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Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs
» users choose a VCG method and provide inductive assertions
» VCs are generated automatically for induction bases and steps
> external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs
» modify transition relation to generate less CTls
» identify CTls with simpler unreachability tests in K

> generalize CTls by omitting dataflow literals
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Motivation
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Embedded Reactive Systems in Physical Environment

discrete reactions by embedded reactive system

> program variables are assigned by the system
» program variables = output of the system
» no physical time is consumed

= synchronous reactive system

continuous phase by physical environment

> environment variables defined by differential equations
> environment variables = input of the system

> physical time is consumed

= hybrid system
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Motivation
0080

Averest and Quartz

Averest (www.averest.org)

» Tool-set for the development of reactive systems

Quartz [Schneider, 2009] [Bauer, 2012]

» Synchronous language for modeling, simulation, and verification of
hybrid systems
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Bouncing Ball

module Ball(real ? init_h,? init_v, int n)

{

hybrid real h, v;
h = init_h; v = init_v; 15 | 4447h1 I
loop{ —h2
10,11: flow{ nl
drv(h) <- cont(v);
drv(v) <- -9.81; 10 —n2
}until (cont (h) <=0 and cont(v)<=0); ——n
next(v) = -v/2.0;
next(n) = n + 1 ;
12,13:flow {} until(true); 50
}

}

module TwoBalls (){
int n, nl, n2;
Ball(15.0,0,0,n1);
I 0 1 2 3
Ball(10.0,1.0,n2) .
|| time
loop{ n = nl+n2; pause; }
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Motivation
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Bouncing Ball

state(0) of SCC(0):
labels: {}

actions:

<true ==> der(h) <- cont(v)>
<true ==> der(v) <- -9.81>
<true > h = init_h>

<true > v = init_v>

state(1l) of scc(l)
labels: {11}
! (cont (h) <=0&cont (v) <=0)
actions:
<true der (h) <- cont(v)>
<true der (v) <- -9.81> cont (h) <=0&cont (v) <=0

cont (h) <=0&cont (v) <=0

! (cont (h) <=0&cont (v) <=0)

state(2) of scc(l):
labels: {10}

actions:

! (cont (h) <=0&cont (v) <=0) :Eiﬁ:

next (n) = n+1>
next(v) = (0-v)/2.00>

cont (h) <=0&cont (v) <=0 true

state(3) of sScc(l)
labels: {12}
actions:
<- cont(

I= 9, 81>
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Motivation
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The Satisfiability Problem

SMT Problem

» combinations of propositional logic and non-linear arithmetic theories

over integers and reals with 3-quantifiers.

Constraint Problem

» The general form of a MINLP:
LP
minimize  f(X,y)

subject to  g(x,y) <0
X<X<X, xi€R Linear
_7 < )_;S _‘u yi € Z

f(x,¥), g(X,y): nonlinear functions M

eg. g(x,y)= X% + xy?

Real NLP

Non-linear

MINLP

Mixed Integer
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Decidability and Tools

NLP Problems:

Linear Problems: Real
KeYmaera, MetiTTarski,
IMITATOR, SpaceEx,
HySAT, BACH QEPCAD, Redlog,
Reduce, TReX, dRea
Linear Non-linear
MILP Problems: MINLP Problems:
MathSATS5, CVC4 iSAT, Bonmin, Z3

Mixed Integer
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Safety Property Verification

model checking

> reachability of states is undecidable

> approximation and abstraction

theorem proving

> interaction with users

> set up proof goals and apply proof rules until a proof is obtained
» Hoare calculus: {¢} S {4} for Software Verification

» users provide invariants, pre- and postconditions
» verification condition generation (VCG): automatic
» proving VCs is done separately, e.g., using SMT solvers
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Hoare calculus for Synchronous Programs

Hoare calculus can not be directly applied! [Gesell, 2014]

