synchronous Programs

Outline

1. Motivation
2. Property Directed Reachability
3. Control-flow Guided PDR for Imperative Synchronous Programs

Formal Verification of Synchronous Hardware Circuits

- ▶ PDR: a very efficient verification method based on induction



Formal Verification of Synchronous Programs

- ▶ PDR: a very efficient verification method based on induction

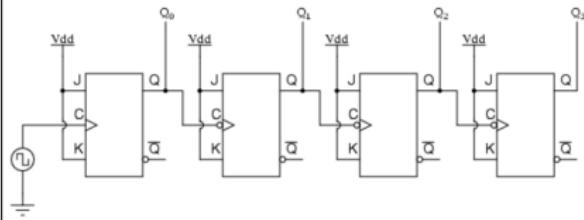
Synchronous Programs

```
module M(event bool ?a,?b,o1,o2) {  
    loop {  
        l1: pause;  
        if(o1 & (a|b)) {  
            emit(o2);  
            l2: await(a);  
        }  
    }  
}
```

 $\models \varphi'$

synthesize

Synchronous Circuits

 $\models \varphi$

Imperative Synchronous Programs

Imperative Synchronous Languages: e.g. Quartz

- ▶ macro steps: consumption of one logical time unit
- ▶ micro steps: no logical time consumption

⇒ synchronous reactive model of computation

Control-flow Information

- ▶ not needed for synthesis
- ▶ useful for formal verification

Goals

Target: Safety Property Verification of Imperative Synchronous Programs

- ▶ PDR: relies on good estimation of the reachable states

Our Heuristic: Improve it by Exploiting Control-flow Information

- ▶ modify transition relation to generate less counterexamples to induction (CTIs) by reachable control-flow states computation
 - ▶ linear-time static analysis
 - ▶ symbolic reachability analysis
- ▶ identify CTIs in \mathcal{K}
simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations if \mathcal{C} is unreachable, then generalize $\neg\mathcal{C}'$ instead of $\neg\mathcal{C}$:
 $\mathcal{C}' := \mathcal{C}|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in \mathcal{C}

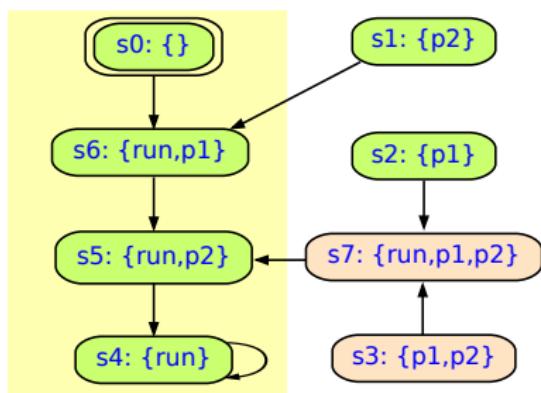
Outline

1. Motivation
2. Property Directed Reachability
3. Control-flow Guided PDR for Imperative Synchronous Programs

Safety Property Verification

Target: Prove Φ is valid w.r.t. \mathcal{K}

- ▶ a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ a safety property: Φ
- ▶ Φ holds on all reachable states of \mathcal{K}



● Φ holds

○ Φ doesn't hold

Reachable States

```

module CfSeq() {
  p1: pause;
  p2: pause;
}

V := {run, p1, p2}
I := ¬(run ∨ p1 ∨ p2)
T := next(run) ↔ true
          ∧ (next(p1) ↔ ¬run)
          ∧ (next(p2) ↔ p1)
  
```

$\Phi := \neg(p1 \wedge p2)$

Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. \mathcal{K}

- ▶ a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ a safety property: Φ
- ▶ Φ holds on all reachable states of \mathcal{K}

Φ is inductive w.r.t. \mathcal{K}

- ▶ induction base: Φ holds in all initial states
- ▶ induction step: Φ -states have no successor violating Φ

