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Abstract. Synchronous languages are widely used in industrial applications for
the design and implementation of real-time embedded and reactive systems and
are also well-suited for real-time verification purposes, since they have clean for-
mal semantics. In this paper we focuse on the real-time temporal logic JCTL,
which can directly support the real-time formal verification of synchronous pro-
grams for the design of systems in earlier (high-level) as well as in later (low-
level) design stages, creating a bridging between industrial real-time descriptions
and formal real-time verification. We extend the model-checking capabilities of
JCTL, by introducing new forward symbolic model-checking techniques, allow-
ing JCTL to benefit from both, forward—, as well as traditional backward state
traversal methods and of course, their combination. In addition to this, we also
introduce special methods that allow the algorithms for model-checking JCTL
formulae to perform time-jumps during the state space traversal. In other words,
the algorithms are able to perform less iterations than the length of the traversed
paths (measured in time units).

1 Introduction

Designing a real-time system is a relatively error-prone task, especially when the system
consists of several interacting processes, which is the usual case. Decreasing time-to-
market and the overall design costs requires guaranties for the correctness of a real-time
systems’ design, i.e. a proof that certain actions are executed within some strict runtime
limits or that they will start only after some point of time. For this purpose, several ap-
proaches to the verification of real-time systems have been developed [1,13,5,2,6,21],
that are based on different formalisms for describing finite state transition systems en-
dowed with some notion of time. The idea is hereby to design, develop and realize a
real-time system within a formal framework. This requires a description format, which
supports formal semantics, in order to construct a real-time formal model, that can be
used for formal verification purposes.

Just like all other systems, real-time systems are usually described in industrial input
languages, like VHDL, VERILOG, Esterel, C, C++, System C, etc. Unfortunately, most
of the existing real-time verification techniques, like [1,13,5,2,6], require the use of



special input formats for the description of real-time systems in order to obtain formal
models that can be used for verification purposes. Taking advantage of these techniques
in industrial applications, which are usually already described in other formats, requires
the complete re-description of the system (or the use of special front-ends), which made
their use for industrial applications very complicated or even impossible, since it can
not be guaranteed that the re-described system will have the same behavior as the orig-
inal one.

In contrast to this, synchronous languages [10,3,4,9,11,25,26,23,8,18], offer a very at-
tractive alternative for real-time verification purposes of industrial applications. In par-
ticular, the usage of synchronous languages has important advantages for the analysis
and verification of the real-time behavior, since they have clean formal semantics. Fur-
thermore they distinguish between micro and macro steps [12]: micro steps are state-
ments that are executed in zero time (in the programmer’s view), while a macro step
consists of a finite number of micro steps and consumes a logical unit of time.

In [23], it has been shown how timed transition systems can be generated from syn-
chronous programs for high-level real-time verification, incorporating abstraction tech-
niques that retain the quantitative temporal information. Nevertheless, to guarantee the
correctness of a real-time system, it is not enough to verify its time constraints at an
early design stage only, since the execution times of the system will depend on the tar-
get machine. While the micro steps of a synchronous program are executed within zero
time in the programmer’s view, this is not the case for an implementation. Here, the mi-
cro steps will consume physical time ¢ > 0, which depends on the chosen architecture?.
Hence, for low-level real-time verification purposes, one must be able to consider the
execution times of a program, in other words, the physical times required by the micro
steps.

Consequently, low-level real-time verification must be performed with respect to timed
macro steps, i.e., transitions that correspond to non-interruptible atomic timed actions.

For this purpose, efficient methods were introduced in [24]. There, an exact and detailed
low-level (architecture-dependent) runtime analysis of synchronous programs was in-
troduced, which computes the exact execution times of all possible single transitions
of a system and simultaneously generates a real-time formal model, that can directly be
used for architecture-dependent real-time verification purposes.

The approaches presented in [23] and [24] allow the generation of real-time formal
models directly out of synchronous languages. This enabled a bridging between indus-
trial real-time descriptions and formal real-time verification, i.e. a complete, formally
verifiable design, development and realization of a real-time system out of an industrial
real-time description, supporting formal verification of a real-time system in earlier
(high-level) as well as in later (low-level) design stages.

