

Induction-based Verification of Synchronous and Hybrid Programs

Xian Li

Embedded Systems Chair
Department of Computer Science
University of Kaiserslautern

November 10th 2017

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

- ▶ users choose a VCG method and provide inductive assertions
- ▶ VCs are generated automatically for induction bases and steps
- ▶ external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

- ▶ modify transition relation to generate less CTIs
- ▶ identify CTIs with simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs by omitting dataflow literals

Table of Contents

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

Embedded Reactive Systems in Physical Environment

discrete reactions by embedded reactive system

- ▶ program variables are assigned by the system
- ▶ program variables = output of the system
- ▶ no physical time is consumed

⇒ **synchronous reactive system**

continuous phase by physical environment

- ▶ environment variables defined by differential equations
- ▶ environment variables = input of the system
- ▶ physical time is consumed

⇒ **hybrid system**

Averest and Quartz

Averest (www.averest.org)

- ▶ Tool-set for the development of reactive systems

Quartz [Schneider, 2009] [Bauer, 2012]

- ▶ Synchronous language for modeling, simulation, and verification of hybrid systems

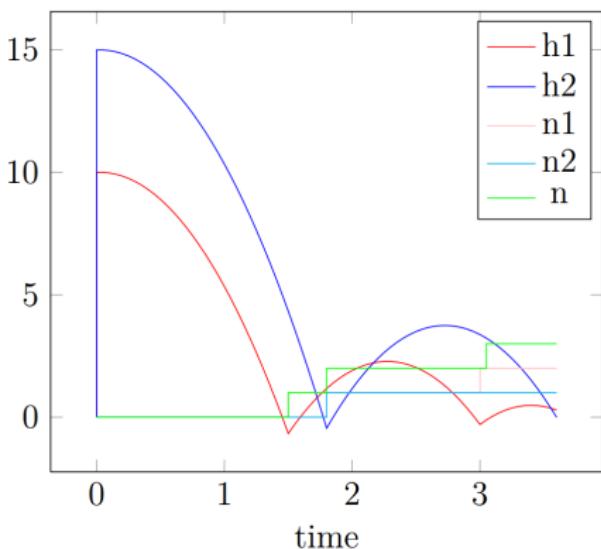
Bouncing Ball

```

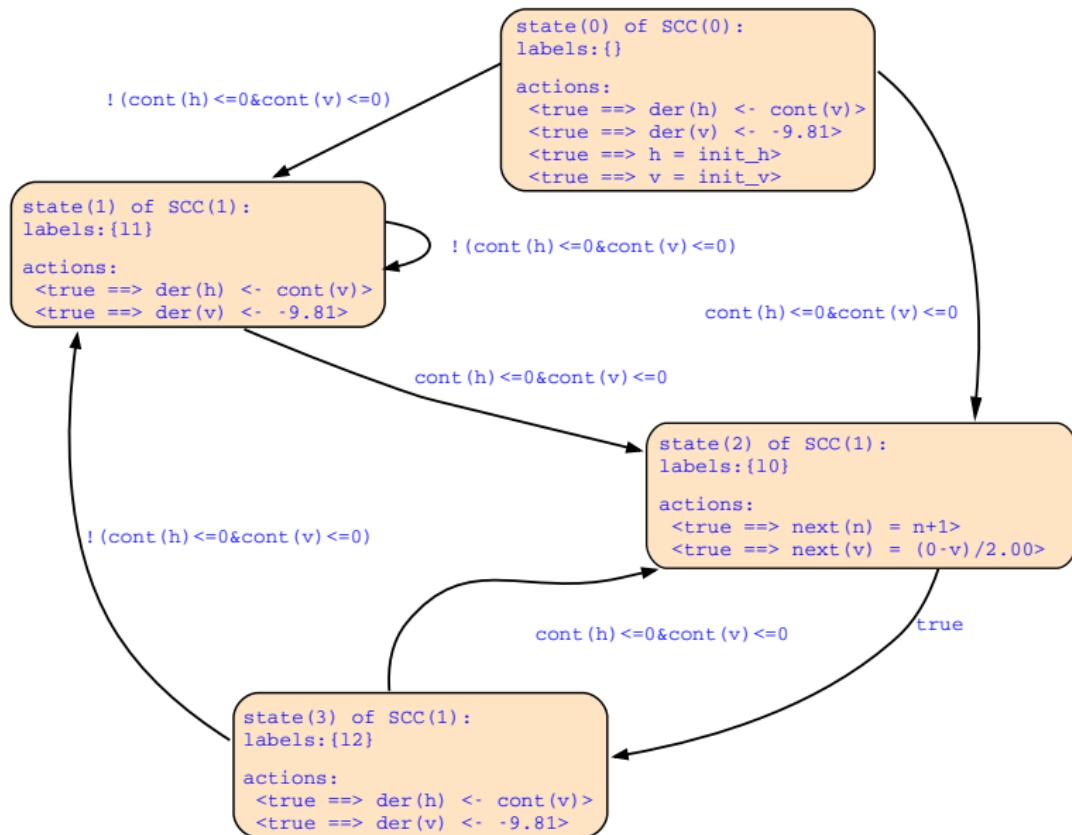
module Ball(real ? init_h,? init_v, int n)
{
    hybrid real h, v;
    h = init_h; v = init_v;
    loop{
        10,11:flow{
            drv(h) <- cont(v);
            drv(v) <- -9.81;
        }until(cont(h)<=0 and cont(v)<=0);
        next(v) = -v/2.0;
        next(n) = n + 1 ;
        12,13:flow {} until(true);
    }
}

module TwoBalls(){
    int n, n1, n2;
    Ball(15.0,0,0,n1);
    ||
    Ball(10.0,1.0,n2)
    ||
    loop{ n = n1+n2; pause; }
}

```



Bouncing Ball



Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

The Satisfiability Problem

SMT Problem

- combinations of propositional logic and non-linear arithmetic theories over integers and reals with \exists -quantifiers.