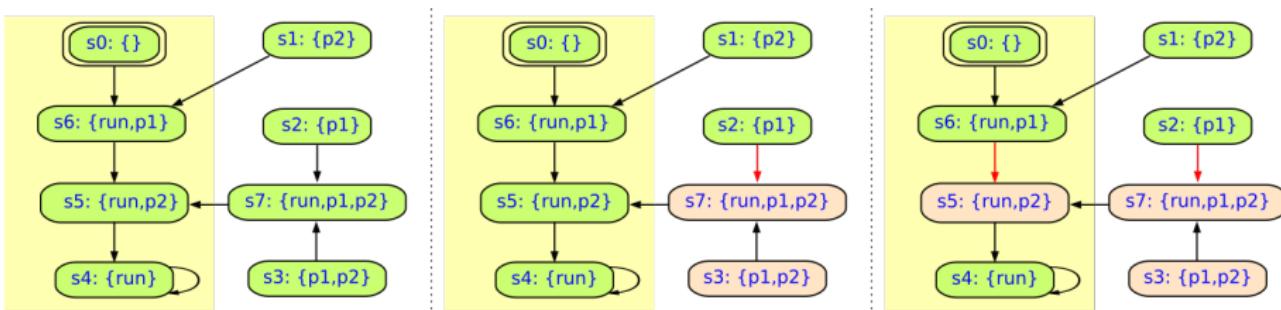
Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. \mathcal{K}

- ▶ a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ a safety property: Φ
- ▶ Φ holds on all reachable states of \mathcal{K}

Φ is inductive w.r.t. \mathcal{K}

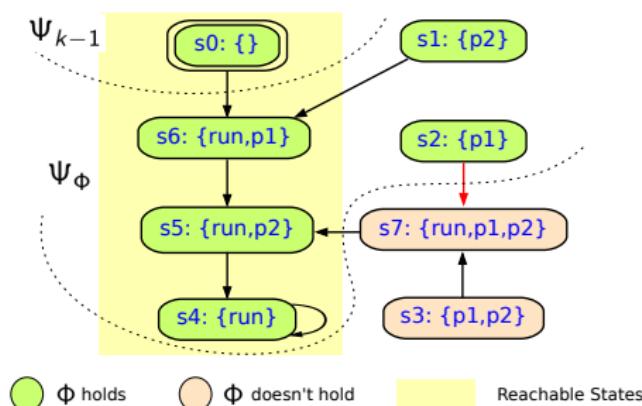
- ▶ induction base: Φ holds in all initial states
- ▶ induction step: Φ -states have no successor violating Φ



Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \dots, Ψ_k that overapproximate the states reachable in $0, \dots, k$ steps.

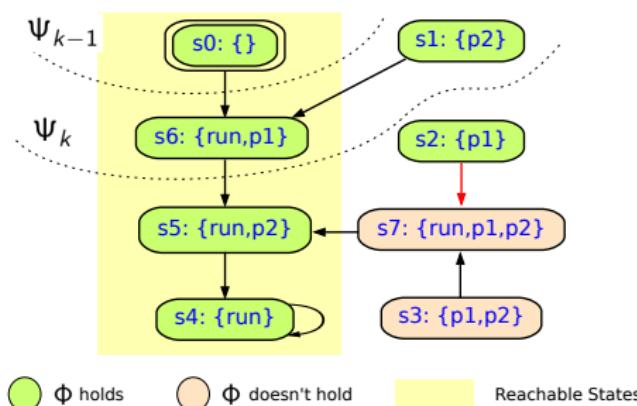
- ▶ incremental induction: extend the sequence Ψ_0, \dots, Ψ_k
- ▶ unreachability checking: CTI identification and generalization



Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \dots, Ψ_k that overapproximate the states reachable in $0, \dots, k$ steps.