! Generally, it is viewed as a good programming style when the actual runtime of the macro
steps is balanced, i.e. when all macro steps require equal or similar amount of physical time.



The approaches presented in [23] and [24] consider timed Kripke structures as formal
models, which were introduced in [21] for the modelling of atomic, non-interruptible
timed actions, required by the macro-steps of an implementation of a synchronous pro-
gram. These models allow also the use of abstractions without loss of quantitative prop-
erties.

For the specification and verification of real-time properties on timed Kripke structures,
it was necessary to define a new temporal logic: JCTL was developed in [21] as the first
real-time extension of the temporal logic CTL that can handle atomic, non-interruptible
timed transitions. JCTL allows the direct use of established symbolic verification tech-
niques.

The algorithms for model-checking JCTL formulae presented in [21] are based on fix-
point iterations. The state space is traversed backwards by breadth-first search, using
efficient symbolic techniques. The basic idea consists of interrupting the fixpoint iter-
ations, when the time constraint of the temporal operator is reached. These traditional
symbolic model checking techniques based on backward state traversal, consider a set
of states where a property holds and collect further states by using a predecessor rela-
tion.

In contrast to this, there also exist forward state traversal techniques, which utilize a suc-
cessor relation. Dependent on the application, either forward or backward state traversal
yields in the best possible verification results.

In particular, in [16,17,14] was shown, that symbolic methods which utilize forward
state traversal in the formal model yield faster processing time for some qualitative
model-checking applications. Forward state traversal techniques are also used very suc-
cessful in [15,7]. However, none of the above mentioned approaches can benefit from a
directly usage of industrial description languages and must therefore take special input
formats into account.

Nevertheless, such approaches have clearly shown that it is advantageous to support
also forward state traversal techniques for model-checking purposes.

In this paper we therefore present efficient forward symbolic model-checking tech-
niques for the verification of real-time systems. In particularly, we introduce forward
traversing methods for the real-time temporal logic JCTL, in order to benefit from both,
backward and forward state traversal methods and of course, their combination. In ad-
dition to this, we also introduce special methods that allow the algorithms for model-
checking JCTL formulae to perform time-jumps during the state space traversal. In
other words, the algorithms are able to perform less iterations than the length of the
traversed paths (measured in time units). The algorithms traverse the state space by
breadth-first search and are implemented in our model checking tool Equinox, using
the CUDD BDD library [27]. Moreover, we give the complexity of the JCTL model
checking algorithms. It turns out that the complexity to compute the set of states, where
a given JCTL formula holds, is the same as for the backward state traversal approach
(122].

The outline of the paper is as follows: In chapter 2 we give an overview of the for-
malisms on which this paper is based. In section 3, we then proceed with the descrip-
tion of the forward, time-jumping symbolic model checking procedure for the real-time



temporal logic JCTL. In section 4, we then conclude with preliminary experimental
results obtained by our verification tool Equinox.

2 Background

2.1 Timed Kripke Structures

To model real-time systems we explain in this section the formalism timed Kripke struc-
tures (TKS) over some set of variables V. Timed Kripke structures are formally defined
as follows:

Definition 1 (Timed Kripke Structure (TKS) ). A timed Kripke structure over the
variables V is a tuple (Z,S, R, £), such that S is a finite set of states, Z C S is the set
of initial states, and R C S x IN x S is the set of transitions. For any state s € S, the
set L(s) C V is the set of variables that hold on s. We furthermore demand that for any
(s,t,s") € R, we have ¢ > 0 and that for any s € S, there mustbe a¢ € N and a
s’ € Ssuch that (s,t,s’) € R holds.