Constraint Problem

- The general form of a **MINLP**:

$$\text{minimize} \quad f(\vec{x}, \vec{y})$$

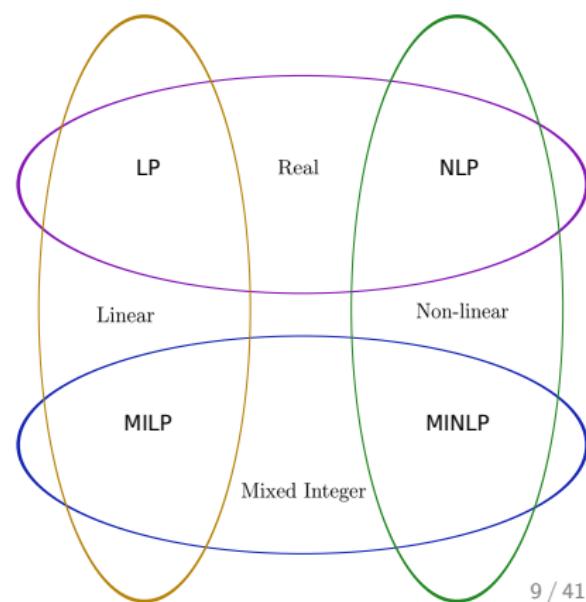
$$\text{subject to} \quad g(\vec{x}, \vec{y}) \leq 0$$

$$\vec{x}_l \leq \vec{x} \leq \vec{x}_u \quad x_i \in \mathbb{R}$$

$$\vec{y}_l \leq \vec{y} \leq \vec{y}_u \quad y_i \in \mathbb{Z}$$

$f(\vec{x}, \vec{y}), g(\vec{x}, \vec{y})$: **nonlinear** functions

$$\text{e.g. } g(x, y) = x^2 + xy^2$$



The Satisfiability Problem

SMT Problem

- ▶ combinations of propositional logic and non-linear arithmetic theories over integers and reals with \exists -quantifiers.

Constraint Problem

- ▶ The general form of a MILP:

minimize $f(\vec{x}, \vec{y})$

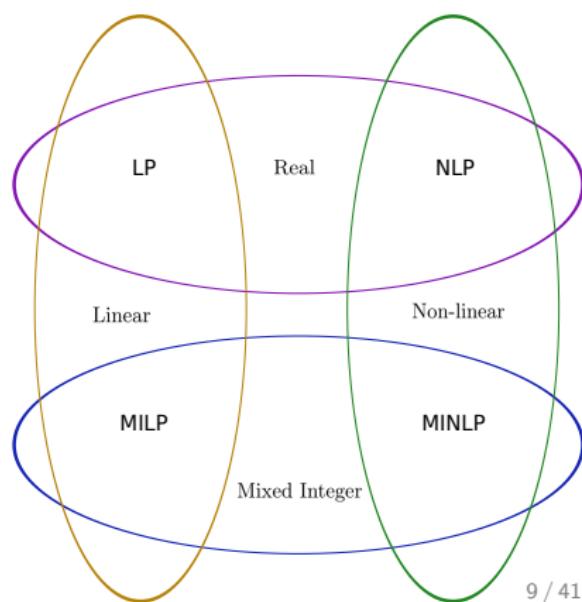
subject to $g(\vec{x}, \vec{y}) < 0$

$$\vec{x}_l \leq \vec{x} \leq \vec{x}_u \quad x_i \in \mathbb{R}$$

$$\vec{y}_l \leq \vec{y} \leq \vec{y}_u \quad y_i \in \mathbb{Z}$$

$f(\vec{x}, \vec{y})$, $g(\vec{x}, \vec{y})$: linear functions

e.g. $g(x, y) = ax + by$



The Satisfiability Problem

SMT Problem

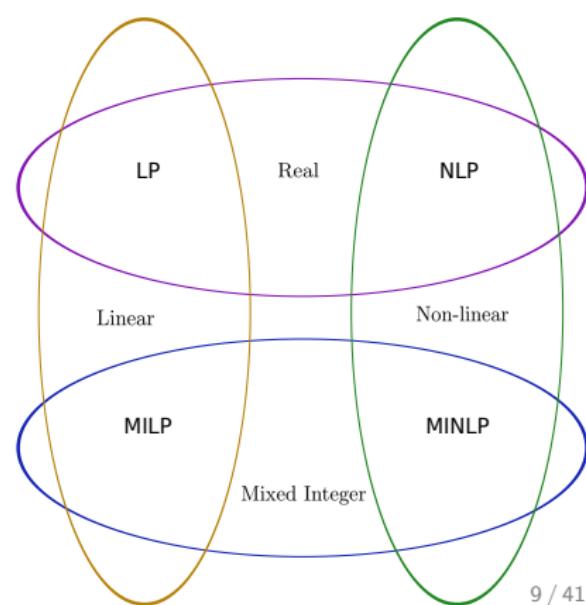
- combinations of propositional logic and non-linear arithmetic theories over integers and reals with \exists -quantifiers.

Constraint Problem

- The general form of a NLP:

$$\begin{aligned} \text{minimize} \quad & f(\vec{x}) \\ \text{subject to} \quad & g(\vec{x}) \leq 0 \\ & \vec{x}_l \leq \vec{x} \leq \vec{x}_u \quad x_i \in \mathbb{R} \end{aligned}$$

$f(\vec{x}, \vec{y}), g(\vec{x}, \vec{y})$: nonlinear functions
e.g. $g(x, y) = x^2 + xy^2$



The Satisfiability Problem

SMT Problem

- combinations of propositional logic and non-linear arithmetic theories over integers and reals with \exists -quantifiers.

Constraint Problem

- The general form of a **MINLP**:

$$\text{minimize} \quad f(\vec{x}, \vec{y})$$

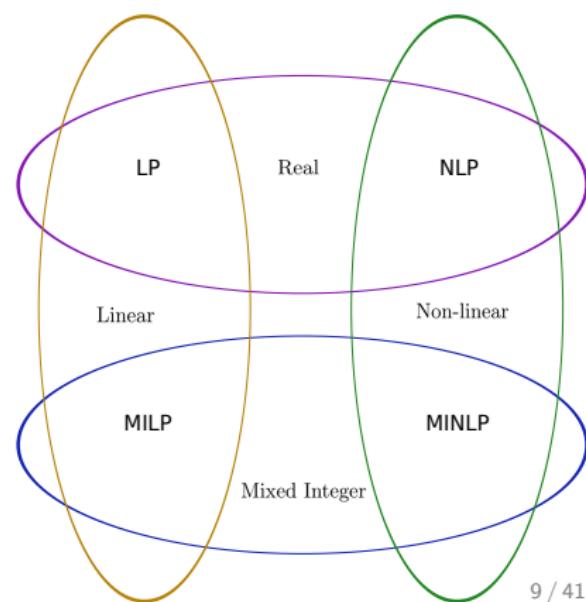
$$\text{subject to} \quad g(\vec{x}, \vec{y}) \leq 0$$

