
Induction-based Verification
of

Synchronous and Hybrid Programs

Xian Li

Embedded Systems Chair
Department of Computer Science

University of Kaiserslautern

November 10th 2017

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals

2 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Table of Contents

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

3 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

4 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Embedded Reactive Systems in Physical Environment

discrete reactions by embedded reactive system

I program variables are assigned by the system

I program variables = output of the system

I no physical time is consumed

⇒ synchronous reactive system

continuous phase by physical environment

I environment variables defined by differential equations

I environment variables = input of the system

I physical time is consumed

⇒ hybrid system

5 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Averest and Quartz

Averest (www.averest.org)

I Tool-set for the development of reactive systems

Quartz [Schneider, 2009] [Bauer, 2012]

I Synchronous language for modeling, simulation, and verification of
hybrid systems

6 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Bouncing Ball

module Ball(real ? init_h ,? init_v , int n)

{

hybrid real h, v;

h = init_h; v = init_v;

loop{
l0,l1:flow{

drv(h) <- cont(v);
drv(v) <- -9.81;

}until(cont(h) <=0 and cont(v) <=0);
next(v) = -v/2.0;

next(n) = n + 1 ;

l2,l3:flow {} until(true);
}

}

module TwoBalls (){

int n, n1, n2;

Ball (15.0,0,0,n1);

||

Ball (10.0 ,1.0 ,n2)

||

loop{ n = n1+n2; pause; }

}

7 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Bouncing Ball

state(0) of SCC(0):
labels:{}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>
 <true ==> h = init_h>
 <true ==> v = init_v>

state(1) of SCC(1):
labels:{l1}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>

!(cont(h)<=0&cont(v)<=0)

state(2) of SCC(1):
labels:{l0}

actions:
 <true ==> next(n) = n+1>
 <true ==> next(v) = (0-v)/2.00>

cont(h)<=0&cont(v)<=0

!(cont(h)<=0&cont(v)<=0)

cont(h)<=0&cont(v)<=0

state(3) of SCC(1):
labels:{l2}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>

true

!(cont(h)<=0&cont(v)<=0)

cont(h)<=0&cont(v)<=0

7 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

8 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

The Satisfiability Problem

SMT Problem

I combinations of propositional logic and non-linear arithmetic theories
over integers and reals with ∃-quantifiers.

Constraint Problem

I The general form of a MINLP:

minimize f (~x , ~y)
subject to g(~x , ~y) ≤ 0

~xl ≤ ~x ≤ ~xu xi ∈ R
~yl ≤ ~y ≤ ~yu yi ∈ Z

f (~x , ~y), g(~x , ~y): nonlinear functions
e.g. g(x , y) = x2 + xy2

NLP

LP

MILP MINLP

9 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

The Satisfiability Problem

SMT Problem

I combinations of propositional logic and non-linear arithmetic theories
over integers and reals with ∃-quantifiers.

Constraint Problem

I The general form of a MILP:

minimize f (~x , ~y)
subject to g(~x , ~y) ≤ 0

~xl ≤ ~x ≤ ~xu xi ∈ R
~yl ≤ ~y ≤ ~yu yi ∈ Z

f (~x , ~y), g(~x , ~y): linear functions
e.g. g(x , y) = ax + by

NLP

LP

MILP MINLP

9 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

The Satisfiability Problem

SMT Problem

I combinations of propositional logic and non-linear arithmetic theories
over integers and reals with ∃-quantifiers.

Constraint Problem

I The general form of a NLP:

minimize f (~x)
subject to g(~x) ≤ 0

~xl ≤ ~x ≤ ~xu xi ∈ R

f (~x , ~y), g(~x , ~y): nonlinear functions
e.g. g(x , y) = x2 + xy2

NLP

LP

MILP MINLP

9 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

The Satisfiability Problem

SMT Problem

I combinations of propositional logic and non-linear arithmetic theories
over integers and reals with ∃-quantifiers.

