Specification, Modelling, Verification and

Runtime Analysis of Real Time Systems

Georgios Logothetis

Dissertation Thesis
University of Karlsruhe
Karlsruhe, July 17th, 2003

Reviewer:

Prof. Dr.-Ing. Detlef Schmid
Prof. Dr.rer.nat Peter Schmitt

to Claudia Alexia

This work is the result of my activities as researcher at the Institute for Computer Design and
Fault Tolerance, University of Karlsruhe, Germany.

I am most grateful to the Director of the Institute, Prof. Dr.-Ing. Detlef Schmid, for his encour-
aging scientific and personal support during the past years. His personality and strong presence
was always an important source of inspiration for me, giving me the necessary strength to con-
tinue and realize this work.

My special thanks go also to Prof. Dr.-Ing. Winfried Gérke for many helpful and motivating
discussions.

I am very grateful to Prof. Dr.rer.nat. Peter Schmitt for accepting the review of the manuscript.

Especially, 1 would like to thank Prof. Dr.rer.nat. Klaus Schneider, who supported me with
countless scientific discussions and consistent hard work. His persistence and competence was
always of great help to me.

Also | would like to thank Prof. Dr.-Ing. Hans Eveking for introducing me to the world of
formal verification, evoking my interest to continue in this field.

Furthermore, 1 am very thankful to all my colleagues and friends at the Institute for Computer
Design and Fault Tolerance for the excellent working atmosphere and cooperation.

Above all, I am most grateful to my wife, Claudia Alexia, for her love, endless patience and
support during all the years.

Finally, many special thanks to my parents, my relatives and friends, in particular Evans Pro-
topapas, Fanis Zampetakis, Stefanos Papadatos, Alexander and Claudia Aring as well as the
family Winzinger.

Contents

1 Introduction

11

1.2

Real-Time Systems
1.1.1 Abstractions on Real-Time Systems

1.1.2 Description Languages for Real-Time Verification Purposes

1.1.3 Runtime Analysis of Real-Time Systems
1.1.4 The Discrete Time Approach
1.15 The Dense Time Approach
Contributionsof thisWork

2 Theoretical Background

2.1

2.2

Symbolic Model Checking
2.1.1 Kripke Structures
2.1.2 Binary Decision Diagrams (BDDs)
2.1.3 Computation Tree Logic (CTL)
The Synchronous Language QUARTZ

3 The Real-Time Temporal Logic JCTL

3.1
3.2

Timed Kripke Structures and Abstractions
JCTL as a Real-Time Extensionof CTL
3.21 Syntax and Semanticsof JCTL.
3.2.2 JCTL Operators as Abbreviations
3.2.3 Reducing Basic JCTL Operators

4 Problems of Previous Approaches

4.1
4.2

4.3

Time-Models of Previous Approaches
Description of the Problems
4.2.1 Overlapping Time Constraints
4.2.2 BranchingProblems
4.2.3 Problems by Nesting Operators
A Comparison to Timed Automata

5 Real-Time Symbolic Model Checking

5.1

Real Time Model Checking on Timed Kripke Structures

vii

19
19
19
20
20
25

CONTENTS CONTENTS
52 Complexity of JCTL 60
6 Translating Synchronous Programs
to Real-Time Models 63
6.1 Timed Kripke Structures with Logical Time 64
6.1.1 Extending Synchronous Languages 64
6.1.2 Generating the High-Level Model 66
6.1.3 Verifying Real-Time Propertiesat UDS Level 70
6.2 Timed Kripke Structures with Physical Time 72
6.2.1 Exact Low-Level Runtime Analysis:
Code Generation 73
6.2.2 Exact Low-Level Runtime Analysis: Extending Synchronous
Languages to Consider Native CPU Instructions 75
6.2.3 Exact Low-Level Runtime Analysis:
Generating the Low-Level Model 79
7 Exact WCET and BCET Analysis 85
7.1 WCET Analysis of Synchronous Programs 86
7.1.1 Determining Path Information 87
8 Experimental Results and Discussion 91
8.1 Fischer’s Mutual Exclusion Protocol 94
8.1.1 UDSGeneration 95
8.1.2 High-Level TKS Generation - Chronos 98
8.1.3 Low-Level TKS Generation - Runtime Analysis. 100
8.1.4 WCETAnalysis e 104
8.1.5 UDS Verification 106
8.1.6 High-Level TKS Verification 107
8.1.7 A Comparisonto OtherTools 110
8.1.8 Low-Level TKS Verification 115
A Further Experimental Results 125
Al BusArbiter 125
ALl UDSGeneration 127
A.1.2 Low-Level TKS Generation - Runtime Analysis. 129
A.1.3 A ComparisontoOtherTools 132
A.1l.4 Low-Level TKS Verification 134
A2 Primality 137
A2.1 UDS Generation 139
A.2.2 High-Level TKS Generation-Chronos 141
A.2.3 Low-Level TKS Generation - Runtime Analysis. 143
A24 WCETAnalysis 146
A.255 High-Level TKS Verification 148
A.2.6 Low-Level TKS Verification 148

viii

CONTENTS CONTENTS
A.3 Euclid’s Greatest Common Divisor Algorithm 152
A3.1 UDSGeneration 153

A.3.2 High-Level TKS Generation-Chronos 154

A.3.3 Low-Level TKS Generation - Runtime Analysis. 157

A34 WCETAnalysis e 159

A.3.5 High-Level TKS Verification 162

A3.6 Low-Level TKS Verification 164

B List of Logos and Abbreviations 167

CONTENTS CONTENTS

List of Figures

1.1 Abstraction of a 3-bit Modulo 6 Counter
1.2 Equinox: A Formal Framework for the Specification, Modelling, Verification

2.1 AKripke Structure
2.2 CTLOperators
2.3 BasicSyntaxof Quartz
2.4 Popular Macro Statementsof Quartz L.
3.1 ATimedKripke Structure
3.2 ATimed TransitioninaTKS
3.3 AnExample for the JCTL Semantics
3.4 Invalidity of theequation (1)
4.1 A Timed Transition According to Stuttering Interpretation I
4.2 Interpretation Is Represents Stuttering Sequences of Untimed Transitions . . .
4.3 Expansion of a Timed Transition System
4.4 Problematic Example for [57]
45 EF**yand Elzkgp
4.6 ATimed Transition System
4.7 Different Expansions of the SKS inFigure4.6
4.8 Example for the Expansion Problem
4.9 Expansion of the Timed Transition System of Figure4.8
4.10 Counterexample Described by Timed Automata and Verified by Kronos
5.1 Algorithms for Finite Paths Elimination and Reachability Analysis
5.2 Correctness of MoveFront
5.3 Symbolic Algorithms for Traversingona TKS K = (Z,S,R, L)
5.4 Symbolic Algorithms for Track-Explorationona TKS K = (Z,S8,R, L) . . .
5.5 Symbolic Algorithms for the Basic JCTL Operators
5.6 Model Checking of JCTL Formulaeona TKS K = (Z,S,R, L)
6.1 Impossibility of TKS Generation
6.2 Algorithms for Generation of High-Level TKSs
6.3 A UDSwithits Corresponding TKS

and Runtime Analysis of Real-Time Systems

LIST OF FIGURES LIST OF FIGURES
6.4 Generation of Low-Level Timed Kripke Structures 72
6.5 Russian Multiplication 73
6.6 Semantics of Module RussMult. 74
6.7 Code Generation Using Equation Systems Based on Hardware Synthesis 74
6.8 Generating Kripke Structures Preserving Native CPU-Instructions 77
6.9 ShortCut Algorithm 78
6.10 Function of the ShortCut algorithm 78
6.11 Examples transitionequations 80
6.12 Algorithms for Generation of Low-Level TKSs 81
6.13 An Example for a QuartzProgram oL 82
6.14 A TKS for the Quartz Program of Figure 6.13 82
7.1 Determining Minimal and Maximal Computation Paths and Loop-Iterations . . 88
7.2 Function of the ShortCut algorithm in WCET Analysis 89
8.1 Equinox: A Formal Framework for the Specification, Modelling, Verification

and Runtime Analysis of Real-Time Systems 93
8.2 Fischer’s Mutual Exclusion Protocol 94
8.3 AProcessinFischer’sProtocol 95
8.4 Fischer: UDS GenerationTime 96
8.5 Fischer: UDS GenerationMemory 97
8.6 Fischer: High-Level TKS Generation Time 99
8.7 Fischer: High-Level TKS Generation Memory 99
8.8 Fischer: Low-Level TKS Generation Time - Log. Scale 102
8.9 Fischer: Low-Level TKS Generation Memory 102
8.10 Fischer: EHLATIMe 105
8.11 Fischer: EHLAMemory 105
8.12 Fischer: High-Level TKS Verification Time 109
8.13 Fischer: High-Level TKS Verification Memory 109
8.14 Fischer: Verification Time 112
8.15 Fischer: Verification Time-Log. Scale. 112
8.16 Fischer: VerificationMemory 113
8.17 Fischer: Verification Memory - Log. Scale 113
8.18 Fischer: Low-Level TKS Verification Time - Property 4 120
8.19 Fischer: Low-Level TKS Verification Memory - Property 4 120
8.20 Fischer: Low-Level TKS Verification Time - Property 5. 121
8.21 Fischer: Low-Level TKS Verification Memory - Property 5 121
8.22 Fischer: Low-Level TKS Verification Time - Property 6 122
8.23 Fischer: Low-Level TKS Verification Memory - Property 6 122
A.1 Arbiter forn ProcessesinQuartz 126
A.2 Arbiter: UDS Generation Time 128
A.3 Arbiter: UDS Generation Memory 128
A.4 Arbiter: Low-Level TKS Generation Time 131

xii

LIST OF FIGURES LIST OF FIGURES

A5 Arbiter: Low-Level TKS Generation Memory 131
A.6 Arbiter: Verification Time 133
A.7 Arbiter: Verification Memory 133
A.8 Arbiter: Low-Level TKS Verification Time 136
A.9 Arbiter: Low-Level TKS VerificationMemory 136
A.10 Algorithm for Checking the Primality of a Numbern» 137
A.11 Algorithmto Test Primality 138
A.12 Primality: UDS Generation Time, 140
A.13 Primality: UDS Generation Memory 140
A.14 Primality: High-Level TKS Generation Time 142
A.15 Primality: High-Level TKS Generation Memory 142
A.16 Primality: Low-Level TKS Generation Time 145
A.17 Primality: Low-Level TKS Generation Memory 145
A.18 Primality: EHLA Time 147
A.19 Primality: EHLA Memory 147
A.20 Primality: High-Level TKS Verification Time 149
A.21 Primality: High-Level TKS Verification Memory 149
A.22 Primality: Low-Level TKS Verification Time 151
A.23 Primality: Low-Level TKS Verification Memory 151
A.24 Euclid’s GCD Algorithm 152
A.25 Euclid: UDS Generation Time 154
A.26 Euclid: UDS Generation Memory 155
A.27 Euclid: High-Level TKS Generation Time 156
A.28 Euclid: High-Level TKS Generation Memory 156
A.29 Euclid: Low-Level TKS Generation Time - Log. Scale 158
A.30 Euclid: Low-Level TKS Generation Memory 159
A.31 Euclid: EHLA Time-Log. Scale 160
A.32 Euclid: EHLA Memory 161
A.33 Euclid: High-Level TKS Verification Time 163
A.34 Euclid: High-Level TKS VerificationMemory 163
A.35 Euclid: Low-Level TKS Verification Time-Log. Scale 166
A.36 Euclid: Low-Level TKS Verification Memory 166

Xiii

Summary

Nowadays the use of computer systems has become a part of our everyday life. As these systems
are increasingly involved in safety-critical applications, it is a challenge for computer scientists
to develop design methodologies, theories and techniques, which are able to guarantee their
correct design and operation.

For this purpose, formal methods have been established over the past decades as a very reliable
solution. The idea is hereby to design, develop and realize a system within a formal framework,
which allows the application of mathematical methods in order to obtain a formal verification
of the system, i.e., a mathematical proof for its correctness with respect to given formal speci-
fications. One of the most successful and reliable approaches for the verification of finite state
systems has been model-checking: properties are given as formulae of propositional tempo-
ral logics and automatically verified by a graph-theoretic analysis of a formal model, which is
usually a state transition system (Kripke structure). In contrast to simulation and test, formal
methods deliver a mathematical proof for the correct function of a system and thus are able to
determine errors in early design stages.

However, the correctness of a real-time system does not only depend on its functional behavior,
but also on specific real-time constraints.

Within the scope of this work, we have focused on the use of formal methods in order to design,
develop and realize correct safety-critical real-time systems. In particular, we have developed
Equinox, a formal framework for the specification, modelling, verification and runtime analysis
of real-time systems. The framework includes the real-time multi-tool JERRY and a compiler
for the extended synchronous language Quartz. The major components of Equinox are described
below.

1. Real-time formal model: timed Kripke structures

Despite increasing computer performance and improved algorithms, the so-called state-
explosion remains the most important problem in model-checking verification: the num-
ber of states in a system can increase exponentially with the size of its description. In
real-time systems, the state explosion is even more increased by the additional consider-
ation of real-time constraints. A very successful technique to obtain reduction of state-
explosion is the abstraction of properties, that are irrelevant for the system’s verification.

In order to allow abstractions in real-time systems, we have introduced timed Kripke
structures as formal model. Besides the relative order of the events, a timed Kripke struc-
ture is able to describe their appearance in time. The time is hereby modeled discrete, i.e.
by positive natural numbers. It also allows the direct use of established symbolic verifica-
tion methods, as well as the use of abstractions without the loss of quantitative properties.
Furthermore, the modeling of non-interruptible processes or actions is also possible.

. Industrial input formats and formal verification:
from synchronous languages to timed Kripke-structures

Synchronous languages have been established in the industry for the design of reactive
systems. In contrast to other real-time verification tools which read special input for-
mats, synchronous languages offer a very attractive alternative for real-time verification
purposes of industrial applications. Their advantage over many other system-level de-
scription languages, is their clean formal syntax and —semantics, which makes them well
suitable for formal verification, allowing the generation of formal models.

Within the scope of this work, we have developed methods that allow the generation

of timed Kripke-structures directly out of synchronous languages. This enables for the

first time a bridging between industrial real-time descriptions and formal real-time ver-
ification, i.e. a complete, formally verifiable design, development and realization of a
real-time system out of an industrial real-time description. Up till now, other approaches

must take special real-time description formats into account. This required a complete

re-description of the system (or the use of special front-ends), which made their use for

industrial applications very complicated or even impossible.

A common characteristic of real-time systems is that they usually consist of many com-
ponents operating in parallel; hence, they are concurrent systems. For symbolic model-
checking there are no algorithms known, which can directly handle the parallel execution
of processes. Therefore, up to now it was necessary to create a formal model to be ver-
ified by parallel composition of single real-time sub-models, which, however, combined
with the use of real-time constraints lead to enormous state explosion. Furthermore, us-
ing such parallel composition techniques often leads to composed systems which violate
fundamental requirements of a formal real-time model, due to timelock and deadlock
problems.

In order to overcome the above described problems, we have introduced techniques,
which enable the direct generation of timed Kripke structures without parallel compo-
sition of single formal sub-models.

Furthermore, to guarantee the correctness of a real-time system, it is not enough to verify
its time constraints at an early design stage only, since the execution times of the system
will depend on the target machine. Hence, for low-level real-time verification purposes

one must be able to consider the execution times of a system, i.e. the physical times re-
quired by the target machine.

Within the scope of this work, we have developed methods that capture the behavior of
a system in earlier (high-level) as well as in later (low-level) design stages. This allows
also a low-level formal verification by considering physical execution times. The model
is obtained in two steps: first a special, unit-delay Kripke structure is generated by the
hardware-synthesis method. Afterwards it is transformed into a timed Kripke structure as
follows:

e Generation of high-level (architecture independent) formal models

For this purpose, we have presented extension techniques of synchronous languages,
which allow the description of real-time systems together with the use of abstrac-
tions. The approach was implemented in Quartz, which is a variant of the estab-
lished synchronous language Esterel.

In order to generate timed Kripke structures, we have developed efficient abstrac-
tion methods, which benefit from the advantages of symbolic techniques and can
thus handle systems with large state spaces. The approach first verify if the cho-
sen abstraction is too coarse. If the degree of abstraction is acceptable, the timed
Kripke structure is generated by another efficient symbolic technique, which trans-
forms the abstract parts of the model into timed edges. Otherwise, the method is
able to determine the locations where the abstraction is too coarse.

e Generation of low-level (architecture dependent) formal models

For this purpose, we have developed a new method for exact low-level runtime anal-
ysis of synchronous programs, which determines the exact runtimes of all transitions
of a system and at the same time generates a timed Kripke structure out of the unit-
delay structure. This approach uses also symbolic techniques and can efficiently
handle systems with large state spaces. Our low-level runtime analysis is based on
the translation of synchronous programs in executable code for common architec-
tures. Note that other existing runtime analysis methods are not suitable for veri-
fication purposes, since they do not consider formal environments and mostly give
information only about the longest and shortest paths of a system.

3. Real-time specification and verification logic: JCTL

For the specification and verification of real-time properties on timed Kripke structures,
it was necessary to define a new temporal logic: JCTL was developed as a real-time
extension of the temporal logic CTL. In contrast to other real-time logics, JCTL is directly
defined on timed Kripke structures.

JCTL allows the abstraction of irrelevant qualitative properties, without loss of any quan-
titative information. Should the abstraction be chosen to coarse, the model checking can
alternatively be performed either by reduction of the abstraction, or on the first generated
unit-delay structure.

The verification of JCTL formulae introduces new techniques, which are based on the
partitioning of the calculation in a qualitative and a quantitative part. In particular, it is
shown that JCTL can be defined completely on the basis of just a few basic operators. A
great number of further JCTL operators can be defined as abbreviations of these basic op-
erators and qualitative CTL-operators. Note that other abbreviation rules, already known
from CTL, are not valid for real-time JCTL-operators.

The algorithms for model-checking JCTL formulae are based on fixpoint iterations. The
state space is traversed by breadth-first search, using efficient symbolic techniques. The
basic idea consists of interrupting the fixpoint iterations, when the time constraint of the
temporal operator is reached.

As a direct result of the JCTL symbolic techniques, we have also developed efficient
methods, which allow exact high- and low-level WCET and BCET analysis of real-time
systems. For this purpose, the minimum and maximum computation paths are determined
by breadth-first search through the state space of the model.

Chapter 1
| ntroduction

Yoghtatov ypdvog: dveupioxet yép mévta.

OAAHY (640 - 546 ©.X.)
(Awy. Aaept. Biot @ik, I, 35)

Nowadays the use of computers to create, store, exchange and use information has become a
part of our everyday life. In fact we trust computers more and more to control safety-critical ap-
plications, like aircraft- and automobile systems, railway switching systems, banking systems,
communication systems, complex production processes, nuclear power plants and military sys-
tems such as missiles [23, 25].

In most of these applications computer failures can lead to economical damage, environ-
mental catastrophes, and in some cases, loss of human lives. Over the past decades, it has been
a challenge for computer scientists to develop theories and techniques that guarantee that com-
puter systems operate correctly, i.e., according to given specifications expressing their desired
behavior. Moreover, decreasing time-to-market and the overall design costs require to check
as early as possible in the design flow whether the desired specifications are met and detect
logical design errors before they have been implemented. The traditional ways of debugging
system designs have been simulation and testing. However, in many applications this process is
exceedingly time-consuming and often provides only probabilistic measures of correctness. It
is not unusual that more than 70% of the design time is spent for simulation.

To overcome this problem, many mathematical techniques for reasoning about the correct-
ness of a system have been proposed [69, 43, 101, 76, 70, 96, 71]. These are generally known
as formal methods. The idea is hereby to describe a system in a formal framework and then to
apply mathematical methods to obtain a formal verification of the system, i.e., a mathematical
proof for its correctness with respect to given formal specifications.

However, large formal system descriptions often tend to become complex and are therefore
generally difficult to analyze. Such approaches can involve generating and proving literally
hundreds of theorems and lemmas in detail, which requires also very experienced and mathe-
matically oriented designers.

Timeisthe wisest of things, for it fi nds out everything.
THALES (640 - 546 BC)

CHAPTER 1. INTRODUCTION

To overcome this problem, techniques have been proposed to automatically perform formal
verification. One of the most successful and reliable approaches for the verification of finite
state systems has been model checking, introduced by Queille and Sifakis [105] and Clarke and
Emerson [32]. In contrast to manual techniques, model checking is completely automatic in the
sense that the proof showing that a system satisfies the required specifications is automatically
generated: properties are given as formulae of propositional temporal logics [101, 48] and
automatically verified by a graph-theoretic analysis of a formal model, which is usually a state
transition system (Kripke structure). Informally, a Kripke structure consists of a finite number
of states representing the system’s state space and a number of transitions between states to
capture the system’s actual behavior.

The model-checking approach to the automatic verification of concurrent systems is one of
the most impressive successes of theoretical computer science. 20 years after the first pub-
lications established model-checking as a theoretical possibility, the hardware industry em-
ploys several hundreds of highly specialized researchers working on the integration of model-
checking techniques in the design process.

One of the advantages of this method is its efficiency: model checking is linear in the prod-
uct of the size of the structure and the size of the formula, when the logic is the branching-time
temporal logic CTL (computation tree logic) [33]. By developing special programming lan-
guages for describing transition systems, it became possible to check examples with several
thousand states. This was sufficient to find subtle errors in a number of nontrivial, although
relatively small, protocols and circuit designs [16]. If a formula is not true, model checking is
able to provide a counterexample. The counterexample is an execution trace that shows why
the formula is not true. This is an extremely useful feature because it can help locate the source
of the error.

The main practical limitation for model checking algorithms is caused by the so-called state
explosion problem: the size, i.e., the number of states of the system can exponentially grow
with the size of the implementation description. One popular approach to solve this problem
relies on the symbolic (rather than enumerative) representation 2 of sets of states: hereby, sets
of states are represented by a formula of state predicates. While the theoretical possibility of
symbolic model checking by computing fixpoints was realized early by Emerson/Clarke [50]
and Sifakis [118], the method has become practical only later, through the symbolic represen-
tation of state sets by binary decision diagrams (BDDs), proposed by Bryant [17]. BDDs were
first used for verification purposes by Coudert, Berthet and Madre [37] and for model checking
by Burch, Clarke, McMillan, Dill and Hwang [21]. Representing transition systems implicitly
using BDDs made it possible to verify systems with more than 10?° states. Refinements of the
BDD-based techniques [18] have pushed the state count further up over 10'% states. Using
other sophisticated methods like partial order reductions [100] and symmetries [52] allowed
the verification of systems with even more states.

However, to be able to cope with large industrial examples, it was necessary to take advan-
tage of methods based on different kinds of abstractions. Here, some details of the system can

2The notion of ‘symbolic’ representation has nothing in common with symbolic computations performed by
computer algebra systems.

Real-Time Systems

be declared to be irrelevant for verification purposes, so that the verification can concentrate
only on the necessary facts and the resulting state space of the system to be verified can be kept
smaller. Such techniques have been developed in [35, 90], and are closely related to Cousot’s
abstract interpretation [39, 38] of programs.

1.1 Real-Time Systems

Only about 2% of the microprocessors that have been produced in 1999 were contained in desk-
top computers, while the vast majority was contained in so-called embedded systems [63, 107].
Embedded systems are parts of aircrafts, automobiles, domestic appliances, consumer electron-
ics, etc. These systems do not have a user interface, but interact directly with their environment.
Moreover, a great number of these systems are reactive systems [102]: Reactive systems are
physical systems that respond to external stimuli and create desired effects in its environment
by enabling, enforcing or preventing events in the environment. This definition encompasses all
physical systems that exhibit some organized behavior, as well as interconnections of such sys-
tems into possibly large networks of dynamic and interacting components. Process controllers
or signal processors are typical reactive systems.

A major factor which is of essential importance for the correctness of a system is time. Systems
whose behavior depends on time constraints are called real-time systems. Designing a real-time
system is a relatively error-prone task, especially when the system consists of several interacting
processes, which is the usual case. The class of real-time systems includes many embedded and
safety-critical systems that are subcomponents of larger complex systems operating in safety-
critical environments [121]. This makes their correctness mandatory: the essential task is to
guarantee that certain actions are executed within some strict deadlines or that they will start
only after some point of time. To avoid expensive redesigns, it is important to check as soon as
possible in the design flow whether these real-time constraints are met. In other words, not only
the qualitative properties of the system are of importance, but also the quantitative ones.

To guarantee both, the qualitative and quantitative properties of real-time systems, several ap-
proaches to their formal verification have been developed [2, 67, 27, 83, 6, 85, 40, 108] that are
based on different formalisms for describing finite state transition systems endowed with some
notion of time. Generally, an extended formal framework is required which usually consists of

e a real-time description language to capture the behavior of systems

e a real-time formal model to represent systems in a formal way

e a real-time temporal logic to express properties that a system should satisfy
e techniques for analyzing real-time systems with respect to properties

Traditionally there are two different ways to handle time constraints: discrete time models use

the domain of integers to model time, while dense time models use the domain of reals. Ac-
cording to the time model, different specification languages, formal models, temporal logics

3

Real-Time Systems

and verification techniques must be taken into account.

Generally, there are two main problems for the verification of real-time systems:

e the state space explosion

A common characteristic of real-time systems is that they usually consist of many com-
ponents operating in parallel; hence, they are concurrent systems. The parallel execution
of processes combined with the use of real-time constraints causes in existing approaches
an enormously increased state space explosion.

e the gap to industrial description languages

Just like all other systems, real-time systems are usually described in industrial input
languages, like VHDL, VERILOG, Esterel, C, C++, System C, etc. Unfortunately until
now the existing real-time verification techniques require the use of some special input
formats (like the ones considered in sections 1.1.4 and 1.1.5) for the description of real-
time systems in order to obtain formal models that can be used for verification purposes.
Taking advantage of these techniques in industry applications which are already described
in other formats, requires their re-description in the appropriate special format, which is
often a very complicated task. Furthermore it can not be guaranteed that the re-described
system will have the same behavior as the original one.

In the following sections, we will consider the above mentioned verification problems together
with the existing time models in greater detail.

1.1.1 Abstractions on Real-Time Systems

One of the most powerful methods that can be applied to fight the state explosion problem are
abstraction techniques. Such methods are usually applied for the proof of qualitative temporal
properties, like safety properties meaning that a property always holds, or liveness properties
meaning that a property will hold at least once.

The basic idea is thereby to apply a predefined abstraction function to obtain an abstract
system with a smaller state space. This is often the only way to make automatic finite-state
verification procedures applicable to large systems. Even generic or infinite state spaces can be
reduced to finite ones [82].

Abstraction techniques are of essential importance for the verification of real-time systems,
where the state space explosion is caused by more than one factor, i.e. time constraints combined
with parallel execution of processes. As this is not unusual for real-time systems, the state-
explosion problem is even more serious for them: Experiences with automatic verification tools
[6, 68, 41] have proved this claim.

First approaches to abstraction techniques for the verification of real-time properties have
been developed in [78, 124, 42, 81, 82]. Unfortunately, none of these techniques can work
without having to compromise on the quantitative information of the system, or on the expres-
siveness of the used temporal logic, or even on both.

4

Real-Time Systems

Approaches considering dense time for example, must take abstractions like region graphs
[3] or quotient graphs [124] into account, in order to reduce infinite state spaces (arising due to
the use of real numbers) into finite ones, so that symbolic verification techniques can be applied:

Using so-called strong time-abstracting bisimulations [124], it is possible to achieve such
reductions that preserve branching-time properties. However, the coarser the chosen abstraction
is, the higher is the state space reduction, but also the more information is lost.

Generally, when sets of states are collected into abstract states, this means that the number of
transitions to reach a certain state from another one is changed. As a consequence, information
about gquantitative time consumption is lost.

~ |

S~__1__--

Figure 1.1: Abstraction of a 3-bit Modulo 6 Counter

—

An example is shown in Figure 1.1. The left hand side of Figure 1.1 shows the Kripke structure
of a modulo 6 counter that counts whenever an enable signal e is seen. The counter’s value is
given by the variables B := {by, b1, by}. The right hand side shows an abstract structure /s
that is obtained for the values A := {0,5}. In Figure 1.1, we have given segments of states
where the counters value equals to 0 and 5 or is between these numbers. The counter of the
concrete structure needs a minimum of 6 logical time units to count from 0 to 5. In the ab-
stract structure however, this information is lost: we know that some time passes, but we don’t
know how much. Note also that the abstract structure contains more paths: we can remain in-
finitely often in the state labeled with ge in the abstract structure, but there is no corresponding
path in the concrete structure. Hence, the abstract structure is not simulated by the concrete one.

1.1.2 Description Languages for Real-Time Verification Purposes

As we explained in the previous sections, many approaches to verify real-time properties of
formal real-time models already exist. Unfortunately, all existing real-time verification tools
like [29, 6, 40, 108] read special formats that describe the formal models directly. Hence, there
are two possibilities for an application of these tools in an industrial design flow:

5

Real-Time Systems

e Re-describe the systems in the appropriate special format, which is often a very compli-
cated task. However, it can not be guaranteed that the re-described system will have the
same behavior as the original one.

e Develop appropriate front-ends that compile system descriptions in the appropriate spe-
cial format.

