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Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals
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Embedded Reactive Systems in Physical Environment

discrete reactions by embedded reactive system

I program variables are assigned by the system

I program variables = output of the system

I no physical time is consumed

⇒ synchronous reactive system

continuous phase by physical environment

I environment variables defined by differential equations

I environment variables = input of the system

I physical time is consumed

⇒ hybrid system
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Averest and Quartz

Averest (www.averest.org)

I Tool-set for the development of reactive systems

Quartz [Schneider, 2009] [Bauer, 2012]

I Synchronous language for modeling, simulation, and verification of
hybrid systems
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Bouncing Ball

module Ball(real ? init_h ,? init_v , int n)

{

hybrid real h, v;

h = init_h; v = init_v;

loop{
l0,l1:flow{

drv(h) <- cont(v);
drv(v) <- -9.81;

}until(cont(h) <=0 and cont(v) <=0);
next(v) = -v/2.0;

next(n) = n + 1 ;

l2,l3:flow {} until(true);
}

}

module TwoBalls (){

int n, n1, n2;

Ball (15.0,0,0,n1);

||

Ball (10.0 ,1.0 ,n2)

||

loop{ n = n1+n2; pause; }

}
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Bouncing Ball

state(0) of SCC(0):
labels:{}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>
 <true ==> h = init_h>
 <true ==> v = init_v>

state(1) of SCC(1):
labels:{l1}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>

!(cont(h)<=0&cont(v)<=0)

state(2) of SCC(1):
labels:{l0}

actions:
 <true ==> next(n) = n+1>
 <true ==> next(v) = (0-v)/2.00>

cont(h)<=0&cont(v)<=0

!(cont(h)<=0&cont(v)<=0)

cont(h)<=0&cont(v)<=0

state(3) of SCC(1):
labels:{l2}

actions:
 <true ==> der(h) <- cont(v)>
 <true ==> der(v) <- -9.81>

true

!(cont(h)<=0&cont(v)<=0)

cont(h)<=0&cont(v)<=0
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The Satisfiability Problem

SMT Problem

I combinations of propositional logic and non-linear arithmetic theories
over integers and reals with ∃-quantifiers.

Constraint Problem

I The general form of a MINLP:

minimize f (~x , ~y)
subject to g(~x , ~y) ≤ 0

~xl ≤ ~x ≤ ~xu xi ∈ R
~yl ≤ ~y ≤ ~yu yi ∈ Z

f (~x , ~y), g(~x , ~y): nonlinear functions
e.g. g(x , y) = x2 + xy2

NLP
 

LP
 

MILP MINLP
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Decidability and Tools

 

 

NLP Problems:
 

KeYmaera, MetiTTarski,
IMITATOR, SpaceEx, 

QEPCAD, Redlog, 
Reduce, TReX, dReal

 
 
 

Linear Problems:
 

HySAT, BACH
 

MILP Problems:
 

MathSAT5, CVC4
 
 
 

MINLP Problems:
 

 iSAT, Bonmin, Z3
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Safety Property Verification

model checking

I reachability of states is undecidable

I approximation and abstraction

theorem proving

I interaction with users

I set up proof goals and apply proof rules until a proof is obtained
I Hoare calculus: {ϕ} S {ψ} for Software Verification

I users provide invariants, pre- and postconditions
I verification condition generation (VCG): automatic
I proving VCs is done separately, e.g., using SMT solvers
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Hoare calculus for Synchronous Programs

Hoare calculus can not be directly applied! [Gesell, 2014]

I impossible to decompose proof goal along the program syntax
I abstraction of several micro steps to one macro step
I control-flow can rest at many places at the same time
I micro steps may correspond to different places in the program

I unless using goto statements or additional label variables

⇒ VCG using Inductive Assertions
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Property Directed Reachability

PDR

I very efficient verification method for hardware circuit verification

I relies on good estimation of the reachable states

Synchronous Languages: e.g. Quartz

I high-level languages for hardware synthesis

I useful control-flow information for verification

⇒ Control-flow Guided PDR Optimizations
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EFSM Decomposition by Control-flow States

s0

s1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)

ϕ(s3,s4)

ϕ(s4,s1)

ϕ(s4,s4)

s5

ϕ(s2,s5)

ϕ(s3,s5)

s6s7

ϕ(s5,s6)

ϕ(s6,s7)

ϕ(s7,s6)