Constraint Problem

I The general form of a MINLP:

minimize f (~x , ~y)
subject to g(~x , ~y) ≤ 0

~xl ≤ ~x ≤ ~xu xi ∈ R
~yl ≤ ~y ≤ ~yu yi ∈ Z

f (~x , ~y), g(~x , ~y): nonlinear functions
e.g. g(x , y) = x2 + xy2

NLP

LP

MILP MINLP

9 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Decidability and Tools

NLP Problems:

KeYmaera, MetiTTarski,
IMITATOR, SpaceEx,

QEPCAD, Redlog,
Reduce, TReX, dReal

Linear Problems:

HySAT, BACH

MILP Problems:

MathSAT5, CVC4

MINLP Problems:

 iSAT, Bonmin, Z3

10 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Safety Property Verification

model checking

I reachability of states is undecidable

I approximation and abstraction

theorem proving

I interaction with users

I set up proof goals and apply proof rules until a proof is obtained
I Hoare calculus: {ϕ} S {ψ} for Software Verification

I users provide invariants, pre- and postconditions
I verification condition generation (VCG): automatic
I proving VCs is done separately, e.g., using SMT solvers

11 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Hoare calculus for Synchronous Programs

Hoare calculus can not be directly applied! [Gesell, 2014]

I impossible to decompose proof goal along the program syntax
I abstraction of several micro steps to one macro step
I control-flow can rest at many places at the same time
I micro steps may correspond to different places in the program

I unless using goto statements or additional label variables

⇒ VCG using Inductive Assertions

12 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Property Directed Reachability

PDR

I very efficient verification method for hardware circuit verification

I relies on good estimation of the reachable states

Synchronous Languages: e.g. Quartz

I high-level languages for hardware synthesis

I useful control-flow information for verification

⇒ Control-flow Guided PDR Optimizations

13 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Property Directed Reachability

PDR

I very efficient verification method for hardware circuit verification

I relies on good estimation of the reachable states

Synchronous Languages: e.g. Quartz

I high-level languages for hardware synthesis

I useful control-flow information for verification

⇒ Control-flow Guided PDR Optimizations

13 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

14 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

EFSM Decomposition by Control-flow States

s0

s1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)

ϕ(s3,s4)

ϕ(s4,s1)

ϕ(s4,s4)

s5

ϕ(s2,s5)

ϕ(s3,s5)

s6s7

ϕ(s5,s6)

ϕ(s6,s7)

ϕ(s7,s6)

ϕ(s7,s7)

s8

s9

ϕ(s0,s9)

ϕ(s4,s8)

ϕ(s9,s9)

ϕ(s8,s9)

ϕ(s0,s8)

s10ϕ(s10,s10)

ϕ(s9,s10)

ϕ(s6,s10)

ϕ(s8,s10)

15 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

VCG using Control-flow Assertions

Is → Φ

Ψreach → Φ

Transition-based method:

I users provide Is
I induction base:

I Isroot holds on the initial control-flow state

I induction step:

I Is holds on each non-initial control-flow state
enumerate transitions from one node to the other

16 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

17 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

EFSM Decomposition by SCCs

s0

s1C1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)

ϕ(s3,s4)

ϕ(s4,s1)

ϕ(s4,s4)

s5

ϕ(s2,s5)

ϕ(s3,s5)

s6

C2

s7

ϕ(s5,s6)

ϕ(s6,s7)

ϕ(s7,s6)

ϕ(s7,s7)

s8

s9

C3

ϕ(s0,s9)

ϕ(s4,s8)

ϕ(s9,s9)

ϕ(s8,s9)

ϕ(s0,s8)

s10

C4

ϕ(s10,s10)

ϕ(s9,s10)

ϕ(s6,s10)

ϕ(s8,s10)