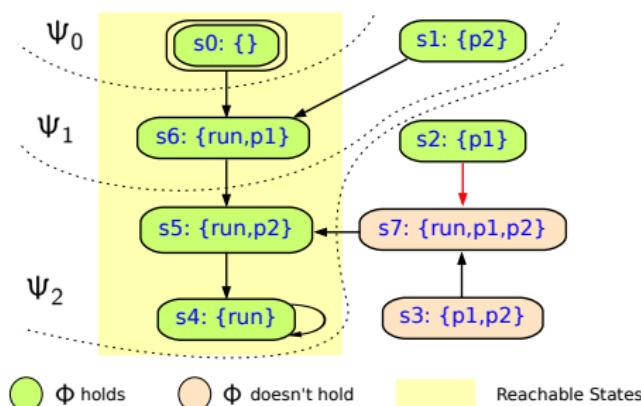
- ▶ incremental induction: extend the sequence Ψ_0, \dots, Ψ_k
- ▶ unreachability checking: CTI identification and generalization



Property Directed Reachability

PDR method constructs a sequence of clause sets Ψ_0, \dots, Ψ_k that overapproximate the states reachable in $0, \dots, k$ steps.

- ▶ incremental induction: extend the sequence Ψ_0, \dots, Ψ_k
- ▶ unreachability checking: CTI identification and generalization

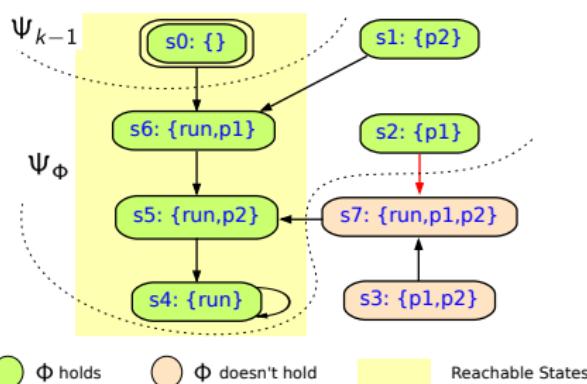


Outline

1. Motivation
2. Property Directed Reachability
3. Control-flow Guided PDR for Imperative Synchronous Programs

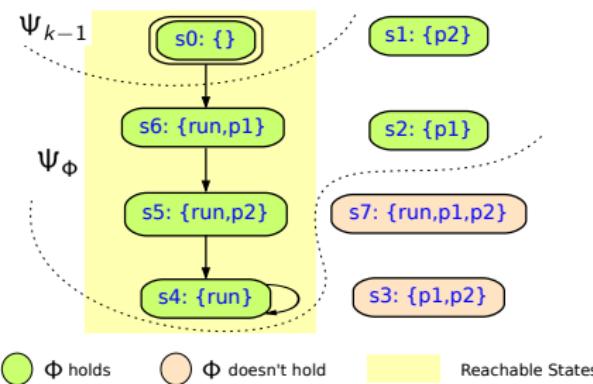
Main Idea I: Modify Transition Relation to generate less CTIs

Original Transition Relation:



s_2 has successor s_7 violating Φ

Enhanced Transition Relation:



s_2 has no successor

⇒ remove transitions from unreachable states by **control-flow invariants**

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```
module CfSeq(){  
    p1: pause;  
    p2: pause;  
}
```

$$\neg(p1 \wedge p2)$$

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

```
module Ite(){
    mem bool i;
    if (i) {
        p1: pause;
    } else {
        q1: pause;
    }
}
```

$$\neg(p1 \wedge q1)$$

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences and conditional statements:

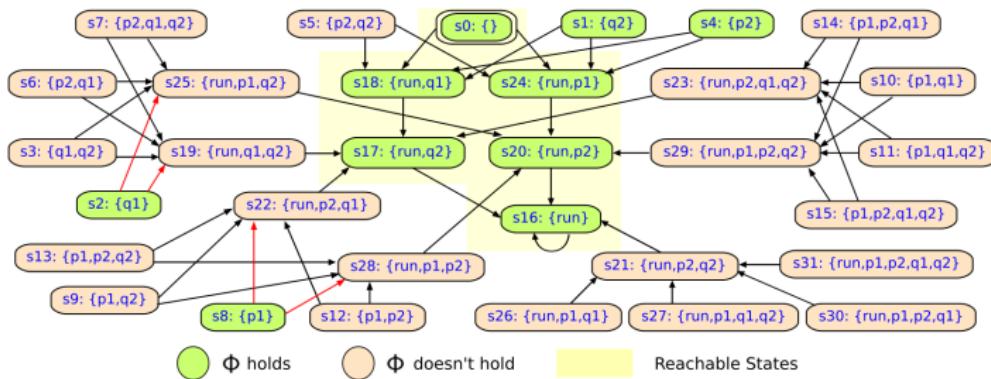
```
module CfIte(){
    mem bool i;
    if (i) {
        p1: pause;
        p2: pause;
    } else {
        q1: pause;
        q2: pause;
    }
}
```

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \vee p2) \wedge (q1 \vee q2))$$

Control-flow Invariants by static Analysis