ϕ(s7,s7)

s8

s9

ϕ(s0,s9)

ϕ(s4,s8)

ϕ(s9,s9)

ϕ(s8,s9)

ϕ(s0,s8)

s10ϕ(s10,s10)

ϕ(s9,s10)

ϕ(s6,s10)

ϕ(s8,s10)

15 / 41



Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

VCG using Control-flow Assertions

Is → Φ

Ψreach → Φ

Transition-based method:

I users provide Is
I induction base:

I Isroot holds on the initial control-flow state

I induction step:

I Is holds on each non-initial control-flow state
enumerate transitions from one node to the other
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EFSM Decomposition by SCCs

s0

s1C1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)
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VCG using SCC Assertions

IC0(sroot) s ∈ Ci ` ICi
(s) ICi

→ Φ

Ψreach → Φ

SCC-Path and SCC-Trans methods:

I users provide ICi

I induction base:

I ICi holds on each entering state(s) of Ci

enumerate paths/transitions from one SCC to the other

I induction step:

I ICi is preserved for the transitions inside Ci

enumerate transitions from one node to the other inside the same SCC
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EFSM Decomposition by Loop Statemetns

s0

s1L1

s2

s3

s4

ϕ(s0,s1)

ϕ(s1,s2)

ϕ(s2,s3)

ϕ(s2,s2)

ϕ(s3,s4)

ϕ(s4,s1)

ϕ(s4,s4)

s5

ϕ(s2,s5)

ϕ(s3,s5)

s6

L2

s7

ϕ(s5,s6)

ϕ(s6,s7)

ϕ(s7,s6)

ϕ(s7,s7)

s8

s9

L3

ϕ(s0,s9)

ϕ(s4,s8)

ϕ(s9,s9)

ϕ(s8,s9)

ϕ(s0,s8)

s10

L4

ϕ(s10,s10)

ϕ(s9,s10)

ϕ(s6,s10)

ϕ(s8,s10)

...

loop{
p0: pause;
...

pn: pause;
};

loop{
q0: pause;
...

qn: pause;
};

...
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VCG using Loop Assertions

IL0(sroot) s ∈ Li ` ILi (s) ILi → Φ

Ψreach → Φ

Loop-Path and Loop-Trans methods:

I users provide ILi
I induction base:

I ILi holds on each entering states of Li
enumerate paths/transitions from one loop statement to the other

I induction step:

I ILi is preserved for the transitions inside Li
enumerate transitions from one node to the other related to the same
loop statement

22 / 41



Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Summary: VCG using Inductive Assertions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs
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Safety Property Verification by Induction

Target: Prove Φ is valid w.r.t. K
I a state transition system: K := (V, I, T )
I a safety property: Φ
I all reachable states of K are Φ-states

Φ is inductive w.r.t. K
I induction base: all initial states are Φ-states
I induction step: Φ-states have no successor violating Φ
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Property Directed Reachability

PDR

I counterexamples to induction (CTIs) identification and generalization

I relies on good estimation of the reachable states

Control-flow of Synchronous Program

I not needed for synthesis

I useful for formal verification
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Heuristic: Modify Transition Relation to generate less CTIs

Original Transition Relation: Enhanced Transition Relation:

⇒ remove transitions from unreachable states by control-flow invariants

I linear-time static analysis

I symbolic reachability analysis restricted to control-flow
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Control-flow Invariants by static Analysis

Control-flow can never be active at both substatements of sequences or
conditional statements:

module SeqIte (){

mem bool i;

...

if (i) {

...

p1: pause;
...

p2: pause;
...

} else {

...

q1: pause;
...

q2: pause;
...

}

}

¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))
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Control-flow Invariants by static Analysis

Original Transition Relation
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Control-flow Invariants by static Analysis

Enhanced Transition Relation

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∨ p2) ∧ (q1 ∨ q2))
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Control-flow Invariants by symbolic Analysis

Symbolic traversal of the state space of the control-flow system:

module CfPar(){

... ...

{ {

... ...

p1: pause; q1: pause;
... || ...

p2: pause; q2: pause;
... ...