It is crucial to understand what is modeled by a TKS. We use interpretation 7;: A
transition from state s to state s’ with label £ € IN means that at any time ¢, where we
are in state s, we can perform an atomic action that requires & units of time. The action
terminates at time ¢, + k, where we are in state s’. In particular, there is no information
about the intermediate points of time ¢ with ¢ty < ¢ < tg + k.
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Fig. 1. A Timed Transition in a TKS

As example, consider Figure 1, which shows a timed transition in a TKS. At the point
of time ¢t = 1 we are in state sq where the formula ¢ is valid. The transition from s
to sy requires 4 time units. At the point of time ¢ = 5, state s; is reached, where the
formula « is valid. No information is given about the validity of a formula for the points
of time ¢t = 2,¢t = 3, ¢ = 4, between the states s and s;.



It’s easy to see that normal, qualitative Kripke structures are special cases of TKS that
are obtained by restricting TKSs so that (s, t,s’) € R implies ¢ = 1. To avoid confu-
sion, we call the ‘normal Kripke structures’ unit delay structures (UDSS).

2.2 The Real-Time Temporal Logic JCTL

In this section we explain in detail the temporal logic JCTL, which is the first real-time
extension of CTL, that is based on interpreting timed transition systems with interpre-
tation I;. JCTL is directly defined on timed Kripke structures and thus, is also able to
handle transitions that correspond to the non-interruptible atomic timed actions of an
implementation of a synchronous program.

For example, JCTL can handle processes that compute some values within a certain
limit of time with a single transition, that does not state anything about the values of the
variables during the computation. In constrasct to other real-time logics, JCTL has a
next-state operator equipped with time bounds, which make the logic powerful enough
to reason about real-time constraints of atomic timed actions.

For the JCTL definition below, only a small subset of basic logical operators is required,
which can be extended further by abbreviations.

Definition 2 (Syntax of JCTL). Given a set of variables V, the set of JCTL formulae
is the least set satisfying the following rules, where ¢ and  denote arbitrary JCTL
formulae, and a, b € N are arbitrary natural numbers:

— V C JCTL, i.e, any variable isa JCTL formula
- ¢, o Ny € JCTL

- Exlet by, e gCTL

- EXZ%T1p e JCTL

— E[p Ul y] e JCTL

— E[pU="¢] € JCTL

- EGl*Yy e JCTL

- EG=% € JCTL

Note that, in addition to the strong- and weak until operators, JCTL is also equipped
with strong- and weak next operators.

The semantics of JCTL is defined with respect to a TKS. For the definition of the
semantics, we need the notion of paths in timed Kripke structures. Formally, the notion
of a path in a TKS is defined as follows:

Definition 3 (Path in a Timed Kripke Structure).

A path 7 through a timed Kripke structure is a function # : N — & such that
Vi € N.3t € N.(7®,t,70+1)) € R holds (we write the function application with a
superscript). Hence, (%) is the (i + 1)th state on path 7. For a given path 7, we define
an associated time consumption function 7, so that = and 7, satisfy the condition

Vi € N.(ﬂ'(i), T7(|—i), 7r(i+1)) e R.



Note that 7 is not uniquely defined for a fixed path =, since we may have more than
one transition between two states that are labeled with different numbers. The set of
paths starting in a state s is furthermore denoted as Pathsy(s).

Definition 4 (Semantics of JCTL). Givena TKS K = (Z, S, R, £), and s € S, then
the semantics of the logic is recursively defined as follows:

- K,sEpiffpe L(s)foranypeV

- K, s Eepiff (K,s) ¢

- K,sEpAYiff K,sEpand K, s =9

- K,s = Exl*t1tly iff there is a path = € Paths(s) with associated duration
function 7, with

(a—i— 1< 7'7(70) < b) A (/C,ﬂ'(l) = (p)
- K,s = EXZ%Tly iff there is a path 7 € Pathsx(s) with associated duration
function 7, with
(a +1< T,(ro)) A (’C,?T(l) = cp)

- K,s = E[p Ul®Y o] iff there is a path 7 € Pathsy(s) with associated duration
function 7, and an ¢ € IN with

i—1
<a <3 < b) A
j=0

(I, 7@ = ) A (Vj <i. Km0 = <P)