» impossible to decompose proof goal along the program syntax

» abstraction of several micro steps to one macro step
» control-flow can rest at many places at the same time
» micro steps may correspond to different places in the program

> unless using goto statements or additional label variables

= VCG using Inductive Assertions
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Property Directed Reachability

PDR

» very efficient verification method for hardware circuit verification

Synchronous Languages: e.g. Quartz

» high-level languages for hardware synthesis

= Control-flow Guided PDR Optimizations
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Motivation
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Property Directed Reachability

PDR

» very efficient verification method for hardware circuit verification

> relies on good estimation of the reachable states

Synchronous Languages: e.g. Quartz

» high-level languages for hardware synthesis

» useful control-flow information for verification

= Control-flow Guided PDR Optimizations
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EFSM Decomposition by Control-flow States
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VCG using Inductive Assertions
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VCG using Control-flow Assertions

s —

Transition-based method:

> users provide Zg
» induction base:
> 7.

‘Sroot

holds on the initial control-flow state
» induction step:

» T holds on each non-initial control-flow state
enumerate transitions from one node to the other
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VCG using Inductive Assertions
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VCG using SCC Assertions

ICO(sroot) seCGhE IC'.(S) IC,- —
wreach — &

SCC-Path and SCC-Trans methods:

» users provide Zc,
» induction base:

> Zc, holds on each entering state(s) of C;
enumerate paths/transitions from one SCC to the other

> induction step:

> I, is preserved for the transitions inside C;

enumerate transitions from one node to the other inside the same SCC

19/41



VCG using Inductive Assertions
€000

Outline

1. Motivation

2. VCG using Inductive Assertions

o VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations

4. Summary

20/ 41



VCG using Inductive Assertions
0000

EFSM Decomposition by Loop Stateme

loop{
1) <SS W p0: pause;
pn: pause;
};
loop{
q0: pause;

Ly

Pls1.52)

qn: pause;

};

%st)Ci‘i,
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VCG using Inductive Assertions
0080

VCG using Loop Assertions

ILo(sroot) sE Li H IL,'(S) ILi - @
wreach —

Loop-Path and Loop-Trans methods:

> users provide Z;,
» induction base:

» 7;, holds on each entering states of L;
enumerate paths/transitions from one loop statement to the other

» induction step:

» T, is preserved for the transitions inside L;
enumerate transitions from one node to the other related to the same
loop statement
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VCG using Inductive Assertions
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Summary: VCG using Inductive Assertions

Induction-based VCG methods for Synchronous and Hybrid Programs
» users choose a VCG method and provide inductive assertions
» VCs are generated automatically for induction bases and steps

» external SMT solvers verify the VCs
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Control-flow Guided PDR Optimizations
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Safety Property Verification by Induction

Target: Prove ¢ is valid w.r.t.
» a state transition system: K := (V,Z,T)
> a safety property: ¢
> all reachable states of K are ®-states
® is inductive w.r.t.
> induction base: all initial states are ®-states
> induction step: ®-states have no successor violating ¢

o) @Qy ) @

s5: {p2Pe—(57: {pL.p2}) [s5: {p2} s7: {p1,p2} ss {p2}j<_(s7 {p1,p2})

f
) @3:{p1,pzj [s4:{}j> €3:{p1,pZB (54:1{})) 63: {pl,pZD
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Control-flow Guided PDR Optimizations
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Property Directed Reachability

PDR

» counterexamples to induction (CTls) identification and generalization

> relies on good estimation of the reachable states

Control-flow of Synchronous Program

» not needed for synthesis

» useful for formal verification
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Control-flow Guided PDR Optimizations
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Heuristic: Modify Transition Relation to generate less CTls