} }

}
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Control-flow Invariants by symbolic Analysis

Original Transition Relation
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Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

with control-flow invariant by static analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2)
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Control-flow Invariants by symbolic Analysis

Enhanced Transition Relation

with control-flow invariant by symbolic analysis:
¬(p1 ∧ p2) ∧ ¬(q1 ∧ q2) ∧ ¬((p1 ∧ q2) ∨ (q1 ∧ p2))

32 / 41



Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

Outline

1. Motivation
Synchronous and Hybrid Programs
Proving Safety Properties

2. VCG using Inductive Assertions
VCG using Control-flow Assertions
VCG using SCC Assertions
VCG using Loop Assertions

3. Control-flow Guided PDR Optimizations
Transition Relation Modification
CTI Identification and Generalization

4. Summary

33 / 41



Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

CTI Identification and Generalization

K := Kcf ×Kdf

I symbolic representation of Kcf is simpler than K
I Kcf conserves the approximation of unreachability in K

34 / 41



Motivation VCG using Inductive Assertions Control-flow Guided PDR Optimizations Summary

CTI Identification and Generalization

K := Kcf ×Kdf

I symbolic representation of Kcf is simpler than K
I Kcf conserves the approximation of unreachability in K

unreachability of CTIs in K can be proved by unreachability in Kcf

I reachability of CTIs in K
simpler unreachability tests in Kcf

unreachability in Kcf is independent on the dataflows

I generalize CTIs to narrow the reachable state approximations
if C is unreachable in Kcf , then generalize ¬C′ instead of ¬C:
C′ := C|Vcf obtained from omitting the dataflow literals in C
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Summary: Control-flow Guided PDR Optimizations

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs by reachable
control-flow states computation

I linear-time static analysis
I symbolic reachability analysis restricted to control-flow

⇒ different precision and runtime complexities

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals
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Contributions

Induction-based VCG methods for Synchronous and Hybrid Programs

I users choose a VCG method and provide inductive assertions

I VCs are generated automatically for induction bases and steps

I external SMT solvers verify the VCs

Control-flow Guided PDR for Synchronous Programs

I modify transition relation to generate less CTIs

I identify CTIs with simpler unreachability tests in Kcf

I generalize CTIs by omitting dataflow literals
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Appendix: VCG Methods Comparison

Assertions Numbers

I Loop-based ≥ SCC-based ≥ Transition-based

Assertions Information

I SCC-based ≈ Transition-based ≥ Loop-based
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Appendix: Backend Tools and Input VC-formats Comparison

Execution Time

I EFSM-Inv Time

I VCG Time

I SMT Time

VC Formats

I
∑

-Format

I
∧

-Format

I
∨

-Format

SMT Solvers

I iSAT

I Z3

I Z3 API

I Z3 API async
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Appendix: CTI Generalization Example

macro N=?;

module ITELoop () {

[N]bool i;

i[0] = true;
if (!i[0]) {

loop{
p1: pause;
i[0] = false;
p2: pause;

}

}

}

The set of boolean variables of module ITELoop

VN := {i[0], . . . , i[N-1]}︸ ︷︷ ︸
Vdf

∪ {p1, p2, run}︸ ︷︷ ︸
Vcf

⇒ reduce at most 2N+3 to 23 times relative
inductiveness reasoning
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Appendix: Quartz Program

Synchronous Model of Computation

I Macro steps : consumption of 1 logical time unit

I Micro steps : no logical time consumption

Statements of Quartz (incomplete) [Schneider, 2009] [Bauer, 2012]

x = τ and next(x) = τ (assignments)
assume(ϕ), assert(ϕ) (assumptions and assertions)
` : pause (start/end of macro step)
S1; S2 (sequences)
S1 ‖ S2 (synchronous concurrency)
if(σ)S1elseS2 (conditional)
doSwhile(σ) (loops)
{α S} (local variable)
M([params]) (module call)

flow{S1; ...;SN ; }until(σ) (flow statements)
x<-τ (continuous assignments)
drv(x)<-τ (derivative assignments)
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Appendix: Quartz Program

Synchronous Model of Computation

I Macro steps : consumption of 1 logical time unit

I Micro steps : no logical time consumption

Code Fragment
l0:pause;

x = 1.0;

next(y) = x;

l1:pause;
x = 0.0;

l2,l3:flow{
x <- 0.5;

drv(x)<- 1.0;

}until(cont(x) >=1.0);

EFSM

`1 x=0.0

x <- 0.5

drv(x)<- 1.0

release(cont(x)>=1.0)
`2

`3

cont(x)>=1.0

¬co
nt
(x
)>
=1
.0
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