—- K,s = E[p U= 4] iff there is a path 7 € Pathsx(s) with associated duration
function 7, and an 7 € IN with

i—1
a < ZTT(Fj) A
§=0
(K, 7@ =) A (Vj <i. K70 = <p>

- K,s = EG*Yyiffthere isa path m € Paths () with associated duration function
T, such that for all 7 € IN, we have

i—1
(a < ZT,(rj) < b) — (K:,?T(i) = Lp)
j=0

— K, s = EG=" iff there is a path € Paths () with associated duration function
T, such that for all 7 € IN, we have

S0 0)
(aSjXZ:OTW] (’C,T( )=<p)



Given a TKS K and a JCTL formula ¢, we denote the set of states of /C where ¢ holds
as [¢] -

Intuitively, the semantics of JCTL can be explained as follows:

- K, s = EX[@1, means that the state s has a direct successor state s’ that satisfies
 and can be reached intime ¢ € [a + 1, b].

- K, skE Eﬁz‘”lcp means that the state s has a direct successor state s’ that satisfies
o and can be reached intime ¢t > a + 1.

- K, s = E[p U 4] means that there is a path 7 starting in () = s and a number

i € N so that for the first 4 states 7%, #(1), ..., 7(i=1 the property ¢ holds, and

¢ holds on (9, and the time ¢ := 3'—} 79 required to reach state (%) satisfies

the numerical relations a < t and ¢ < b.

— K, s = E[p U=" 4] means that there is a path  starting in 7(®) = s and a number
i € N so that for the first i states 9, 7)), ..., #(i=1) the property ¢ holds, and

4 holds on () and the time ¢ := Eé;g 7 required to reach state 7(*) satisfies
the numerical relation a < ¢.

- K,s E EGI*Y, means that there is a path  starting in 7(©) = s, such that for
any state (¥ that is reached within a time ¢ := >\_{ 71’ with t € [a, b], we have
K, 7@ |= . Hence, ¢ holds in the interval [a, b].

- K,s = EG="p means that there is a path = starting in 7(®) = s, such that for
any state =(?) that is reached within a time ¢ := >>"_ 79 with ¢ > a, we have
K, 7 = . Hence, ¢ holds for all states on r that are reached at time a or after
time a.

The set of the basic JCTL operators is complete for a CTL-like logic, i.e. that further
JCTL operators, like e.g. the formulae AX"p, A[p U™ ], and AG"¢ can be defined
in terms of EX" ¢, E[¢) U" ¢], EG" ¢, as well as qualitative-only CTL operators. Some
examples for abbreviations are:

= Al U ] = Al U o] A —EGIt
— Al UZ%H o] = AG=? (o A AXA[Y U o))
- AG"p = —E[-¢p U" 1]

As example for the JCTL semantics, consider the timed Kripke structure shown in
Figure 2. There, we have:

- [ELe U= 4] = {50, 51, 52,51, 55}
- [Elo U0 wl] = {51, 52, 50,55}
- [Ete U v1] = {54}

- [Ete U= ] = {50}




Fig. 2. An Example for the JCTL Semantics

- [Eleu=29)] = 11

- -EGS4<PH = {507 81}

- eGP H*{Sonsl}

- [[EGZ‘* | =0

- [Ex=7¢] = {50}

- [Ex=¢] = {0}

- [EX*9e] = {50}

- [Ex*2¢] = {0}

- [e%¢] = 0

Note that in the results of [[EG[“] ga]] the state s; holds trivially, since, starting at s,

there is no state at all to be found in the interval [2, 4]. Hence, due to the definition of
[[EG[“”’] @H , We have

false — (IC,w(i) = go)

which is always true.

The states in [[EGW’] go]] that do not only trivially hold, can be easily determined by the
following conjunction:

[[EGW)]@]] A [[Eu yle) @}]

In order to explain how time-jumps are performed by the algorithms presented in next
section, we also explain here the notion of the Tracks of a state:



Definition 5 (Tracks of a State). Givena TKS £ = (Z, S, R, £), a state s, € S, the
set R, = {(s,t,8') € R | s = s;}, representing the transitions leading from s, to
all its successor states and t,,q, = maz{t € N | 3s, € S.s’ € S.(s;,t,8') € R},
defined as the maximum duration of all transitions in R .. Then, we define

Trackic(s:) = {(sr,t) | t € {1,...,tmaa}}, as the set of all tracks of the state ..
Hence, a single track is a tuple (s, k), where s € S,k € N and k < ¢, such that for
s’ € S, we have (s,t,s") € R.