A great number of real-time systems can be considered as reactive systems, as they must
react to stimuli of their environment. The examples mentioned above are all real-time systems.
Consider for instance an airbag system in a modern vehicle. Sensors provide it with information
of the current environment. In case of an accident, it is not enough to only guarantee that the
airbag will just operate. It is of essential importance to guarantee that it will react and operate
within some time. If it does not react in time, the system is not correct and will probably be of
more harm than help to the driver.

A very important and successful approach for the description of reactive systems was the in-
troduction of synchronous programming languages [60] like Esterel [8, 10], Lustre [61], Quartz
[111, 112, 85] or other Esterel-variants [44, 74]. Synchronous languages can handle communi-
cation in reactive systems by instantaneous broadcasting. They are becoming more and more
attractive for the design of reactive real-time systems. These languages have a discrete model of
time, i.e. time is modeled by natural numbers N. The basic paradigm of synchronous languages
is the perfect synchrony: synchronous languages distinguish between micro and macro steps
[64, 115]: The execution of a synchronous program from one point of time ¢ to the next¢ + 1 is
called a macro step and involves the execution of several, but always finitely many, micro steps.
Micro steps are statements that are executed within zero time (in the programmer’s model). A
macro step consists of a finite number of micro steps and consumes always one logical unit of
time after the execution of its micro steps. Further consumption of time, i.e., the beginning of
a new macro step, must explicitly be programmed by means of special statements like Esterel’s
pause statement that consumes one logical unit of time. Synchronous languages are designed
in such a way that a macro step can never contain a loop of micro steps. Instead, each loop of
a synchronous program must contain at least one macro step. Consequently, all threads run in
lockstep and automatically synchronize at each macro step.

Concerning the data flow, each variable, and hence, each data expression has one and only
one value for each macro step. Hence, the semantics of a data type expression is a function of
type N — « for some type «.. The manipulations of the variables of a program are performed as
micro steps of a macro step. These assignments or signal emissions determine the values of the
variables at the current and the next macro step (this may result in so-called causality problems,
but these problems have already found good solutions [9, 15], so we do not consider this issue
here).

Hence, the entire semantics of a synchronous program P can be given as a finite state transition
system Axp: the states of Ap reflect the possible combinations of control flow locations of the
program (a control flow location is a point in the program text, where the control flow might
rest for one unit of time). As the language allows the implementation of parallel threads, there

6

Real-Time Systems

might be more than one current position of the control flow in the program. A transition be-
tween two control states is enabled if some condition on the data values is satisfied. Execution
of a transition will then invoke some manipulations of the data values. Hence, the semantics
can be represented by a finite state control flow that interacts with a data flow of finitely many
variables of possibly infinite data types.

To summarize, synchronous languages have important advantages for the specification and ver-
ification of real-time systems, since:

e synchronous languages support both, the design of software and hardware. They have
notions of time at a logical level and statements to control threads like preemption and
suspension. In early design phases, if the complete realization of a system is not yet
known, one can not argue about physical time, since this depends on the hardware chosen
for the realization. Using synchronous languages, one can achieve also realization inde-
pendent descriptions of the system, which makes also possible to reason about time at a
logical level.

e synchronous languages have clean formal semantics which allows the generation of for-
mal models: Their compilation leads to a transition system which can be used for formal
verification purposes. A formal verification of the semantics of synchronous languages by
means of the HOL theorem prover [?] was performed in [111]. Furthermore, in [112, 5]
was shown how asynchronous and nondeterministic systems can be modeled by syn-
chronous languages.

Nowadays, synchronous languages are used in many industrial applications [54, 55, 123] and
there already exist tools [62, 73, 112, 46] for verifying qualitative temporal properties of syn-
chronous programs by symbolic model checking. In contrast to existing real-time verification
tools like [29, 6, 40, 108] which read special input formats, synchronous languages offer a very
attractive alternative for real-time verification purposes of industrial applications.

Unfortunately, far less is known about translating synchronous programs describing industrial
real-time applications to real-time formal models necessary for later verification.

Furthermore, while the micro steps of a synchronous program are executed within zero time in
the programmer’s view, this is not the case for an implementation. Here, the micro steps will
consume physical time ¢ > 0, which depends on the chosen architecture®. Hence, for low-level
real-time verification purposes, one must be able to consider the execution times of a program,
in other words, the physical times required by the micro steps.

Consequently, low-level real-time verification must be performed with respect to timed macro
steps, i.e., transitions that correspond to non-interruptible atomic timed actions.

SGenerally, it is viewed as a good programming style when the actual runtime of the macro steps is balanced,
i.e. when all macro steps require equal or similar amount of physical time.

Real-Time Systems

In the next section we will consider methods for determining execution times of a given pro-
gram in more detail.

1.1.3 Runtime Analysis of Real-Time Systems

A popular method for determining execution times of a given program is worst case execution
time (WCET) analysis [104]. It consists usually of two phases: the high-level and the low-level.

High-level WCET analysis is applied to an architecture independent description of the system
and has the task to compute path information [103] like unfeasible computations or bounds on
the maximal number of loop iterations. The results of the high level runtime analysis give im-
portant hints on bottlenecks of a real-time system in a very early design phase where not even
prototypes of the system exist. Such figures are important for further design decisions like the
hardware / software partitioning of an embedded real-time system or the choice between dif-
ferent microcontrollers. Unfortunately, high-level WCET analysis is undecidable when infinite
data types are used, and therefore only limited automation can be achieved. State of the art ap-
proaches use abstract interpretation [53], symbolic execution [91, 80], or special restrictions on
the loops [66]. A major problem of the high-level WCET analysis is that the maximal number
of computation steps of a statement (like a loop) may heavily depend on the input data, but some
of the approaches do simply compute the WCET bounds for the substatements and add these
afterwards. However, simply adding the maximal bounds for all substatements clearly yields
highly pessimistic bounds. To estimate tight bounds, [7] proposed not to compute constants,
but functions that depend on inputs as WCET bounds. This approach is able to compute tight
bounds, but is certainly a deeply manual task, although guided by computer algebra systems.

Low-level analysis is done on the object code, and hence depends on the chosen hardware / soft-
ware partitioning and the chosen architecture (microcontrollers). For simple microcontrollers
like the still mainly used 8-bit processors, this is a straightforward task, but it is more com-
plicated for modern architectures that require the consideration of caches, pipelines, branch
prediction, interrupts, etc. There exist several approaches to estimate the worst- or best-case
execution time of a given program on architectures with caches or super scalar execution by
runtime analysis [65, 58, 97, 98].

Unfortunately, considering worst- or best-case execution times only, based on WCET analysis
is not advisable for real-time verification purposes, since this would yield in very inaccurate
results. To be able to reason about real-time properties of a system, it is necessary to consider
and store in a formal model the exact execution times of all possible single transitions of a
system, not only of its shortest or longest path.

Some approaches like [65] can perform a so-called “point-to-point” analysis, but they do
not consider formal semantics or formal models, so it is not possible to consider their results
in a formal framework. In [117], an extension of the synchronous language Esterel has been
presented that focuses on the runtime verification of the perfect synchrony. However, it is as-

8

Real-Time Systems

sumed that the compiler preserves the ordering of the micro step statements, and therefore the

approach is restricted to special compilation techniques like those proposed in [45]. A more

powerful approach has recently been presented in [12]. There, Esterel programs are endowed

with pragmas that contain the quantitative temporal information. This has no effect on code

generation, but allows the generation of timed automata [2] (cf. section 1.1.5) for verification
of temporal properties. However this approach also requires a low-level worst-case execution

time (WCET) analysis in advance to obtain the real-time constraints. In other words, [12] can

not refer to system descriptions in early design phases, since it needs additionally architecture-

dependent runtime data which can only be obtained in late design phases. Considering WCET

analysis, [12] can only refer to execution time results about longest execution paths and can

not consider exact execution times. This reduces significantly the accuracy of the verification
results obtained by [12]. Furthermore, it does not support abstractions, necessary for the verifi-
cation of complex industrial applications.

1.1.4 The Discrete Time Approach

Considering time constraints with integers usually requires a state transition system (Kripke
Structure) as formal model. Real-time extensions of the branching time temporal logic CTL
are usually considered in order to perform a graph-theoretic analysis of Kripke structures with
respect to time constraints. To denote the time required to move from one state to another,
the transitions of the system are often labeled by numbers. In general, there are two possible
interpretations of such structures:

Jumping Interpretation I;: A transition from state s; to state s, with label £ € N means that
at any time t,, where we are in state s;, we can perform an atomic action that requires &
units of time. The action terminates at time ¢, + &, where we are in state s,. There is no
information about the intermediate points of time ty < t < ¢y + k.

Stuttering Interpretation Ig: A transition from state s; to state s, with label £ > 1 is seen

.. - 1 1 1 1 .
as abbreviation for a stuttering sequence s; — s1,1 — ... = S1,-1 — S2 Where s; is
repeated, according to the time consumption.

Clearly, only interpretation I, can be used in a setting where non-interruptible, atomic timed
transitions are considered. Moreover, only interpretation I; allows more powerful abstraction
techniques than stuttering simulations. It is therefore surprising that none of the existing real-
time extensions of CTL is based on interpretation I, although this is the more general (expres-
sive) one. In this work we define timed Kripke structures (TKSs) as the ones labeled according
to jumping interpretation 7;. To distinguish between timed and untimed Kripke structures we
call the untimed ones also unit delay structures (UDSs).

The development of discrete real-time extensions of CTL has been initiated by Emerson
et al. in [47, 49, 51], where the temporal operators have been extended by time bounds to
limit the number of fixpoint iterations required to evaluate the considered temporal expression.

9

Real-Time Systems

The models used in [47, 49, 51] were still traditional finite-state transition systems where each
transition requires a single unit of time.

In order to represent real-time systems in a more compact way, [27] introduced timed tran-
sition systems, where transitions are labeled by natural numbers that denote the time consump-
tion of the action associated with the transition. The meaning of these timed transitions is in
our terms the stuttering interpretation /.

In [57] a new real-time temporal logic was introduced, where both interpretations 7; and I
were unfortunately mixed: Different temporal operators of this logic interpret transitions differ-
ently, i.e., either according to I; or Is. As the meaning of timed transitions therefore depends
on the context, it is impossible to reason about the meaning of timed transitions. In particular,
it is not possible to define composition of structures. Moreover, the temporal operators of [57]
that rely on interpretation /5 have a misleading semantics as we will outline in detail in section
4.2.1.

Finally, [109] became aware of the misleading semantics of [57] (see page 11 of [109]), and
therefore defined another temporal logic that is solely based on interpretation . In principle,
their logic is defined on unit delay transition systems that are obtained by expanding (cf. section
4.1) a given timed transition system. As we will explain in section 4.2.2, different expansions
of a timed transition system yield in different transition systems that are not bisimilar to each
other, so that the results obtained for an expanded structure can not be easily transferred back
to the timed transition system [83]. Hence, the work of [109] is essentially based on expanded,
i.e., untimed transition systems, and may therefore be more or less viewed as a variant of Emer-
son’s work [47, 49, 51].

To summarize, the mentioned real-time extensions of CTL have the following problems (we
discuss them in more detail in chapter 4):

e None of the mentioned real-time extensions of CTL is based on interpretation 7; that is
necessary to benefit from abstraction techniques.

e None of the mentioned real-time extensions of CTL has the ability to consider timed tran-
sitions as atomic ones. They all must assume that a single timed transition is a stuttering
sequence of a number of unit delayed transitions and must therefore take several conse-
quences into account. For example, none of these extensions has a time bounded next state
operator to express facts about actions that correspond with a single transition. Hence,
properties regarding non-interruptible atomic timed actions necessary for the low-level
real-time verification of synchronous programs can not be handled. This is also the case
for all non-interruptible processes, like ‘Is there a non-stop flight from New York to Paris
with a duration of at most 9 hours?’

e The mentioned real-time extensions of CTL compute the set of states of a timed transition
system X where a real-time CTL formula holds, by translating the problem to a CTL
model checking problem on a unit delay structure. For this purpose however, they take
certain assumptions about the expansion semantics of the timed system into account.
However, different expansion semantics of timed transition systems may yield in different
results (s. section 4.2.2), and furthermore, different expansions are not equivalent to each

10

Real-Time Systems

other [83]. Since there are multiple ways to expand a timed system, the choice of a
certain expansion semantics is unclear. Moreover, it is not satisfactory to assume that all
transitions of a timed system behave according to the same expansion semantics.

Hence, there has been much confusion and misconception about the definition of real-time ex-
tensions of the famous temporal logic CTL. The previous approaches [27, 57, 109] have all
been implemented in efficient symbolic model checking tools, but the underlying formalisms
are — from a logical perspective — questionable.

Furthermore the above mentioned approaches have to take enormous state space explosions

into account due to parallel execution of processes. In [108] for instance, it is required to

model the system as a parallel composition of several single timed transition systems. Since

these single systems can not be easily composed, it was proposed to expand (cf. section 4.1)

them first, compute their product as unit-delayed systems and finally, transform them back into
timed transition systems again. Moreover, as discussed above, assuming some certain expansion

semantics (cf. section 4.2.2) leads to questionable results.

1.1.5 The Dense Time Approach

Beneath the real-time extensions of CTL that are defined on discrete time models, there are
also very successful approaches that are based on a continuous model of time [2, 67, 40, 6],
i.e., they use the domain of real numbers to represent time. These approaches usually rely on
timed automata, [4] timed petri nets [106], or timed process algebras [99]. The most popular
of these formalisms are timed automata. These are finite state automata endowed by a finite set
of real-valued clocks. Verification purposes based on timed automata use the timed computa-
tion tree logic TCTL, introduced in [3] as a real-time extension of the branching-time logic CTL.

However, as already mentioned in section 1.1.1, abstractions/approximations must be taken into
account in order to reduce the infinite state spaces (arising due to the use of real numbers) into
finite ones. Then TCTL model checking can be reduced to CTL model checking. For this pur-
pose, constructions of finite state systems, like region graphs [3] or quotient graphs [124] were
proposed. The basic idea in such systems is that each region essentially consists of the set of
concrete states that are equivalent, in the sense that they can lead to the same regions in the
future. Approaches associated with such models - especially with region graphs [1, 92, 30],
or if consideration of symbolic (branching-time) properties is required - are often in practice
computationally infeasible because of the huge size and the very expensive construction of the
finite systems. The region graph for instance, grows exponentially, not only in the number of
automata and the number of clock variables, but also in the largest integer constant used in the
clock constraints of the automata.

Timed automata are considered to be a powerful formalism, since they allow processes to have
several clocks starting, pausing, or reseting independently of each other and of the environment.
For the verification engineer, it is possible to start, pause or reset these clocks of each process

11

Contributions of this Work

individually, according to the specification requirements. However, problems arise when paral-
lel execution of processes must be considered. The final system to be verified must be obtained
using parallel composition of timed automata. However, the composed system often violates

fundamental requirements of a formal real-time model [125]: In such a model, it should be

possible to take discrete transitions infinitely often (discrete progress), but also to let time pass
infinitely often, and this without upper bounds (time progress). The implicit requirement of
time progress, known as non-zenoness [67], means that the formal model should not contain

deadlocks, i.e. states with no successors or timelocks, i.e. states from which the time cannot

progress. When checking properties, only models with non-zeno behavior should be taken into

account. A timed automaton is deadlock-free if none of its reachable states is a deadlock and

timelock-free if none of its reachable states is a timelock. When the time progress at a certain

state of a timed automaton stops, then some action becomes urgent at this state [13]. In order

to capture deadlock and timelock freedom, the notion of well-timed systems was introduced in

[67].

Deadlocks and timelocks are modelling errors caused by the verification engineer, since any
timed automaton assumed to capture the behavior of a reactive system should act infinitely often
and should not block time. Composing independently time steps and transitions may easily lead
to such problems. The compositional description of timed systems that satisfy even weak well-
timedness requirements, is a very complicated task [14]. The timed automata approach still
lacks a robust theory of composition, which would avoid deadlocks and timelocks, but also
preserve the independence of the urgency requirements of the components. First approaches for
a formal framework for urgency have been introduced in [119, 14]. However, these approaches
assume a special sub-class of timed automata and it still remains to see if analysis techniques
can be extended to consider such frameworks.

1.2 Contributionsof thisWork

The systems in the world we are living in are already synchronized according to physical laws.
We consider therefore as not natural to assume that a subsystem behaves according to its own
clock which starts, pauses or resets independently from some clocks of other subsystems that
communicate and interact with each other. This assumption leads to synchronization-, urgency-
and timelock problems [125, 13, 119, 14], for example when single timed subsystems are first
modeled as theoretically stand-alone parts and must then be composed in order to express their
parallel operation and obtain a final timed model for the entire, unique system. This is the case
with the timed automata formalism: these problems arise in many cases due to inconsistent
timed specifications, given by humans.

In the real world, it is much more natural to first accept the naturally given synchronization of
all physical systems and then determine the elapsed time between their events, not vice versa.

Following these principles, our goal is to apply them to real-time systems:

12

Contributions of this Work

e Define a real-time formal model that is based on jumping interpretation I; (cf. 1.1.4) and
allows the consideration of non-interruptible atomic timed transitions together with the
use of abstractions without loss of quantitative information.

e Develop a technique that takes full advantage of an industrial used description language.
Extend the language in order to use it for real-time specification- and abstraction pur-
pOSeS.

e Specify systems in such a way, that allows to easily compose them and construct one
single model which is already synchronized. This model can then be easily endowed by
time attributes determined by low-level analysis, or it can be transformed into a much
more compact real-time system by the use of high-level abstractions. The final single
real-time model does not suffer from the problems mentioned in sections 1.1.4 and 1.1.5.
It can then be used for low-level or high-level verification purposes, according to the
requirements.

e Define a real-time temporal logic that takes advantage of symbolic model checking tech-
niques and can handle atomic timed transitions and abstractions without loss of quantita-
tive information.

e Develop efficient real-time symbolic techniques for model checking and runtime analysis
purposes

Finally, regarding the use of dense time, there is one question that still remains to be answered:
where does the dense time come from in praxis?

It may sound logical to allow in a theoretical model for an event to take place after /2 sec-
onds, but in today’s praxis we are not able to measure such a time exactly.

In this work we present a complete formal framework for the specification, modelling, verifica-
tion and runtime analysis of real-time systems, which we have implemented as our tool Equinox.
The structure of this framework is given in Figure 1.2.

In the first place, we define timed Kripke structures (TKS) [83] based on jumping interpreta-
tion I, (cf. section 1.1.4) as real-time formal model. The model considers timed transitions as
atomic ones and allows the use of abstractions without loss of quantitative information.

We also introduce the branching-time temporal logic JCTL [83, 84] as the first real-time exten-
sion of CTL that is based on interpreting timed transition systems with interpretation 7;. JCTL
directly allows the abstraction of real-time systems by ignoring their irrelevant qualitative prop-
erties, but without loosing their quantitative ones.

For example, we can model processes that compute some values within a certain limit of
time with a single transition, that does not state anything about the values of the variables during
the computation. In contrast to other real-time temporal logics, JCTL has a next-state operator
equipped with time bounds, which make the logic powerful enough to reason about real-time
constraints of atomic actions. We also present symbolic model checking techniques for JCTL
that we have implemented in our model checking tool JERRY, using the CUDD BDD library
[120]. Moreover, we analyze the complexity of the JCTL model checking algorithms. It turns

13

Contributions of this Work

Specification

Composed

of Real-Time

Synchronized

Reactive Systems

Formal Model

v

Abstraction
Techniques

High-Level
Real-Time
Formal Model

High-Level
Real-Time
Verification

f

Exact High-Level

Analysis

WCET/BCET

]

Exact Low-Level
Runtime
Analysis

Low-Level
Real-Time
Formal Model

Low-Level
Real-Time
Verification

Executable
Code

f

Exact Low-Level
WCET/BCET
Analysis

Figure 1.2: Equinox: A Formal Framework for the Specification, Modelling, Verification
and Runtime Analysis of Real-Time Systems

14

Contributions of this Work

out that the complexity to compute the set of states where a given JCTL formula holds is the
same as for previous approaches like [57].

Furthermore, we propose techniques for the translation of synchronous programs in real-time
models that are endowed with notions of either logical or physical time.

For models considering logical time, we introduce an extension of Esterel together with
its translation to abstract real-time models (in the sense of [83]). Our extension allows the
programmer to declare irrelevant program locations. After the usual compilation of the program
into a transition system, certain states are thus to be ignored. For this purpose, we present an
efficient algorithm that uses symboli¢ techniques to generate a single timed Kripke structure
as a unique real-time model from the output of the compiler [85]. The algorithms presented in
[83, 84] are then used to check quantitative temporal properties of the generated TKS.

Our goal is to show how abstractions can be incorporated in synchronous programs to ob-
tain abstract real-time models that retain the quantitative temporal information. In particular, the
programmer can generate abstract real-time models without having the need of special knowl-
edge about verification techniques. A well-known problem of all approaches based on abstrac-
tion techniques is that the chosen abstraction might be too coarse. In this case, our technique is
able to detect the problematic program locations.

In order to generate models that consider physical time, we present a method that performs
an exact and detailed low-level (architecture-dependent) runtime analysis of synchronous pro-
grams [89, 87, 88]. Our approach computes the exact execution times of all possible single
transitions of a system and simultaneously generates a timed Kripke structure as real-time for-
mal model, whose transitions are labeled with numbers denoting the exact execution times of
the macro step that corresponds to the transition. Note that the generated low-level timed Kripke
structure consists of timed transitions which are non-interruptible atomic actions that will syn-
chronize at each macro step. Calculating exact execution times, our method overcomes the
problems of other approaches (cf. section 1.1.3), which must take less accurate WCET results
into account for the generation of their low-level models. The generated formal models can then
be directly used for architecture-dependent real-time verification, as well as for further analysis
purposes like WCET and BCET [86].

It is important to note that our methods allow the generation of real-time models without
having the need of parallel composition of single submodels, which is one of the most important
drawbacks of other approaches, as described in sections 1.1.4 and 1.1.5. Parallel composition
is already performed during compilation of the synchronous program, before the generation of
the single real-time model.

Having constructed real-time models considering logical as well as physical time, we then pro-
pose a new and completely automatic approach to exact WCET analysis of these models [86].

4The notion *symbolic’ is used herein the sense of * symbolic model checking’ which means that we represent
transition relations and state spaces implicitly by means of propositional formulae.

15

Contributions of this Work

Our technique can be applied to both, low-level- and high-level WCET analysis, according to
the time notion of the model. For a given program, we take advantage of symbolic state space
exploration to compute the exact best and worst runtimes in terms of macro steps for all inputs at
once. Hence, our method overcomes the known problem of computing only highly pessimistic
results due to simply adding maximal bounds (cf. section 1.1). We are even able to compute
the input sequences that require these bounds. For this purpose, we have to assume that all data
types were finite, so that the overall problem becomes decidable.

Generally, we propose the following design flow:

1. Describe the system under consideration as a synchronous program.

2. Verify desired specifications with real-time constraints [83, 84] and perform exact WCET
analysis [86] at a logical level in order to find design errors and to estimate the runtime of
complex tasks in terms of macro steps [85].

3. Based on the previous step, choose appropriate hardware to realize the embedded system
and automatically derive code for software or hardware design [111, 112].

4. Perform exact low-level runtime analysis to determine the actual reaction time of the
embedded real-time system.

5. Verify desired specifications with real-time constraints and perform exact WCET analysis
at a physical level.

6. Generate verified executable code, circuit netlists, etc.

The outline of the work is as follows: In chapter 2 we give an overview of fundamental theo-

retical formalisms on which this work is based. In the first place, we present the formalisms on
which symbolic model checking techniques are based like Kripke structures, binary decision

diagrams and branching-time temporal logics. Then we will explain the basics of synchronous

languages, which are widely used to generate formal models necessary for verification pur-
poses. In chapter 3 we define our timed transitions systems and our real-time temporal logic
JCTL. Having given the necessary definitions, we then discuss in chapter 4 the deficiencies of
the above mentioned related approaches in more detail. In chapter 5 we will then proceed with

the definition of a symbolic model checking procedure for JCTL and analyze its complexity.

In chapter 6 we present techniques that allow the translation of synchronous programs to timed
Kripke structures which are endowed with notions of logical-, as well as physical time: In sec-
tion 6.1 we extend synchronous languages by abstractions in order to declare irrelevant program
locations. Then we generate an abstract real-time model by ignoring the irrelevant states, while
retaining the quantitative information. In contrast to the programmer’s model of synchronous
languages, we consider in section 6.2 the physical time that is required for a particular hardware
to execute the micro steps that belong to the corresponding macro step of a transition. Hence, at

SFor embedded systems, this restriction is not a severe one. Moreover, modelling integerswith afi nite, constant
bitwidth is even more accurate and allows one to detect problemswith overfows and underfows.

16

Contributions of this Work

this level micro steps do consume time, and it is a challenging task to compute this consumption
of time for particular instances of processors.

In chapter 7 we propose an exact WCET and BCET analysis algorithm: Using symbolic state
space exploration, we compute for all inputs the lengths of all computations between given pro-
gram locations.

Finally, the case studies and experimental results that we have obtained by our tool Equinox are
presented in chapter 8.

17

Chapter 2

Theoretical Background

MA 8id @éfov, dhNd 8id o déov dnéyeodon duapTrudrtey. *
AHMOKPITOX (470 - 369 n.X.)
(Anéor. 41, Diels)

In the following, we will give an overview of fundamental theoretical formalisms on which
this work is based. These formalisms are very successful in the description, modelling and
formal verification of qualitative-only system properties and are commonly used in industrial
applications. In the first place, we will briefly present the formalisms on which symbolic model
checking techniques are based like Kripke structures, binary decision diagrams and branching-
time temporal logics. Then we will explain the basics of the synchronous language Quartz,
which is widely used to generate formal models necessary for verification purposes, thanks to
its clean formal semantics.

2.1 Symbolic Model Checking

2.1.1 Kiripke Structures

As explained in section 1, symbolic model checking approaches prove automatically the cor-
rectness of a system’s specifications by means of a graph-theoretic analysis of a model that rep-
resents the system. It considers systems modeled as Kripke structures, which are state-transition
graphs over some set of variables V. Kripke structures are formally defined as follows:

Definition 1 (Kripke Structure) A Kripke structure over the binary variables V is a tuple
(Z,8,U, L), where S is a finite set of states, Z C S is a set of initial states, and/ C S x S is
a set of transitions. For any state s € S, the set L(s) C V is the set of variables that hold on s.

1Avoid errors; not for fear, but for duteousness.
DEMOKRITOS (470 - 369 BC)

19

Symbolic Model Checking

Figure 2.1: A Kripke Structure

Kripke structures may be pictorially drawn as given in Figure 2.1, where initial states are drawn
with double lines. They consist of a finite number of states representing the system’s state space
and a number of transitions between states to capture the system’s actual behavior. The choice
of a transition is nondeterministic. The binary relation on ¢/ is total, i.e. each state has at least
one successor. £ is a labeling which assigns to each state a set of variables, those intended to be
true at the state. Intuitively, the states of a structure could be thought of as corresponding to the
states of a concurrent program, the state transitions of which are specified by the binary relation
U. In symbolic model checking approaches the transition relation is represented implicitly by
boolean formulae and states are not explicitly enumerated.

2.1.2 Binary Decision Diagrams (BDDs)

Boolean formulae can be represented by binary decision diagrams (BDDs) [17]. This usually
results in a much smaller representation for the transition relation, allowing the size of the
models being verified to increase significantly. BDDs are directed acyclic graphs. The nodes
of a BDD correspond to the variables of the formula. Descendants of a node are labeled with
true or false. The value of the formula for a given assignment of values to the variables can be
found by traversing the tree from root to leaf. At each node the descendant that corresponds to
the value assigned to the variable in the node is followed. The leaf indicates if the formula is
satisfied or not for that particular assignment.

However, BDDs impose a total ordering in which the variables occur in this sequence. For
any boolean formula and with a fixed variable ordering there exists a unique BDD [17]. The
size of the BDD is critically dependent on the variable ordering. It is exponential in the number
of variables in the worst case. Given a good variable ordering, however, the size is linear in most
practical cases. Using a good variable ordering is very important. But finding the optimal order
is in itself a NP-complete problem. Nevertheless, there are many heuristics that work quite well
in practice, like [56, 24].

2.1.3 Computation Tree Logic (CTL)

The branching-time temporal logic CTL (Computation Tree Logic) is used in symbolic model
checking approaches to specify and reason about correctness properties of concurrent programs
[33]. CTL is a temporal logic extended by path-quantifiers. Formally, the notion of a path in a
Kripke structure is defined as follows:

20

Symbolic Model Checking

Definition 2 (Path in a Kripke Structure) A path o through a Kripke structure is a function
o : N — Ssuch that Vi € N.(¢®, 0(+1)) € U holds (we write the function application with a
superscript). Hence, () is the (i 4 1)th state on path o. The set of paths starting in a state s is
furthermore denoted as Px(s).