Original Transition Relation: Enhanced Transition Relation:

o =0 .- (e )

s6: {pl}

Ulq) e

[55: {p2}) ;':@7: {p1.p2})
ax T ua
ED ewm  .ED €T

= remove transitions from unreachable states by control-flow invariants

> linear-time static analysis

» symbolic reachability analysis restricted to control-flow
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Control-flow Guided PDR Optimizations
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Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences or
conditional statements:

module SeqIte(){
mem bool i;

if (1) {
ﬁi; pause;
éé; pause;
} else {
éi; pause;
q2: pause;

}
}

—(pt Ap2) A =(ql Ag2) A =((pl Vp2) A(ql Vq2))
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Control-flow Guided PDR Optimizations
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Control-flow Invariants by static Analysis

Original Transition Relation

1,927) s11: {pl.ql,q@

s2: {ql}

63: {a

515: {pl.,p2,ql,92}
s31: {p1,p2.q1,92}
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Control-flow Guided PDR Optimizations
000008000

Control-flow Invariants by static Analysis

Enhanced Transition Relation

s5: {p242})  f(s0: ) (SL:{a2})  (s4:{p2}) (514: {plp2.91})
(sls:fal}) (s24: {p1}) (23: tp2a1a2))  (510:{pLall)

(3 (aLa2)) £19: {al,02) (51?: {qz}) [sZD:{pZ}) (s29: {pLp2.02}) (s11: {pl.aL,a2))

s2: {gl} [522: {pz.ql}] \
(8 {p1})  (s12:{pLpP2}) @2?: {qul.qZ}j@BD: {p1.p2,q1})

with control-flow invariant by static analysis:
~(p1 Ap2) A (a1 Ag2) A((p1V p2) A(ql V q2))
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Control-flow Guided PDR Optimizations
000000800

Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

module CfPar (){
{ {
pl: pause; ql: pause;

p2: pause; q2: pause;
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Control-flow Guided PDR Optimizations

[e]e]e]e]elele] Jo

Control-flow Invariants by symbolic Analysis

Original Transition Relation

s26: {pl,q1} "”’Glo: {pl,qlD @11: {pl,ulﬁqZD

s8: {p1} @2: (DIJDZD @13: {DLDZJQZD [( 0: {} )]

27: {pl,ql,qz})—. s21: {p2,a2} 631: {pl.p2,91,02))
L 1 l
@3: {ql.qZB Gz: {qlD CISIE: {}) {517: (a2} s (19: {al.92})

i 22: {p2,q1

(529: {pL.p2.02}) (szu:{p;:}] (524: {pl}j i
/ AN

@28: {pl,pZB @25: {pl,qZB s23: {p2,qL.q2}

(57: {p2.9L.q2}

31/41



Control-flow Guided PDR Optimizations
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Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

(B:{P1)) (S12: {pLp2)(13: {p1p2.02}) (@ 0))

!

(526: {pl,ql}) 610: {pl,qlD @11: {p1,q1.q29
!

@7: {pZialiqZD @2?: {pl,ql,qz}j (521: {pz,qz}) (31- {pl,p2.q1, a2)

l 518 {q1}
g6 {p201) (3 {ala2)) (i {a1) G164 (7 {qz}]’/- W
{

(520: {p2F)}e—(524: {p1})
™
@Eela) @ pa)

with control-flow invariant by static analysis:
~(p1 AP2) A —(ql A q2)
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Control-flow Guided PDR Optimizations
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Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

(s26: {:lal.ql}) (510: {pL,q1}) (S11: {pLala2})
(7: {p2qLa2}) (27 {plala2}) (s21: {iz.qz}) 3L {pLp2.ala2))
@5: {pz.q@ @3: {ql.qZB Gz; {q@ (Islsl; {}) (517: {qZ})

(s20:{p2y) (524 {p1})

(28: {p1p2}) €25 {pLa2))

with control-flow invariant by symbolic analysis:
~(p1 AP2) A (a1 Ag2) A=((p1 A q2) V (a1 AP2))
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Control-flow Guided PDR Optimizations

(o] Je}

CTI Identification and Generalization

K = K x K9f
» symbolic representation of K is simpler than K
» K conserves the approximation of unreachability in K