3 Forward Symbolic Model Checking

In this section, we present forward model checking algorithms for the real-time tem-
poral logic JCTL. The essential idea is to take advantage of successful CTL symbolic
techniques by extending their operation for real-time constraints. The algorithms are
directly applied to timed Kripke structures and traverse the state space by breadth-first
search. They are implemented in our model-checking tool Equinox, using the CUDD
BDD library [27]. Note also that we consider timed Kripke structures that do not con-
tain finite paths. Moreover, it is advisable to perform a reachability analysis in advance,
since this can be easily done on qualitative-only level and hence release the model
checking algorithms from complex calculations on timed paths of unreachable states.
In Equinox, the qualitative-only transition system (a UDS) is always given in advance
— before the TKS construction, so there are no additional operations required in or-
der to obtain it. Figure 3 shows an overview of the overall modular construction of
Equinox and its design flow. Equinox consists of the BDD-based tool JERRY, which
is used for model-checking and runtime analysis purposes and a compiler for the syn-
chronous language Quartz and its extensions [25,23,24]. Having experimented with
many BDD-tools available, we consider the CUDD-package [27] as a reliable BDD-
package, offering a great number of useful features. Consequently all our tools use the
CUDD-package for BDD-manipulation.

The algorithms for the basic JCTL operators EG[**I, and E[p U!*? 4] are shown in
Figures 5 and 6 respectively. The operators EX/**1*/,; and EXZ%* ¢ need no iterating
algorithms, since they can be checked trivially by checking at the outgoing transitions
if there is a path satisfying the time constraint and if the transitions are leading to a state
where ¢ holds. The algorithms for the operators EG=“¢ and E[o U=® v)] are only used
in order to avoid a notion of intervals, which would contain infinity. They can both be
expressed as abbreviations of the basic JCTL operators EG**l¢x and E[p U[**! +] and
of known qualitative-only CTL operators:

_ EGZtly = EFS9EXEGe
- E[y U7 o] = EG=%(p AEXE[y U ¢))

Of course, we also have

- EG=% = EGyp
- Ep U=%¢] = E[p U ]
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Fig. 3. Equinox: A Formal Framework for the Specification, Modelling, Verification
and Runtime Analysis of Real-Time Systems
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Fig. 4. Time-Jumps in JCTL Forward Model-Checking

Before we consider the JCTL algorithms, we first explain the principle of time-jumps.
According to the definition of a TKS, no qualitative information about the validity of a
formula is given at the intermediate points of a transition. This allows the algorithms to
jump through time, into the next reachable valid formula, i.e. into the closest (measured
in time-units) state, or set of states. Figure 4 demonstrates this principle, performed by
the presented JCTL algorithms. At a current iteration J; shown in the upper part of
Fig. 4, the algorithm considers the set of states { s, s2 }. At this point, it determines the
minimum time needed to reach the next valid formula, by computing the minimum time
contained in the current tracks of the states {(so,30), (s2,50)}. Hence, the next itera-
tion J1 shown in the lower part of Fig. 4 allows a time-jump of 30 time-units, which
brings the computation into the next valid formula at state s;. Now, the next minimum
of the current set of tracks {(s1, 15), (s2, 20)} can be considered for the next time jump.

The example shows clearly the strength of the JCTL model-checking procedure:
The presented algorithms allow the logic to easily handle examples with huge timed
transitions. The larger the duration of the minimum current track, the greater the time-
jump will be.

The correctness of the function EG[“’b]<p (Figure 5) can be seen as follows: The algo-
rithm starts considering all transitions in R of the system and traverses forward through
the state space, determining the successor transitions R ,,.. of R and collecting them
in R...n. This is done by extracting all transitions from the working set R .,,, which
satisfy the condition that their transition time t,,,;,, is minimal.