Since every state in a Kripke structure has at least one successor, a path sg, s, s, ...iS an
infinite sequence of states so that (s, s;11) € U. Intuitively, a path captures the notion of an
execution sequence.

Generally, temporal logics are propositional logics combined with modal operators. They were
originally developed by philosophers in order to reason about the validity of statements accord-
ing to time. Typical modal operators of a temporal logic are:

G: global validity at all points of time

F: validity at some point of time in the future

X: validity at the next point of time

U: validity until some point of time in the future

These make possible to express properties like “nothing new happens”: G(—new). A popular
logic that takes advantage of the above operators is the Linear-Time Temporal Logic (LTL)
[101]. However, it is often of essential importance to be able to quantify over several paths
while performing a system’s analysis. For this purpose, CTL was introduced in [33], as an
extension of temporal logics by universal path-quantifiers V and existence path-quantifiers 3 .
Formulae in CTL refer to the computation tree derived from the model. CTL is classified as a
branching time logic, because it has operators that describe the branching structure of this tree.
Each operator consists of two parts: a path quantifier followed by a temporal operator. Path
quantifiers indicate that the property should be true on all paths from a given state (A), or on
some paths from a given state (E). Formally, the definition of the syntax and semantics of CTL
are given as follows:

Definition 3 (Syntax of CTL) Given a set of variables V, the set of CTL formulae is the least
set satisfying the following rules, where ¢ and v denote arbitrary CTL formulae, and a,b € N
are arbitrary natural numbers:

Y C CTL, i.e, any variable is a CTL formula
-0, e ANp € CTL

EXp € CTL

EGyp € CTL

E[p U] € CTL

The semantics of CTL is defined with respect to Kripke structures. If a formula ¢ is true in a
state s of a structure K, we write (I, s) & .

Definition 4 (Semantics of CTL) Given a Kripke structure £ = (Z, S, U, £), and s € S, then
the semantics of the logic is recursively defined as follows:

21

Symbolic Model Checking

o (K,s) Epiffpe L(s)foranyp € V
,8) = lff (K, s) = o

(K, 5)
(K, 5)
(K, s) = Apiff (K, s) = pand (K,s) =9
(K, 5)
(I, 5)

[]
VA

,s) E EX giff there is a path o € Px(s) with (K, o)) E ¢
,s) = EG g iff there is a path o € Px(s) such that for all i € N holds (IC, s®) = ¢

e (K,s) &= E[p U] iff there is a path o € Px(s) and an i € N with
(K, o) = 9) A (Vi < i (K,09) = o)

Given a Kripke Structure I and a CTL formula ¢, we denote the set of states of K where ¢
holds as [¢] .. We also denote the value of a formula ¢ in a state s with ¢(s).

Intuitively, (IC, s) = EX ¢ means that the state s has a at least one direct successor state s’
that satisfies .

(K, s) = E[e U 9] means that there is a path o starting in ¢(©) = s, where either ¢y immedi-
ately holds at o9, or ¢ holds for the first ; states &%, o™, ..., ¢@=1) and + holds on ¢, If we
allow that 2y must not necessarily hold on ¢, then we call the operator a weak until operator,
denoted without underline as E[¢ U «]. Analogous, E[¢ U 1] is also often called strong until
operator.

(K, s) = EG ¢ means that there is a path o starting in o) = s, such that ¢ holds for any
state 0¥,

In the above definitions, only basic operators of the logic were used. Further operators of CTL
can be defined as abbreviations of the basic ones:

Definition 5 (Further CTL Temporal Operators) Further temporal operators in CTL can be
defined as follows, where p is an arbitrary variable:

e l:=pV-p

e 0:=pA-p

PV ipi=(mpA-y)

p—=>Yi="9pVY

EF ¢ := E[1 U ¢]

AX ¢ :=-EX —p

e AF p := —-EG —yp

AG ¢ := —-EF —¢p

Alp U y] := —E[- U o A =] A 2EG =

CTL formulae enable the expression of properties regarding to several paths as illustrated in
Figure 2.2. To summarize, CTL operators have intuitively the following meaning:

22

Symbolic Model Checking

1 yey

O O ®

EF ¢ AF ¢

EGy AG ¢

@® (isvalid O isnotvalid

Figure 2.2: CTL Operators

23

Symbolic Model Checking

e EX ¢ : astate, where ¢ is valid is reachable at the next point of time

e EF ¢ : astate, where ¢ is valid is reachable at some point of time in the future

e EG ¢ : there exists an infinite sequence of states, where ¢ is valid at all points of time
e E[p U ¢« isvalid, or there exists a sequence of states, where ¢ holds until) holds
o AX ¢ : the validity of ¢ is inevitable at the next point of time

e AF ¢ : the validity of ¢ is inevitable at some point of time in the future

e AG ¢ : pisvalid at all points of time

e Alp U 9] : ¢ isvalid, or ¢ holds at all sequences of states, until ¢ inevitably holds

CTL symbolic model checking is linear in the product of the size of the structure and the size
of the formula [33]. The algorithms of the basic operators are based on fixpoint computations.
In the following, we give a brief description of this notion. For a more detailed description, the
reader is referred to chapter 3 of Schneider’s [113] or to [34, 36].

Considering a set of states S of a Kripke structure, then one can denote a lattice D(S) of
predicates over S, where each predicate is identified with the states in S that make it true and
uses set inclusion as ordering.

Definition 6 (Fixpoints) Consider a set of states S of a Kripke structure, a lattice D(S) of
predicates over S and a function F : D — D that maps sets of states to sets of states. A set
d C D is a fixpoint of the function F if F(d) = d holds. The least fixpoint d and the greatest
fixpoint d of F can be characterized as follows:

= inf{d € D|F(d) = d}

o d
e d =sup{d € D|F(d) = d}

Tarski and Knaster provided an iteration for computing least and greatest fixpoints [122, 79]. In
particular, it is possible to show that

d Z[F(Z)] = U;F'(False) and
d Z[F(Z)] = Ny FY(True)

Both fixpoints can be computed by iteration, where

for the least fixpointd holds Z° = False and 27! = Z' U F(2') , and
for the greatest fixpointd holds Z° = True and Z*! = Z' N F(Z2?)

The fixpoints are found when 2 = Z#+1. Since the number of states in a Kripke structure is
finite, termination is guaranteed, because there can be no infinite sequence of Z’s such that
Zt # Z%L In a Kripke structure K, a CTL formula ¢ can be represented by the set of states
{s|(K,s) E ¢} € D(S), that satisfies . Then, the algorithms for the basic CTL operators
E[¢ U 9] and EG ¢ are given by means of fixpoint computations as follows:

24

The Synchronous L anguage QUARTZ

e The set of states where E[¢ U] is true can be determined by computing least fixpoints:
ElpUy]=d Z[vV (p AEX 2)]

It was shown (s. [34]) that E[x U 9] is the least fixpoint for F(Z) = ¢ V (¢ A EX Z).
Hence, we have

Elp U] =4V (¢ NEXE[p U ¢])

e The set of states where EG ¢ is true can be determined by computing greatest fixpoints:
EG o =d Z[p NEX Z]

It was shown (s. [34]) that EG ¢ is the greatest fixpoint for 7(Z) = ¢ A EX Z. Hence,
we have

EGp=pANEXEGyp
Finally, for the basic operator EX ¢, the model checking algorithm must guarantee that
(K,s) EEXp < 3s' (o) A (s,8) € U)

The relational product 3s’.(¢(s') A (s,s") € U) can be computed using basic operations for

set manipulation [20]. It is a fundamental operation for symbolic model checking approaches,

since it is involved in all basic CTL operators and appears very frequently. This makes its ef-

ficient computation of essential importance. Efficient techniques for this purpose are given in
[19] and are implemented in many BDD packages like [120].

2.2 The Synchronous L anguage QUARTZ

Quartz [112, 114, 111, 116] is a variant of the synchronous language Esterel [10, 54] that differs
from Esterel in some minor points. The semantics of Quartz has been defined in [112] and a
hardware synthesis for its compilation has been presented in [111]. An extension of the latter
including schizophrenia problems has been given in [116]. A complete reference is given in
[114]. In the following, we briefly describe the basics of Quartz and Esterel; for more details
on Quartz the reader is referred to [112, 114, 111, 116], for more details on Esterel, the reader
should consult the Esterel primer [10], which is an excellent introduction to synchronous pro-
gramming.

Beneath the comfortable programmer’s model given by the macro step abstraction, syn-
chronous languages like Quartz provide a rich set of statements for manipulating the execution

25

The Synchronous L anguage QUARTZ

of concurrent threads. In particular, there are several statements for preemption and suspension,
and different forms of concurrency like synchronous, asynchronous or interleaved execution.

In synchronous languages, time is modeled by the natural numbers N, so that the semantics
of an expression is a function of type N — « for some type «. Quartz distinguishes between
two kinds of variables, namely event variables and state variables. The semantics of an event
variable is a function of type N — B, while the semantics of a state variable may have the more
general type N — «. The main difference is however the data flow: the value of a state variable
y is ‘sticky’, i.e. if no data operation has been applied to ¥, then its value does not change. On
the other hand, the value of an event variable x is not stored: at the next step, the value of z
would be reset to 0 (we denote Boolean values as 1 and 0), if it is not explicitly made 1 at the
considered point of time. Hence, the value of an event variable z is 1 at a point of time if and
only if there is at least one thread that emits x at this point of time.

Event variables are made present with the emit statement, while state variables are manip-

ulated with assignments. Of course, any event or state variable may also be an input variable,
so that their values are determined by the environment only. Emissions and assignments are all
data manipulating statements. The execution of these statements, as well as the execution of
most other statements does not consume time (in the programmer’s view). A complete list of
all basic statements of Quartz is given in Fig. 2.3, where S, Sy, and S, are also basic statements
of Quartz, 7 is a location variable, x is an event variable, y is a state variable, and o is a Boolean
expression:
In general, a statement S may be started at a certain point of time ¢;, and may terminate at time
ty > tq, but it may also never terminate. If S immediately terminates when it is started (¢, = ¢,),
it is called instantaneous, otherwise we say that the execution of S takes time, or simply that
S consumes time. Whether a statement is instantaneous or not may depend on input or local
variables. There is only one basic statement that consumes time, namely the pause statement.
In other words, the pause statements are the only statements where the control flow may rest.
For this reason, we endow pause statements with unique location variables ¢. These labels are
used in [112, 114, 111, 116] as state variables to encode the control flow automaton.

The semantics of Quartz and Esterel can be defined in several ways that lead all to the
same transition system. In particular, there is a semantics based on process-algebraic transi-
tion rules, and a direct translation into hardware circuits [9]. A detailed explanation of the
semantics of Quartz is given in [112, 114, 116]. The control flow of a statement S has been de-
fined by the control flow predicates [112, 114] inside (.S), instant (S), enter (S), terminate (.5),
and move (S), and the data flow of S has been defined by the set of guarded commands
guardemd (¢, S):

inside (S) is the disjunction of the pause labels occurring in S. Therefore, inside (S) holds at
some point of time iff at this point of time, the control flow is at some location inside S.

instant (S) holds iff the control flow can not stay in .S when S would now be started. This
means that the execution of S would be instantaneous at this point of time.

26

The Synchronous L anguage QUARTZ

e nothing (empty statement)

e emit z and emit delayed z (emissions)

e y:= 71 andy := delayed 7 (assignments)

e / : pause (consumption of time)

e if o then S else Sy end (conditional)

e S1; S5 (sequentia composition)

e S || S2 (synchronous parallel composition)
e S ||| S2 (asynchronous parallel composition)
e choose S; || Sz end (nondeterministic choice)
e do S while o (iteration)

e suspend S when o (suspension)

e weak suspend S when o (weak suspension)
e abort S when o (abortion)

e weak abort S when o (weak abortion)

e local z in S end (local event variable)

e local y : ain S end (local state variable)

e Now o (instantaneous assertion)

e during S holds o (invariant assertion)

Figure 2.3: Basic Syntax of Quartz

enter (S) describes where the control flow will be at the next point of time, when .S would now
be started.

terminate (S) describes all conditions where the control flow is currently somewhere inside S
and wants to leave S. Note however, that the control flow might still be in S at the next
point of time since S may be entered at the same time, for example, by a surrounding
loop statement.

move (S) describes all internal moves, i.e., all possible transitions from somewhere inside S to
another location inside S.

guardemd (¢, S) is a set of pairs of the form (~, C), where C is a data manipulating statement,
i.e., either an emission or an assignment. The meaning of (v, C) is that C is immediately
executed whenever the guard holds.

Using the above control flow predicates, one can define a finite-state transition system that
defines the control flow of a statement [112, 114].

The data flow is determined by the guarded commands guardcmd (¢, S) that appear as con-
ditional emissions and assignments on the transitions of the control flow transition system. In

27

The Synchronous L anguage QUARTZ

case that only finite data types were used, it is possible to translate a program to a classical finite
state (Mealy) automaton, as shown in [112]. There, a given synchronous program is translated
into a finite-state automaton (representing the control flow) whose transitions are labeled with a
set of conditional assignments (representing the data flow). Each transition directly corresponds
to a macro step of the program. This description is given in an implicit form, so that it can be
used for symbolic state space exploration [11, 22].

For example, for the body statement of module RussMult given in Figure 6.5 of section 6.2, we
obtain the following results (X means that ¢ holds at the next point of time):

inside (S) = ¢V rdy

instant (S) =0

enter (S) = Xrdy

terminate (S) =0

rdy AN Xrdy A (—reqV (y = 0))V
rdy ANXEAreq A (y # 0)V
CAXEN (y #0)V

LA Xrdy A (y =0)

move (S) =

Based on the presented basic statements, one can define a couple of several macro statements
whose semantics is then simply given by the macro expansion. The most popular ones (most of
them are used by the Esterel language) are given in Fig. 2.4.

if o then

whileo do S end := do S whileo

(else nothing end)
£ : halt := do/: pausewhilel
loop S end := while1 do S end
£ :loop S each o
:= loop abort S; ¢ : halt when o end
ly:everyo ¢ : doSend
=/ : await ;41 : loop S each o
¢ : sustain z := do emit z; £ : pause while 1
£ : await o := do £ : pause while —¢
:= abort £ : halt when ¢
£ : await immediate o
:= while-¢ do /£ : pauseend
:= abort £ : halt when immediate o

Figure 2.4: Popular Macro Statements of Quartz

28

Chapter 3
TheReal-Time Temporal Logic JCTL

Té gloer givan xpeftto TN xof Sixona @&y évavtiov.
APIXTOTEAHY (384 - 332 n.X.)
(Pnt. Téyvn, 1355a, 22-23)

In the next sections, we introduce timed transition systems based on interpretation [(cf. 1.1.4)
and explain more in detail the meaning of this interpretation, which allows abstraction of real-
time systems without loss of quantitative information. Then we define a new real-time temporal
logic JCTL, which is defined on such transition systems. Having given the syntax and semantics
of JCTL, we then show how different operators can be expressed as abbreviations of the basic
JCTL operators.

3.1 Timed Kripke Structuresand Abstractions

To model real-time systems we introduce in this section timed Kripke structures (TKS) over
some set of variables V. Timed Kripke structures are formally defined as follows:

Definition 7 (Timed Kripke Structure (TKS)) A timed Kripke structure over the variables
isatuple (Z,S,R, L), such that S is a finite set of states, Z C S is the set of initial states, and
R C 8 x N x S is the set of transitions. For any state s € S, the set L(s) C V is the set of
variables that hold on s. We furthermore demand that for any (s, ¢, s") € R, we have ¢ > 0 and
that for any s € S, there mustbe at € Nand a s’ € S such that (s, ¢, s") € R holds.

Timed Kripke structures may be pictorially drawn as given in Figure 3.1, where initial states are
drawn with double lines. Some approaches, e.g. [27] label their transitions with intervals [a, b]
of time. It is easily seen that TKSs subsume these models since we can add for any ¢ € [a, b] a
new transition between the considered two states.

True and right things are by nature stronger than their opposites.
ARISTOTELES (384 - 332 BC)

29

Timed Kripke Structures and Abstractions

Figure 3.1: A Timed Kripke Structure

It is crucial to understand what is modeled by a TKS. We use interpretation I ;: A transition
from state s to state s’ with label £ € N means that at any time t,, where we are in state s, we
can perform an atomic action that requires & units of time. The action terminates at time ¢, + &,
where we are in state s’. In particular, there is no information about the intermediate points of
time t with ¢ty < ¢t < ty + k.

A

formula

el 222 Y
1 2 3 4 5 time
Figure 3.2: A Timed Transition in a TKS

As example, consider Figure 3.2, which shows a timed transition in a TKS. At the point of time
t = 1 we are in state s, where the formula ¢ is valid. The transition from s, to s; requires 4
time units. At the point of time ¢ = 5, state s; is reached, where the formula +/ is valid. No
information is given about the validity of a formula for the points of time t = 2,¢ = 3,t = 4,
between the states sy and s;.

It’s easy to see that normal Kripke structures are special cases of TKS that are obtained by
restricting TKSs so that (s, t,s’) € R implies¢ = 1. To avoid confusion, we call the ‘normal
Kripke structures’ unit delay structures (UDS):

Definition 8 (Unit Delay Structure (UDS)) ATKS K = (Z, S, R, £) is called to be unit delay
structure (UDS) iff Xic := {t | (s,t,s') € R} = {1}.

Finally, note that it is also possible to consider certain infinite sets of transitions in a TKS; we
will see this in more detail in section 6.1.3. Roughly speaking, we could allow labels with linear

30

JCTL asaReal-Time Extension of CTL

constraints, as e.g. {2n+3m +5 | n,m € N} or {n € N | n > 10}. The reason is that these
labeled transitions can be replaced by finitely many states including some cycles.

3.2 JCTLasaReal-TimeExtension of CTL

In this section, we introduce the first real-time extension JCTL of CTL, that is based on in-
terpreting timed transition systems with interpretation I; so that the logic directly allows the
abstraction of real-time systems by ignoring their irrelevant qualitative properties, but without
loosing their quantitative ones. For example, we can model processes that compute some values
within a certain limit of time with a single transition, that does not state anything about the val-
ues of the variables during the computation. JCTL has a next-state operator equipped with time
bounds, which make the logic powerful enough to reason about real-time constraints of atomic
timed actions. Note that the existing approaches do not allow this.

3.2.1 Syntax and Semantics of JCTL

For the JCTL definition below, only a small subset of basic logical operators is required, that
will be extended further by abbreviations.

Definition 9 (Syntax of JCTL) Given a set of variables V, the set of JCTL formulae is the least
set satisfying the following rules, where ¢ and « denote arbitrary JCTL formulae, and a,b € N
are arbitrary natural numbers:

Y C JCTL, i.e, any variable is a JCTL formula
=, o AN € JCTL

EXletlbly, e JCTL

EX=t1p € JCTL

E[o U*Y 4] € JCTL

E[p U= 4] € JCTL

EG*Yy e JCTL

EG=%p € JCTL

Note that, in addition to the strong- and weak until operators, JCTL is also equipped with strong-
and weak next operators.

Also note that, as we will show in section 3.2.3, the basic operators EG** and EGZ can be
defined as abbreviations of JCTL and CTL operators. Nevertheless, in order to simplify formu-
lae notions, but also to be able to directly compare JCTL with other existing real-time logics
(cf. section 4), we use EGI** and EG>* as reference.

The semantics of JCTL is defined with respect to a TKS. For the definition of the semantics, we

need the notion of paths in timed Kripke structures. Formally, the notion of a path in a TKS is
defined as follows:

31

JCTL asaReal-Time Extension of CTL

Definition 10 (Path in a Timed Kripke Structure) A path 7 through a timed Kripke structure
is a function 7 : N — S such that Vi € N.3t € N.(7®, ¢, 7(+D) € R holds (we write the
function application with a superscript). Hence, 7 is the (i + 1)th state on path 7. For a
given path 7, we define an associated time consumption function 7, so that = and 7, satisfy the

condition Vi € N.(z, 719, 7(+D) € R.

Note that 7. is not uniquely defined for a fixed path =, since we may have more than one
transition between two states that are labeled with different numbers. The set of paths starting
in a state s is furthermore denoted as Pathsk(s).

Definition 11 (Semantics of JCTL) Given a TKS £ = (Z, S, R, £), and s € &, then the
semantics of the logic is recursively defined as follows:

(a+1 <7 <b) A((K7Y))

e (K,s) = EX2"yiff there is a path m € Pathsy (s) with associated duration function 7,
with
(a+1< 7'7(r0)) A ((}C,’ﬂ'(l)) E)

o (K,s) = E[p Ul* 4] iff there is a path 7 € Pathsy(s) with associated duration function
7 and an ¢ € N with

<a < iirw < b) A (K, 7Y =) A (Vi < 4. (K, 7)) = @)

e (K,s) = E[p U=*] iff there is a path 7 € Pathsy(s) with associated duration function
T, and an ¢ € N with

(a < iTy(rj)> N ((Icaﬂ-(i)) ‘: w) A (Vj <. (’C’W(j)) }: 90)

o (K,s) = EGI*Yy iff there is a path € Pathsy (s) with associated duration function 7,
such that for all ¢ € N, we have

(a < < b) S ((K,79) o)

32

JCTL asaReal-Time Extension of CTL

o (K,s) = EG=% iff there is a path m € Pathsy(s) with associated duration function 7,
such that for all € N, we have

(a < Zzirfrj)) = ((K,7) =)

Given a TKS K and a JCTL formula ¢, we denote the set of states of /C where ¢ holds as [¢] ...

Intuitively, the semantics of JCTL can be explained as follows:

o (K,s) = EXI*T1¥,; means that the state s has a direct successor state s’ that satisfies ¢
and can be reached intime ¢t € [a + 1, b].

o (K,s) = EX2*"'y means that the state s has a direct successor state s’ that satisfies ¢
and can be reached intime ¢t > a + 1.

o (K,s) = E[pU*!)] means that there is a path 7 starting in 7(%) = s and a number i € N
so that for the first 4 states 77(0 ..., %1 the property ¢ holds, and ¢ holds on 7(®,
and the time ¢ := Z;. Ll reqmred to reach state 7(*) satisfies the numerical relatlons
a<tandt <b.

e (K, s) = E[pU2%] means that there is a path starting in 7() = s and a number i € N

so that for the first i states 79, #(1), ..., 7(=1) the property ¢ holds, and 1 holds on 7(®,
and the time ¢ := Z; BTW reqU|red to reach state 7 satisfies the numerical relation
a <t

e (K,s) = EGI*"y means that there is a path 7 starting in 70 = s, such that for any state
7@ that is reached within a time ¢ := Z;) with ¢ e [a b], we have (K, 7%) = ¢.
Hence, ¢ holds in the interval [a, b].

e (K,s) = EG=“p means that there is a path starting in 70 = s, such that for any state
(® that is reached within a time ¢ := Y7 9 with ¢t > a, we have (K, 7)) = .
Hence, ¢ holds for all states on = that are reached at time a or after time a.

S9 S3
3
O—-@):

Figure 3.3: An Example for the JCTL Semantics

As example for the JCTL semantics, consider the timed Kripke structure shown in Figure 3.3.
There, we have:

33

JCTL asaReal-Time Extension of CTL

<9 w]]] = {80, S1, S92, S4, 85}

<6 w]]] = {51, 2, S4, S5}

¥
¥
o Uy = {51}
¥

[] [[]
_ — = /=
m . m m m m

[Elp U= 9] = {}
[EG=*¢] = {s0, 51}
[[EG[M](;J]] = {so, 51}
[EG™*¢] ={}
[EX="9] = {s0}
[EX=*¢] = {s0}
[[Ex48]] — {50}
[EX>?¢] = {s0}

o [EX*%] = {}

Note that in the results of [[EG[“]go]] the state s; holds trivially, since, starting at s, there is no
state at all to be found in the interval [2, 4]. Hence, due to the definition of [[EG[“”’]@]] , we have

false — ((K,W(i)) = go)

which is always true.

The states in [[EG[“”’]@]] that do not only trivially hold, can be easily determined by the follow-
ing conjunction:

[[EG[a’b]go]] A [[E[l yletl @]]]

3.2.2 JCTL Operators as Abbreviations

In this section we show that the set of the basic JCTL operators is complete for a CTL-like logic.
In particular, we show that further JCTL operators, like e.g. the formulae AX"p, A[p U" 9],
and AG"¢ can be defined in terms of EX®¢, E[p U" 9], and EG*y. It is well-known that all
CTL formulae can be rewritten so that only the operators EX, E[- U -], and EG are used with the
following equations (cf. definition 5 in section 2.1.3):

o AXp := -EX—p
® AGQO = —|EF—|Q(J = —|E[1 Q (—w)]
o Alp U] := —E[(-¢) U =(p V)] A ~EG—y

34

JCTL asaReal-Time Extension of CTL

The question is now whether such definitions can be used for real-time extensions as well. In
order to prove JCTL equations, we use an abstraction of the time constraint to an ordinary signal
and a subsequent LTL theorem proving 2, i.e. considering the validity of the formula on a single
path (without path quantifiers). In particular, we embed the time constraint « into the boolean
formulae, which allows us to consider time constraints at boolean level, as parts of boolean
formulae. For this purpose, we define a complete set of real-time temporal operators according
to JCTL semantics as follows:

Definition 12 (JCTL Macro Operators) We define:

o X*p := X[k A ¢

Xfp:= X[k — ¢

Gy := Gk — ¢]

Fro = Flk A ¢]

[U ¥l :==[p U (kAY)]
[p "U 9] = [(k = @) U]
[p U 9] == [p U (kA)]
[p*U 9] = [(k = @) U Y]
[p B* 9] :=[¢ B (kA 9)]
[p "B o] :=[(k A @) By
[p B* 9] :=[¢ B (kA 9)]

["B] := [(k A) BY]

It is not hard to see that the CTL equation is not true for AX", since the equation X"y = = X"—¢
is not valid. For this reason, we have to define another real-time next-operator as follows:
Xfp := X[k — ¢]. We therefore have to distinguish between a weak and strong real-time next-
operator (obviously, we have X"¢ — X"). Then, we have the negation laws X" = = X"—p
and X*¢ = —X"—¢, and therefore also the following definitions:

o EX®p := EX(k — ¢) = EX=k V EXp = EX"1 vV EXZ%
o AX iy := —EX

o AXfyp := -EX -

2see[113] for more details

35

JCTL asaReal-Time Extension of CTL

Hence, all the real-time next-operators can be defined by EX®, but we have to use more com-
plicated definitions, and we must have complementary time constraints (this means that the set
of time constraints must be closed under complement). The definition of AG*p (and EF*¢), on
the other hand, is straightforwardly given by the following equations:

e AGFp :=AG(k — ¢) = —EF(k A —p) = -EF"—¢p

o EFfp :=EF(k A @) = E[1U (kA)] = E[1 U* ¢]

Finally, consider A[p U” ¢]. The equation that is the basis for the definition used in CTL is the
LTL theorem [o U ¥] = = [(—¢) U =(¢ V 9)] A =G—e), which may be rewritten to the more
readable form [U ¥] = [¢ B =(¢ V ¢)] A Fy, and once more to [¢ U ¢ = [¢ B =(¢ V).
Consider now what happens, when we want to use the same transformations for real-time oper-
ators, too. To see this, consider the following transformations of the right hand side:

—E[(—yp) U =(p V)] A "EG =
(=) U (K A =(p V)] A —EG(k — 1))
¥ B (kA (o V)] AAF(k A1)
¥ B (kAo A=p)] A AR
(5 — @) U] A AP

E[
E[

—

Al
Al
Al
It is not difficult to see that this is not equivalent to A[p U ¢], i.e. the equation

Alp U"] = —E[(—¢)) U* =(o V¥)] A EGF 1)

does not hold.

3
O——@))
So S1

Figure 3.4: Invalidity of the equation (1)

To see this in an example, consider the structure given in Figure 3.4. We have (K, sq)
A[gp u=? ¢}, since ¢ does not hold up to the state where a time > 3 is consumed, i.e. in state
5. On the other hand, we have (K, sg) = AFZ3%), and also (K, so) = c.Al(c > 3 — ¢) U 1/].

In the next definition, we systematically define a complete set of real-time temporal operators.