```
module CfIte(){
    mem bool i;
    if (i) {
        p1: pause;
        p2: pause;
    } else {
        q1: pause;
        q2: pause;
    }
}
```

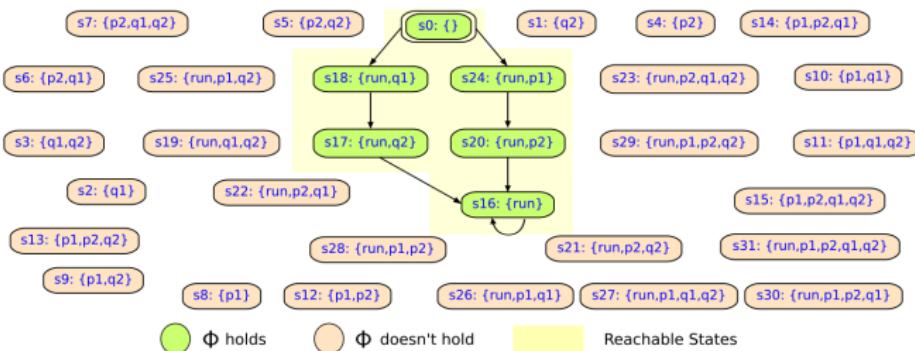
Original Transition Relation:



Control-flow Invariants by static Analysis

```
module CfIte(){
    mem bool i;
    if (i) {
        p1: pause;
        p2: pause;
    } else {
        q1: pause;
        q2: pause;
    }
}
```

Enhanced Transition Relation:



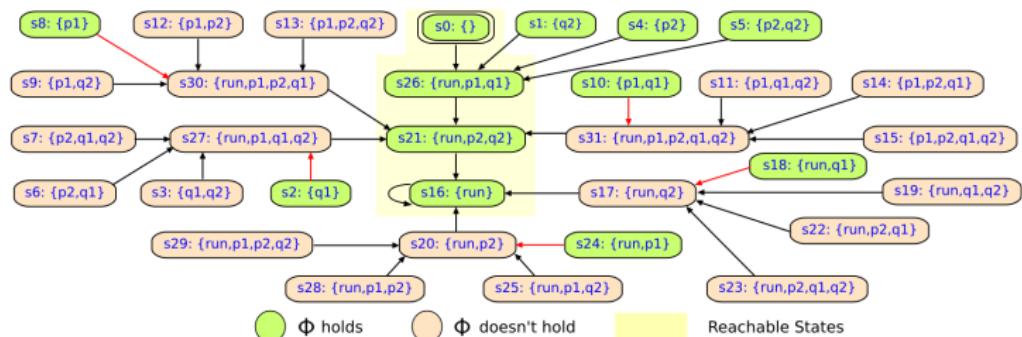
with control-flow invariant by static analysis:

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \vee p2) \wedge (q1 \vee q2))$$

Control-flow Invariants by symbolic Analysis