$$\vec{x}_l \leq \vec{x} \leq \vec{x}_u \quad x_i \in \mathbb{R}$$

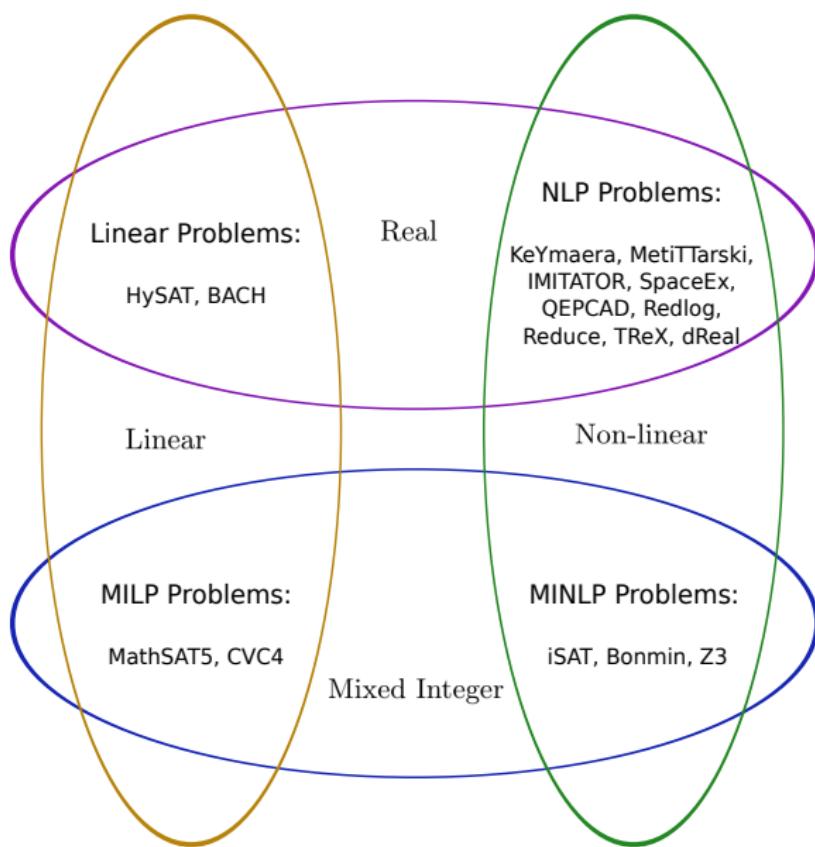
$$\vec{y}_l \leq \vec{y} \leq \vec{y}_u \quad y_i \in \mathbb{Z}$$

$f(\vec{x}, \vec{y}), g(\vec{x}, \vec{y})$: **nonlinear** functions

$$\text{e.g. } g(x, y) = x^2 + xy^2$$



Decidability and Tools



Safety Property Verification

model checking

- ▶ reachability of states is undecidable
- ▶ approximation and abstraction

theorem proving

- ▶ interaction with users
- ▶ set up proof goals and apply proof rules until a proof is obtained
- ▶ Hoare calculus: $\{\varphi\} S \{\psi\}$ for Software Verification
 - ▶ users provide invariants, pre- and postconditions
 - ▶ verification condition generation (VCG): automatic
 - ▶ proving VCs is done separately, e.g., using SMT solvers

Hoare calculus for Synchronous Programs

Hoare calculus can not be directly applied! [Gesell, 2014]

- ▶ impossible to decompose proof goal along the program syntax
 - ▶ abstraction of several micro steps to one macro step
 - ▶ control-flow can rest at many places at the same time
 - ▶ micro steps may correspond to different places in the program
- ▶ unless using goto statements or additional label variables

⇒ **VCG using Inductive Assertions**

Property Directed Reachability

PDR

- ▶ very efficient verification method for hardware circuit verification

Synchronous Languages: e.g. Quartz

- ▶ high-level languages for hardware synthesis

⇒ **Control-flow Guided PDR Optimizations**

Property Directed Reachability

PDR

- ▶ very efficient verification method for hardware circuit verification
- ▶ relies on good estimation of the reachable states

Synchronous Languages: e.g. Quartz

- ▶ high-level languages for hardware synthesis
- ▶ useful control-flow information for verification

⇒ **Control-flow Guided PDR Optimizations**

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

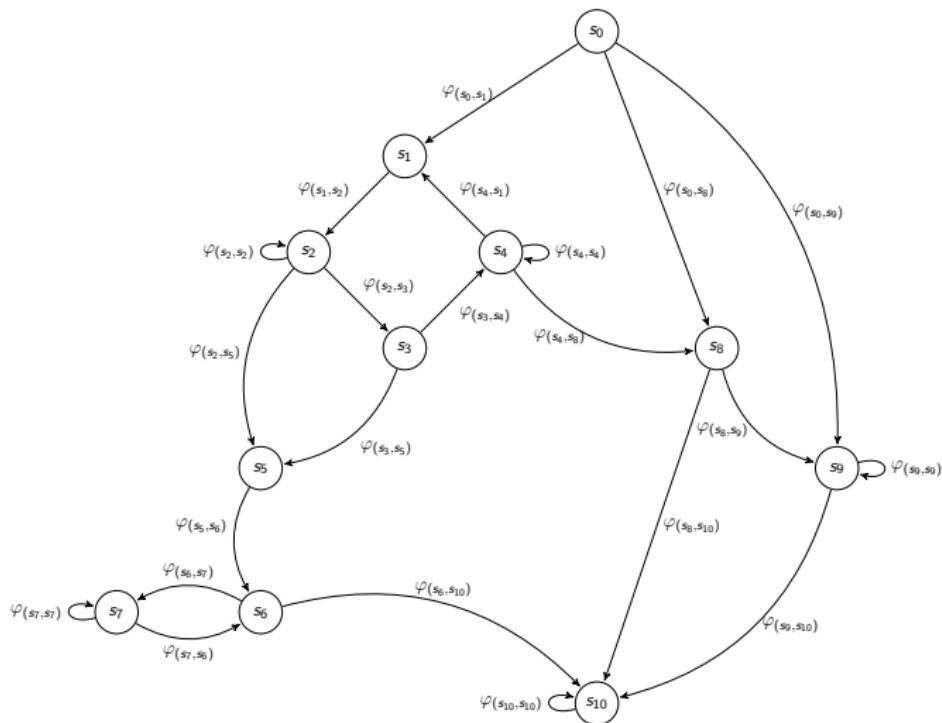
- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

EFSM Decomposition by Control-flow States



VCG using Control-flow Assertions

$$\frac{\mathcal{I}_s \rightarrow \Phi}{\Psi_{\text{reach}} \rightarrow \Phi}$$

Transition-based method:

- ▶ users provide \mathcal{I}_s
- ▶ induction base:
 - ▶ $\mathcal{I}_{s_{\text{root}}}$ holds on the initial control-flow state
- ▶ induction step:
 - ▶ \mathcal{I}_s holds on each non-initial control-flow state
 - enumerate transitions from one node to the other

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

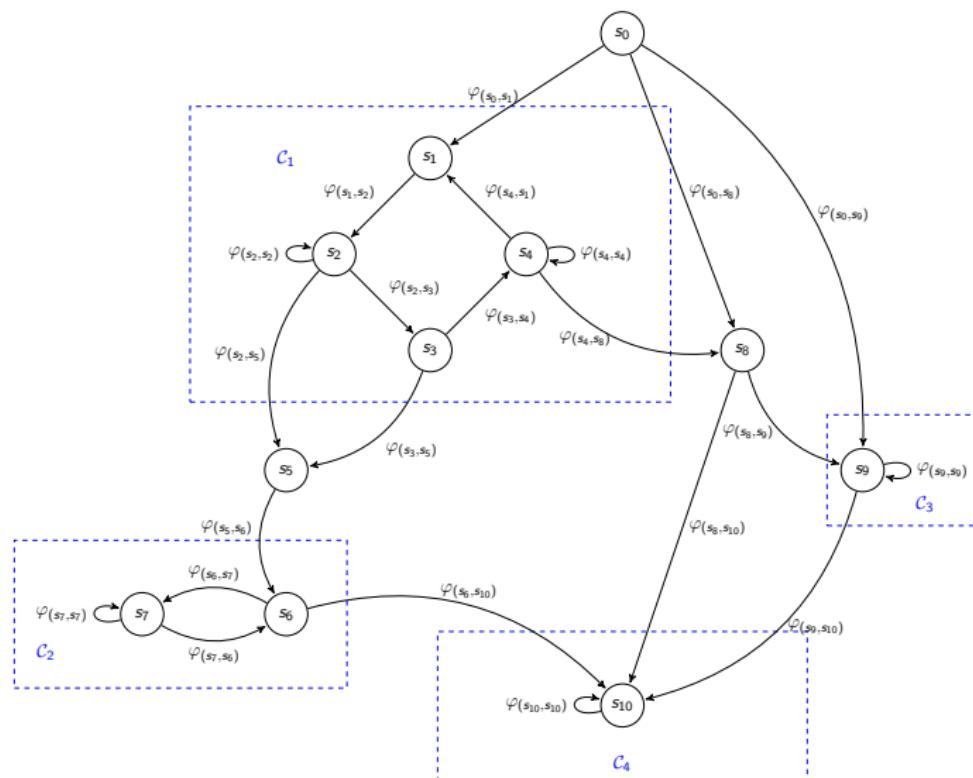
- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

EFSM Decomposition by SCCs



VCG using SCC Assertions

$$\frac{\mathcal{I}_{C_0}(s_{\text{root}}) \quad s \in C_i \vdash \mathcal{I}_{C_i}(s) \quad \mathcal{I}_{C_i} \rightarrow \Phi}{\Psi_{\text{reach}} \rightarrow \Phi}$$

SCC-Path and **SCC-Trans** methods:

- ▶ users provide \mathcal{I}_{C_i}
- ▶ induction base:
 - ▶ \mathcal{I}_{C_i} holds on each entering state(s) of C_i
enumerate paths/transitions from one SCC to the other
- ▶ induction step:
 - ▶ \mathcal{I}_{C_i} is preserved for the transitions inside C_i
enumerate transitions from one node to the other inside the same SCC

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

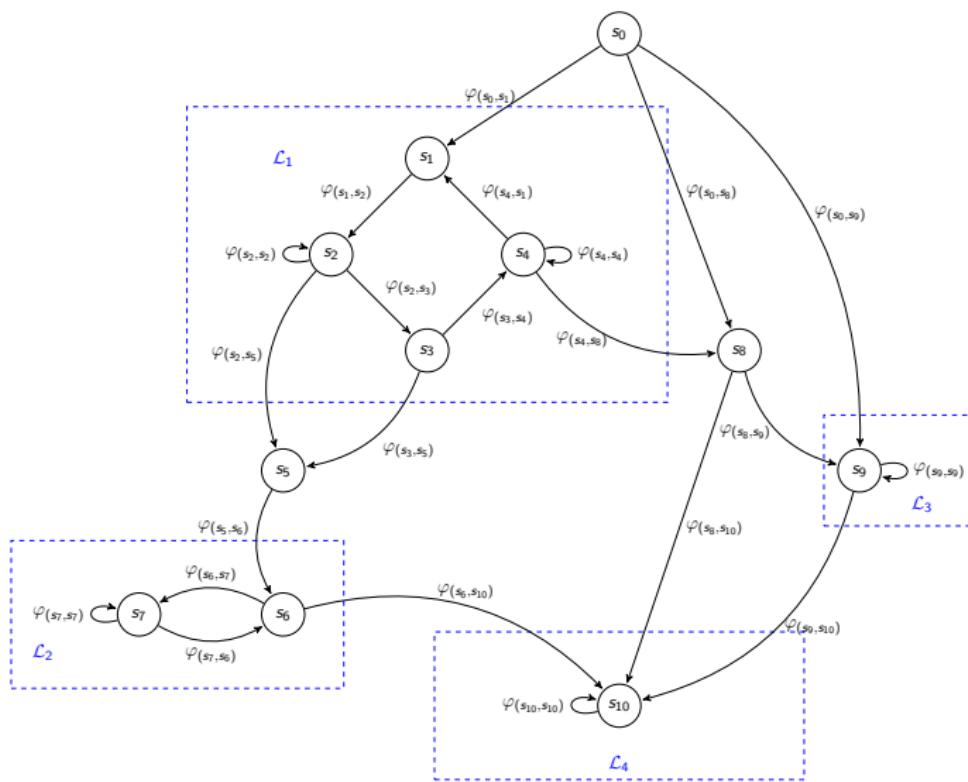
- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

EFSM Decomposition by Loop Statements



```
...
loop{
  p0: pause;
  ...
  pn: pause;
};

loop{
  q0: pause;
  ...
  qn: pause;
};

...
```

VCG using Loop Assertions

$$\frac{\mathcal{I}_{L_0}(s_{\text{root}}) \quad s \in L_i \vdash \mathcal{I}_{L_i}(s) \quad \mathcal{I}_{L_i} \rightarrow \Phi}{\Psi_{\text{reach}} \rightarrow \Phi}$$

Loop-Path and **Loop-Trans** methods:

- ▶ users provide \mathcal{I}_{L_i}
- ▶ induction base:
 - ▶ \mathcal{I}_{L_i} holds on each entering states of L_i
enumerate paths/transitions from one loop statement to the other
- ▶ induction step:
 - ▶ \mathcal{I}_{L_i} is preserved for the transitions inside L_i
enumerate transitions from one node to the other related to the same loop statement

Summary: VCG using Inductive Assertions

Induction-based VCG methods for Synchronous and Hybrid Programs

- ▶ users choose a VCG method and provide inductive assertions
- ▶ VCs are generated automatically for induction bases and steps
- ▶ external SMT solvers verify the VCs

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

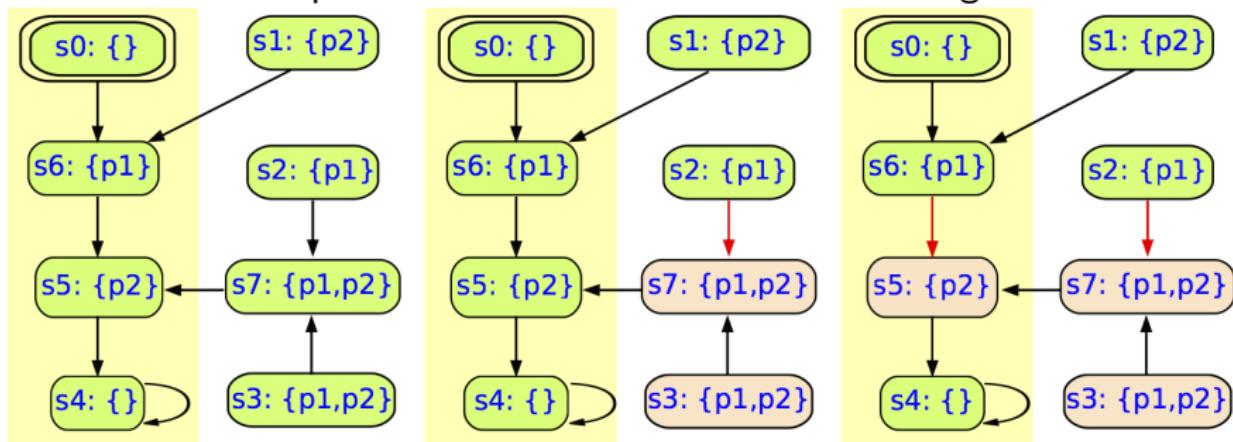
Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. \mathcal{K}

- ▶ a state transition system: $\mathcal{K} := (\mathcal{V}, \mathcal{I}, \mathcal{T})$
- ▶ a safety property: Φ
- ▶ all reachable states of \mathcal{K} are Φ -states

Φ is inductive w.r.t. \mathcal{K}

- ▶ induction base: all initial states are Φ -states
- ▶ induction step: Φ -states have no successor violating Φ



Property Directed Reachability

PDR

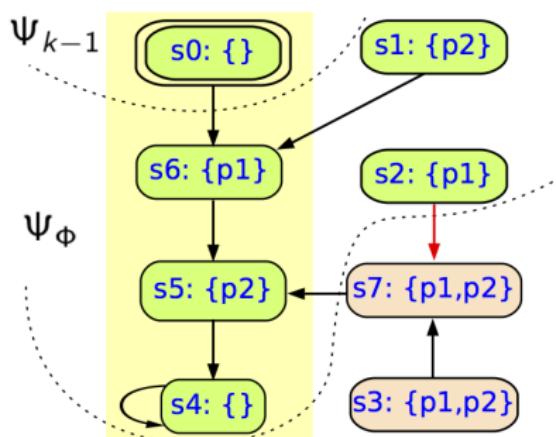
- ▶ counterexamples to induction (CTIs) identification and generalization
- ▶ relies on good estimation of the reachable states

Control-flow of Synchronous Program

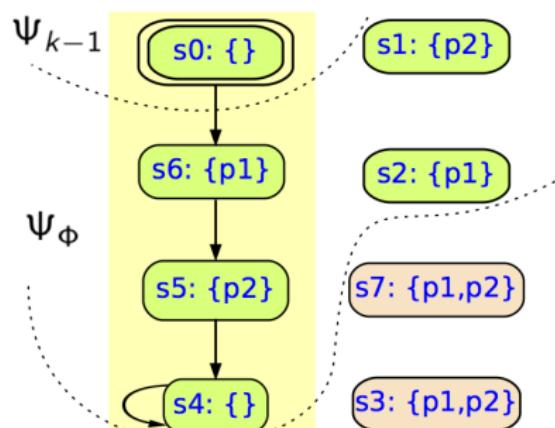
- ▶ not needed for synthesis
- ▶ useful for formal verification

Heuristic: Modify Transition Relation to generate less CTIs

Original Transition Relation:



Enhanced Transition Relation:



⇒ remove transitions from unreachable states by **control-flow invariants**

- ▶ linear-time static analysis
- ▶ symbolic reachability analysis restricted to control-flow

Control-flow Invariants by static Analysis

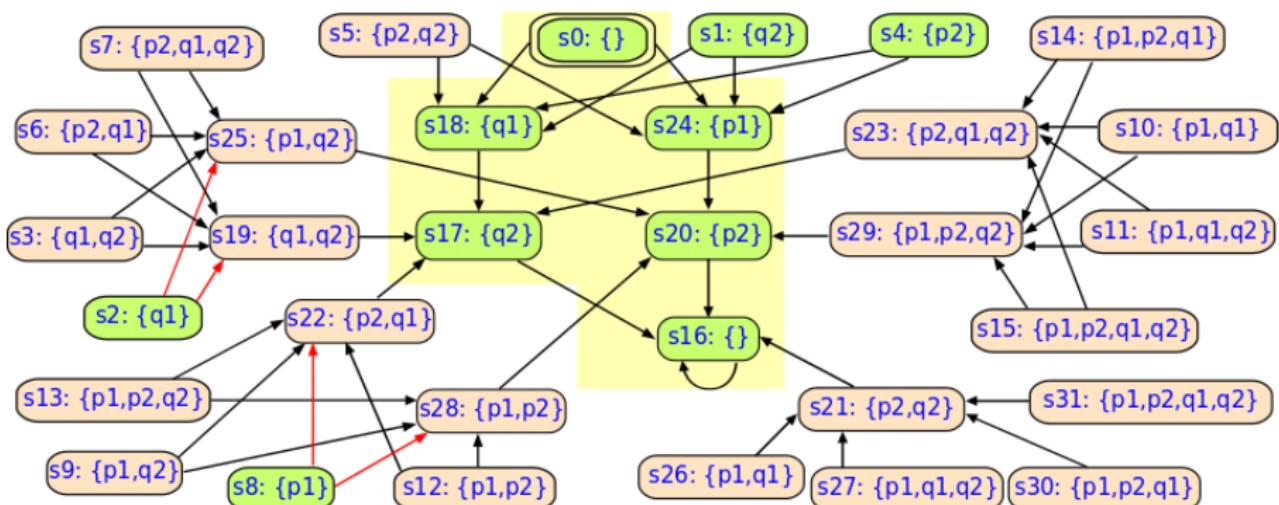
Control-flow can never be active at both substatements of sequences or conditional statements:

```
module SeqIte() {
    mem bool i;
    ...
    if (i) {
        ...
        p1: pause;
        ...
        p2: pause;
        ...
    } else {
        ...
        q1: pause;
        ...
        q2: pause;
        ...
    }
}
```