To this end, we consider — if necessary — the different types of time constraints (i.e. <, <, =,
<, >) individually. Then, further JCTL operators can be expressed as abbreviations:

36

JCTL asaReal-Time Extension of CTL

Definition 13 (Further JCTL Temporal Operators) Let x be any time constraint, i.e., [a, b],
~ k with ~€ {<, <, =, <, >}, or the empty constraint. Let a,b € N and p be an arbitrary
variable. Then, we define further temporal operators in JCTL as follows:

e Boolean Operators:
-1l:=pV-p
- 0:=pA-p
—p=>Yi=pVa
e EX Operators:

EXy := EX>'p

- EX*g := EX"p

_ Ex<a¢ — EX[LG_”QD

_ EX>aS0 = EXZaqu(p

_ EX:CH_IQO — El[a—kl,a—kl](p
- EX*p := EX"p V EX™%p

e E[- U -] Operators:

E[o U 9] := E[p U™ ¢]
E[p US®] := E[p U]

— E[pU=® 9] := E[p U~ T y)]
- E[p U™ y] 1= E[p U=**"]
— E[p U™] := E[p U] 9]

e EG Operators:

— EGy := EG=%

- EGS%p := EG%yp
- EG*p == EG** 1y
- EG”% == EGZa+lgp
- EG™ % = EG[a’“}(p

The following equations can be used to define further real-time temporal operators:

e X Operators:

- EXfp = EXF1V EXZp
- AX"p := —EXF-p
- AXfp = —EX "¢

e F and G Operators:

- EF"¢p = E[1 U”" ¢]

37

JCTL asaReal-Time Extension of CTL

— AFfp = —EGF—p
- AG”QO = —|E[1 Qn —|90]

strong-until (U) operators:

- Alp U)| = Alp U 4] A ~EG#-y

- Alp U= 9] = AGS* (p A AXA[p U])

= Alp U 9] = —E[(=) U (¢ V ¥)] A —EG—%)
weak-until (U) operators:

- E[p U" ¢] = E[p U™] VEGy

— Afp Uzt 9] = AGS* (o A AXA[p U 9))

= Alp U=t ¢] = Alp U= (¥ V AGy)]

- Alp U] = —E[(-¢) U =(o V)]

before (B, B) operators:

- E[p B® ¢] = -A[(—¢p) U" ¢]
— E[p B* ¢] = -A[(—¢p) U" ¢]
- Afp B* 9] = —E[(—¢p) U" ¢]
— Alp B® 9] = —E[(—¢p) U* ¢]

left-constrained operators:

- Bl "U 9] =Elp "Uy] VEGC"p
— E[p "U ¢] = A[(=) U* (mp A —1p)]

(—9)
= Alp *U ¢] = —E[(—¢) U* (mp A)]
= Alp "U ¢] = —E[(—) U" (¢ A)] A "EG—¢
- E[p *B ¢] = -A[(—¢) "U ¢]
- E[p "B ¢] = -A[(—¢) "U]
= Alp "B] = ~E[(—¢) "U 9]
] (—)

[
- Alp "B ¢] = -E[(=¢) "U ¢]

As can be seen, the EGI®*! operator states that some property holds for all states that can be
reached within [a, b], while E[- U*"] .] states a property for some point of time in that interval.
EF*¢ holds in state s iff a state can be reached where ¢ holds and that state can be reached
within a time that satisfies the time constraint .

38

JCTL asaReal-Time Extension of CTL

E[p B”] means that there must be a path 7 and numbers i,j € N With] < 4 such that ¢
and « hold on 7() and =, respectively, and the time required to reach =) satisfies the time
constraint x (hence, ¢ must hold before).

JCTL has also weak variants E[- U -] and E[- B -] of E[- U -] and E[- B -], respectively: E[p U* 1]
means that there must be a path 7 such that for all i € N the following must hold: whenever a
state 7 satisfying ¢/ can be reached in time ¢ that satisfies «, then ¢ must hold for all states
7@, ..., 70~ E[- B -] is defined in a similar way.

Finally, the versions with the universal (A) path quantifier are defined such that the correspond-
ing path property must hold for all paths leaving the state.

As next example, consider now [¢ *B 15]. We first prove the validity of the formula on a sin-
gle path (without path quantifiers), abstracting of the time constraint to an ordinary signal.
The equation that is the basis for the definition used in CTL is the LTL theorem [p B ¢] =
= [(—¢) U 7). We have

[p “B] =
[(kA@) Byl ==[(=(s Ap)) U] = = [(-6V) U] = = [(k = (=) U
= = [() *U ¢

Adding now path quantifiers to both sides of the equation, is a straightforward task:
o E[p "B] = -A[(=p) "U]
Alp "B ¢] = —E[(=¢) "U ¢]

Adding path quantifiers is however not easily possible when the right hand side of an equa-
tion contains nested time-constrained temporal operators, like AG=* (o A AXA[p U 9]), since
the innermost one must then be reset whenever the operator is evaluated. Nevertheless, path
quantifiers can be shifted over temporal operators as done for LeftCTL" in [110]. To consider
the mentioned example, for ® € JCTL, the law AG=*® = AG=PA® holds, which is proved as
follows:

(K,5) £ AGS*® & Vr € Pathsy(s). (K, 7©) = 660
&V € Pathsi(s).¥Vi e N. Y L 70 < b — (K, 7)) £ @
&V e Paths,c(s) Vi € N.
k) < b — Vg € Pathsi(n®).(K, 0©)): P
& V1 € Pathsy(s)VzE]N S AR < p— (K, 70) = AP
& V7 € Pathsy(s).(K, 7Y) &= GSAd
& (K, s) = AGSAD

Finally, consider A[(p usb w}. Let the time constraint be ¢ < b. Then the following transforma-
tions that are clearly valid:

39

JCTL asaReal-Time Extension of CTL

(K.s) b= Al U o]

& (K, s) =A[p U ((c < b) Ad)]
& Vm € Paths(s). (K, 1) = [p U ((c < b) A9)]
& Vr € Pathsi(s).(K, 79) = [p U ((c <) Ag)] or (K, 7)) = Gy
& Y € Pathsi(s).(K, 7)) & [U= 9] or (K, 7)) = Gy
Hyr € Paths(s).(K,) = [0 US 9] or (K, 7©) = [U AGy]
&V € Pathsi(s).(K, 7)) = [p U= (¢ v AGyp)]

& (K,5) = Alp U (6 v AGY)]

The only critical equivalence is the one that is marked with (x), so we consider this one in more
detail. The direction < is trivial, so it only remains to prove the = direction. For this reason,
we have to prove that for any arbitrary path = € Pathsy(s) the propositions (1) and (2) together

imply (3):
(1) Yo € Pathsk(s).(KC, o) k= [p US? 9] or (K, o) = Gy
(2) (K, 79) = [p U= ¢]
(3) (K,7©) = [0 U=* AGy]

Instantiating p := 7 in (1) allows to derive with (2) by modus ponens that also

(4) (K, =) = Go

must hold for our path 7 € Pathsk (s). Therefore, we conclude from (4) and (2) that

(5) (K, 7?) = G='—y

must hold for 7. Let now ¢, be the greatest position of 7 where the time required to reach 7 ®)
is < b. We now prove

(6) (IC, 7)) = AGep.

To this end, let furthermore be & € Pathsy () such that V¢ < t,.6® = ¢® holds, i.e. ¢ shares
the prefix &9, ...,). For this reason, it also follows that

(7) (K, £9) | = [0 U= o]
holds due to (2). But now, (3) follows: clearly, for b > 0 there is a position on 7 where the time

required to reach this position is < b (the equation is trivial for b = 0), we select the greatest
such position, which is ¢,. Now, (3) follows simply from (4) and (6).

40

JCTL asaReal-Time Extension of CTL

3.2.3 Reducing Basic JCTL Operators

As already mentioned in section 3.2, the basic operators EG*®l and EG>* are used as reference,
in order to simplify formulae notions, since they can be also defined as abbreviations. For the
EG=“ operator we have:

EG24Tlp = —AF2etl—p
E—\ [1 gZa-}—l _‘90}
= -AG=® (1 AN AXA[]. U —|(,0])
= ~AGSIAXAF
= EFS’ZEXEGQO

Furthermore, the following lemma holds, which shows that also the EGI®*(= EG=?) is a some-
how hybrid operator that makes both a universal and an existential statement (compare G5 and
G in the following lemma). This is due to the fact, that the equation EG="p = E[p U>® 1] is
valid:

Lemma 1 (Semantics of EGS°y) Given a JCTL formula ¢ and a number b € N. Then, the
following properties are equivalent for any TKS X = (Z, S, R, £):

(G1) (K,s) =BGy
(G9) thereisapath 7 € Pathsk(s) starting in state s, such that for all numbers i € N, we have
i—1
(Zﬂ(ﬁ’ < b) — (K, 79) =)
j=0

(G3) thereis a path © € Paths(s) starting in state s and a number 7 € N such that

i—1)
(ZTfrj) <b< Zﬁ(rj)) A (V) < (KK, 79) = @)
=0 =0

(G4) thereis a path m € Pathsy(s) starting in state s and a number 7 € N such that

(in@ > b) A (V) <. (K,79)) =)

(Gs) (K,s) EE[pU™"1]

The proof of the above lemma is not very difficult. We just make use of the well-ordering of
natural numbers, i.e., if there is a number with some property, then there is also a least number
with the same property.

41

JCTL asaReal-Time Extension of CTL

It follows that the EG**! and EG=“ operators can be expressed as abbreviations of the qualitative-
only CTL operators EX and EG and the JCTL operator E[- U -]:

o EG%p = E[p U™’ 1]
o EG20tly = EFSEXEGy
e EG2% = EGyp

To summarize, we see that also basic JCTL operators can be expressed as abbreviations. Never-
theless, in order to simplify formulae notions, but also to be able to directly compare JCTL with
other existing real-time logics (cf. section 4) it is sensible to use the notion and the semantics of
the JCTL operators as given in definitions 9 and 11.

42

Chapter 4

Problems of Previous Approaches

(O0) 10l Soxely pot, tfic 8 dhndeloc uéhet. !

AYXTYAAMAY. (4og aidv nn.X.)

(Adxpéwy, anbdon. 1, Nauck)

In this section we discuss the mentioned deficiencies (cf. section 1.1.4) of existing related
approaches in more detail. In particular, we consider problems that occur when timed systems
are expanded to ‘corresponding’ unit delay systems. In general, we show that these expansions
yield in misleading and even wrong results. Authors of previous approaches have defined their
logics so that these results match with their semantics. As outlined in section 1.1.4, we will
however see in more detail, that all of these approaches to fix these problems yield in further
problems. Moreover, we will show in section 4.3 that their results are in contrast to the results
of other established approaches, like timed automata.

4.1 Time-Models of Previous Approaches

In order to precisely point out the deficiencies of the previously mentioned approaches we must
first consider their time-models together with the notions of the expansion of a timed Kripke
structure and the track of a state.

All previous approaches that use Kripke-structure-based formalisms are defined according to a
Stuttering Interpretation Is of timed transition systems:

Stuttering Interpretation Ig: A transition from state s; to state s, with label £ > 1 is seen
as abbreviation for a stuttering sequence s, N 51,1 N S1,k—1 L s, where s, is
repeated, according to the time consumption, so all the states s, ; have the same variable
assignment as state s;.

1| don't care about different opinions, only about the truth.
ASTYDAMAS (4th cent. BC)

43

Time-Models of Previous Approaches

A
formula

ple e || v
1 2 3 4 5 time

S

Figure 4.1: A Timed Transition According to Stuttering Interpretation I

OO0

Figure 4.2: Interpretation Is Represents Stuttering Sequences of Untimed Transitions

As example, consider Figure 4.1, which shows a timed transition according to stuttering in-
terpretation Is. At the point of time ¢ = 1 we are in state s, where the formula ¢ is valid.
The transition from s, to s; requires 4 time units. The formula ¢ is valid at the points of time
t =2,t = 3,t = 4, between the states sy and s;. At the point of time ¢ = 5, state s; is reached,
where the formula v is valid.

As can be seen in Figure 4.2 the stuttering interpretation Is represents transitions in timed sys-
tems as abbreviations for stuttering sequences of single untimed transitions. Hence, it cannot
handle atomic timed transitions. In this work, to distinguish between timed Kripke structures
that are based on I; and other timed transition systems that are based on g, we call the latter
ones stuttering Kripke structures (SKSs).

Stuttering Kripke structures (SKSs) can be expanded into unit-delay structures by means of

certain expansion techniques that work according to different expansion semantics. A possible
expansion is defined in Figure 4.3.

44

Time-Models of Previous Approaches

function expand(Z, S, R)
S.:={(s,1)| s € S};
Re:={}h
for (s,t,s") € R do

fori:=2totdo
Se =S, U{(s,1)};
Re:=ReU{((s,1—1),(s,1))};
end for;
Re =R U{((s,0), (s, 1)) };
end for;
Z.:={(s,1) | s € T};
return (Z., Se, Re);
end function

Figure 4.3: Expansion of a Timed Transition System

Definition 14 (Expansion of SKSs) GivenaSKS K = (Z, S, R, £), we compute (Z, S, Re) =
expand(Z, S, R) with the function expand as defined in Figure 4.3. Moreover, we define for any
(s,u) € S, the label function L.((s,u)) := L(s). The expansion of K is then the unit delay
structure K, := (Ze, Se, Re, Le)-

As can be seen, the expansion relies on interpretation I, since we defined £((s,u)) := L(s),
I.e., the states of K, have the same variable assignments as the corresponding states of /C. For
conciseness, we use the following definition:

Definition 15 (Tracks of a State) Given a SKS K = (Z, S, R, L), its expanded structure /C,
= (Ze, S, Re, L), and a state s € S. Then, we define Tracksk(s) = {(s',u) € S, | s = §'}.
A track in an expanded structure is a tuple (s, k), where s € S,k € N. Furthermore, we call
the tuple (s, 1) with s € S, a main track in an expanded structure.

Generally, SKSs are abbreviations of UDSs, where sets of states are merged into timed transi-
tions. This is one of the main reasons for the problems described in the next sections: merging
sets of states into timed transitions clearly leads into loss of the internal node-connections on
the merged paths.

For many purposes like model-checking, composition, etc., a SKS must be expanded into a
UDS. We emphasize however, that expansions of SKSs can be performed in many different
ways that are not equivalent to each other (cf. Figure 4.7). We will discuss this issue in more
detail in section 4.2.2. In contrast to this, as explained in 3.1, UDSs are special cases of TKS
that are obtained by restricting TKSs so that (s, ¢, s') € R implies¢ = 1.

45

Description of the Problems

4.2 Description of the Problems

4.2.1 Overlapping Time Constraints

In [57], it has been observed that timed transitions may be differently interpreted as already
explained. However, [57] did neither decide to use I; nor to use g, and instead mixed both in-
terpretations in that different temporal operators interpret transitions differently, i.e., according

—~k
to either I; or Is. For example, [57] defines a temporal operatorEF ¢ as follows 2:

(K,s) = Eﬁkgo iff there is a path 7 € Paths;c() with associated duration function 7, and a
i € N, so that ((K, 7)))=g0)/\zj o7 > k holds.

. —k : .
Intuitively, EF ¢ amounts to say that there is a path where ¢ holds after the time & has been
consumed. However, this is not the case, which can be shown by the following example.

1

53

Figure 4.4: Problematic Example for [57]

Consider the state s, of the structure given in Figure 4.4. For comparison, note first that EF>p
means that there must be a path starting in state s, where we reach some state s in time > 3
where p holds. This is not the case for any of the states in Figure 4.4, and hence, we have

[EF~°p] . =

—~3
However, we have [[EF p]] = {s0,51}!
K

ey (D)

¥,
Figure 4.5: EF”*y and EF ¢

2In [57], the notation EXW([k]p (weak next) has been chosen, but in analogy to the JCTL EF operator, we
prefer the notation above.

46

Description of the Problems

~k
The difference between EF and the JCTL EF~* is best seen by the transition system in Figure
4.5 that contains a single path 7, where ¢ holds only on state 7(). Furthermore, assume that

Z;;t 9 <k < > o 79 holds. Then, the formula EF ¢ will be satisfied on , while EF*¢
—~k
will not be satisfied. The reason is that [57] interpretEF with interpretation /5 so that it will

be satisfied by some of the intermediate states between 7 and 7(*1), while JCTL operators
do not consider any intermediate states at all.

We are not aware of any reasonable application, where additional time constraints of actions are
to be considered that are not even taken. But even more severe, the coexistence of both interpre-
tations of timed transitions makes it impossible to define operations on TKS like composition
of structures or simulation preorders.

4.2.2 Branching Problems

Becoming aware of the misleading mixture of semantics used in [57], [109] decided to only
use interpretation Is. However, another problem with the approach in [109] is that different
expansion techniques yield in different results.

Figure 4.6: A Timed Transition System
To see this, consider the SKS given in Figure 4.6 and two different expansions of it that are given
in Figure 4.7. In the expansion K, (upper structure), we have added to every timed transition
intermediate states according to the time delay. This is in accordance with the technique of [27].
In the second expansion /C, (lower structure), we have shared the intermediate states as long as
possible which is the expansion technique of Figure 4.3 that is currently also preferred by [109].
The two structures £C; and K, are not equivalent. To see this, consider the formula
® := AFS'EF=?p.
In 1, we obtain [®] = [EF<?p] = {(s},2), (s},3), (s3,1)}.
In KC,, we however obtain [EF<*p] = {(s1,2), (s1,3), (s3,1)}, and therefore

[®] = {(s51,1)(s1,2), (51,3), (53, 1)}

47

Description of the Problems

(8312) (8}13) (8}14) (82,1)
0

D=0 =)
(83’2) (53’3) (83’1

(5}14) (82’1)
0

(51’1) (5152) (81’3)

(83,1

Figure 4.7: Different Expansions of the SKS in Figure 4.6

Hence, the semantics of [109] and [27] depend on the chosen expansion. As a consequence, the
approaches followed in [109] and [27] are also not equivalent to each other. Moreover, as the
real-time temporal logics used in [109] and [27] both use SKSs as models, it is unsatisfactory
to use something else but the SKS to define the semantics.

As the results of the expanded structure moreover seems to have nothing to do with the orig-
inal problem, i.e., the results obtained for an expanded structure can not be directly transferred
back to the timed transition system, we may consider [109] in principle as an approach based
on unit-delay Kripke structures.

Furthermore, it is erroneously argued in [109] that the semantics as given in [57] is not
intuitive, since in general, we have EF<%p # EFS*EF<%p. However, both formulae express
different things: EFS*EF=*p means that we can reach some state in at least 3 units of time
where in further 3 units of time, a possibly different state is reached where p holds. This is
obviously not the same as EF<®p, which means that we can reach a state where p holds in at
least 6 units of time. In general, we only have EF<*EF<*p — EF<°p, but not vice versa.

4.2.3 Problems by Nesting Operators

One might think that we can simply expand SKSs to obtain corresponding unit-delay structures
in order to use the traditional CTL model checking algorithms. However, we show by the
following example, that this is not the case.

48

Description of the Problems

Figure 4.8: Example for the Expansion Problem

Consider first the timed transition system given in Figure 4.8 as a TKS and the formula

®p := EGS’EF<'p

To evaluate this formula, according to JCTL semantics we successively obtain the following
sets of states:

[p] = {s1, s2}, [EF='p] = {so, 51, s2}, and thus [EG=*EF="p] = {so}.

(51’ 1) (53’ 1)

I —{a—)—~0)
(s0,2) (80,3) (s2,1) (84,1

Figure 4.9: Expansion of the Timed Transition System of Figure 4.8

Now, consider again the timed transition system given in Figure 4.8 as a SKS and the formula
®p. In order to evaluate @z on a SKS, we must consider the expanded structure as given in
Figure 4.9. Please note, that the expanded structure of this system is identical for both expansion

semantics used by [109] and [27].

Evaluating again the formula EGS*EF=<'p using the real-time logics of [109] and [27] we obtain:

[p] = {(s1,1), (52, 1)} and [EF="p] = {(s1,1), (50, 1), (52, 1).(50,3)}-

49

A Comparison to Timed Automata

To evaluate [EGS’EF="p], we must now check which of the expansion states have a path so
that we are in [EF='p] as long as the time consumption is < 2. It is not difficult to see that
there is no such state, and hence, we now have [EG=’EF='p] = {}.

Hence, we see by the above example, that SKSs and their expanded UDSs are not bisimilar. The
example moreover shows an intrinsic problem of approaches like [27, 109] that are based on I:

The evaluation of a formula ¢ may yield in a set of tracks 7, where (s,i) € 7, holds for
one track (s,), but (s, j) € 7, does not hold for another track (s, j). As such ‘inconsistent’
sets of tracks may occur (although the tracks of atomic formulae are consistent) it follows that
the approaches based on I can not define in which states of the timed transition system of
Figure 4.8 a formula like EF<'p holds. This yields in problems when operators are nested,
as demonstrated by the above example. Therefore, [109] performs all computations on the
expanded structure 4.9 to compute the set of tracks 7, where a formula ¢ holds, and then
checks whether Z x {1} C 7, holds.

4.3 A Comparison to Timed Automata

The authors of [109, 27] have defined their logics so that their results match with their semantics.
However, to obtain a solid picture about these approaches, one should test the *compatibility’
of their results against other, popular and established approaches. The best paradigm for such
an approach is the formalism of timed automata and the real-time logic TCTL.

For this purpose, we have described the timed transition system shown in Figure 4.8 by means
of timed automata and have used the tool Kronos [40] to verify the formula ® 5, := EGS*EF='p.
The results are shown in Figure 4.10. Kronos clearly states that the formula @5 is true at the
initial states init of the system, which is s,.

These results agree with the results of our logic JCTL and are in contrast to the approaches of
[27] and [109], as shown in section 4.2.3.

50

A Comparison to Timed Automata

Formal Model:

#states b
#trans 6
#clocks 1 CLK

state : 0

prop : Q

invar : TRUE

trans :

CLK =1 =>; CLK := 0; gotol
CLK =3 =>; CLK := 0; goto3

state: 1

prop : P

invar : TRUE

trans :

CLK =1 =>; CLK := 0; goto2

state : 2

prop : DONTCARE1

invar : TRUE

trans :

CLK =1 =>; CLK := 0; goto?

state : 3

prop : P

invar : TRUE

trans :

CLK =1 =>;CLK := 0; goto4

state : 4

prop : DONTCARE2

invar : TRUE

trans :

CLK =1 =>; CLK := 0; goto4

Specification:

init impl eb{<=2} (ed{<=1} P)

Verification:

true

Figure 4.10: Counterexample Described by Timed Automata and Verified by Kronos

51

Chapter 5
Real-Time Symbolic M odel Checking

"Ayer 8¢ mpdg @iSc Y dAflelay yedvoc. 1
MENANAPOYX. (342 - 291 n.X.)
(T'v. pov. 11, Meinecke)

5.1 Real TimeModel Checking on Timed Kripke Structures

In this section, we present model checking algorithms for the real-time temporal logic JCTL.
The essential idea is to take advantage of successful CTL symbolic techniques by extending
their operation for real-time constraints: the algorithms are applied to timed Kripke structures
and are based on fixpoint calculations that operate with respect to time constraints.

Note also that we consider timed Kripke structures that do not contain finite paths. More-
over, it is advisable to perform a reachability analysis in advance, since this can be easily done
on qualitative-only level and hence release the model checking algorithms from complex calcu-
lations on timed paths of unreachable states. The qualitative-only transition system (a UDS) is
always given in advance — before the TKS construction (cf. sections 6.1 and 6.2), so there are
no additional operations required in order to obtain it.

Given a transition relation ¢/ of a UDS K, the function Deadends shown in Figure 5.1
eliminates all finite paths contained in ¢/ and returns a finite-path-free transition relation. This
is done by iteratively computing all states in Ky, that have at least one successor state.

The function Reach clearly computes the set of states that are reachable from the states S,,
by the transitions of /.

The key idea to reason about the real-time constraints is to move fronts of tracks on a TKS,
which is virtually expanded like a SKS. However, we emphasize that we do never expand the
structure. Furthermore, we do not run into semantic problems since the result of any evaluation

I Time bringstruth into light.
MENANDROS (342 - 291 BC)

53

Real Time Model Checking on Timed Kripke Structures

of a logical operator is a set of states instead of a set of tracks. Hence, all calculations are
independent of the virtual expansion. This is achieved by abstraction of the set of tracks, so
that the semantics of the evaluated temporal operator is respected. The algorithms are able to
correctly translate the model checking results obtained after a fixpoint iteration on any virtually
expanded structure to the abstract structure so that the interpretation I is respected.

In general, there are two possibilities: On the one hand, a state s belongs to the result if its
main track (s, 1) belongs to the track set, on the other hand it may be sufficient if anyone of its
tracks (s, t) belongs to the track set. The choice between the two possibilities depends on the
semantics of the considered temporal operator. The underlying algorithms are given in Figures
5.3,5.4,5.5and 5.6.

function Deadends(if)
Uing = U,
repeat
une:ct = uz'nf;
Snezt = {s €8 |3s' € 8.(s,5) € Unext};
uinf = Z/{z'nf N (S X Snext);
until Z/[mf = unea:t;
return U, s;
end function

function Reach(i4, S,,)

Sreach = Scp
repeat
Sold = Sreach;

Snext = {8 €S| (5,8) EUN 3 € Sreach};
Sreach = Sreach U Snemt;
until Sreach = Sold;
return S;each;
end function

Figure 5.1: Algorithms for Finite Paths Elimination and Reachability Analysis

The main function for the evaluation of all real-time constraints is the function MoveFront.
Given a set of tracks 7, and a set of states S,,, this function computes the set of tracks that have
a path of a certain length through the tracks S,, x N. The precise specification is as follows:

54

Real Time Model Checking on Timed Kripke Structures

C t() C tl : tn—2 :tnl@
S0 S1 Sp—2 Sn—1 Sn

Figure 5.2: Correctness of MoveFront

Lemma 2 (Correctness of MoveFront) Givena TKS K = (Z, S, R, L), a set of states S,,, and
a set of tracks 7, the function MoveFront as given in Figure 5.4 satisfies the following equations
for ~€ {strong, weak} (cf. Figure 5.2):

ds1,...,8n—1 € Sp.3(sp, d) € Ty.
oy ... tn 1 €N.

(s0,t) € MoveFront(~,k,S,,Ty) & N, (80, iy 8i41) € R A
k> (g t)+d—tA
t <t

Hence, MoveFront(~, k, S,,, 7;;) computes the set of tracks that have a path through any ex-
panded structure of length £ with ¢ > £ to a track in 7, which runs only through tracks of
S, X N.

Proof: The correctness easily follows by induction on k&, when we observe that our algorithm
and the right hand sides of the above equivalence both satisfy the following recursion equations
(note that primitive recursive definitions are uniquely determined):

e MoveFront(~,0,S,, Ty) = Ty
e MoveFront(strong, k+1, Sy, Ty) = (S, xN)NpreTracks(MoveFront(strong, k, Sy, Ty))

[let Tp := MoveFront(weak, k, S, Ty)
e MoveFront(weak, k + 1,8y, Ty) = (in To U (S, x N) N preTracks(7s))
Using these equations, we can easily prove that 7, = MoveFront(~,i,S,, 7;) is an invari-
ant of the loop in the algorithm given in Figure 5.4 for MoveFront. This directly implies the
correctness of the above lemma. |

Please note that in the algorithm given in Figure 5.4 to implement the function MoveFront, we
use (1 Z k) A ((AN(To x N)) # {}and (i # k) A (To # T1) as conditions of the two loops
instead of (i # k) only (which would also be correct). The reason for this is that whenever
(AN (Ty x N)) # {} or To = 71 hold for an iteration 7 < k, then it follows that all fronts
MoveFront(~, i, S,, Ty), ..., MoveFront(~, k, S,, T,,) would be identical, so that we already
have the result in this case.