```
module CfPar(){
{
  p1: pause;
  p2: pause;
} ||
{
  q1: pause;
  q2: pause;
}
```

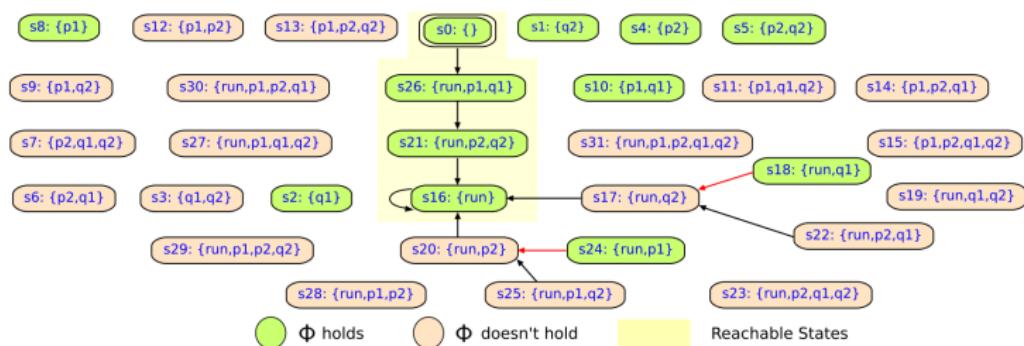
Original Transition Relation:



Control-flow Invariants by symbolic Analysis

```
module CfPar() {
    {
        p1: pause;
        p2: pause;
    } ||
    {
        q1: pause;
        q2: pause;
    }
}
```

Enhanced Transition Relation:



with control-flow invariant by static analysis:
 $\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2)$

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

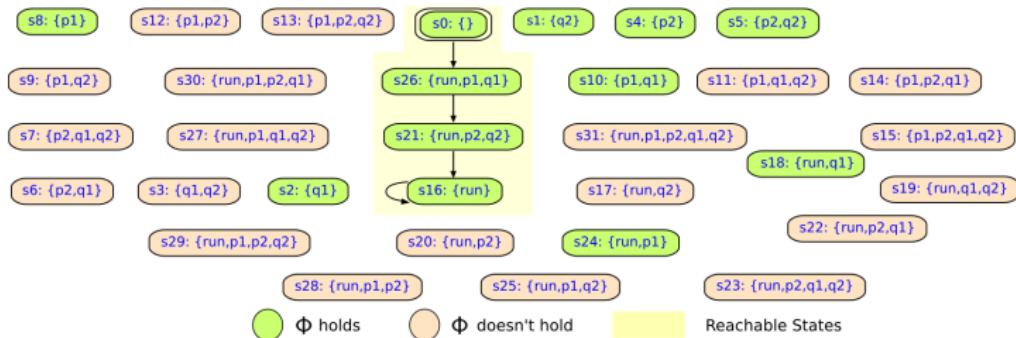
```
module CfPar(){
{
    p1: pause;
    p2: pause;
} || {
    q1: pause;
    q2: pause;
}
}
```

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \wedge q2) \vee (p2 \wedge q1))$$

Control-flow Invariants by symbolic Analysis