18 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

VCG using SCC Assertions

IC0(sroot) s ∈ Ci ` ICi
(s) ICi

→ Φ

Ψreach → Φ

SCC-Path and SCC-Trans methods:

I users provide ICi

I induction base:

I ICi holds on each entering state(s) of Ci

enumerate paths/transitions from one SCC to the other

I induction step:

I ICi is preserved for the transitions inside Ci

enumerate transitions from one node to the other inside the same SCC

19 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

20 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

EFSM Decomposition by Loop Statemetns

s0

s1L1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)

ϕ(s3,s4)

ϕ(s4,s1)

ϕ(s4,s4)

s5

ϕ(s2,s5)

ϕ(s3,s5)

s6

L2

s7

ϕ(s5,s6)

ϕ(s6,s7)

ϕ(s7,s6)

ϕ(s7,s7)

s8

s9

L3

ϕ(s0,s9)

ϕ(s4,s8)

ϕ(s9,s9)

ϕ(s8,s9)

ϕ(s0,s8)

s10

L4

ϕ(s10,s10)

ϕ(s9,s10)

ϕ(s6,s10)

ϕ(s8,s10)

...

loop{
p0: pause;
...

pn: pause;
};

loop{
q0: pause;
...

qn: pause;
};

...

21 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

VCG using Loop Assertions

IL0(sroot) s ∈ Li ` ILi (s) ILi → Φ

Ψreach → Φ

Loop-Path and Loop-Trans methods:

I users provide ILi
I induction base:

I ILi holds on each entering states of Li
enumerate paths/transitions from one loop statement to the other

I induction step:

I ILi is preserved for the transitions inside Li
enumerate transitions from one node to the other related to the same
loop statement

22 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Summary: VCG using Inductive Assertions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs

23 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

24 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. K
I a state transition system: K := (V, I, T)
I a safety property: Φ
I all reachable states of K are Φ-states

Φ is inductive w.r.t. K
I induction base: all initial states are Φ-states
I induction step: Φ-states have no successor violating Φ

25 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Property Directed Reachability

PDR

I counterexamples to induction (CTIs) identification and generalization

I relies on good estimation of the reachable states

Control-flow of Synchronous Program

I not needed for synthesis

I useful for formal verification

26 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Heuristic: Modify Transition Relation to generate less CTIs

Original Transition Relation: Enhanced Transition Relation:

⇒ remove transitions from unreachable states by control-flow invariants

I linear-time static analysis

I symbolic reachability analysis restricted to control-flow

27 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences or
conditional statements:

module SeqIte (){

mem bool i;

...

if (i) {

...

p1: pause;
...

p2: pause;
...

} else {

...

q1: pause;
...

q2: pause;
...

}

}

¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))

28 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by static Analysis

Original Transition Relation

29 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by static Analysis

Enhanced Transition Relation

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))

29 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

module CfPar(){

... ...

{ {

... ...

p1: pause; q1: pause;
... || ...

p2: pause; q2: pause;
... ...

} }

}

30 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by symbolic Analysis

Original Transition Relation

31 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2)

31 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

with control-flow invariant by symbolic analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∧ q2) ∨ (q1 ∧ p2))

32 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

33 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

CTI Identification and Generalization

K := Kcf ×Kdf

I symbolic representation of Kcf is simpler than K
I Kcf conserves the approximation of unreachability in K

34 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

CTI Identification and Generalization

K := Kcf ×Kdf

I symbolic representation of Kcf is simpler than K
I Kcf conserves the approximation of unreachability in K

unreachability of CTIs in K can be proved by unreachability in Kcf

I reachability of CTIs in K
simpler unreachability tests in Kcf

unreachability in Kcf is independent on the dataflows

I generalize CTIs to narrow the reachable state approximations
if C is unreachable in Kcf , then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C

34 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Summary: Control-flow Guided PDR Optimizations

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs by reachable
control-flow states computation