Now consider the function StatesEU**. We first compute the set of tracks 7 that can reach
atrack of Sy, x {1} in exactly a steps (where only tracks of the states S,, are traversed). After

55

Real Time Model Checking on Timed Kripke Structures

function preStates(Sy)
ds' € §y.3t € N.
81.—{868‘ (S,t,SI)ER}’
return Si;
end function

function preTracks(7)
Ti={(s,) | (5,0 +1) € Th;
To={(s,t) | 3(s',1) € T-(s,1,8) € R};
return 7; U 7Ts;

end function

Figure 5.3: Symbolic Algorithms for Traversingona TKS K = (Z, S, R, £)

this, we move the tracks 7, by further b — a unit delay steps through the tracks of the states S,,.
By the above lemma, we then obtain

(st ..., 80,1 € Sp Tty ..t ENL \
ds0,...,8p—1 € 890.3'[50, ceoytp_1 € N
ds, € 8¢.E|t € N.
/\;1_01(32: tfia s;—i-l) € R/\
(sp,t) €T & (st = s0) € RA
/\?:_01 (Si, ti, 81;+1) € RA
a= (30, t) +1—tA
b> (X) + (X5 1) +1—¢'A
\ t<tonr<i),

Note that (327" #) + (325, i) + 1 — ¢’ is the number of unit delay steps that are required
to reach track (s,,1) € S, x {1} from track (sp,t’). By the above result, it follows that this
time is in the interval [a, b] (consider the case m = 0, where the second MoveFront went along
a single transition, and the case where m > 0 holds). The final step is to translate this result
(given for tracks) to sets of states. If (s, 1) € 71 holds, then we clearly see that state s, belongs

to [[E[go ylatl w]]] . If, on the other hand, (s}, #') € 77 holds for some ¢’ > 1, but (s}, 1) is not
K
included in 77, then it follows by the above formula that the time to reach (s,,, 1) from (sg, 1) is
larger than b, so that s ¢ [[E[(p ylat] ¢]]]
K

The correctness of the function to evaluate E[p U=® 1] is proved in a similar way.
The correctness of the function EG/**/¢ can be seen as follows:

56

Real Time Model Checking on Timed Kripke Structures

function MoveFront(~, k, S, Ty)

Ty =8, X N;
To = Ty;
Ti={}
A= {}
1:=0;

if equal(~, strong) then
while (i # k) A (AN (7o x N)) # {}) do
Ti = To;
To := T, N preTracks(77);
A:=AU(T,i+1);

1:=1+41;
end;
if (¢ = k) then return 7y;
else

A:=AN(To X N);
{entprear} == {j EN| (s,t,5) = A}
cntoyt = ((k — i)mod(i — entyrear)) + CNtbrear — 1;
Aout := AN (S X N X {entyy});
{%ut} = {T | (Ta]) =)\out};

return 7ou:;

else //ifequal(~, weak)
while (i # k) A (T # T1) do

T :=To;
To := T, N preTracks(77);
To:=TiUT;
=141,

end;

return 7y;

end function

Figure 5.4: Symbolic Algorithms for Track-Explorationona TKS K = (Z,S, R, £)

57

Real Time Model Checking on Timed Kripke Structures

function StatesEUY(S,,, S,,)
To := MoveFront(strong, a,S,, Sy x {1});
71 := MoveFront(weak, b — a,S,, To);
return {s € S| (s,1) € Ti};

end function

function StatesEU=%(S,, Sy)
To := MoveFront(strong, a,S,, Sy % {1});
So:={se8 |t eN.(st)e Tk
repeat
S = Sp;
Sp 1= Sy U (S, N preStates(Sy)) ;
until (S() = 81);
return Sy;
end function

function StatesEGI*?)(S,)

Rrun :=R;
Rxp ={(5,t,8) [s €ESAtENNAS &S, };
1=7:=0;

while (1 < b) A (Ryun # {}) do
tmin == min{t € N | (s,t,5") € Ryun};
Rmin = {(S,t, Sl) € Rrun | 1= tmin};
j =1+ tmin;
if (b—1) < tyn then
return {s | 3s’' € §.3t € N.(s,t,5") € Rrun};
else
Rt :={(s,t,5) | ($,t + tmin, 8') € Ryun \ Rmin };
if (j > a) A (j <b) then Rpin := Rinin \ R, €Ndif;
Ssuce :={s' | Is € S.Tt € N.(s,1,5") € Rnin };
Rsuce : = RN{(s,t,8) | s € Ssuecc Nt ENAS' € S}
Ruew = {(s,t,8) | Is; € S.Ft' € N.(s,, 81) € Ronin N (81,1, 8") € Rouce};
Rrun == Rgt U Rnew;
end
end
return {s | 3s’ € §.3t € N.(s,t,8") € Rrun};
end function

Figure 5.5: Symbolic Algorithms for the Basic JCTL Operators
58

Real Time Model Checking on Timed Kripke Structures

function States(®)

case ¢ of
is_var(®) :return {s € S| ® € L(s)};
- . S, 1= States(yp);

return S\ S,;

oAy S, = States(p); Sy := States(v);
return S, N Sy;

EXt1lly 0 S, = States(y);

o ds' € S, At € [a+1,0]. | .
8() = {SES (S,t,SI)ER)
return Sy;

Exza-l-lga : S(p = StateS(SD)

o s’ e S, >a+1. |
80.—{368 (S,t,SI)ER }a
return Sy;

E[p Ut 4] S, := States(y); Sy := States(v));
return StatesEU*(S,, S,);
Elp U2* 9] S, := States(y); S, := States(¢));
return StatesEU=%(S,, Sy);
EG*ly S, := States(i);
return StatesEG*?(S,);
end function

Figure 5.6: Model Checking of JCTL Formulae ona TKS K = (Z,S,R, L)

The algorithm starts considering all transitions R of the system and traverses forward through
the state space determining the successor transitions R,,.. of R and collecting them in R,..
In each loop iteration and if the time is within the interval [a, b], all transitions R that lead
to some states ¢ S, are being removed from R,.,,, and their successors are not being collected
further. This guaranties the integrity of ¢ in [a, b]. When the time is outside the interval [a, b],
all transitions are collected without restrictions, since the validity of their states is there trivially
given (cf. definition 11). The algorithm terminates either when the time has reached the value
b, or when the set of valid states has been emptied.

Hence, we obtain the following correctness result:

Theorem 1 (Correctness of Function States) For any TKS K = (Z,S,R, L) and any JCTL
formula ¢, the function States given in Figure 5.6 satisfies the equation States(¢) = [¢] .

59

Complexity of JCTL

5.2 Complexity of JCTL

In this section, we analyze the complexity of the presented model checking algorithm for JCTL.
For this reason, we first note that there is a model checking procedure for CTL, e.g. the one
given in [33], that runs in time O(|¢| (|R| + |S|)). This procedure is able to evaluate any CTL
operator in time O(|¢| (|R| + |S])).

It is easily seen that if we virtually expand a TKS to a UDS, the number of states and
transition is multiplied with the maximum delay time 7x that appears in L. However, the
runtime of the JCTL model checking procedure isnot in O(7x |¢| (|R|+]S])), since the number
of iterations does also depend on the time constraints of the temporal operators that may enforce
more than 7 |S| iterations. The crucial part of our complexity analysis is the complexity of the
MoveFront function. To this end, we note that the following holds:

Lemma 3 (Complexity of MoveFront (1)) Given a TKS K = (Z, S, R, L), a set of states S,
and a set of tracks 7. Let moreover be K, = (Z, S., Re, L.) the virtually expanded structure
of IC according to definition 14 (cf. section 4.1), and ¢ and « formulae so that the equations
S, x NN S, = [¢]x, and Ty, = [¢], hold. Then, we have

MoveFront(~, k, S,,, Ty) = [®(~, k, 0, V)], »
where the formula ®(~, k, ¢, %) is recursively defined as follows:

o O(~,0,p,7) =1
e O(strong, k+1,¢0,7%) = o NEX®(strong, k, ¢, 1)
let y = ®(weak, k, p, 1))

o O(weak,k+1,¢0,v) = (in yV (¢ AEXy)
end

Moreover, if common subformulae are shared, it is easily seen that |®(~, k, ¢, ¥)| € O(k)
holds. Hence, MoveFront(strong, k, S,, Ty,) can be computed in time O (min{k, 215/} (|R.| +
|Se])), and MoveFront(weak, k, S, Ty) even in time O(min{k, |Se|}(|Re| + [Se|)).

The complexity can also be directly derived from the implementation of MoveFront: Note
that the value of 7, monotonically grows in function calls of MoveFront(weak, k,...), but
not for calls of MoveFront(strong, k,...). Therefore, MoveFront(weak, k,...) runs in time
O(min{k, |Se|}(|Re| + |Se|)), while MoveFront(strong, k, ...) must check for disjunct pro-
cessed fronts that can be at most 2S¢/ and hence requires time O (min{k, 215} (|R.| + |S.|)).
For this reason, we have the following result:

Theorem 2 (Complexity of JCTL) For any TKS £ = (Z, S, R, £) and any JCTL formula
¢, the function States given in Figure 5.6 runs in time O (k. |¢| 7c(|R| + |S])), where 7 :=
max{t | 3s,s'.(s,t,s") € R} is the maximum delay time of K, and k,, is the maximal number
used in time constraints in ¢.

The proof can be obtained by induction along the JCTL formulae. The induction steps are
thereby obtained by the following facts, where Time(f) denotes the runtime of function f:

60

Complexity of JCTL

Time(preStates) € O(|R| + |S])

Time(preTracks) € O(7c(|R| + |S]))

Time(StatesEUY) € O (k#¢c(IR| +1S])),

where & := max { min{a, 2SI} min{b — a, 7 [S|}} < b
Time(StatesEUZ%) € O(min{a, 2°%/S }#c(|R| + |S]))
Time(StatesEG*Y) € O(k#c(|R| + |S])), where k < b

Hence, all operators can be evaluated in time O(k,7x (|R| + |S])). As a formula ¢ may contain
|| operators, the above theorem follows.

As we can see, one key to define a more efficient fragment of JCTL is to avoid calls of the
form MoveFront(strong, k, .. .), since this is not as efficient as MoveFront(weak, k, . . .). Using
a specialized algorithm similar to the one given in [33], we can even improve the complexity
for computing MoveFront(weak, k, . . .):

Lemma 4 (Complexity of MoveFront (11)) Givena TKS K = (Z,S, R, L), a set of states S,
and a set of tracks 7. Let moreover be K, = (Z, S, R., L.) the virtually expanded struc-
ture of KC according to definition 14 (cf. section 4.1), and ¢ and) formulae so that the equa-
tions S, x NN S, = [¢], and 7, = [¢], hold. Then, there is an algorithm to compute
MoveFront(weak, k, Sy, Ty) intime O(|R.| + |S.|).

The specialized algorithm is similar to the one given in [33], but it needs to additionally take
care of the lengths of the paths that have reached a certain track. For this reason, we maintain
forany track s; € S alistT; = [s;1,..., Sim,] such that (s, ;, s;) isa transition in R.. Any track
s; will be marked with a number m; later on that is the minimal length of a path to reach the set
T, from s;. Furthermore, we create lists L, during the computations that contain the tracks that
are marked with the number ¢. The algorithm performs then the following steps:

Step 1: We eliminate all s; ; in each list T; that do not belong to 7. This can be done in time
O(|R.|), since we look at each transition once.

Step 2: We mark the tracks 7, with the number 0, and list them in our first list Z,. Let £ := 0.
This step is performed in time O(|S,|), since we look at each track at most once.

Step 3: For each track s; in L,, and each track s; ; of T;, we mark s, ; with £ + 1 if it is not
already marked, and put s; ; in list L, in this case. We eliminate s; ; from 7;. We then
increment ¢, and repeat this step until £ = £ holds or no transitions are left in the lists 7.

Clearly, the repeated execution of step 3 does look at each transition at most once, so that
O(|Re|) is an upper bound for its complexity. Hence, we see that the entire algorithm runs in
time O(|R.| + |Sel).

Note that the above sketched algorithm works with a depth-first search and therefore per-
forms — in theory — better than breadth-first searches like those used by symbolic model check-
ing based on BDDs. However, in practice, the latter approaches are in general superior.

61

Complexity of JCTL

The next step is to define a subset of JCTL that can be computed without calls of MoveFront
(strong, k, -, -). To this end, the interval constraints must be avoided, and therefore the logic
must be restricted to the basic operators EX[a+"#1 EXZe*! E[.U%.] and EG=* only. Of course,
we can still use all macro operators that can be defined from these basic operators like, for ex-
ample, E[p U=] := E[p U™ ¢ or EF=p := E[1 U ¢].

We define the subset JCTLS of JCTL as follows:

Definition 16 (The Fragment JCTLS of JCTL) Given a set of variables V, the set of JCTLS
formulae is the least set satisfying the following rules, where ¢ and) denote arbitrary JCTLS
formulae, and a, b € N are arbitrary natural numbers, and ~€ {<, <, =,>,>}:

e V C JCTLS, i.e, any variable isa JCTL= formula
o =, o A1p, oV 1p € JCTLS

o EXlHLE, e JCTLS

EX~**lp € JCTLS

EG=% € JCTLS and EG™%p € JCTLS

E[p U<] € JCTLS and E[p US* 9] € JCTLS
EF<%p € JCTLS and EF=%p € JCTLS

As each temporal operator of JCTL= can be evaluated in time O(|R,| +|S.|), i.e., O(Fx(|R| +
|S|)), we immediately have the following result:

Theorem 3 (Complexity of JCTLS) For any TKS K = (Z, S, R, £) and any JCTLS formula
¢, there is an algorithm to compute [¢] . in time O(|¢| 7 (|R| + |S|)), where 7 is defined as
in theorem 2.

In comparison to the complexity of JCTL as given in theorem 2, the factor lfcq, disappeared. This
is due to the fact that the temporal operators that belong to JCTL= are all monotonic, so that the
iterations can stop at least when all tracks have been visited once.

62

Chapter 6

Tranglating Synchronous Programs
to Real-Time Models

Xp6vog 8¢ geuyétw oe undé el dpydc. *

IMITIIONAKTOX (nepf 16 550 n.X.)
(Avi. ¥10B. KO, 42)

In this section, we present techniques that allow the translation of synchronous programs
to timed Kripke structures. The obtained models can then directly be used for architecture-
dependent and -independent real-time verification purposes, as well as for further analysis pur-
poses like WCET and BCET, using techniques like the ones presented in section 7.

To this end, we take advantage of the distinction between micro and macro steps, offered
by the usage of synchronous languages (cf. sections 1.1.2 and 2.2). This distinction simplifies
the analysis of the runtime behavior of programs, since the macro steps can be directly used as
‘building blocks’. Building blocks are thereby parts of the program with a fixed runtime (inde-
pendent of particular inputs). For this reason, building blocks must not contain data-dependent
loops or conditional statements. While it is sufficient for sequential code to simply take the
greatest substatements that do not contain data-dependent loops or conditional statements, this
becomes more difficult for programs with concurrency and mechanisms like process preemp-
tion and suspension. The important advantage of synchronous languages for our purposes is
therefore that compilers do automatically determine the building blocks in terms of macro steps.

In early design phases, if the complete realization of a system is not yet known, one can not
argue about physical time, since this depends on the hardware chosen for the realization. Nev-
ertheless, using synchronous languages, one can achieve realization independent descriptions
of the system, which makes possible to reason about time at a logical level.

Of course, it is also of essential importance to guarantee that the real-time specifications are
met with respect to physical time. Reasoning about physical time however, requires to postpone

'Don't let time escape from you being unalert.
IPPONAKTOS (fl 550 BC)

63

Timed Kripke Structures with Logical Time

the analysis to later design phases where the hardware/software partitioning and the choice
of the used microprocessors are made. The first consequence when considering architecture-
dependent execution time of systems described by means of synchronous programs, is that, in
contrast to the model at logical level, the finite number of micro steps included in each macro
step of the architecture-dependent model will consume time, which is not always equal.

It is viewed as a good programming style when the actual runtime of the macro steps is bal-
anced, but generally, the macro steps will not require the same amount of physical time.

As a natural order, we will consider in the next sections first the high-level- and then the low-
level approach. It is important to note that our methods allow in both cases the generation of
real-time models without having the need of parallel composition of single submodels, which
is one of the most important drawbacks of other approaches, as described in sections 1.1.4
and 1.1.5. Parallel composition is already performed during compilation of the synchronous
program, before the generation of the single real-time model.

6.1 Timed Kripke Structureswith Logical Time

In order to translate synchronous programs to high-level real-time models, we introduce in this
section an extension of synchronous languages together with translation techniques to obtain
abstract real-time models (in the sense of definition 7). This extension allows the programmer
to declare irrelevant program locations and hence perform abstractions. After the usual compi-
lation of a program P into a UDS K, certain states are thus to be ignored. For this purpose, an
efficient algorithm is proposed in section 6.1.2 to generate a single TKS as a unique real-time
model K%, by ignoring the irrelevant states, while retaining the quantitative information. In sec-
tion 6.1.3, we then present the relationship between the TKS K% and the corresponding UDS
K. The algorithms presented in section 5.1 can then be used to check quantitative temporal
properties of the generated TKS.

Our goal is to show how abstractions can be incorporated in synchronous programs to obtain
abstract high-level real-time models that retain the quantitative temporal information. In partic-
ular, the programmer can generate abstract real-time models without having the need of special
knowledge about verification techniques. A well-known problem of all approaches based on
abstraction techniques is that the chosen abstraction might be too coarse. In this case, our
technique is able to detect the problematic program locations.

6.1.1 Extending Synchronous Languages

Using the available algorithms for compiling Esterel and Quartz, one can compile every pro-
gram into an equivalent sequential program. If only finite data types were used, then addition-
ally hardware circuits and UDSs can be generated. This is sufficient for code generation and for
the verification of temporal properties.

64

Timed Kripke Structures with Logical Time

To enhance the efficiency of the verification, it is often advantageous to omit irrelevant
details so that the generated formal models are as small as possible. In the opinion of the author,
the choice between relevant and irrelevant program locations must be left to the programmer.
For this reason, we propose a new statement to explicitly mark these locations by emitting a
special signal 6. To this end, we introduce a new macro statement of the form abstract S end
that can be defined as follows:

local ¢ in
S;emitt
|
abort
loop
£ : pause;
emit ¢
end loop
when immediate ¢
\ end local

Hence, abstract S end behaves like S, but additionally emits the variable § whenever the con-
trol flow moves inside S. The entering and termination transitions (from and to S) do not emit
0. The above definition has however the drawback that an additional pause statement and an
additional local signal ¢ are used. This additional overhead can be circumvented by the follow-
ing alternative definitions:

abstract S end :=

inside (abstract S end) := inside (.5)

instant (abstract S end) := instant (.S)
enter (abstract S end) := enter (.5)
terminate (abstract S end) := terminate (.5)
move (abstract S end) := move (5)

guardemd (¢, abstract S end)
:= guardemd (¢, S) U {(inside (S) A —terminate (S) ,emit J)}

Hence, the control flows of abstract S end and S are the same, and the data flow differs only
in that abstract S end additionally emits the variable § whenever the control flow moves inside
S. Using this direct definition via the semantics given in [112, 114] instead of the above macro
expansion, we circumvent the use of the additional local variable ¢ and the additional pause
statement.

Using our new statement abstract S end, it is easily seen that the following statements were
equivalent for any n € N and any Boolean condition o

do

£ : pause;

if —o then emit ¢ end
while —¢o

e abstract ¢ : await o end =

65

Timed Kripke Structures with Logical Time

local ¢ in
(c:=0; \
do
¢ := delayed ¢ + 1;
£ : pause;
if ¢ # n then
emit ¢
end
while c # n
\ end local

e abstract / : awaitn end =

The abstract await statements are important to model delays. As can be seen, these statements
can be easily defined in terms of existing Esterel/Quartz statements so that existing tools can
be used for their compilation. Hence, using the available compilers, we obtain a transition
system where each irrelevant state is marked with the special variable §. Note that await n
will definitely terminate after n macro steps, while the termination of await ¢ is not guaranteed
unless we could guarantee that o will eventually hold. The termination of abstract statements
must be considered in the generation of TKSs as described in the next section.

6.1.2 Generating the High-Level Model

We now consider the generation of a TKS from a given Quartz program. For this purpose, we
assume that we already have a function QuartzCompileUDS that computes an equivalent unit
delay structure (UDS) K, of a given Quartz program P. Such a function is essentially imple-
mented by any compiler, like the one described in [111, 112, 114, 116]. To finally obtain an
equivalent TKS K, it is therefore sufficient to be able to compute a corresponding TKS from
a given UDS where certain states are marked to be irrelevant. In the following, these irrelevant
states are labeled by the variable ¢.

The overall idea is to replace finite paths § — s; — ... — s,_1 — s, of states where s, ...,
sn_1 were labeled with §, but sy and s,, were not labeled with &, by single transitions so — s,,.
This will generate a TKS, where the quantitative properties of the UDS are preserved.

@{2m+3|x€]N}U{oo}>@

Figure 6.1: Impossibility of TKS Generation

However, if a cycle of states labeled with ¢ is reachable, then the generation of the corre-
sponding TKS transition can not be performed: If such a cycle is between two states s and s’
that are not labeled with ¢, then this means that there would exist infinitely many transitions

66

Timed Kripke Structures with Logical Time

in the TKS between these states (cf. Figure 6.1). Such cycles arise when too large parts of the
program are embraced within an abstract statement.

For this reason, we have to check for reachable cycles of states that are labeled with §. To be
concise in the following, we call states labeled with 6 simply ‘-states’, and cycles consisting
of §-states ‘d-cycles’.

Given a transition relation ¢/ of a UDS K, the function Deadends shown in Figure 5.1
eliminates all finite paths contained in ¢/ and returns a finite-path-free transition relation. This
is done by computing all states in Xy, that have at least one successor state.

The function Reach clearly computes the set of states that are reachable from the states S,,
by the transitions of /.

Consider now the overall translation of a Quartz program P to an equivalent TKS, as given
in Figure 6.2. We first compute the corresponding UDS ¢/ and their initial states Z with the func-
tion QuartzCompileUDS as given in [111, 112, 114, 116]. Our next task is to check whether
there is a reachable §-cycle. For this reason, we restrict the transitions to §-states, thus obtain-
ing U;, and compute the transition relation ¢s_,ces that has only infinite paths of -states. If
Us_cyies = {} holds, then we have no ¢-cycles at all, since all §-states have only finite paths.
In this case, we can compute the desired TKS by calling Chronos(U, Ss). We will discuss that
function below.

On the other hand, if Us_yqes # {} holds, then in ¢, occurs at least one d-cycle. There is
still a chance to generate a TKS, namely if none of these states is reachable. For this reason, we
next compute the set of reachable states S,....», and check if a 6-cycle is included in S,cqcn. If
no §-cycle is reachable, then we can generate the TKS by calling Chronos with the transitions
restricted to reachable states.

Finally, if there is a reachable ¢-cycle, then the construction of some TKS transitions is
not possible (cf. Figure 6.1), and therefore an exception is raised where the transition relation
Us—cyeies OF the reachable d-cycles is returned. With this information, the programmer can iden-
tify the program locations that lead to the too coarse abstraction. In this case, there are two
possible solutions: either the programmer proceeds with the verification at the UDS level, or
the programmer has to weaken the abstraction. We consider the first case in section 6.1.3 in
more detail. In the second case, one must consider that the specifications must also be adapted.

Now, consider how Chronos works. Recall, that we may assume that the transition relation &/
does not contain any J-cycle, when Chronos is called. We first compute the transitions between
all states s and s’ that are not labeled with §. These transitions are labeled with time duration
1. To compute the further transitions, we have to compute the transitions 4, that leave a ¢-
sequence. In the following loop, we have as an invariant that the timed transitions with duration
< 7 have already been computed, and that ¢4,,; contains transitions (s, s') such that s’ is not a
d-state, and that there will be a timed transition leading to s’ with duration > .

67

Timed Kripke Structures with Logical Time

function Chronos(U, Ss)
R:={(s,1,5)]| (s,8) e U N{s,s'} NS5 = {}};
Upt :={(s,8') €U | s € Ss N5 & Ss};
T:=1;
repeat
T:=7+1;
Uy :={(s,8") | Ts1-(s,81) EUN (51,8") € Uput };
R:=RU{(s,7,5) | (s,8) €Uy Ns & Ss};
Uput :=={(5,5") e Up | s € S5};
until U, = {};
return R;
end function

function QuartzCompileHTKS(P)
(Z,8,U) := QuartzCompileUDS(P);
Ss={seS|de L(s)};
Z/{5 =UN (85 X S),
Us_cycies == Deadends(Us);
if u&—cycles = {} then
return Chronos(i, S;)
else
Sreach := Reach(U,T);
Z/{J—cycles = Z/{(S—cycles N (Sreach X 8)7
if Us_cycies = {} then
85 = 8(5 N Sreach;
Ureach == {(8, Sl) eU | s € Sreach};
return Chronos(U;.cach, Ss)
else
raise exception AbstractionTooCoarse(Us_cycies);
end
end
end function

Figure 6.2: Algorithms for Generation of High-Level TKSs

68

Timed Kripke Structures with Logical Time

To compute the timed transitions with duration 7 + 1, we consider the J-states s that are
connected by a U{-transition to a state sq, such that (s, s’) € Uy, holds. Then, the transition
(s,7,s") is added to R. If, on the other hand, s is labeled with 4, then this transition will be
extended in a later loop iteration until no §-state remains.

()—@—®

Figure 6.3: A UDS with its Corresponding TKS

It is easily seen that the loop in Chronos will be repeated at most d,,, times, where d;,,, is
the maximal length of a finite sequence of -states. An example for the execution of Chronos is
given in Figure 6.3. The different loop iterations for the UDS given in the upper half of Figure

6.3 are as follows:

out = {(s1,%0), (85, 83), (55, 56), (57, 58), (S10, 56) }
= {(s3,1, s3), (88,1, 89), (9, 1, S9), (S0, 1, 53) }
out = {(s2,50); (54, 83), (54, S6),
(865 56), (53, 88), (89, 56), (865 53)}
= {(ss,2, S6), (53,2, 83), (59, 2, S¢), (86,2, 53) }
out = {(56, 50), (53, 56), (53, 53)}
= {(s¢,3, 50), (53,3, S6), (53,3, 53) }

At the end, we obtain the TKS given in the lower part of Figure 6.3.

69

Timed Kripke Structures with Logical Time

6.1.3 Verifying Real-Time Properties at UDS Level

Recall that our task is to check for a given program P whether a temporal property ® holds. To
describe real-time temporal properties, we use the CTL real-time extension JCTL (cf. section
3) that is defined on TKSs.

Using traditional compilers, it is possible to compute for a given program P the correspond-
ing UDS K, so that temporal properties can be checked for the program. The algorithm given
in the previous section allows furthermore to compute a TKS K for P to increase the effi-
ciency of the verification. Clearly, the structures K;, and K are different and therefore satisfy
different formulae. In this section, we explain the relationship between the verification at the
TKS- and at the UDS level. For this purpose, we define a function ©; that computes for a JCTL
formula @ a corresponding JCTL formula ©(®) that holds on the UDS Ky, iff @ holds on the
TKS Kx.

Definition 17 Given a JCTL formula ® and a variable ¢, we define a corresponding JCTL
formula ©4(®) as follows:

e O;(z) := x for variables z

o O5(—p) = —0s(¢)

o O5(p A1) := O5(p) A Os(1))

® O5(p V1Y) :=0B5(p) VO;(¥)

o O;(EX"p) := E[O5(p) XW" (=0)]

o O;(AX"p) := A[O5(p) XW* (=)]

o O5(Elp U 4]) := E[(6V O5()) U™ (=6 A O5(4))]
* O,(E[p Um¢]) := E[(6 V O5(p)) U (=0 A O5(¥)))]
o O5(Alp U™ ¢]) := A[(6V Os()) U™ (=0 A B5(1)))]
o O5(Alp Um ¢]) := A[(6V O5()) U™ (=6 A B5(1)))]

The semantics is given in section 3, except for E[¢ XW" 1|. E[¢p XW" 7] holds in a state s iff
there is a path starting in s such that at some position (different from the starting one) of the
path ¢/ holds, and at the first such position (different from the starting one) ¢ holds, and the time
required to reach this first position satisfies the time constraint .

©5(®) is of length O(|®|), i.e., there is only a linear blow-up. The above definition is used to
transform a given JCTL & to another corresponding JCTL formula © (%) such that only states
not labeled with § are considered for evaluation of ©;(®). If no state is labeled with §, then
it is easily seen that ® and ©;(®) were equivalent. The following theorem reveals the entire
relationship between ® and ©;(®):

Theorem 4 (Relationship between UDS and TKS) Given a UDS K, such that the correspond-
ing TKS K exists, then we have for any JCTL formula @ and any state s of K5 the following
relationship:

(Ku, 8) = O5(®) iff (Kg,s) = ®

70

Timed Kripke Structures with Logical Time

The theorem is easily proved by an induction on the structure of ®. The essential property for

the induction steps is thereby that (by construction of) a transition s L ¢ in Kx corre-
sponds to a sequence of transitions s — s; — ... = s,_1 — s’ of states where sy, ..., s,_1
are labeled with § (of course, s and s’ are not labeled with §, since they belong to Kz).

The above theorem precisely states that if an equivalent TKS Ky exists, then we have the

choice between checking (K, s) = ©5(®) or (Kz,s) = ®. Both model checking problems
are equivalent to each other.

71

Timed Kripke Structures with Physical Time

6.2 Timed Kripke Structureswith Physical Time

In section 6.1 it has been shown how macro steps can be combined to larger steps in that parts of
synchronous programs are marked as ‘uninteresting’ for the system’s verification. This means
that the macro steps of these parts are combined into a building block and that the numbers
of macro steps to execute these blocks are counted. This extension does not affect the code
generation, i.e., the processes still run in lockstep with respect to their macro steps. Thus, small
abstract transition systems can be obtained from synchronous programs to verify required real-
time specifications.

In this section, we present a new technique that performs an exact low-level (architecture-
dependent) runtime analysis of synchronous programs and generates low-level timed Kripke
structures, whose transitions are labeled with numbers denoting the exact execution times of
the macro steps that are related to these transitions. These TKSs can then be directly used
for architecture-dependent real-time verification, as well as for further analysis purposes like
WCET and BCET, using techniques like the ones presented in section 7.

Our goal is to directly generate executable code out of synchronous programs, and develop
techniques to construct low-level timed Kripke structures with respect to the execution times
required for the steps of the executable code. Note that the executable code can already have
been verified at a logical level.

compilation code generation

structure construction))
runtime analysis

Figure 6.4: Generation of Low-Level Timed Kripke Structures

For this purpose, we first construct a transition system (as UDS) and obtain executable code
for the given synchronous program (cf. Fig. 6.4). The generated code is then being embedded
in an environment in order to perform exact and detailed low-level runtime analysis, i.e. to
determine and capture the execution times required for all actions of the code. This is done

72

Timed Kripke Structures with Physical Time

during the execution of the code. Simultaneously, our method constructs a low-level timed
Kripke structure by labeling the transitions of the system by the determined execution times of
the corresponding code actions for the given microprocessor.