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \vee p2) \wedge (q1 \vee q2))$$

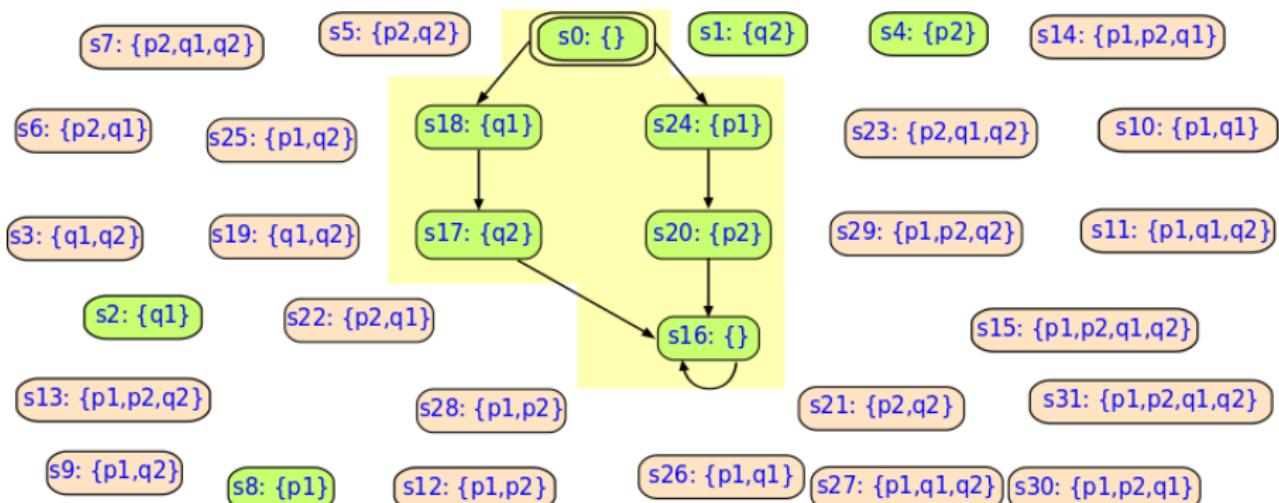
Control-flow Invariants by static Analysis

Original Transition Relation



Control-flow Invariants by static Analysis

Enhanced Transition Relation

with control-flow invariant by static analysis:

$$\neg(p_1 \wedge p_2) \wedge \neg(q_1 \wedge q_2) \wedge \neg((p_1 \vee p_2) \wedge (q_1 \vee q_2))$$

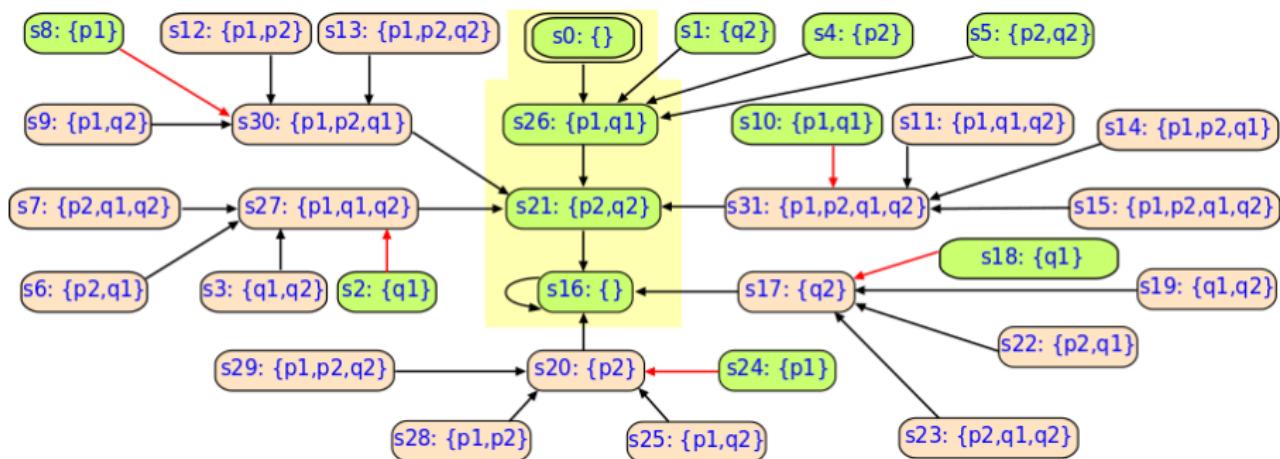
Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

```
module CfPar(){
    ...
    {
        ...
        p1: pause;      q1: pause;
        ...
        p2: pause;      q2: pause;
        ...
    }
}
```

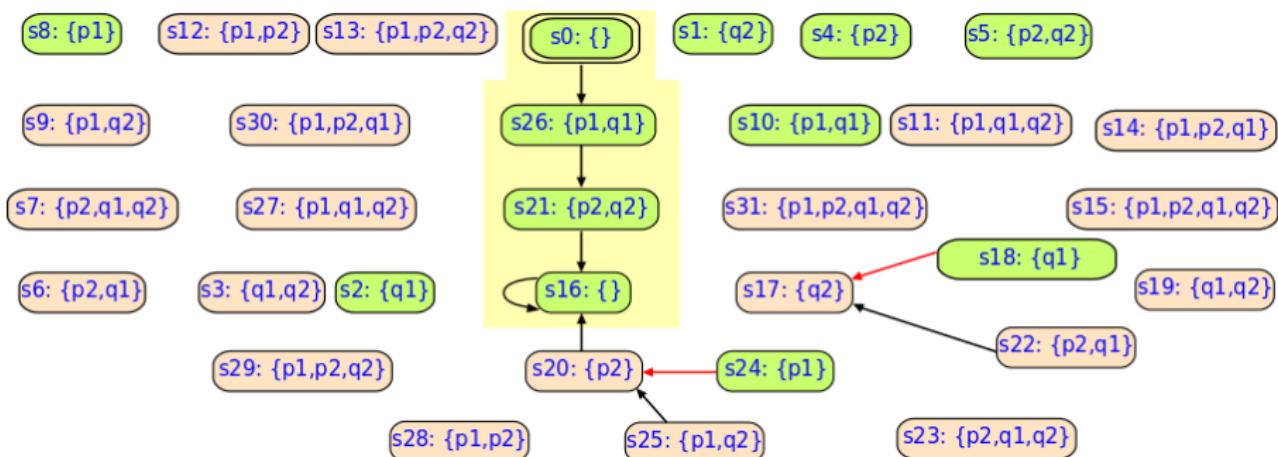
Control-flow Invariants by symbolic Analysis