```
module CfPar() {
    {
        p1: pause;
        p2: pause;
    } ||
    {
        q1: pause;
        q2: pause;
    }
}
```

Enhanced Transition Relation:



with control-flow invariant by symbolic analysis:
 $\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \wedge q2) \vee (p2 \wedge q1))$

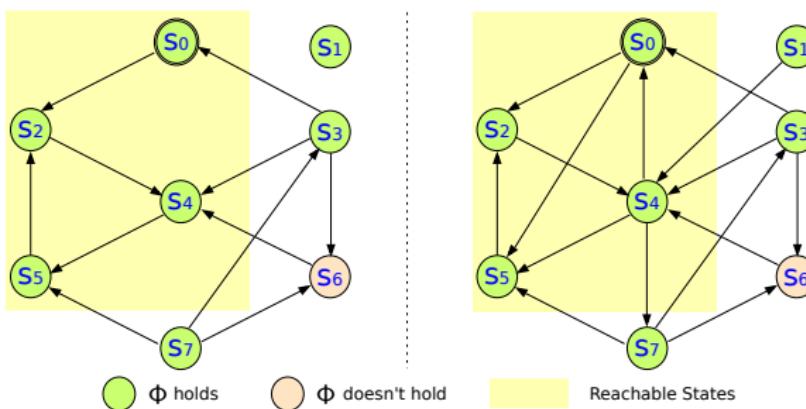
Main Idea II: CTI Identification and Generalization by Control-flows

- ▶ reachability of CTIs in \mathcal{K}
simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations
if \mathcal{C} is unreachable, then generalize $\neg\mathcal{C}'$ instead of $\neg\mathcal{C}$:
 $\mathcal{C}' := \mathcal{C}|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in \mathcal{C}

Transition Systems of a Synchronous Program

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- ▶ $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- ▶ $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

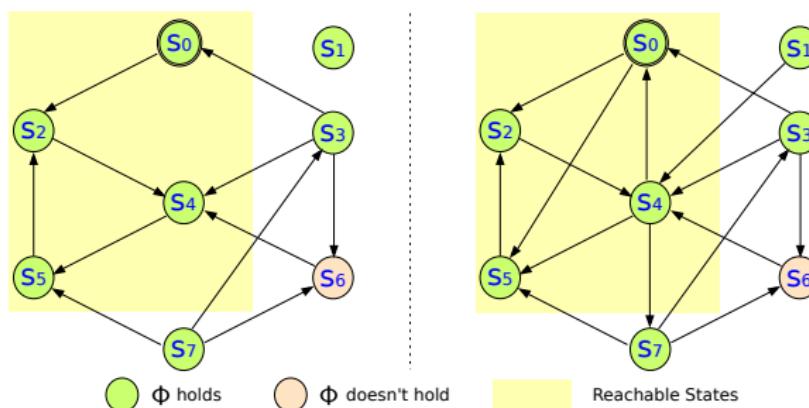


Transition Systems of a Synchronous Program

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- ▶ $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- ▶ $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability of CTIs in \mathcal{K} can be proved by unreachability in \mathcal{K}^{cf}



CTI Identification by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- ▶ $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- ▶ $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability of CTIs in \mathcal{K} can be proved by unreachability in \mathcal{K}^{cf}

- ▶ reachability of CTIs in \mathcal{K}
simpler unreachability tests in \mathcal{K}^{cf}

CTI Generalization by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- ▶ $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- ▶ $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability in \mathcal{K}^{cf} is independent on the dataflows

CTI Generalization by Control-flows

Let $\mathcal{V} := \mathcal{V}^{\text{cf}} \cup \mathcal{V}^{\text{df}}$ and $\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$, with

- ▶ $\mathcal{K} = (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ $\mathcal{K}^{\text{cf}} = (\mathcal{V}, \mathcal{I}^{\text{cf}}, \mathcal{T}^{\text{cf}})$
- ▶ $\mathcal{K}^{\text{df}} = (\mathcal{V}, \mathcal{I}^{\text{df}}, \mathcal{T}^{\text{df}})$

unreachability in \mathcal{K}^{cf} is independent on the dataflows

- ▶ generalize CTIs to narrow the reachable state approximations
if \mathcal{C} is unreachable, then generalize $\neg\mathcal{C}'$ instead of $\neg\mathcal{C}$:
 $\mathcal{C}' := \mathcal{C}|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in \mathcal{C}

Example

```
module ITELoop() {
  [N]bool i;
  i[0] = true;
  if (!i[0]) {
    loop{
      p1: pause;
      i[0] = false;
      p2: pause;
    }
  }
}
```

The set of boolean variables of module ITELoop

$$\mathcal{V}_N := \underbrace{\{i[0], \dots, i[N-1]\}}_{\mathcal{V}^{\text{df}}} \cup \underbrace{\{p1, p2, \text{run}\}}_{\mathcal{V}^{\text{cf}}}$$

⇒ reduce at most 2^{N+3} to 2^3 times relative
inductiveness reasoning

Summary

Control-flow Guided PDR for Imperative Synchronous Programs

- ▶ modify transition relation to generate less CTIs by reachable control-flow states computation
 - ▶ linear-time static analysis
 - ▶ symbolic reachability analysis
- ▶ identify CTIs in \mathcal{K}
simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs to narrow the reachable state approximations
if \mathcal{C} is unreachable, then generalize $\neg\mathcal{C}'$ instead of $\neg\mathcal{C}$:
 $\mathcal{C}' := \mathcal{C}|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in \mathcal{C}