Our approach takes advantage of established symbolic techniques to efficiently manipulate
large finite state transition systems by means of binary decision diagrams (BDDs) [17].

Note further that the generated transition systems have timed transitions that correspond to
non-interruptible atomic actions. For verification purposes of such systems, the real-time tem-
poral logic JCTL (cf. section 3) can be considered.

In the next sections we first discuss the generation of executable code. Then we give techniques
to efficiently perform exact low-level runtime analysis consider also native CPU-instructions in
order to obtain low-level real-time formal models. The overall flow is shown in Fig. 6.4.

6.2.1 Exact Low-Level Runtime Analysis:
Code Generation

Our method to generate code for synchronous programs considers equation systems based on
hardware synthesis, i.e. the automaton representation obtained from a synchronous program
[112]. The method is based on the encoding of the states with Boolean state variables.

module RussMult :
input req, a : I[n], b: I[n];
output ¢ : I[n];
local z : I[n],y : I|n]
label rdy;
loop
rdy : await regq;
r:=a;y:=bc:=0;
while y # 0 do
if odd(y) then next(c) := ¢+ z end;
next(z) := 2 - x;
next(y) := y/2;
£ : pause
end while
end loop
end module

Figure 6.5: Russian Multiplication

73

Timed Kripke Structures with Physical Time

(y # 0)/{(odd(y), next(c) ¢+),
(1, next(z) := 2 - z),

(1, next(y) := y/2)}

reg A (y # 0)/{(1,7 := a),
(1L,y =), y=0/{}
(1,¢:=0)

=0)
w0 (Ot) v =010

Figure 6.6: Semantics of Module RussMult

As an example, consider the Quartz program given in Figure 6.5 (it implements a Russian mul-
tiplication algorithm). The semantics is the transition system given in Figure 6.6.

The three states correspond to the situations where the control flow is either outside the pro-
gram or at one of the locations labeled with £ or rdy. The labels of the transitions are of the
form ®/{(v1, 1), ..., (7, o) } With the following meaning: the transition can be taken iff the
condition @ holds at that point of time. Taking the transition means that those assignments or
signal emissions «; are executed whose guard ; holds at that point of time.

The automaton of the previous example yields state transition equations like the ones shown
in Figure 6.7.

—rdy A =L A stV
next(rdy) := | rdy A (-reqV (y = 0))V
A (y=0)
next(¢) := (rdy AreqV £) A (y # 0)
(if /A (y = 0) Aodd(y) then 2 - z)

next(z) :=
next(y) := ...
next(c) :=

Figure 6.7: Code Generation Using Equation Systems Based on Hardware Synthesis

It is straightforward to generate sequential code (e.g. C-code) from the above state transition
equations. We simply put the assignments in a nonterminating loop (and use the C-syntax, of
course). Some problems of synchronous languages like causality have to be checked here, but
these problems have already found good solutions [15, 9], so we do not consider this issue

74

Timed Kripke Structures with Physical Time

here. The size of the generated code is very small (it is in practice linear in terms of the given
synchronous program). This is an important advantage in praxis, in particular for applications
involved in embedded systems, where the memory size is usually limited.

The exact runtime analysis of single instructions used in a sequential program is a complicated
task due to the complex interaction of different cache hierarchies: The execution time depends
not only on its operands but also on the fact that the needed data might either be available in
caches, or have to be requested through slower channels. We handle this problem as follows:

Our generated program is one static block which is executed in an endless loop. The writing to
cache data and also the execution of instructions is performed in the same order in each loop.
By executing this block several times for a given input we obtain a cache-configuration which
is very similar to the configuration in a real environment. A runtime-analysis for this block can
then be directly performed by measuring the time for the execution of the static block without a
deeper analysis of the cache-structure. Furthermore, there already exist successful methods like
[65] in order to handle this problem. Techniques like the ones presented in [65] can be easily
endowed in our tool and are part of our current implementation work.

6.2.2 Exact Low-Level Runtime Analysis: Extending Synchronous
Languages to Consider Native CPU Instructions

Model-checking algorithms used for formal verification purposes usually consider combina-
tions of boolean operators for expressing mathematical calculations, i.e. arithmetic operations
are mapped to the boolean level and are implemented as bit-operations on the microprocessors.
Unfortunately, this has the disadvantage, that the information of the mathematical function is
lost in the resulting transition system.

For the generation of executable code which benefits of the native mathematical operators of
the target CPU, it is necessary to avoid the conversion of mathematical operators to their logi-
cal equivalents. For this purpose, we introduce a new technique that constructs a UDS, which
preserves mathematical operations as atomic actions. After that, the transitions can be easily
labeled by their physical execution times required by the target CPU.

For this purpose, we introduce an extension of synchronous languages in order to represent
atomic execution of specific program locations. Similar to the extension proposed in section
6.1.1, we introduce a new macro statement of the form exclusive ¢ in S end that can be defined
as follows:

75

Timed Kripke Structures with Physical Time

local ¢ in
S;emit ¢
|
abort
loop
¢ : pause;
emit ¢
end loop
when immediate ¢
\ end local

exclusive (in Send :=

The key idea of this extension is to remove the parallelism which can’t exist on a target mi-
croprocessor due to the fact that arithmetic operations are executed as non interruptible atomic
actions on a target machine. Similar to section 6.1.1, our technique leads to ‘hyper steps’ that
correspond to one transition of the transition system, but contain a finite number of intermediate
macro steps, which are marked, so that a post-processing step can replace them by transitions.

Hence, exclusive ¢ in S end behaves like S, but additionally emits the variable ¢ whenever the
control flow moves inside S. The entering and termination transitions (from and to .S) do not
emit (. The above definition has however the drawback that an additional pause statement
and an additional local signal ¢ are used. This additional overhead can be circumvented by the
following alternative definitions:

e inside (exclusive ¢ in S end) := inside (.5)

instant (exclusive ¢ in S end) := instant (5)

enter (exclusive € in S end) := enter (.5)

terminate (exclusive ¢ in S end) := terminate (.5)

move (exclusive ¢ in S end) := move (5)

guardemd (¢, exclusive ¢ in S end)

:= guardemd (¢, S) U {(inside (S) A —terminate (S),emit c)}

Hence, the control flows of exclusive ¢ in S end and S are the same, and the data flow differs
only in that exclusive ¢ in S end additionally emits the variable { whenever the control flow
moves inside S. Using this direct definition via the semantics given in [112] instead of the
above macro expansion, we circumvent the use of the additional local variable ¢ and the addi-
tional pause statement.

The main idea is to replace all pause statements in program locations which are not included in
exclusive statements, by await —¢. This will suspend all threads which are running in parallel
to blocks marked by exclusive. Outside exclusive-blocks, the control flow returns to its normal
status, since ¢ is not emitted.

76

Timed Kripke Structures with Physical Time

e (2)--

l ShortCut

>

>@_
e (2) -

Figure 6.8: Generating Kripke Structures Preserving Native CPU-Instructions

The technique is shown in Figure 6.8. In the first place (upper part of Fig. 6.8), a UDS is gen-
erated, where all states contained in exclusive locations are marked by the variable ¢, while
threads running in parallel are suspended until the end of (- emissions.

The approach allows a low level runtime analysis considering native processor instructions,
which can only be stated as a sequence of macro steps in synchronous languages, like divisions.
Consider a microprocessor which implements for example a division instruction instr 4, (as an
atomic one) for a given data type dg;,,. Usually, such operations are translated into sequences of
boolean calculations. In order to consider instrg, as an atomic instruction we have to merge
these sequences of boolean calculations into single transitions and obtain the UDS shown in the
lower part of Fig. 6.8.

This means that the state of the machine and the state of the formal model will be identical
before and after the execution of an arithmetic instruction. Hence, we have removed the paral-
lelism which can’t exist on a target microprocessor due to the fact that arithmetic operations are
executed as non interruptible atomic actions on a target machine.

To enable code generation with support for native CPU instructions, we need also information
about the kind of the native instructions and the point of time of their execution. Applying the
exclusive statement leads to a formal model, where S is reduced to the states terminate (.5).
These states correspond to the termination of the native instruction on the microprocessor. To
give also the information about the kind of the native instructions, we simply use a labeling
function N(S) — A, where S is the set of states and A is the set of arithmetic instructions.

Finally, the resulting transition relation is constructed by the algorithm ShortCut shown in Fig-
ure 6.9, which transforms the selected paths into atomic transitions. ShortCut works according
to a similar principle as the Chronos algorithm of Figure 6.2, explained in section 6.1.2.

77

Timed Kripke Structures with Physical Time

function ShortCut(U, S,,)
Ushort 1= {(5: 8,) clU ‘ {87 SI} n 890 = {}}7
Ut '={(s,8') eUU | se S, Ns' & S,};
repeat
Uy :={(s,5") | Ts1.(8,81) EU N (51, ") € Upus };
Z’lsh,ort = Z/{short U {(Sa SI) ‘ (S, S,) € Z’10 As Q/ Stp};
Uput = {(s,5") €Uy | s € S, };
until Uy = {};
return Uspore;
end function

Figure 6.9: ShortCut Algorithm

Recall, that we may assume that all computation paths starting at the beginning of an arithmetic
instruction will finally reach the end of the operation when ShortCut is called. We first compute
the transitions between all states s and s’ that are not marked by the variable (. To compute
the further transitions, we have to compute first the transitions 4, that exit from a marked
sequence. In the following loop, the algorithm performs a short cut of all predecessor transitions

of U,y

Figure 6.10: Function of the ShortCut algorithm

Figure 6.10 shows an example for the function of the ShortCut algorithm. The algorithm com-
putes first the transitions 44, that exit sequences of states marked with ¢ (shadowed). In the
upper part of Fig. 6.10 these exiting states are marked with ”1”. In the following loop, the algo-
rithm traverses backwards, replacing current {-states by edges and computing simultaneously

78

Timed Kripke Structures with Physical Time

their predecessors. These predecessors are marked in the upper part of Fig. 6.10 with 2" (to be
eliminated in the second iteration) and ”3" (to be eliminated in the third iteration). The algo-
rithm terminates when all (-states are eliminated, i.e. when no such states are contained in the
computed predecessors, as shown in the lower part of Fig. 6.10.

It is easily seen that the loop in ShortCut will be repeated at most d,.,, times, where d,.,, is the
maximal length of a finite sequence of states in a computation path representing an arithmetic
operation.

6.2.3 Exact Low-Level Runtime Analysis:
Generating the Low-Level Model

We assume that we already have a function QuartzCompileUDS for the code generation, that
computes an equivalent unit delay structure (UDS) Xy, of a given Quartz program P. The states
of this structure correspond with the states of the program P and are labeled with Boolean
variables. Such a function is essentially implemented by any compiler, like the ones described
in [111, 112]. To finally obtain an equivalent TKS K, it is therefore sufficient to be able to
compute a corresponding TKS from a given UDS where the transitions between the states are
endowed by notions of physical time. These labels are obtained by measuring the runtime for
generated platform-specific code for the micro steps that are related to the transitions.

We first use a function QuartzCompileC which translates the obtained UDS X, into C-Code
according to the method described above. The TKS is constructed by the algorithms given in
Figure 6.12. To explain these algorithms, we first want to emphasize, that our goal is to develop
symbolic techniques that allow us to consider sets of states together with their transitions in a
single iteration, instead of processing all transitions of the UDS one after the other. This makes
it possible to perform the analysis in less than |S|? transitions.

An important observation for this analysis is to consider the state transition equations that are
generated by the translation of the Quartz program into an equation system. Our method takes
advantage from the fact that some operations consume identical amount of time regardless of
the values of their operands, while the time consumption of other operations depends on their
operands, e.g. the multiplication and division instructions on a Motorola 68000. The key idea
is to use efficient techniques in order to merge sets of transitions, so that we are able to consider
the same execution time for all merged transitions instead of calculating the execution times for
all possible transitions of the UDS. This enables the use of symbolic techniques for the con-
struction of the TKS as follows:

The first step is to distinguish between variables that exclusively occur in statements, which
always consume identical amount of time (V,.nie), and other variables occurring in statements
which consume variable amounts of time, according to their operands (V;,). Hence, the set of
variables is partitioned as

V= Vnoniu) Via

79

Timed Kripke Structures with Physical Time

The property of V;, is dominant over the property of V,onia, SO Vienia N Via = {}. We also
distinguish between these sets in the labeling function of the TKS, i.e., we have L., and L;,
that correspond to Vi, and V;,, respectively, so that

L(8) = Lia(8) N Lyonia(s),Vs € S.

Hence, if V;, = {} then it follows that £;,(s) = true,Vs € S and also if V,pnis = {} then it
follows that L,,onia(s) = true, Vs € S.

’t/Q" tl >
next(a) = b?c:d next(a) =bVc

Figure 6.11: Examples transition equations

An example is shown in Fig. 6.11. Boolean operations consume identical amount of time on
an ALU, regardless of the values of their operands. This is not the case for If-Then-Else-
statements, which are often handled by microprocessors by means of jump-instructions. Their
runtimes therefore depend on the configuration of their arguments. Hence, the two transitions
referring to the statement next(a) = b?c : d consume different times ¢; and ¢,. On the other
hand the statement next(a) = b V ¢ of Fig. 6.11 consumes identical time ¢, for all three transi-
tions since it is a boolean combination of three variables without any If-Then-Else-statement.

The second step is performed by the main algorithm QuartzCompileLTKS given in Fig. 6.12.
QuartzCompileLTKS must consider all different variable configurations of o« €),, but only
one single configuration 5 € V.. and this only under the condition that there exist a reach-
able state meeting such a configuration, i.e. 3s € Seaen-L(s) = a A B, where S,eqer, C S IS
the set of reachable states (cf. Fig. 5.1). If there is no such 3, then the represented state is not
reachable and must hence not be considered in a runtime analysis.

After having determined a runtime ¢ for a given configuration of V, A V,onia, all transitions
(the set Uy;,,e) that are represented by all possible variable configurations of)},,,.;, are labeled
by the physical time ¢. The function RuntimeC determines the runtime of the generated code
for a given set of transitions. RuntimeC performs dynamic runtime measurements for given
configurations of Y, A V,.nie by means of so-called profiling tools like gprof [59] or VTune
[72].

80

Timed Kripke Structures with Physical Time

function QuartzCompileLTKS(P)

(Z,8,U) := QuartzCompileUDS(P);

C := QuartzCompileC(U);

R:={}

while ¢ # {} do
Snonia = {s €S|’ € 8.(s,8") €U A Lyonia(8) # false};
Stime = Choose any of S,,onia;
time := RuntimeC(syme, C);
Usime 1= {(8, SI) eu ‘ 38, s' € S-Lnonia(s) = Lnom’a(stime)};

U=u \ utime;

R := R U {Usime x {time}};
end;
return R;

end function

function RuntimeC(s, C)
time := execution time(C(s));
return time;

end function

Figure 6.12: Algorithms for Generation of Low-Level TKSs

The set Uy;,.,. 1S removed from the UDS I/ since it is of no interest for further runtime analy-
sis. This guaranties also that the time labeling of the edges is unique, i.e. for each transition
(s,8") € U exists exactly one ¢t € N such that (s, t,s’) € R.

The algorithm terminates when all states of &/ were considered in the runtime analysis, i.e.
U = {}. Note that if V;, = {}, i.e., if there are no arithmetic instructions included in the code,
L;, returns true for all possible inputs. In this case the generated code for the transitions con-
tains only boolean operations which consume the same amount of time for all possible variable
configurations, and hence the entire TKS R will labeled with the same time t.

As an example, Fig. 6.14 shows a TKS, obtained from the Quartz program shown in Fig. 6.13.

81

Timed Kripke Structures with Physical Time

module QuartzEzample :

input regq;
output out;

al : await (req);
emit out;
a2 : halt

end

Figure 6.13: An Example for a Quartz Program

Figure 6.14: A TKS for the Quartz Program of Figure 6.13

82

Timed Kripke Structures with Physical Time

Theorem 5 (QuartzCompileLTKS lIterations) The algorithm QuartzCompileLTKS terminates
in maximum 2™ lterations, where n = |Vjy|.

Proof: The theorem can be easily proved by induction on n:

n =20:

if Vie = {} and Voonia # {}, then according to the definition of £, we have L;(s) =
true,Vs € S. But then U,e = U holds trivially and hence also U \ Uyime = {}, Which
terminates the algorithm after one iteration, i.e. 1 = 2/Viel,

If we assume that for n = |V;,| the algorithm QuartzCompileLTKS will terminate after maxi-
mum 2" steps, then for n + 1 we have:

If [Via| = n + 1, then for = € V;, we separate I/ as follows:

Uu = U, UU-,, where
U, :=A{(s,5") eU.x € Liu(s)},
U ={(s,s") eU.x & Lia(s)}
and U, NU-, = {}.

If we apply QuartzCompileLTKS to U, and U/, separately, then we have

forU,: © € Li,(s),Vs € S;, and

forU-p: =z & Liy(5),Vs € Sq.
In other words, x has fixed values in ¢4 and ¢/, and hence, it must not be considered for
determining the possible configurations of)},-variables. The variable set of V;, can then be
expressed as V-, = Vi, \ {z}, where |[V_,| = n.
According to the induction’s assumption, ¢, and /-, can then be computed in maximum 2" =

2/V-=| jterations and hence, for the entire problem we have a maximum of 2 - 2" = 2"+1 = 2lVial
iterations.]

83

Chapter 7
Exact WCET and BCET Analysis

"E€eléyywv pévog dhddeay Etitugoy ypdvos. 1

MMINAAPOY, (518 - 440 7.X.)
(Ohuur. X, 65)

As a direct result of the previous sections, we present in this section a new and completely
automatic approach to perform exact worst— and best case execution time (WCET and BCET)
analysis. Our approach overcomes the problems described in section 1.1.3. For a given pro-
gram, we compute the exact best and worst runtimes in terms of macro steps for all possible
inputs at once. We are even able to compute the input sequences that require these bounds.
For this purpose, we have to assume that all data types were finite, so that the overall problem
becomes decidable. For embedded systems, this restriction is not a severe one. Moreover, mod-
elling integers with a finite, constant bitwidth is even more accurate and allows one to detect
problems with overflows and underflows.

Nevertheless, checking all input sequences is still a highly complex task. A key idea of this
approach is therefore to use symbolic state space exploration techniques [11, 22], developed for
the verification of temporal properties of reactive systems. Beneath the symbolic state space
traversal, the other essential key ingredient to our solution is the use of synchronous program-
ming languages to achieve descriptions of the system.

Having constructed real-time models considering logical as well as physical time (cf. chapter
6), allows us to compute exact results, i.e., to overcome the known problem of computing only
highly pessimistic results due to simply adding maximal bounds (cf. section 1.1.3). To this
end, the WCET analysis problem is transfered into a symbolic state space exploration problem,
which is performed on a given TKS. We emphasize, that our technique is not dependent on the
type (logical or physical) of the TKS’s time notion. Hence, it can directly be applied to both,
low-level- and high-level WCET analysis. For this purpose, we reduce both problems to the

YIn fact, time by itself revealsthe truth.
PINDAROS (518 - 440 BC)

85

WCET Analysis of Synchronous Programs

same UDS-symbolic state space exploration problem, as follows:

By the semantics of synchronous languages, there will be only finitely many micro steps
in a macro step. If logical time is considered, then a given TKS was obtained by abstraction
techniques like the ones introduced in section 6.1.2. This means that the notions of logical
time correspond to macro steps that were declared to be irrelevant for verification purposes.
Nevertheless, these abstracted macro steps must be considered for WCET and BCET analysis,
since they consume time. Using the algorithm of Figure 4.3 given in section 4.1, we can ob-
tain a UDS out of the given TKS. This is allowable due to the fact, that we do not consider
the evaluation of any JCTL formulae, but compute only longest and shortest paths of the tran-
sition system. On the other hand, applying the algorithm of Figure 4.3 when physical time is
considered, is valid due to the fact that physical time is running on a TKS equally fast on all
transitions. In other words, the obtained UDS contain only transitions that are synchronized and
consume one unit of physical time. Hence, they can be considered as synchronized macro steps.

Our procedure works as follows: We start with a synchronous program and translate this pro-
gram as described in chapter 6 into a TKS. Clearly, if only high-level analysis is to be con-
sidered, one can avoid all TKS-generation procedures described in chapter 6 and directly use
the formal model obtained from the compiler. The algorithm presented in Figure 7.1 of section
7.1.1 is then used to compute the minimal and maximal numbers of macro steps necessary to
reach a set of control flow states S, from another set of control flow states S,,. Additionally, we
can count the number of visits of a third set of states Sz while the control flow moves from S,
to S,. Itis also possible to compute the input sequences that lead to these number of iterations.
To specify sets S,, Sg, and S,, it is convenient to make use of the control flow predicates given
in section 2.2. Hence, we are able to compute the exact minimal and maximal reaction times
in terms of macro steps. In particular, we can compute path information like loop bounds, the
minimal/maximal number of macro steps required to reach a certain program location from an-
other one, as well as infeasible paths.

There is some related work like [28] where similar algorithms for runtime analysis on transi-
tion systems have been considered. However, in contrast to our approach, [28] is not integrated
in a design flow, i.e. it has no relationship to the program source, and hence, is not able to
compute program related properties like the minimal/maximal numbers of loop iterations. The
transition systems we analyze are obtained from synchronous programs that are used for auto-
matic hardware and software generation. Hence, our approach is not restricted to logical steps,
but enables also low-level WCET and BCET analysis.

7.1 WCET Analysisof Synchronous Programs
The presentation of the semantics in the form indicated in Figure 6.6 is the basis of our execution

time analysis. However, the key problem in execution time analysis, namely to determine how
many transitions can be taken from a state set S, to another state set S.,, is still an undecidable

86

WCET Analysis of Synchronous Programs

problem. Nevertheless, if we assume that all data types used in the program are finite, then we
can compile the program to a classical finite state machine (fsm). Clearly, the obtained fsm
will normally suffer from the enormous state explosion. For this reason, we use a symbolic
representation in the sense of symbolic state space exploration [11, 22]. The key idea is thereby
that sets are not explicitly stored; instead the characteristic function is represented as a Boolean
formula that is itself stored in a canonical normal form (BDDs [17]).

7.1.1 Determining Path Information

In this section, we present techniques for WCET and BCET analysis of a given UDS that cor-
responds to a synchronous program. In particular, we explain how the lower and upper bounds
of loop iterations can be efficiently calculated.

The essential task of high-level WCET and BCET analysis is then that for given sets of states
S, and S, we have to compute the minimal and maximal numbers of transitions necessary to
reach S, from S,,.. S, and S, are thereby represented as formulae o and .

We can furthermore determine the minimal and maximal number of loop iterations in that
we count the number of visits in a further set of states Sg, while traversing from S, to S,,. For
example, for a loop do S while o, we can use the following formulae to compute the number
of loop iterations:

e o := —inside (S) A enter (S) describes all situations where the control flow is not yet
inside the loop body S (—inside (S)), but will enter the loop body right now (enter (.5)).

e [:= terminate (S) A o describes all situations where the execution of the loop body
S currently terminates (terminate (S)) and the loop condition ¢ holds. Hence, the loop
body is once more executed.

e 7 := terminate (S) A —o describes all situations where the execution of the loop body S
currently terminates (terminate (.S)) and the loop condition o does not hold. Hence, the
loop terminates.

Using symbolic representations of the properties «, 3, and ~, it is straightforward to compute
the corresponding sets of states S,, Sz, and S, of the Kripke structure, where o, 3, and 7,
respectively, holds.

In the first place, we must ensure that the given program is correctly implemented, i.e. that
all computation paths starting at S,, will finally reach &,. This correctness property can be eas-
ily verified by checking the following CTL property, that states that all computation paths that
start in S, must finally reach S;:

AG(a — AFY) (2)

For the above properties «, 3, and ~ this means that the loop will terminate for all inputs. The
final WCET / BCET analysis together with the calculation of bounds for loop iterations is then

87

WCET Analysis of Synchronous Programs

function EHLA(U, S,, S5, S,)
1 = bound := 0;
T = Sy 1= {};
repeat
ifSa NS, # {} then
T =T U{i};
So =8\ Sy;
endif ;
So={s€S|(s,8) eUNs €S}
Soy = Say U Sa;
1:=1+41;
until S, .= {};
S ={s€S|s€SaUSUS,
Upy :={(s,5) | s € Say N5 € S}
Ushort := ShortCut(Uy., SW);
Upp :={(5,5") € Ushort | s € Sa N " € Sp};
Snext = {5 €85 | Is € S.(s,5") € Upp};
repeat
Snext = {5 € Sp | Is € 8.(s,5") € Usport N (Snext X S)};
bound := bound + 1;
until S,ez == {};
return (7, bound — 1);
end function

Figure 7.1: Determining Minimal and Maximal Computation Paths and Loop-Iterations

performed by the function EHLA (Exact High— and Low Level Analysis), shown in Figure 7.1.
Arguments of the algorithm are the transition relation ¢/ of the UDS, the source set of states
S, the set of target states S, and the set of states Sg. As an invariant, the algorithm stores in
S, the set of states that can be reached within 4 steps from the originally given set S,,. Using a
breadth first search, the algorithm successively computes all successor states of the current set
S, A variable 7 is used to count the number of macro steps taken so far, and a set 7 C N stores
the lengths of paths from S, to S,,.

For the calculation of Sg-visits, we must consider the fact that paths of different length will
reach Sg, at different points of time. To avoid multiple counting of Ss-visits occurring due to
such time differences, we use the algorithm ShortCut introduced in section 6.2.2 (cf. Figure
6.9), in order to equalize first the time needed to reach & from S,. Using ShortCut, the algo-
rithm EHLA simply eliminates all non-c, non-3 and non-v states between S,, Sz and S, so
that Sz can be reached equally fast from S, regardless of the followed path.

88

WCET Analysis of Synchronous Programs

ShortCut works according to a similar principle as the Chronos algorithm of Figure 6.2,
explained in section 6.1.2. To guarantee a cycle-free input needed for these kind of algorithms,
the first loop in EHLA collects in the set §,, the states between S, and S,,. Only these states
are then considered by ShortCut, which are guaranteed cycle-free, due to (2).

Figure 7.2: Function of the ShortCut algorithm in WCET Analysis

Fig. 7.2 shows an example for the function of the ShortCut algorithm for the WCET analysis
approach. The algorithm computes first the transitions 4,,; that exit sequences of non-«, non-$
and non- states. In the upper part of Fig. 7.2 these states are marked with ”1”. In the follow-
ing loop, the algorithm traverses backwards, replacing current non-c, non-43 or non-+ states by
edges and computing simultaneously their predecessors. These predecessors are marked in the
upper part of Fig. 7.2 with 2" (to be eliminated in the second iteration) and ”3" (to be elimi-
nated in the third iteration). The algorithm terminates when all non-«, non-3 and non-+ states
are eliminated, i.e. when no such states are contained in the computed predecessors, as shown
in the lower part of Fig. 7.2.

It is easily seen that the loop in ShortCut will be repeated at most d,,, times, where d.,, is
the maximal length of a finite sequence of non-«, non-5 and non-+ states.

Two main things must be checked within the EHLA-loops:

e If a path reaches the target set of states S,, (checked by S, NS, # {}), then the current
number of macro steps ¢ is added to the set 7, and the path is removed from the current
set S, (so it will not be considered further). The algorithm terminates when the set S,, is
empty, i.e. if no more paths are left. Then, 7 will contain lengths of all paths from S,, to

89

WCET Analysis of Synchronous Programs

S,,. The minimum and maximum of 7" are then the BCET and WCET, respectively. For
compact storage, one can also easily represent 7 by means of a BDD.
o If some path reaches the set of states Sz, then the loop bound variable bound is incre-

mented. At the end of the calculation, bound — 1 will deliver exactly how many times Sz
can be visited by computations from S, to S,.

The EHLA algorithm works on finite-state transition systems, but gathers runtime information
about the program locations described by «, 3, and ~. Note that the compiler used to generate
executable C-code or hardware circuits is the same that is used to compute our finite state

machines. Hence, the overall design work flow assures that our runtime analysis determines the
correct information.

90

Chapter 8

Experimental Results and Discussion

ITpb¢ ydp 16 Tereutaliov ExPBAv Exaotov T@v Tply Urapldviwy xpiveta. 1

AHMOSOENHS (383 - 322 1.X.)
(Ohuvthaxoe, Ty 32)

In the previous sections we have presented techniques for the specification, modelling, ver-
ification and runtime analysis of real-time systems.

We have implemented these techniques in our tool framework Equinox. Equinox consists
of the BDD-based tool JERRY, which is used for model-checking and runtime analysis pur-
poses and a compiler for the extended synchronous language Quartz. According to Fig. 1.2,
Fig. 8.1 shows the flow of the techniques presented in this work. Having experimented with
many BDD-tools available, we consider the CUDD-package [120] as a reliable BDD-package,
offering a great number of useful features. Consequently all our tools use the CUDD-package
for BDD-manipulation.