Original Transition Relation



Control-flow Invariants by symbolic Analysis

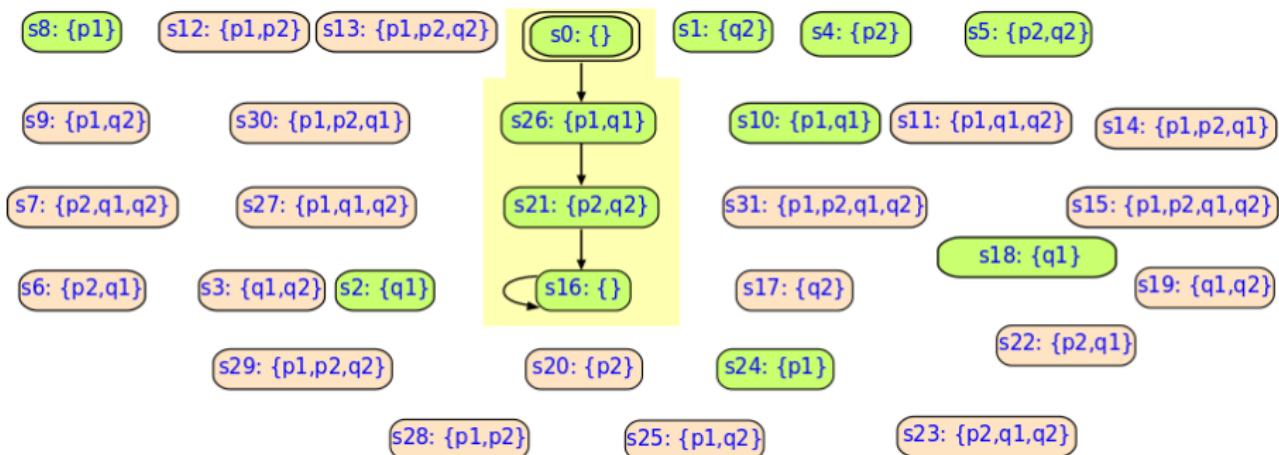
Enhanced Transition Relation

with control-flow invariant by static analysis:

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2)$$

Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

with control-flow invariant by symbolic analysis:

$$\neg(p1 \wedge p2) \wedge \neg(q1 \wedge q2) \wedge \neg((p1 \wedge q2) \vee (q1 \wedge p2))$$

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

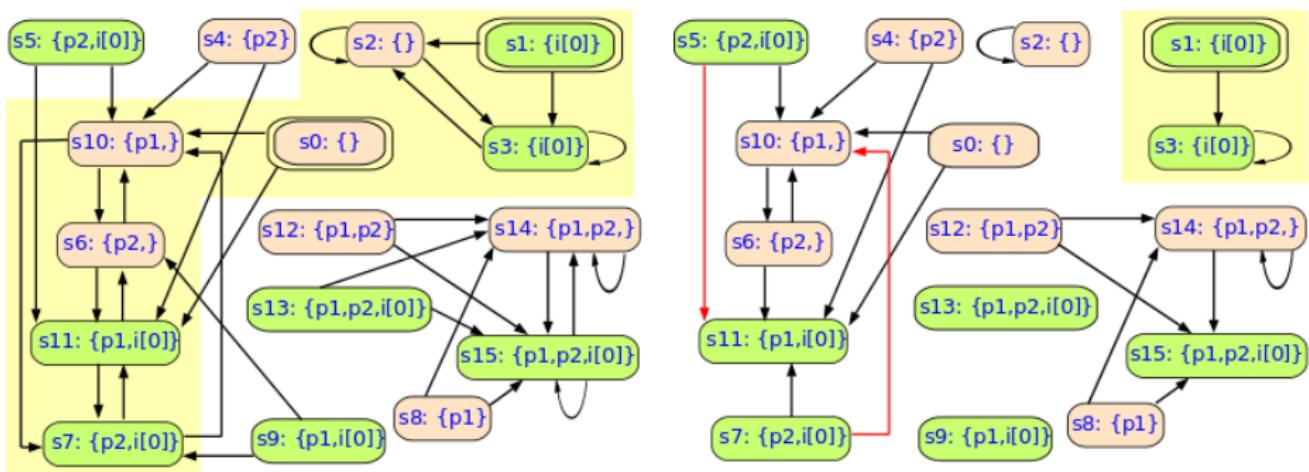
- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

CTI Identification and Generalization

$$\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$$

- ▶ symbolic representation of \mathcal{K}^{cf} is simpler than \mathcal{K}
- ▶ \mathcal{K}^{cf} conserves the approximation of unreachability in \mathcal{K}



CTI Identification and Generalization

$$\mathcal{K} := \mathcal{K}^{\text{cf}} \times \mathcal{K}^{\text{df}}$$

- ▶ symbolic representation of \mathcal{K}^{cf} is simpler than \mathcal{K}
- ▶ \mathcal{K}^{cf} conserves the approximation of unreachability in \mathcal{K}

unreachability of CTIs in \mathcal{K} can be proved by unreachability in \mathcal{K}^{cf}

- ▶ reachability of CTIs in \mathcal{K}
simpler unreachability tests in \mathcal{K}^{cf}

unreachability in \mathcal{K}^{cf} is independent on the dataflows

- ▶ generalize CTIs to narrow the reachable state approximations
if \mathcal{C} is unreachible in \mathcal{K}^{cf} , then generalize $\neg\mathcal{C}'$ instead of $\neg\mathcal{C}$:
 $\mathcal{C}' := \mathcal{C}|_{\mathcal{V}^{\text{cf}}}$ obtained from omitting the dataflow literals in \mathcal{C}