I linear-time static analysis
I symbolic reachability analysis restricted to control-flow

⇒ different precision and runtime complexities

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals

35 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

36 / 41

Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals

37 / 41

Appendix: VCG Methods Comparison

Assertions Numbers

I Loop-based ≥ SCC-based ≥ Transition-based

Assertions Information

I SCC-based ≈ Transition-based ≥ Loop-based

38 / 41

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time

I EFSM-Inv Time

I VCG Time

I SMT Time

VC Formats

I
∑

-Format

I
∧

-Format

I
∨

-Format

SMT Solvers

I iSAT

I Z3

I Z3 API

I Z3 API async

39 / 41

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time

I EFSM-Inv Time

I VCG Time

I SMT Time

VC Formats

I
∑

-Format

I
∧

-Format

I
∨

-Format

SMT Solvers

I iSAT

I Z3

I Z3 API

I Z3 API async

39 / 41

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time

I EFSM-Inv Time

I VCG Time

I SMT Time

VC Formats

I
∑

-Format

I
∧

-Format

I
∨

-Format

SMT Solvers

I iSAT

I Z3

I Z3 API

I Z3 API async

39 / 41

Appendix: Backend Tools and Input VC-formats Comparison

Execution Time

I EFSM-Inv Time

I VCG Time

I SMT Time

VC Formats

I
∑

-Format

I
∧

-Format

I
∨

-Format

SMT Solvers

I iSAT

I Z3

I Z3 API

I Z3 API async

39 / 41

Appendix: CTI Generalization Example

macro N=?;

module ITELoop () {

[N]bool i;

i[0] = true;
if (!i[0]) {

loop{
p1: pause;
i[0] = false;
p2: pause;

}

}

}

The set of boolean variables of module ITELoop

VN := {i[0], . . . , i[N-1]}︸ ︷︷ ︸
Vdf

∪ {p1, p2, run}︸ ︷︷ ︸
Vcf

⇒ reduce at most 2N+3 to 23 times relative
inductiveness reasoning

40 / 41

Appendix: Quartz Program

Synchronous Model of Computation

I Macro steps : consumption of 1 logical time unit

I Micro steps : no logical time consumption

Statements of Quartz (incomplete) [Schneider, 2009] [Bauer, 2012]

x = τ and next(x) = τ (assignments)
assume(ϕ), assert(ϕ) (assumptions and assertions)
` : pause (start/end of macro step)
S1; S2 (sequences)
S1 ‖ S2 (synchronous concurrency)
if(σ)S1elseS2 (conditional)
doSwhile(σ) (loops)
{α S} (local variable)
M([params]) (module call)

flow{S1; ...;SN ; }until(σ) (flow statements)
x<-τ (continuous assignments)
drv(x)<-τ (derivative assignments)

41 / 41

Appendix: Quartz Program

Synchronous Model of Computation

I Macro steps : consumption of 1 logical time unit

I Micro steps : no logical time consumption

Code Fragment
l0:pause;

x = 1.0;

next(y) = x;

l1:pause;
x = 0.0;

l2,l3:flow{
x <- 0.5;

drv(x)<- 1.0;

}until(cont(x) >=1.0);

EFSM

`1 x=0.0

x <- 0.5

drv(x)<- 1.0

release(cont(x)>=1.0)
`2

`3

cont(x)>=1.0

¬co
nt
(x
)>
=1
.0

41 / 41

Appendix: Quartz Program

Synchronous Model of Computation

I Macro steps : consumption of 1 logical time unit

I Micro steps : no logical time consumption

41 / 41

	Motivation
	Synchronous and Hybrid Programs
	Proving Safety Properties

	VCG using Inductive Assertions
	VCG using Control-flow Assertions
	VCG using SCC Assertions
	VCG using Loop Assertions

	Control-flow Guided PDR Optimizations
	Transition Relation Modification
	CTI Identification and Generalization

	Summary
	Appendix