In this section, we present experimental results that we have obtained with Equinox, consid-
ering widely used benchmarks. Focusing on the different techniques presented in the previous
sections, we consider the different stages of the Equinox framework as follows:

e generation of high-level timed Kripke structures: in order to directly obtain high-level
real-time formal models out of industrially-used programming languages and simulta-
neously allow the use of abstractions, we have developed a real-time extension of the
synchronous language Quartz together with its translation to timed Kripke structures.
Our extension allows the programmer to declare program locations that are irrelevant for
verification. The model is generated in two steps, which we consider separately:

— first the program is translated into a unit-delay structure (UDS)

— then the Chronos algorithm generates a TKS by ignoring the irrelevant states, while
retaining the quantitative information.

! Based on the last event’sresult, all prior existing ones are judged.
DEMOSTHENES (383 - 322 BC)

91

CHAPTER 8. EXPERIMENTAL RESULTS AND DISCUSSION

These techniques are implemented in JERRY. They directly generate a single real-time
transition system, thus overcoming the known problem of composing several real-time
models.

e generation of low-level timed Kripke structures by means of runtime analysis: we have
extended JERRY to an exact and detailed low-level runtime analysis in order to perform
low-level real-time formal verification. We presented a technique for analyzing the ex-
ecution times of all single transitions of a synchronous program. This allows JERRY to
generate low-level timed Kripke structures out of unit-delay structures: the transitions
are labeled with the physical times required to execute the code on the transitions. The
generated transition systems have timed transitions that correspond to non-interruptible
atomic actions and can be verified by means of the real-time temporal logic JCTL.

e high-level and low-level formal verification: we have shown that many existing ap-
proaches to real-time extensions of CTL are misleading. For this reason, we have de-
veloped a new real-time temporal logic JCTL which is directly defined on timed Kripke
structures using interpretation 7;. We presented efficient symbolic model checking algo-
rithms for JCTL, so that we are able to benefit from established improvements of sym-
bolic state space traversal. These real-time model checking techniques are implemented
in JERRY, together with standard qualitative-only CTL model checking algorithms.

e WCET and BCET analysis: we have presented a novel approach to analyze execution
times of synchronous programs, which is able to compute for all input sequences the
number of macro steps that are executed between given program locations «, 8 and ~.
In particular, using control flow predicates, we can determine «, § and y such that the
algorithm can be used to compute exact bounds of loop iterations. The overall approach
is implemented in JERRY.

Our results clearly show the advantages of Equinox’s and JERRY’s modular structure: having
the possibility to store and reuse all models obtained in the intermediate steps of the analysis,
allows us to individually start an analysis at each desired step, without having to calculate all
previous steps from the beginning. This is very important for formal verification purposes, since
one of the main time— and memory-consuming factor is the construction of the first unit-delay
structure.

Note that the runtime and memory consumption is always dependent on the initial variable

order. For the obtained results we have used the sifting variable reordering of the CUDD-
package.

92

CHAPTER 8. EXPERIMENTAL RESULTSAND DISCUSSION

Real-Time

Specification:

JCTL,
Quartz

Formal Model:
Unit-Delay
Structure

v

Abstraction Exact Low-Level
Techniques: Runtime
JERRY Analysis:
(Chronos) JERRY
High-Level Low-Level
Timed Kripke Timed Kripke
Structure Structure
High-Level Low-Level
Real-Time Real-Time
Verification: Verification:
JERRY T JERRY

Exact High-Level Exact Low-Level

WCET/BCET |1 Executable WCET/BCET
Analysis: Code Analysis:
JERRY JERRY

Figure 8.1: Equinox: A Formal Framework for the Specification, Modelling, \Verification
and Runtime Analysis of Real-Time Systems

93

Fischer’'s Mutual Exclusion Protocol

8.1 Fischer’sMutual Exclusion Protocol

It is well-known that program sections of concurrent processes that modify some shared vari-
ables have to be protected to avoid inconsistencies of the data structures. The mutual exclusion
in systems with concurrent processes is a mechanism, in order to allow different processes ex-
clusive access on resources. Should any process be interrupted by another process during his
access on this resources, loss of data or other unwanted effects/events could occur. The area, in
which the process is not allowed to be interrupted, is called critical section.

To overcome this problem, several solutions have been suggested. Perhaps the simplest
possible algorithm is the one suggested by Michael Fischer [77] and is known as Fischer’s
Mutual Exclusion Protocol. Figure 8.2 gives some pseudo-code for the protocol: The protocol
is used to protect critical sections for § processes. For this purpose, a global lock variable A of
type {0, ...,0} is used. The role of A consists of holding the index of the process that is allowed
to enter its critical section. The basic idea of the protocol is roughly as follows (cf. the program
code in Figure 8.2):

If A = 0 holds, the critical region is currently not owned by a process, so that a process that
wants to enter the section can try to obtain access to the region. It therefore will then assign A
its own process id (line s;). After this, the process will be inactivated for ¢ units of time so that
the other & processes have the chance to write their process ids to A. If after that time, A still
contains the process id of the considered process, this process is allowed to enter the critical
section and after that, it will release the section by resetting A to zero.

Sinit ¢ epeat

So : await \ = 0;
81t Ai=1;

Sg sleep 4;

s3: until A =4

sq: //critical section
s5: A:=0;

Figure 8.2: Fischer’s Mutual Exclusion Protocol

The disadvantage of Fischer’s mutex protocol is that it requires for n processes in each pro-
cess a delay time ¢ of order O(n). In the meantime, other solutions have been presented that
do not suffer from this disadvantage (cf. [77]). Nevertheless, Fischer’s mutex protocol is an
excellent example which has been widely considered by many researchers as a benchmark.

The benchmark consist of n processes that execute the code given in Figure 8.3. There is a
critical section between the locations cs; and cs,, i.e. at most one of the processes is allowed
to be in between these locations. The access to the critical region is controlled by a shared
variable z: when z = 0 holds, the region is free, z € {1,...,n} means that the process with
the identifier x is granted access to the region. A process tries to assign its process identifier pid
to a shared variable . As the processes are executed in an interleaved manner, there will be no

94

Fischer’s Mutual Exclusion Protocol

write conflict in doing so, and it may be the case that after having written z, it may no longer
have the value pid when the process reaches the location wait,.

module FischerProcess :
input running, pid : integer;
output z : integer;
suspend
do
wait; : await (z = 0);
next(z) := pid;
wait, : pause
while (z # pid);
CS; : pause;
[* critical section */
CSs : pause;
z = 0;
waits : halt
when running
end

Figure 8.3: A Process in Fischer’s Protocol

We have used JERRY to model, analyze and verify Fischer’s protocol up to 30 processes.
The runtime and memory requirements obtained on an Intel Pentium 3 platform with 1 GHz
and 1 GByte of main memory that runs under Linux are given in the next sections.

8.1.1 UDS Generation

The first part of the automatic formal analysis by means of Equinox is always the generation of
the unit-delay structure. Table 8.1 shows the results for Fischer’s UDS generation for n pro-
Cesses.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (number of processes). The second column shows how many Boolean
variables were necessary to encode the state transition diagram, which means that the system
has 2" reachable states. Column three shows the determined runtimes for the UDS genera-
tion. Columns four and five show memory consumption, expressed in required BDD nodes and
kBytes of memory respectively.

95

Fischer’'s Mutual Exclusion Protocol

Table 8.1 shows that JERRY has the ability to handle very large systems. The generated
model for 30 Fischer processes requires 186 boolean variables, which means that it includes
2186 reachable states. To be able to directly compare our results with other tools, we have
generated all smaller models between 2 - 10 processes and proceeded in 5-steps for models
above 10 processes, which could not be handled by some tools.

Note that the runtimes include also the time needed for exporting and storing the formal
model and all other needed data on hard disk.

t/s

240

220

200 /
180 /
160
140 /

120 /
100 /

80

60

40

20 <’_‘—_’> /

5 10 15 20 25 30
Number of Processes

Figure 8.4: Fischer: UDS Generation Time

96

Fischer’s Mutual Exclusion Protocol

Memory / MB

30

27

24

21

18

15

12

Fischer: UDS generation

Number of | Variables | Time | BDD nodes | Memory
Processes states | h:m:s kB

2 15 0.15 230 4765

3 21 0.27 424 4770

4 28 0.40 711 4855

5 34 0.77 1156 5084

6 40 0.93 1523 5206

7 46 2.23 1979 5462

8 53 2.37 2712 5472

10 65 6.47 3346 5635

15 95 10.67 6501 6962

20 126 34.36 8714 14567

25 156 | 1:13.92 17527 16430

30 186 | 3:48.28 26531 27842

Pentium 3, 1GHz, 1GB

Table 8.1: UDS Generation for Fischer’s Mutex Protocol

15

20

25 30
Number of Processes

Figure 8.5: Fischer: UDS Generation Memory

97

Fischer’'s Mutual Exclusion Protocol

8.1.2 High-Level TKS Generation - Chronos

The generation of the high-level TKS uses the algorithm Chronos, explained in section 6.1.2.
Compared to other benchmarks discussed in the next sections, the chosen abstraction for the
Fischer benchmark is small, since a coarser abstraction would probably ignore important de-
tails. Table 8.2 shows the obtained results. All experiments were run on a Pentium 3 with 1GHz
and 1GByte of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the bench-
mark’s parameter (number of processes). The second column shows how many Boolean vari-
ables were necessary to encode the state transition diagram and the logical times on the transi-
tions. This means that the system has 2°-*%" reachable states and the longest transition of the sys-
tem is not exceeding 2:-%" logical time units. Column three shows the determined runtimes for
the high-level TKS generation. Columns four and five show memory consumption, expressed
in required BDD nodes and kBytes of memory respectively. The required BDD nodes are given
for both, the generated TKS and the obtained UDS (the TKS with untimed transitions), which
is then used by the algorithms for all qualitative computations of the JCTL-operators. Column
six finally, shows the minimum and maximum duration (in logical time units) of the transitions
contained in the high-level TKS.

\ Fischer: High-Level TKS Generation - Chronos

Number of Variables Time BDD nodes | Memory | Transition

Processes | states | time | h:m:s UDS | TKS kB min | max

5 K%} 2 0.53 636 666 4876 1 2

10 65 2 442 | 2222 | 2299 6085 1 2

15 95 2 1299 | 3856 | 4097 6988 1 2

20| 126 2 36.01 | 8230 | 8636 9704 1 2

25| 156 2| 4563 | 9708 | 9731 10847 1 2

30| 186 2| 1:21.30 | 16764 | 17061 14031 1 2
Pentium 3, 1GHz, 1GB

Table 8.2: High-Level TKS Generation for Fischer’s Mutex Protocol

The generation of the high-level model clearly shows how effective the use of abstractions can
be in praxis. Even small abstractions, like the one used here, can lead to impressive results.
Here, only 2 variables are required to represent time. Nevertheless, as can be seen, the size in
BDD nodes of the generated TKS is significantly smaller (approx. 68% at average) than the
size of the first generated UDS (cf. Table 8.1). Moreover, the use of time variables in order to
keep the time-information stored, only adds a very small amount of BDD nodes (approx. 3.5%
at average) to the abstract UDS. This is of essential importance for later verification purposes,
where the runtimes and memory consumption will depend on the size of the formal model.

98

Fischer’s Mutual Exclusion Protocol

t/s

80

70

60

40

30

20

J

10 /

5 10

15 20

25

30

Number of Processes

Figure 8.6: Fischer: High-Level TKS Generation Time

Memory / MB

24

21

18

15

12

-

5 10

15 20

25

30

Number of Processes

Figure 8.7: Fischer: High-Level TKS Generation Memory

99

Fischer’'s Mutual Exclusion Protocol

The symbolic breadth-first search traversing of the algorithm Chronos, makes it possible to
easily compute large systems, like the one for 30 Fischer processes, which requires 186 boolean
variables. The runtimes and the memory consumption show a quadratic growth to the number
of processes. The results clearly depend on the variable ordering of the BDDs. For these
experiments we used sifting as reordering method, which is a good average solution. Using
other reordering methods it is generally possible to obtain also smaller TKSs, but this might
also result in worse runtimes.

JERRY offers many variants of initial variable orderings, but also many options in order to
benefit from the variety of functions offered by the CUDD BDD package.

8.1.3 Low-Level TKS Generation - Runtime Analysis

For the generation of low-level TKSs, an exact runtime analysis for the appropriate architecture
is necessary (cf. section 6.2). We have performed this for three different architectures:

e Pentium 3, 1GHz, 1GB
e Ultrasparc 111, 750MHz, 512MB
e Pentium 4, 2GHz, 512MB

The results for the obtained low-level TKSs and the runtime analysis are given in tables 8.3, 8.5
and 8.4.

The columns of the tables are as follows: The first column denotes the instantiation of the
benchmark’s parameter (number of processes). The second column shows how many Boolean
variables were necessary to encode the state transition diagram and the physical times on the
transitions. This means that the system has 2°-*%" reachable states and the longest transition of
the system is not exceeding 229" x 10~ seconds. Column three shows the determined runtimes
for the runtime analysis and the low-level TKS generation, which are executed parallel.

Columns four and five show memory consumption, expressed in required BDD nodes and
kBytes of memory respectively. The required BDD nodes are given for both, the generated TKS
and the obtained UDS (the TKS with untimed transitions), which is then used by the algorithms
for all qualitative computations of the JCTL-operators. The last column finally, shows the de-
termined runtimes for the minimal and maximal macro steps (in seconds x10~°) on the target
machines.

Note that each transition within the system holds exactly the time, which is needed for its own
execution and this time lies always between the minimal and the maximal value. It’s interesting
to see that, on the Pentium 3, the executable code for four concurrent processes consumes more
time (longest maximum transition) than the code for five processes. This shows the necessity
of an exact analysis, since an estimation of runtime, based on a few example-data only, can be
very misleading.

100

Fischer’s Mutual Exclusion Protocol

Fischer: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [s]-10~°
Processes | states | time h:m:s UDS | TKS kB min max
2 15 2 396 | 268 | 317 4733 1 3

3 21 3 427 | 418 | 441 4925 2 4

4 28 4 8.17 | 559 | 581 6780 4 8

5 34 3 4762 | 693 | 776 6635 5 7

6 40 4 7:23.99 | 1068 | 1167 7824 6 11

7 46 4| 1:10:35.62 | 1487 | 1635 14752 7 11

Pentium 3, 1GHz, 1GB

Table 8.3: Low-Level TKS Generation for Fischer’s Protocol on Pentium 3 Architecture

Fischer: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [g]-107°
Processes | states | time | h:mis | UDS | TKS kB min max
2 15 1 263 | 268 | 270 4733 1 1

3 21 2 288 | 418 | 449 4925 1 2

4 28 3 495 | 560 | 618 6780 2 4

5 34 3 2906 | 676 | 771 6751 2 4

6 40 3| 4:36.66 | 1119 | 1244 7976 3 6

7 46 3| 46:59.29 | 1544 | 1721 7778 4 6

Pentium 4, 2GHz, 512MB

Table 8.4: Low-Level TKS Generation for Fischer’s Protocol on Pentium 4 Architecture

Fischer: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [s]-10~°
Processes | states | time h:m:s UDS | TKS kB min max
2 15 4 569 | 268 | 330 4733 5 8

3 21 4 535 | 326 | 365 4925 8 12

4 28 5 1289 | 577 | 624 6764 14 21

5 K%} 5 1:28.20 | 745 | 1016 6735 17 27

6 40 6 14:41.80 | 1110 | 1306 7904 21 32

7 46 6 | 2230:27.29 | 1506 | 1668 10400 25 38

Ultrasparc 111, 750MHz, 512MB

Table 8.5: Low-Level TKS Generation for Fischer’s Protocol on Ultrasparc 111 Architecture

101

Fischer’'s Mutual Exclusion Protocol

t/s
10000
./>
'/
7/
1000 /;g 5
. 7/
./
'/
100 ‘ >
10 — Pentium 3
{ - — Pentium4
1 == Ultrasparc
2 3 4 5 6 7 Number of Processes

Figure 8.8: Fischer: Low-Level TKS Generation Time - Log. Scale

Memory / MB

135 /
12.0 /
105 Vi
/ ./.
/
;

9.0 5
v

75

6.0 6/’9 /

45
3.0 — Pentium 3
= — Pentium 4
15 --= Ultrasparc
2 3 4 5 6 7 Number of Processes

Figure 8.9: Fischer: Low-Level TKS Generation Memory

102

Fischer’s Mutual Exclusion Protocol

Considering physical execution times in order to generate the low-level TKS clearly increases
the complexity of the system by a formidable time-factor. This time-factor is represented by the
additional time-variables.

Nevertheless, it can be seen that JERRY can easily generate low-level formal models for 7
processes. In other words, the low-level performance of JERRY is even better than the high-
level performance of the tool Kronos [75] (cf. Fig. 8.9 of section 8.1.7).

Generally, the Pentium 4 machine shows the best performance, while the Ultrasparc 111 shows
the worst one. Of course, the number of required time-variables depends on the required accu-
racy that one wants to achieve for the examined system, i.e. the grade of the time’s granulation.
JERRY offers options for manually choosing the appropriate time accuracy, e.g. ms, us, ns,
etc. For this benchmark we have set the time granulation at us x 10, e.g. the longest transitions
for 7 and 2 processes in Pentium 3 are 110 ps and 30 us respectively.

The runtimes for the low-level TKS generation show a fast growth. This is due to the fact, that
the execution times of the code are increasing for greater numbers of processes, which in turn re-
sults in additional time-variables. This leads to more time-consuming BDD-operations. Please
note also that the runtimes depend on the grade of symbolic operations that can be achieved for
the specific system (see section 6.2.3). This grade is for the Fischer benchmark very unfavor-
able, but this is not the case for other benchmarks, like the ones presented in sections A.1.2 and
A.2.3.

On the other hand, it can be seen that the memory consumption remains very low, which clearly

allows the generation of further systems with more than 7 processes, without the need of great
amounts of memory.

103

Fischer’'s Mutual Exclusion Protocol

8.1.4 WCET Analysis

For the WCET and BCET analysis we have obtained the results given in Table 8.6 for n pro-
cesses. In particular, we have determined the smallest and largest number of macro steps it may
take for a process to complete its task, i.e. to reach location waits (cf. Fig. 8.3).

The symbolic breadth-first search traversing of the algorithm EHLA allows JERRY to easily an-
alyze large systems, like the one for 30 Fischer processes, which requires 186 boolean variables.

\ Fischer: WCET and BCET analysis - EHLA |

Number of | Variables | Time | Memory | BDD nodes | BCET | WCET
Processes states | h:m:s kB

5 K%} 0.53 4908 12264 25 25

10 65 2.19 5261 28616 45 45

15 95 9.53 5960 66430 65 65

20 126 22.44 7384 147168 85 85

25 156 | 49.18 12997 234038 105 105

30 186 | 1:06.26 14501 317842 125 125

Pentium 3, 1GHz, 1GB

Table 8.6: WCET and BCET Analysis for Fischer’s Mutex Protocol

According to the results, we can see that the WCET of a system with n processes is 4n + 5,
which would not be so simple to obtain analytically.

The runtimes and the memory consumption show a quadratic growth to the number of pro-
cesses. In particular, for the runtimes we have approximately 0.02n2s for 5 and 10 processes,
0.04n?s for 15 processes, 0.05n%s for 20 processes and 0.075n2s for 25 and 30 processes.

For the memory consumption we have approximately 0.2n? MB for 5 processes, 0.05n2
MB for 10 processes, 0.026n2 MB for 15 processes, 0.018n2 MB for 20 processes, 0.02n? MB
for 25 processes, 0.016n2 MB for 30 processes. Furthermore, we can see that the logical steps
for BCET and WCET are identical. This is due to the fact, that all processes want to enter the
critical region at the same time, while only one is allowed to do so. Hence, there are no points
of time, where the critical region remains empty.

The results clearly depend on the variable ordering of the BDDs. For these experiments we used
sifting as reordering method, which is a good average solution. Using other reordering methods
it is generally possible to achieve better memory consumption, but this might also result in
worse runtimes.

104

Fischer’s Mutual Exclusion Protocol

t/s

80

70

60

40

30

20

10

Memory / MB

16

14

12

10

5 10 15 20

Figure 8.10: Fischer: EHLA Time

25

30

Number of Processes

5 10 15 20

25

30

Number of Processes

Figure 8.11: Fischer: EHLA Memory

105

Fischer’'s Mutual Exclusion Protocol

8.1.5 UDS Verification

First we verified qualitative-only properties at UDS-level. These properties guarantee that two
different processes will not be present in the critical section at the same time. To prove this,
we check all possible combinations of all possible processes. In other words, the number of
specifications to be checked grows with the number of processes as follows:

e for 5 processes 20 different specifications

for 10 processes 90 different specifications

for 15 processes 210 different specifications

for 20 processes 380 different specifications

for 25 processes 600 different specifications

for 30 processes 870 different specifications

\ Fischer: UDS verifi cation |

Number of | Variables | Time | Memory | BDD nodes
Processes states | h:m:s kB

5 34| 042 4786 7154

10 65| 1.90 5027 18369

15 95 | 6.05 5336 33726

20 126 | 20.58 6172 80738

25 156 | 33.04 6630 106288

30 186 | 51.60 7180 135926
Pentium 3, 1GHz, 1GB

Table 8.7: Verification of Qualitative Properties at UDS-Level for Fischer’s Mutex Protocol

Due to the increasing number of specifications to be verified, the runtimes and the memory
consumption show a quadratic growth to the number of processes (cf. Table 8.7). In particular,

for the runtimes we have approximately 0.02n2%s for 5, 10 and 15 processes, and 0.05n2s for

20, 25 and 30 processes. For the memory consumption we have approximately 0.2n? MB for

5 processes, 0.05n2 MB for 10 processes, 0.023n? MB for 15 processes, 0.015n2 MB for 20

processes, 0.01n2 MB for 25 processes, 0.008n2 MB for 30 processes.

These values are satisfactory to the praxis: as can be seen in Table 8.7, JERRY needs only 51.6
seconds and 7180 kB of main memory to check 870 specifications in a system with 2'8¢ states.
Again, the results depend on the variable ordering of the BDDs. For these experiments we used
sifting as reordering method, which is a good average solution. Using other reordering methods
it is generally possible to obtain also smaller TKSs, but this might also result in worse runtimes.

106

Fischer’s Mutual Exclusion Protocol

8.1.6 High-Level TKS Verification

Fischer’s mutex protocol is well-suited for checking and comparing the performance of different
JCTL-operators. For this purpose, we have tested the operators

e EF"p = E[1 U" ¢]
e AFfp = -EGF—yp
° AG”QO = —|E[1 g“ —|g0]

according to the results of WCET and BCET analysis. In particular, we have proved the cor-
rectness of the WCET and BCET analysis by checking the following real-time specifications:

e Property 1: EF =WCET
e Property 2: AF =WCETH
e Property 3: AG =WCET®

where ® stands for: *“all processes have visited the critical section and switched to their final
state”. Note that, properties 2 and 3 are true, due to the fact that in the Fischer benchmark we
have BCET = WCET (cf. Table 8.6). The verification results of Table 8.8 clearly show that also
the quantitative JCTL-operators can easily handle very large systems.

The results of this section clearly demonstrate JERRY’s stable functioning: As can be seen in
Table 8.8 and Figures 8.12 and 8.13, the operators EF* and AG" show almost the same behavior
for their runtimes and memory consumption. This is an expected result, due to the duality of
these operators (cf. definition 13 of section 3.2.2).

The runtimes and memory consumption of EF* and AG* show a quadratic growth to the
number of processes. In particular, for the runtimes we have approximately 0.02n2s for 5 and
10 processes, 0.05n2s for 15 processes, 0.07n%s for 20 and 25 processes and 0.09n2s for 30
processes. For the memory consumption we have approximately 0.2n? MB for 5 processes,
0.05n2 MB for 10 processes, 0.02n? MB for 15 and 25 processes and 0.015n2 MB for 20 and
30 processes.

In contrast to EF* and AG*, the runtimes and memory consumption of the AF* operator show
a cubic growth to the number of processes. This is also an expected result, due to its duality
to the EG* operator (cf. definition 13 of section 3.2.2): EG® uses additional BDD-operations in
order to compute the set of states required for each iteration (cf. Figure 5.5 of section 5.1).

In particular, for the runtimes we have approximately 0.003n3s for 5 processes, 0.01n?s for
10 processes and 0.015n3s for 15, 20, 25 and 30 processes. For the memory consumption we
have approximately 0.04n3 MB for 5 processes, 0.009n* MB for 10 processes, 0.004n* MB for
15 processes, 0.002n® MB for 20 and 25 processes and 0.001n3 MB for 30 processes.

107

Fischer’'s Mutual Exclusion Protocol

The results clearly depend on the variable ordering of the BDDs. For these experiments we used
sifting as reordering method, which is a good average solution. Using other reordering methods
it is generally possible to achieve better memory consumption, but this might also result in
worse runtimes.

\ Fischer: High-Level Verifi cation - Prop. 1 |

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 K%} 2 0.39 4812 6132

10 65 2 2.68 5169 224384

15 95 2 11.74 5735 52122

20| 126 2 28.67 6375 85848

25| 156 2| 4811 11840 162498

30| 186 2 | 1:18.09 13694 274918

Pentium 3, 1GHz, 1GB

\ Fischer: High-Level Verifi cation - Prop. 2 |

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 34 2 0.40 4828 7154

10 65 2 9.18 8992 246302

15 95 2 56.67 13596 523264

20| 126 2| 1:34.66 15906 645904

25| 156 2 | 4:35.25 31136 1278522

30| 186 2 | 6:56.66 36615 1603518

Pentium 3, 1GHz, 1GB

\ Fischer: High-Level Verifi cation - Prop. 3 \

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 34 2 0.40 4828 7154

10 65 2 2.60 5286 20939

15 95 2 11.54 6349 89936

20 | 126 2 28.69 8466 211554

25| 156 2| 47.45 11658 395514

30| 186 2| 1:17.78 12202 427196

Pentium 3, 1GHz, 1GB

Table 8.8: Verification of Quantitative Properties at High-Level for Fischer’s Mutex Protocol

108

Fischer’s Mutual Exclusion Protocol

400 7

350 :

300 7

250 :

200 ;

150 + — Prop. 1, Prop. 3

100 - = Prop.2

5 10 15 20 25 30 Number of Processes

Figure 8.12: Fischer: High-Level TKS Verification Time

Memory / MB

40

35 =

30 7

25 L

20 7

15 — Prop.1

T P

10 7 ‘ /'/</‘ - = Prop.2

5 L=X -~ Prop.3

5 10 15 20 25 30 Number of Processes

Figure 8.13: Fischer: High-Level TKS Verification Memory

109

Fischer’'s Mutual Exclusion Protocol

8.1.7 A Comparison to Other Tools

In order to compare JERRY’s performance, we have used some of the most popular tools avail-
able, to verify Fischer’s mutex protocol. In particular, we have tested Kronos [75], UPPAAL
[126] and Cadence-SMV [26]. The results are listed in the Tables 8.9, 8.10, 8.11 and 8.12
shown below.

\ Fischer: Verifi cation with Kronos \

Number of | Mode Construction | Memory | Verifi cation | Memory | Total Runtime
Processes h:m:s kB h:m:s kB h:m:s
2 0.10 1232 0.10 1600 0.20
3 0.10 1422 0.10 1876 0.20
4 0.90 1766 0.30 2476 1.20
5 1.36 11020 131 16200 2.67
6 1:50.10 73500 8.62 85132 1:58.72
Pentium 3, 1GHz, 1GB

Table 8.9: Verification of Fischer’s Mutex Protocol with Kronos

| Fischer: Verifi cation with UPPAAL |

Number of Time Memory
Processes | h:m:s kB

2 0.03 1780
3 0.04 1820
4 0.06 1910
5 0.30 2010
6 154 2820
7 8.33 6332
8 40.43 17548
9| 221.09 60596

10 | 15:55.23 213000

11 >1.5h

Pentium 3, 1GHz, 1GB

Table 8.10: Verification of Fischer’s Mutex Protocol with UPPAAL

Furthermore, an overall comparison of all tools is given in Table 8.13. The tool Kronos showed
the worst performance of all tested tools. Kronos allowed the verification only up to 6 Fischer
processes, due to a limitation on its control states: The default value is set at 2048, where the
message “max control states exceeded” appears. We have changed this value manually to the
maximum allowed of 32000 and verified up to 6 processes with this. However, for 7 processes
was this value not enough.