(s13: {pl.p2.iloT}

s15: {pl,p2.i[0]}

[5?: {pz.ilo@—
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Control-flow Guided PDR Optimizations
feX Je)

CTI Identification and Generalization

K = K x K9f
» symbolic representation of K is simpler than K
» K conserves the approximation of unreachability in K

unreachability of CTls in XC can be proved by unreachability in A

» reachability of CTls in IC
simpler unreachability tests in Af

unreachability in K is independent on the dataflows

» generalize CTls to narrow the reachable state approximations
if C is unreachable in K, then generalize —=C’ instead of —C:
C":= Cjyer obtained from omitting the dataflow literals in C
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Control-flow Guided PDR Optimizations
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Summary: Control-flow Guided PDR Optimizations

Control-flow Guided PDR for Synchronous Programs

» modify transition relation to generate less CTls by reachable
control-flow states computation

> linear-time static analysis
» symbolic reachability analysis restricted to control-flow

= different precision and runtime complexities
» identify CTls with simpler unreachability tests in K<

> generalize CTls by omitting dataflow literals
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Summary

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs
» users choose a VCG method and provide inductive assertions
» VCs are generated automatically for induction bases and steps
> external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs
» modify transition relation to generate less CTls
» identify CTls with simpler unreachability tests in K

> generalize CTls by omitting dataflow literals
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Appendix: VCG Methods Comparison

Assertions Numbers

» Loop-based > SCC-based > Transition-based

Assertions Information

» SCC-based = Transition-based > Loop-based
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Appendix: Backend Tools and Input VC-formats Comparison

Execution Time VC Formats SMT Solvers
» EFSM-Inv Time » > -Format > iSAT
» VCG Time » A-Format > 73
> SMT Time » \/-Format » Z3 API

> Z3 API async

39 /41
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Appendix: CTI Generalization Example

macro N=7;

module ITELoop() {

[N]lbool

i;

i[0] = true;
if (rifol) {

loop{
pl:
ifo]
p2:

pause;
= false;
pause;

The set of boolean variables of module ITELoop

W = {ilo0l,...,i[N-11} U {p1,p2,run}

TV TV
pdf yef

= reduce at most 23 to 23 times relative
inductiveness reasoning
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Appendix: Quartz Program

Synchronous Model of Computation

» Macro steps : consumption of 1 logical time unit

» Micro steps : no logical time consumption

Statements of Quartz (incomplete) [Schneider, 2009] [Bauer, 2012]

x =7 and next(x) =7
assume(p), assert(p)
{ : pause

51552

S S

if(c)SielseS;
doSwhile(o)

{a S}

M([params])

£low{Si;...; Sy; tuntil(o)
X<-T
drv(x)<-7

(assignments)

(assumptions and assertions)
(start/end of macro step)
(sequences)

(synchronous concurrency)
(conditional)

(loops)

(local variable)

(module call)

(flow statements)
(continuous assignments)

(derivative assignments)
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Appendix: Quartz Program

Synchronous Model of Computation

» Macro steps : consumption of 1 logical time unit

» Micro steps : no logical time consumption

Code Fragment

10:pause;
x = 1.0;
next (y) = x;
11:pause;
x = 0.0;
12,13:flow{
x <- 0.5;
drv(x)<- 1.0;
}until(cont (x)>=1.0);

EFSM

drv(x)<- 1.0
release(cont (x)>=1.0

cont(x)>=1.

41/41



Appendix: Quartz Program

Synchronous Model of Computation

» Macro steps : consumption of 1 logical time unit

» Micro steps : no logical time consumption

Ediscr

. Continuous
Discrete re
s Transition:
Transition: .
Numerical

Causality Analysis Computation

Ediscrs Econt

Delayed
Transition: No
Dependencies

Figure 4.6: Execution of a Macro Step of Hybrid Quartz
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