Summary: Control-flow Guided PDR Optimizations

Control-flow Guided PDR for Synchronous Programs

- ▶ modify transition relation to generate less CTIs by reachable control-flow states computation
 - ▶ linear-time static analysis
 - ▶ symbolic reachability analysis restricted to control-flow \Rightarrow different precision and runtime complexities
- ▶ identify CTIs with simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs by omitting dataflow literals

Outline

1. Motivation

- Synchronous and Hybrid Programs
- Proving Safety Properties

2. VCG using Inductive Assertions

- VCG using Control-flow Assertions
- VCG using SCC Assertions
- VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

- Transition Relation Modification
- CTI Identification and Generalization

4. Summary

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

- ▶ users choose a VCG method and provide inductive assertions
- ▶ VCs are generated automatically for induction bases and steps
- ▶ external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

- ▶ modify transition relation to generate less CTIs
- ▶ identify CTIs with simpler unreachability tests in \mathcal{K}^{cf}
- ▶ generalize CTIs by omitting dataflow literals

Assertions Numbers

- ▶ Loop-based \geq SCC-based \geq Transition-based

Assertions Information

- ▶ SCC-based \approx Transition-based \geq Loop-based

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time	VC Formats	SMT Solvers
▶ EFSM-Inv Time	▶ Σ -Format	▶ iSAT
▶ VCG Time	▶ \wedge -Format	▶ Z3
▶ SMT Time	▶ \vee -Format	▶ Z3 API ▶ Z3 API async

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time	VC Formats	SMT Solvers
▶ EFSM-Inv Time	▶ Σ -Format	▶ iSAT
▶ VCG Time	▶ \wedge -Format	▶ Z3
▶ SMT Time	▶ \vee -Format	▶ Z3 API ▶ Z3 API async

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time	VC Formats	SMT Solvers
▶ EFSM-Inv Time	▶ Σ -Format	▶ iSAT
▶ VCG Time	▶ \wedge -Format	▶ Z3
▶ SMT Time	▶ \vee -Format	▶ Z3 API ▶ Z3 API async

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time	VC Formats	SMT Solvers
▶ EFSM-Inv Time	▶ Σ -Format	▶ iSAT
▶ VCG Time	▶ \wedge -Format	▶ Z3
▶ SMT Time	▶ \vee -Format	▶ Z3 API ▶ Z3 API async

Appendix: CTI Generalization Example

```
macro N=?;
module ITELoop() {
  [N]bool i;
  i[0] = true;
  if (!i[0]) {
    loop{
      p1: pause;
      i[0] = false;
      p2: pause;
    }
  }
}
```

The set of boolean variables of module ITELoop

$$\mathcal{V}_N := \underbrace{\{i[0], \dots, i[N-1]\}}_{\mathcal{V}^{\text{df}}} \cup \underbrace{\{p1, p2, \text{run}\}}_{\mathcal{V}^{\text{cf}}}$$

\Rightarrow reduce at most 2^{N+3} to 2^3 times relative inductiveness reasoning

Appendix: Quartz Program

Synchronous Model of Computation

- ▶ Macro steps : consumption of 1 logical time unit
- ▶ Micro steps : no logical time consumption

Statements of Quartz (incomplete) [Schneider, 2009] [Bauer, 2012]

$x = \tau$ and next (x) = τ	(assignments)
assume (φ), assert (φ)	(assumptions and assertions)
$\ell : \text{pause}$	(start/end of macro step)
$S_1; S_2$	(sequences)
$S_1 \parallel S_2$	(synchronous concurrency)
if (σ) S_1 else S_2	(conditional)
do S while (σ)	(loops)
$\{\alpha\} S$	(local variable)
$M([params])$	(module call)
flow { $S_1; \dots; S_N;$ } until (σ)	(flow statements)
$x \leftarrow -\tau$	(continuous assignments)
drv (x) $\leftarrow -\tau$	(derivative assignments)

Appendix: Quartz Program

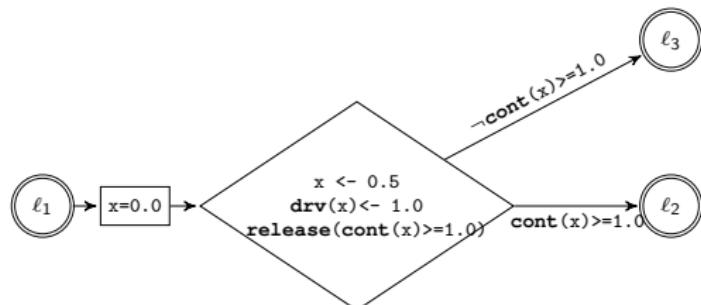
Synchronous Model of Computation

- ▶ Macro steps : consumption of 1 logical time unit
- ▶ Micro steps : no logical time consumption

Code Fragment

```
10:pause;
  x = 1.0;
  next(y) = x;
11:pause;
  x = 0.0;
12,13:flow{
  x <- 0.5;
  drv(x)<- 1.0;
}until(cont(x)>=1.0);
```

EFSM



Appendix: Quartz Program

Synchronous Model of Computation

- ▶ Macro steps : consumption of 1 logical time unit
- ▶ Micro steps : no logical time consumption

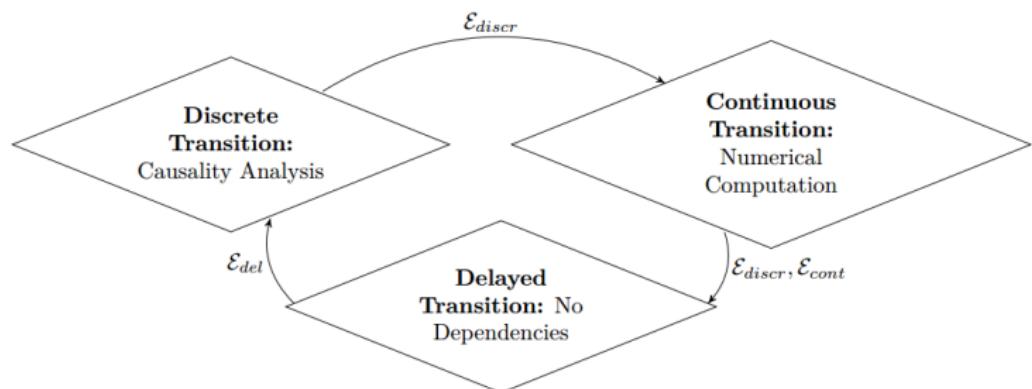


Figure 4.6: Execution of a Macro Step of Hybrid Quartz