The duration of all transitions from R ,...., which consume more than ¢,,;,, is de-
creased by ¢, and stored in R, since no state will be reached by the time-jump
from these transitions, but they will also move ¢,,,;,, time-units forward into time. The
variable ¢ equals the time steps we traversed forward in the transition relation. The set
Rnew discards the set of current states in a sequence of three sets of states: predeces-
sors, current and successors. This done in order to be able to remove states which violate
the property EG[a’b]gp directly, without going back through the transition relation, i.e.
without loosing their origin.

In each loop iteration and if the time is within the interval [a, ], all transitions R
that lead to some states ¢ .S, are being removed from ..., and their successors are
not being collected further. This guaranties the integrity of ¢ in [a, b]. When the time
is outside the interval [a, b], all transitions are collected without restrictions, since the
validity of their states is there trivially given (cf. definition 4). The algorithm terminates
either when the time has reached the value b, or when the set of valid states has been
emptied.

function StatesEG!*?(S,)

R'run::R;
Rxp i =1{(s,t,8") |[s€e SAte NAs' €S}
1 =7 :=0;

while (i < b) A (Rrun # {}) do
tmin = min{t € N | (s,t,5") € Rrun};
Romin = {(8,t,8') € Rrun | t = tmin};
7 =1+ tmin;
if (b—1) < tmin then
return {s | 3s’ € S.3t € N.(s,t,5') € Rrun};
else
Rgt = {(S> ,3,) | (37t + tmin, 5,) € Rrun \ Rmin};
Ssuce :={s' | Fs € S.Ft € N.(s,t,5") € Rinin};
Rsuce :=RN{(s,t,5") | s € Ssuce Nt EINAS € S}
Ruew :={(s,t,8") | Is1 € 8.3t € N.(s,t,51) € Rumin
A(s1,t,8") € Rouce};
Rrun = Rgt U Rnew;
=1+ tmin;
end
end
return {s | 3s’ € S.3t € N.(s,t,5") € Rrun};
end function

Fig. 5. Forward-Traversing Symbolic Algorithm for the EG[%*!, Operator



The correctness of the function E[p yle?! ] (Figure 6) can be seen as follows:

The algorithm starts considering all transitions R of the system where ¢ holds and
traverses forward through the state space determining the successor transitions R .
of R where also ¢ holds and collecting them in R .,.,,. This is done in the exact manner
as in the previous algorithm. In each loop iteration and if the time is within the interval
[a, b], all states of transitions that lead to some states v are collected, while their succes-
sor transitions are not being collected further since they already fulfilled the property
E[e Ul ). When the time is outside the interval [a, b], all transitions which lead to
 are collected. The algorithm terminates either when the time has reached the value b,
or when the set of valid states has been emptied.

function StatesEU**)(S,,, Sy)
Rrun = {(8,t,8)|(s,t,8') e RAs€Su};
if (a =0)then Spry == Sy

ese Sy :={}
endif;
1 =7 :=0;

while (i < b) A (Ryun # {}) do
tmin = min{t € N|(s,t,s") € Rrun};
Romin = {(5,t,8") € Rrun|t = timin};
7 =14+ tmin;
if ((b—1) < tmin)then
return Smry;
else
Rgt = {(37 t, 3/)|(57 t + tmin, 3/) € Rrun \Rmin}§
it (> a) A (j < b)) then
Svalid = {S c SES/ c Swat S N.(S,t, Sl) c Rmz‘n};
Smry = Smry @] Svulid;
Rmin := Rmin \ {(S, t, 8’) ‘ s € (S \ Svalz‘d),
teN,s' e S}
end;
Ssuce 1= {8’ € Sp|Ts € S.Ft € N.(s,t,5") € Rimin};
Rouce .= RN{(s,t,8)|s € Ssucc Nt EINA S € 8}
Ruew := {(s,t,8')|Fs1 € S.3t' € N.(s,t',51) € Rinin
A(s1,t,8") € Reuce };
Rrun = Rgt U Rnew;
1 =1+ tmin;
end
end
return Spury;
end function

Fig. 6. Forward-Traversing Symbolic Algorithm for the E[» U[**! 4] Operator



Furthermore, it is easily seen that if we consider the worst-case and assume that no time-
jumps are possible for the model-checking procedure, the number of steps is multiplied
with the maximum delay time 7 that appears in /. Hence, for the complexity of the
forward-traversing JCTL we have the following

Theorem 1 (Complexity of forward-traversing JCTL). For any TKS K = (Z, S, R,
£) and any JCTL formula ¢, the functions StatesEGI*?)(S,,) and StatesEUl*?1(S,,, S,))
given in Figures 5 and 6 run in time O(k., || 7x (|R| + |S])), where 7 := max{¢ |

Js,s".(s,t,s") € R} is the maximum delay time of /C, and &, is the maximal number
used in time constraints in ¢.

The proof can be obtained by induction along the JCTL formulae. The induction steps
are thereby obtained by the following facts, where Time(f) denotes the runtime of
function f:

~ Time(StatesEU") € O(kx(|R| + |S])), where k < b
— Time(StatesEG®Y) € O(k#(|R| +|S|)), where k < b

Hence, all operators can be evaluated in time O(I%@%;c(m\ +18)). As a formula ¢ may
contain |¢| operators, the above theorem follows.

Hence, the forward traversing functions StatesEGl**! (S,,) and StatesEUl*? (S, S,))
have the same complexity like the backward-traversing ones presented in [22]. The al-
gorithms terminate when either the upper time bound of the interval is reached or the
set R...n iS empty. The variable 4, representing the length of the currently processed
paths, is incremented in every iteration and will reach the finite upper time bound.

4 Experimental Results

We have implemented the algorithms in our tool framework Equinox and have tested
several benchmarks. In this section, we present our experimental results that we have
obtained with a benchmark, which is very popular in the world of real-time formal ver-
ification, Fischer’s mutual exclusion protocol [20].

Figure 7 gives some pseudo-code for the protocol: The protocol is used to pro-
tect critical sections for § processes. For this purpose, a global lock variable X of type
{0,...,d} is used. The role of X consists of holding the index of the process that is
allowed to enter its critical section. The basic idea of the protocol is roughly as follows:

If A = 0 holds, the critical region is currently not owned by a process, so that a
process that wants to enter the section can try to obtain access to the region. It therefore
will then assign A its own process id (line s). After this, the process will be inactivated
for § units of time so that the other ¢ processes have the chance to write their process
ids to A. If after that time, A still contains the process id of the considered process, this
process is allowed to enter the critical section and after that, it will release the section
by resetting ) to zero.



Sinit - repeat

S0 ¢ await A = 0;
S1: A =1
So sleep §;

s3: until A =4
sa: //critical section
s5: A:=0;

Fig. 7. Fischer’s Mutual Exclusion Protocol

The disadvantage of Fischer’s mutex protocol is that it requires for n processes in
each process a delay time ¢ of order O(n). In the meantime, other solutions have been
presented that do not suffer from this disadvantage (cf. [20]). Nevertheless, Fischer’s
mutex protocol is an excellent example which has been widely considered by many re-
searchers as a benchmark.

High-Level Verification

EU EG
nlvars| BDD| time|gain| time|gain
nodes| [sec]|[%]| [sec]|[%]
5| 36| 666/ 0.63| 0| 066/ 0

10| 67| 2299| 6.56| 0| 4.46| O
15| 97| 4097| 40.24| 0] 3051 O
20]128| 7036| 55.57| 0| 65.06| O
25|158| 8256(117.49| 0| 9745/ O
30]188(17061|262.60| 0]159.43| 0

Table 1. Fischer’s High-Level Verification

The results for the E[¢ yle?! 1] algorithm were performed on a specification which
verifies, that all processes have finished within some given time constraint. The results
for the EGW’]@ algorithm were performed on a specification which verifies, that all
processes entered their critical sections in the time from start to their maximal execu-
tion time.

The columns of the tables are as follows: The first column denotes the instantia-
tion of the benchmark’s parameter (number of processes). The second column shows
how many boolean variables were necessary to encode the state transition diagram,
which means that the system has 2v¢" reachable states. Column three shows memory
consumption, expressed in required BDD nodes. Columns four and six show the de-
termined runtimes for model checking with the operators E[ U* 4] and EG[*tl,



Low-Level \erification

EU EG
nivars| BDD|time| gain|time| gain
nodes|[sec]| [%]|[sec]| [%]
17| 317|0.07| 3.70|0.04| 3.10
24| 441|0.43(45.95|0.33| 12.5
32| 581|0.71(43.84(0.59(24.44
37| 776|0.92|73.86|0.69|22.38
44| 1167|3.44/39.62| 1.54| 7.41
50| 1635|3.25(50.51|2.54(13.79

~N o O wWwN

Table 2. Fischer’s Low-Level Verification

respectively. Columns five and seven denote the gain on iterations when using time-
jumps, expressed as the ratio of iterations of the time-jump procedure, divided by the
iterations of a normal, single time step procedure.

Note that the modular design of Equinox allows us to isolate the execution times for
performing the verification only. The construction of the model is performed in advance
and not added to the runtimes.

Table 1 shows a worst-case example, where we consider only untimed transitions, in
order to avoid time-jumps — so we have 0% gain for all tests. The results clearly demon-
strate that our verification tool Equinox and the presented forward model-checking algo-
rithms have the ability to handle very large systems. The symbolic breadth-first search
traversing of the algorithms, makes it possible to easily handle a system with 30 Fischer
processes, which requires 188 boolean variables, i.e. it includes 2132 reachable states.

To our knowledge, no other real-time verification tool has ever succeeded in veri-
fying Fischer’s mutex protocol for more than 11 processes, which is well known as a
very difficult benchmark. However, here is one (special) exception: In [19], an approach
was developed especially for the verification of Fischer’s mutex protocol, that allowed
the verification of 50 processes by the tool CMC. But this is an approach, which was
developed especially for this protocol. Equinox is able to handle 30 processes without
any of these special techniques.

Furthermore, it is of course possible to obtain much better results by transforming
the benchmarks, using the methods presented in [23], avoiding the worst-case of no
time-jumps.

The results clearly depend on the variable ordering of the BDDs. For these exper-
iments we used sifting as reordering method, which is a good average solution. Using
other reordering methods it is generally possible to obtain also smaller TKSs, but this
might also result in worse runtimes. Equinox offers many variants of initial variable or-
derings, but also many options in order to benefit from the variety of functions offered
by the CUDD BDD package.



For the low-level verification results shown in Table 2, an exact runtime analysis of
the benchmark for the appropriate architecture is necessary in advance [24]. We have
performed this on an Pentium 111 1GHz to get the appropiate timing information for the
low-level model. Here, the original system is endowed by additional physical times, re-
quired for the code execution of the synchronous program. This results in an enormous
increase of the system’s complexity by a formidable time-factor.

Nevertheless, Table 2 clearly demonstrates that this increased complexity effects
mainly only the model construction, which, due to the many BDD operations is a time-
consuming task, while the model-checking algorithms show a similar behaviour, like
the one of the high-level verification.

Clearly, the duration of the timed transitions increases with an increasing humber
of processes, i.e. the target machine needs longer execution times. Usually one would
expect that the time-jump gain should also increase with an increasing duration of timed
transitions, as it is the case for 2,3,4 and 5 processes. Nevertheless, the examples of 6
and 7 processes show that the gain achieved by the time-jumps depends also on the
resulted grade of the time’s granulation at the timed transitions. As can be seen, this
effects both algorithms, the EG!** and the E[ U] 4.

For example, the set of tracks {(so, 300), (s1,40)} will result in a time-jump of 40
time-units, while the set {(sz, 70), (s3,80)} will result in a greater time-jump of 70
time-units, altough the state s has a longer transition of 300 time-units.
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