With the tool UPPAAL we have used the options -A (“use convex hull approximation”) and -T
(“optimize time consumption when several properties are examined”). Without these options

110

Fischer’s Mutual Exclusion Protocol

\ Fischer: Verifi cation with Cadence-SMV |

Number of | Variables | Time | Memory | BDD nodes
Processes sates | h:m:s kB

2 15 0.05 2365 6765

3 21 0.10 2678 11828

4 28 0.13 3401 22951

5 34 0.19 3420 24378

6 40 0.26 3540 27820

7 46 0.51 4312 50415

8 53 0.82 4630 62088

9 60 0.92 4802 81267

10 65 1.68 4640 76131

11 72 12.13 6072 26686

15 95 35.62 6208 31011

20 126 | 2:16.72 10966 67860

25 156 | 5:00.63 16360 81707

30 186 | 12:02.79 23988 129180

Pentium 3, 1GHz, 1GB

Table 8.11: Verification of Fischer’s Mutex Protocol with Cadence-SMV

\ Fischer: Verifi cation with JERRY \

Number of | Variables | Time | Memory | BDD nodes
Processes states | h:m:s kB

2 15 0.10 4754 7154

3 21 0.24 4765 7154

4 28 0.41 4855 12264

5 34 0.55 4898 14308

6 40 0.96 5111 26572

7 46 1.78 5449 47012

8 53 3.71 5797 67452

9 60 3.30 5857 70518

10 66 6.51 6807 126728

11 72 11.21 7629 174762

15 95 16.95 7250 151256

20 126 35.20 14585 340326

25 156 | 1:13.41 16648 460922

30 186 | 3:49.52 19877 652036
Pentium 3, 1GHz, 1GB

Table 8.12: Verification of Fischer’s Mutex Protocol with JERRY

111

Fischer’'s Mutual Exclusion Protocol

l

t/s [[[\ \
— JERRY - Kronos
900 !
- - UPPAAL —— SMV "
825 :
1
1
750 ,'
: I
675 ,' /
| !
| !
600 i 1
1 !
! !
525 L !
! I
1 1
I]
450] !
! I
! I
375 X ’.
| I
300 .
: ’
| '/
225 i +
1 !
1 ./
150 !
’ 7]
7 ./
75] 3
2 3 4 5 6 7 8 9 10 11 15 20 25 30
Number of Processes
Figure 8.14: Fischer: Verification Time
t/s [
— JERRY
1000 - - UPPAAL A -
7 -
P
Kronos .-
100 i - K X e
//, < ' 2 /(
e B
10 P <//
7 .7 e
SRR €)
1 . o
K ,/ — 7""
L -
2 3 4 5 6 7 8 9 10 11 15 20 25 30
Number of Processes

Figure 8.15: Fischer: Verification Time - Log. Scale

112

Fischer’s Mutual Exclusion Protocol

[

[

Memory / MB
[[[[
— JERRY Kronos
240
- — UPPAAL = SMV
220
I
200 ;
1
1
180 t
1
]
160 I‘
1
1
140 [
]
1
120 +
1
1
100 !
1
% 1
80 . T
1
(]
60
B /
N /
N /
40 : 7
N /
/
20 ' - —=
R P T — === kT '
2 3 4 5 6 7 8 9 10 11 15 20 25 30
Number of Processes
Figure 8.16: Fischer: Verification Memory
Memory / MB
[[
— JERRY Kronos
1000
- - UPPAAL —'— SMV 3
100 -] .
T o~ ="
10 - e]
£ ==) :.:;;ﬁé‘;: T ek
1
2 3 4 5 6 7 8 9 10 11 15 20 25 30
Number of Processes

Figure 8.17: Fischer: Verification Memory - Log. Scale

113

Fischer’'s Mutual Exclusion Protocol

the tool’s performance decreases significantly and its results become worse than the Kronos
results. Using the options, we were able to verify up to 10 processes. We also started a run with
11 processes, which seemed not to come to the end. We decided to interrupt it after 1.5 hour.

\ Fischer; Overview \

Number of Time Memory
Processes h:m:s kB

Kronos | UPPAAL | SMV | JERRY | Kronos | UPPAAL | SMV | JERRY

2 0.20 0.03 0.05 0.10 1600 1780 | 2365 4754

3 0.20 0.04 0.10 0.24 1876 1820 | 2678 4765

4 1.20 0.06 0.13 0.41 2476 1910 | 3401 4855

5 2.67 0.30 0.19 0.55 | 16200 2010 | 3420 4898

6 | 1.:58.72 154 0.26 0.96 | 85132 2820 | 3540 5111

7 - 8.33 0.51 1.78 - 6332 | 4312 5449

8 - 40.43 0.82 3.71 - 17548 | 4630 5797

9 - 2:21.09 0.92 3.30 - 60596 | 4802 5857

10 - | 15:55.23 1.68 6.51 - 213000 | 4640 6807

11 - >1.5h 12.13 11.21 - - | 6072 7629

15 - - 35.62 16.95 - - | 6208 7205

20 - - | 2:16.72 35.20 - - | 10966 | 14585

25 - -| 5:00.63 | 1:1341 - - | 16360 | 16648

30 - - | 12:02.79 | 3:49.52 - -1 23988 | 19877

Pentium 3, 1GHz, 1GB

Table 8.13: Verification of Fischer’s Mutex Protocol - Comparison

Having experimented with several SMV-versions, like CMU SMV 2.4.3, 2.4.4. and 2.4.5.
[93], but also NuSMV [31], which is based on the CUDD BDD-package, we found the Cadence-
SMV [26] to have the best performance of all. In our experiments, none of the other SMV-
versions could handle more than 15 Fischer processes. To our knowledge, this could be the
result of a better BDD-variable ordering, used by Cadence-SMV. For the Cadence-SMV exper-
iments we have used the BDD reordering option with sifting.

As can be seen, JERRY performs much better than all other tools, when large systems are
considered. For small systems up to 10 processes, the Cadence-SMV shows a slightly better
performance. This is due to the fact that JERRY uses many subroutines in order to classify,
store and prepare data for later use, necessary for its modular functioning. These data can then
be reused in order to perform a system’s analysis at different stages, without having to start
everything from the beginning.

Furthermore, as the curves of Figures 8.14, 8.15, 8.16 and 8.17 show, JERRY's behavior
remain more flat and stable as the system’s size grows.

114

Fischer’s Mutual Exclusion Protocol

8.1.8 Low-Level TKS Verification

JERRY’s capabilities are best to see in a low-level verification. Here, the original system is en-
dowed by additional physical times, required for the code execution of the synchronous program
on specific architectures (cf. section 6.2). This results in an enormous increase of the system’s
complexity and gives us the opportunity to demonstrate JERRY’s sophisticated behavior.

Please note that we can not compare the low-level results to any other tool, since there exist
no other tools capable of low-level verification. Nevertheless, it is a challenge for us to check
JERRY with such high complex systems.

Similar to the high-level verification, we tested different JCTL-operators according to the results
of WCET and BCET analysis. In particular, we have proved the correctness of the WCET and
BCET analysis by checking the following real-time specifications:

° Property 4: EF< (WCET x maw_trans)q)
° Property 5 AF< (WCET x max_trans)q)
° Property 6: AG= (WCET x maz_trans) g

where & stays for: “all processes have visited the critical section and switched to their final
state”. mazx_trans is the maximum transition included in the system, as can be obtained from
the Tables 8.3, 8.5 and 8.4. Note that, properties 2 and 3 are true, due to the fact that in the
Fischer benchmark we have BCET = WCET (cf. Table 8.6).

The verification results are shown in Tables 8.14, 8.15 and 8.16. In order to give an overview
and compare different architectures, we consider also comparisons of the used target machines,
shown in Figures 8.18, 8.19, 8.20, 8.21, 8.22, and 8.23. Generally, the model obtained for the
Pentium 4 architecture benefits from having less time variables, due to faster code execution,
which leads to better results. However, due to variable-reordering procedures, the Pentium 4
model has in many cases more BDD-nodes than the other two models (cf. Tables 8.3, 8.4 and
8.5 in section 8.1.3). This reduces sometimes significantly the performance for this model. For
example, for the verification of properties 5 and 6 for 7 processes, the Pentium 4 model shows
higher memory consumption (kBytes and BDD-nodes) than the Pentium 3 model. The Ultra-
sparc Il model has the longest timed transitions, which increases its complexity and leads to
worse model-checking results by the BDD-operators.

It’s clearly to see that all operators have a good, stable performance and can easily handle the

system. Moreover these results demonstrate the importance of JERRY’s modular design: As

can be seen by comparing with Tables 8.3, 8.5 and 8.4, the main time consuming factor for the

low-level verification is not the verification itself, but the generation of the low-level model,
performed in section 8.1.3. JERRY has the capability of storing the model together with all

other important information and hence, can start the analysis directly at the low-level verifica-
tion stage, overcoming repeated (and needless) model generations.

115

Fischer’'s Mutual Exclusion Protocol

The verification runtimes are too low (max. 3.42 seconds for Ultrasparc Il1) to allow us to
make solid statements about their behavior. Moreover, the memory consumption is here mainly
caused by the initialization and loading of the formal model and not by the model-checking
procedures, which also makes difficult the judgment of their behavior. Nevertheless, we can
recognize a quadratic growth to the number of processes for all target machines and all checked
properties.

This is in accordance with the results obtained for the operators EF* and AG* in section
8.1.6. Property 5 is checking the operator AF*, which showed a cubic growth to the number
of processes in section 8.1.6, due to its duality to the EG* operator (cf. definition 13 of sec-
tion 3.2.2). Here, only a quadratic growth can be experienced, but this might be the result of
the small number of iterations required to check the entire system. Generally, the EG” operator
uses additional BDD-operations in order to compute the set of states required for each iteration
(cf. Figure 5.5 of section 5.1).

The results clearly depend on the variable ordering of the BDDs. For these experiments we used
sifting as reordering method, which is a good average solution. Using other reordering methods
it is generally possible to achieve better memory consumption, but this might also result in
worse runtimes.

116

Fischer’s Mutual Exclusion Protocol

| Fischer: Low-Level Verifi cation - Pentium 3- Prop. 4 |

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 2| 0.06 4701 3066
3 21 3| 025 4770 6132
4 28 4| 0.37 4871 11242
5 34 3| 053 4908 12264
6 40 4| 1.05 5251 31682
7 46 4| 137 5561 50078
Pentium 3, 1GHz, 1GB

| Fischer: Low-Level TKS Verifi cation - Pentium 3 - Prop. 5 |

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 2| 004 4701 3066
3 21 3] 033 4754 5110
4 28 4| 056 4807 7154
5 34 3| 073 4892 11242
6 40 4| 156 4979 15330
7 46 4| 208 5067 19418
Pentium 3, 1GHz, 1GB

| Fischer: Low-Level TKS verifi cation - Pentium 3 - Prop. 6 |

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 2| 0.05 4701 3066
3 21 3| 034 4754 5110
4 28 4| 051 4807 7154
5 34 3| 0.68 4876 10220
6 40 4| 161 4962 14308
7 46 4| 213 5099 21462
Pentium 3, 1GHz, 1GB

Table 8.14: Verification of Quantitative Properties at Pentium 3 for Fischer’s Mutex Protocol

117

Fischer’'s Mutual Exclusion Protocol

| Fischer: Low-Level TKS verifi cation - Pentium 4 - Prop. 4 |

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 1| 003 4685 2044
3 21 2| 020 4754 5110
4 28 3| 0.30 4791 6132
5 34 3| 0.63 4940 14308
6 40 3| 054 4898 10220
7 46 3| 099 5079 20440
Pentium 3, 1GHz, 1GB

\ Fischer: Low-Level TKS verifi cation - Pentium 4 - Prop. 5

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 1| 0.03 4685 2044
3 21 2| 021 4754 5110
4 28 3| 049 4839 9198
5 34 3| 078 4844 8176
6 40 3| 081 4993 16352
7 46 3| 159 5147 24528
Pentium 3, 1GHz, 1GB

\ Fischer: Low-Level TKS verifi cation - Pentium 4 - Prop. 6

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 1| 0.03 4685 2044
3 21 2| 022 4754 5110
4 28 3| 047 4839 9198
5 34 3| 078 4844 8176
6 40 3| 079 4977 15330
7 46 3| 158 5161 25550
Pentium 3, 1GHz, 1GB

118

Table 8.15: Verification of Quantitative Properties at Pentium 4 for Fischer’s Mutex Protocol

Fischer’s Mutual Exclusion Protocol

| Fischer: Low-Level TKS verifi cation - Ultrasparc - Prop. 4 |

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 4| 0.04 4717 4088
3 21 4| 021 4802 8176
4 28 5| 041 4956 16352
5 34 5| 045 4863 9198
6 40 6| 097 5473 44968
7 46 6| 164 6367 97090
Pentium 3, 1GHz, 1GB

\ Fischer: Low-Level TKS verifi cation - Ultrasparc - Prop. 5

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 4| 0.07 4765 7154
3 21 4| 0.37 4754 5110
4 28 5 0.89 4856 10220
5 34 5| 0.79 4910 12264
6 40 6| 171 5032 18396
7 46 6| 341 5221 28616
Pentium 3, 1GHz, 1GB

\ Fischer: Low-Level TKS verifi cation - Ultrasparc - Prop. 6

Number of | Variables | Time | Memory | BDD nodes
Processes | states | time | h:m:s kB
2 15 4| 0.06 4765 7154
3 21 4| 0.37 4754 5110
4 28 5| 084 4840 9198
5 34 5| 0.76 4911 12264
6 40 6| 162 5016 17374
7 46 6| 331 5253 30660
Pentium 3, 1GHz, 1GB

119

Table 8.16: Verification of Quantitative Properties at Ultrasparc 111 for Fischer’s Mutex Protocol

Fischer’'s Mutual Exclusion Protocol

t/s
2.00
175
b

1.50 £

_/

! /

/
1.25 7

'/
1.00
4 7 Property 4
0.75 / - — Pentium3
g Vs
SNV
0.50 T2 X - — Pentium4
0.25 #< —-— Ultrasparc
7
v
2 3 4 5 6 7 Number of Processes

Figure 8.18: Fischer: Low-Level TKS Verification Time - Property 4

Memory / MB
6.25 -
1
6.00]
.I.
1
5.75 T
I
550 (7
/
./.
5.25 ¢
’ b Property 4
5.00 = — Pentium3
4.75 - — Pentium4
4.50 —-— Ultrasparc
2 3 4 5 6 7 Number of Processes

Figure 8.19: Fischer: Low-Level TKS Verification Memory - Property 4

120

Fischer’s Mutual Exclusion Protocol

t/s
4.0
35
_I
.I
3.0 +
'I
.I
25 +
.l
_I
2.0 7
¥ Property 5
15 ,‘,> ,> — Pentium 3
/ Vi
/ /
10 " y 4 - — Pentium 4
k- ({ S
./ -
05 = - —-= Ultrasparc
o ¢
2 3 4 5 6 7 Number of Processes

Figure 8.20: Fischer: Low-Level TKS Verification Time - Property 5

Memory / MB
5.50
5.25
/ Vi
R
/7
v /
5.00 T
~>< (Property 5
4 7
2 7
7 — Pentium3
475 Komemg -~ Pentium4
g 4
—-— Ultrasparc
2 3 4 5 6 7 Number of Processes

Figure 8.21: Fischer: Low-Level TKS Verification Memory - Property 5

121

Fischer’'s Mutual Exclusion Protocol

t/s

4.0

35

3.0 1

25

1
20 2

T
/ Property 6
15 .’? ¢ — Pentium 3
/) /
/ /7
/' /
1.0 y /

L 7 = — Pentium4
F
./
05 = z —-— Ultrasparc
o ¢
2 3 4 5 6 7 Number of Processes

Figure 8.22: Fischer: Low-Level TKS Verification Time - Property 6

Memory / MB

5.50

5.25

/ ’ Property 6
7
pd

g/_ =3 — Pentium 3
K. 2
4.75 : - — Pentium4
7/
7
—-— Ultrasparc
2 3 4 5 6 7 Number of Processes

Figure 8.23: Fischer: Low-Level TKS Verification Memory - Property 6

122

Appendix A

Further Experimental Results

1

"Opd6v et Gel.
YOPOKAHY (495 - 406 .X.)
(Avtryévn, 1195)

A.1 BusArbiter

Bus-based systems consist of a central bus with several users, who use this as a message-channel
for the exchange of information. A central problem in this context is the allocation of the bus
to different users, so that no writing conflicts occur. This method of allocation is called arbi-
tration. The idea for the arbitration process used here originates from the DMA-controller of
Martin [94].

If some processes signal the necessity for a bus access, then the bus arbiter has to choose one of
them and inform it that the access on the bus is permitted. After that, in order to ensure access
exclusivity on the central bus, the arbiter has to wait for the end of the access to take further
decisions. This will be given by a respective signal by the active process and informs that the
bus is free and hence, access rights can be given again by the arbiter.

The implementation in Quartz represents several concurrent processes depending on the num-
ber of possible bus users. The processes can be divided into three categories: a process for the
rotation of the tokens, a process for each bus user to set the persistence as well as a process for
the output of the bus-release signals. The implementation of the arbiter is given in Fig. A.1.
The signals req, ..., req,, represent the bus-request signals of a process i, rdy is the signal after
the end of an access and ack-, ..., ack,, represent the signaling of the bus allocation to a process i.

ITruth is eternally sure.
SOFOCLES (495 - 406 BC)

125

Bus Arbiter

module arbitrate(reqi, - - - ,reqn,rdy, acky, - -
loop
tok1 : await arb;
tok,, : await arb;
end
I
loop
pro1 : await (req A toky);
pri1 : await 'reqq
end
I
I
loop
Pron : await (reqy A toky);
Prin : await 'req,
end
I
loop
arb : await(\/}_, (reg;);

if V?:l (tOki A p’)"li) then
casereqi A toky A pri1 : emit ackq;

casereqy A tok, A priy - emit acky;

ese

casereq : emit ackq;

casereqy, : emit acky;

end;
wfa
end;

s await rdy;

,acky,)

Figure A.1: Arbiter for n Processes in Quartz

126

Bus Arbiter

A.1.1 UDS Generation

Starting the automatic formal analysis, we first consider again the generation of the unit-delay
structure. Table A.1 shows the results for arbiter’s UDS generation for n processes. All experi-
ments were run on a Pentium 3 with 1GHz and 1GByte of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (number of processes). The second column shows how many Boolean
variables were necessary to encode the state transition diagram, which means that the system
has 2" reachable states. Column three shows the determined runtimes for the UDS genera-
tion. Columns four and five show memory consumption, expressed in required BDD nodes and
kBytes of memory respectively.

| Arbiter: UDS generation \

Number of | Variables | Time | BDD nodes | Memory
Processes states | h:m:s kB

5 29 0.56 2046 5047

10 54 2.80 9104 7397

15 79 13.54 12304 20556

20 104 | 2461 30527 20100

25 129 53.96 48461 30077

30 154 | 2:34.03 45312 50073

Pentium 3, 1GHz, 1GB

Table A.1: UDS Generation for Arbiter

As can be seen, JERRY has no difficulties to generate a large system for 30 arbiter processes,
requiring 154 boolean variables. This means that the system includes 2% reachable states.

Please note that the runtimes include also the time needed for exporting and storing the for-
mal model and all other needed data on hard disk.

Note also that due to the structure of the arbiter benchmark it is not possible to perform a
WCET analysis, since it can not be guarantied that a process will finish its access on the bus and
leave it free for other processes, i.e. there exist paths in the system that can circulate infinitely,
so that a WCET can not be determined (cf. section 7.1.1). This structure, combined with high
data dependency leaves also no space for a reasonable abstraction. Thus, we concentrate more
on low-level real-time verification, as well as high-level verification of qualitative properties.

127

Bus Arbiter

t/s

160

140

120

100

80

60

40

20

/

S

]

=

10 15 20

25

30

Number of Processes

Figure A.2: Arbiter: UDS Generation Time

Memory / MB

50.00

43.75

37.50

31.25

25.00

18.75

12.50

6.25

-

10 15 20

25

30

Number of Processes

Figure A.3: Arbiter: UDS Generation Memory

128

Bus Arbiter

A.1.2 Low-Level TKS Generation - Runtime Analysis

In order to use an arbiter within a bus system, certain specifications for transmission speed
and latency periods have to exist. These can be translated into formal specifications. Thus, a
specification of the form

FSlOOns

reg; — A ack;

can express a maximum latency on a request signal of 100 ns. However, to express an indication
of physical times in a specification, the formal model must contain the exact architecture-related
times. For this purpose, we generated low-level TKSs by means of exact runtime analysis
for the appropriate architecture (cf. section 6.2). We have performed this for three different
architectures:

e Pentium 3, 1GHz, 1GB
e Ultrasparc Ill, 750MHz, 512MB
e Pentium 4, 2GHz, 512MB

The results for the obtained low-level TKSs and the runtime analysis are given in tables A.2,
A.3 and A.4. The columns of the tables are as follows: The first column denotes the instan-
tiation of the benchmark’s parameter (number of processes). The second column shows how
many Boolean variables were necessary to encode the state transition diagram and the physical
times on the transitions. This means that the system has 25-7%" reachable states and the longest
transition of the system is not exceeding 279" x 10~ seconds. Column three shows the deter-
mined runtimes for the runtime analysis and the low-level TKS generation, which are executed
parallel. Columns four and five show memory consumption, expressed in required BDD nodes
and kBytes of memory respectively. The required BDD nodes are given for both, the generated
TKS and the obtained UDS (the TKS with untimed transitions), which is then used by the al-
gorithms for all qualitative computations of the JCTL-operators. The last column finally, shows
the determined runtimes for the minimal and maximal macro steps (in seconds x10 %) on the
target machines.

Each transition within the system holds exactly the time, which is needed for its own execution.
As described in section 6.2.1, the size of generated code is linear to the size of the original
synchronous program.

Note that the minimum and maximum execution times here are identical, since this benchmark
contains no If-Then-Else-statements. This reduces significantly the runtimes and memory con-
sumption and allows the generation of very large systems, like the Ultrasparc application for 30
processes, which contains 154 states— and 13 time variables and requires only approx. 1.5 min
of runtime and 7.3 MBytes of main memory.

129

Bus Arbiter

Arbiter: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [g]-10~°

Processes | states | time | h:m:s UDS | TKS kB min max

5 29 6 473 | 1482 | 1489 4786 50 50

10 54 8 7.29 | 5633 | 5642 5004 150 150

15 79 9 10.45 | 10959 | 10969 5265 367 367

20| 104 10| 29.88 | 23391 | 23402 6107 774 774

25| 129 11 51.40 | 31474 | 31486 6250 1054 1054

30| 154 11 | 1:19.32 | 44259 | 44271 7158 1197 1197
Pentium 3, 1GHz, 1GB

Table A.2: Low-Level TKS Generation for Arbiter on Pentium 3 Architecture

Arbiter: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [g]-10~°

Processes | states | time | h:m:s UDS | TKS kB min max

5 29 5 313 | 1422 | 1428 4786 24 24

10 54 7 480 | 5702 | 5710 5004 67 67

15 79 7 6.98 | 11221 | 11229 5265 116 116

20 104 9 23.00 | 23391 | 23401 6107 370 370

25 129 10 39.08 | 31474 | 31485 6250 540 540

30 154 10 | 1:01.88 | 44259 | 44270 7158 613 613
Pentium 4, 2GHz, 512MB

Table A.3: Low-Level TKS Generation for Arbiter on Pentium 4 Architecture

Arbiter: Low-Level TKS Generation - Runtime Analysis

Number of | Variables Time BDD nodes | Memory | Transition [g]-10~°

Processes | states | time | h:m:s UDS | TKS kB min max

5 29 8 552 | 1409 | 1418 4786 143 143

10 54 9 838 | 5073 | 5083 5015 360 360

15 79 10 16.30 | 14041 | 14052 5625 596 596

20| 104 11| 31.20 | 23391 | 23403 6090 1831 1831

25| 129 12| 5835 | 31208 | 31221 6200 3277 3277

30| 154 13 | 1:23.43 | 44088 | 44102 7292 5820 5820
Ultrasparc 111, 750MHz, 512MB

Table A.4: Low-Level TKS Generation for Arbiter on Ultrasparc 111 Architecture

130

Bus Arbiter

t/s

80 £
'/
/
70 7
4/'
./
60

50 N
.I /
.
/
40 !

30 K7 — Pentium 3
/AW
/
/7 >< .

20 VA - — Pentium4

. /
/'/ //
10 %g/)</ —-— Ultrasparc
5 10 15 20 25 30 Number of Processes

Figure A.4: Arbiter: Low-Level TKS Generation Time

Memory / MB

) /
] (

y

55
/ — Pentium 3,
5.0 Pentium 4,
Ultrasparc
45
4.0
5 10 15 20 25 30 Number of Processes

Figure A.5: Arbiter: Low-Level TKS Generation Memory

131

Bus Arbiter

A.1.3 A Comparison to Other Tools

In order to compare JERRY’s performance for the qualitative specifications of the arbiter, we
have tested the benchmark with SMV. As explained in section 8.1.7 we have chosen Cadence-
SMV for our tests, as the best performing SMV version.

\ Arbiter: Verifi cation Comparison JERRY and SMV \

Number of | Variables Time Memory BDD nodes
Processes states h:m:s kB
JERRY | SMV | JERRY SMV JERRY SMV

5 29 0.37 0.78 5001 3312 21462 13318
10 54 2.79 6.24 7150 3872 | 147168 27610
15 79 13.12 45.19 | 18087 8540 | 547792 | 239567
20 104 27.03 | 3:58.66 | 14427 45272 | 571298 | 2289214
25 129 58.24 | 3:26.93 | 28394 11132 | 1147706 | 224399
30 154 | 2:45.66 - | 52722 | >800000 | 2083858 -

Pentium 3, 1GHz, 1GB

Table A.5: Verification of Arbiter with JERRY and SMV

\ Arbiter: modular verifi cation with JERRY |

Number of | Variables | Time | Memory | BDD nodes
Processes states | h:m:s kB

5 29| 023 4743 5110

10 54| 1.60 4956 15330

15 79 | 450 5298 33726

20 104 | 6.08 5561 47012

25 129 | 15.05 6008 71540

30 154 | 29.56 6433 95046
Pentium 3, 1GHz, 1GB

Table A.6: Arbiter Verification with JERRY without Model Generation

The results of the direct comparison are listed in Table A.5. Furthermore, Table A.6 shows
JERRY's verification results for the verification stage only, i.e. when the formal model is al-
ready stored and must not be generated.

As can be seen, Cadence-SMV shows an instable behavior, specially for 20 processes (see also
Fig. A.6 and A.7). As we started a run with 30 processes, the main memory consumption
increased very fast up to the limit of our main memory, so we were forced to interrupt the run.
Furthermore, as the curves of Fig. A.6 and A.7 show, JERRY’s behavior remain more flat and
stable as the system’s size grows and has much better runtimes than Cadence-SMV.

132

Bus Arbiter

t/'s
X
I \
225 ;
\
I \
1 \
200 t
1
1
175 ,'
1
1
150 T
1
1
125 I
1
’ /
1
100 ;
' /
1
75 T — JERRY
1
i
50 7) - - sSmv
/
P
25
/
/ </
5 10 15 20 25 30 Number of Processes
Figure A.6: Arbiter: Verification Time
Memory / MB
64
56
48 i
40 T
I
/ \
32 / ¥
! \ é
1 \\/
24 ; / — JERRY
! \
b \
16 + - - SMV
[
8 - ’
_-x
10 15 20 25 30 Number of Processes

Figure A.7: Arbiter: Verification Memory

133

Bus Arbiter

Table A.6 finally, demonstrates again the benefits of JERRYs modular design: loading an al-
ready stored model lets us start directly the verification, overcoming the model generation. This
improves the overall performance results significantly.

A.1.4 Low-Level TKS Verification

We have tested JERRY’s performance for the low-level verification of the arbiter benchmark.
Here, the original system is endowed by additional physical times, required for the code exe-
cution of the synchronous program on specific architectures (cf. section 6.2). This results an
enormous increase of the system’s complexity.

Again we want to mention, that we can not compare the low-level results to any other tool, since
there exist no other tools capable of low-level verification. Nevertheless, it is a challenge for us
to check JERRY with such high complex systems. According to the benchmark’s function, we
have proved the following specification:

EF (arb A tok, A (AFS Maans ¢ok,))

This specification checks if there exists a path where the following holds: If the arbitration is
permitted, then a token will be transmitted and this will happen within the maximum time re-
quired for a transition of the system (cf. Tables A.2, A.3and A.4).

The verification results are shown in Tables A.7, A.8 and A.9. It’s clearly to see that JERRY has
a good, stable performance and can easily handle the system. Due to JERRY’s modular design,
we can again start the analysis directly at the low-level verification stage, overcoming repeated
(and needless) model generations.

134

Bus Arbiter

\ Arbiter; Low-Level TKS Verifi cation - Pentium 3 |

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 29 6 0.80 4834 8176

10 54 8 6.20 5713 58254

15 79 9 26.31 7344 150234

20| 104 10 | 1:07.08 14655 337260

25| 129 11 | 2:18.46 28580 671454

30| 154 11 | 4:47.72 33543 958636

Pentium 3, 1GHz, 1GB

Table A.7: Verification of Quantitative Properties at Pentium 3 for Arbiter

\ Arbiter: Low-Level TKS Verifi cation - Pentium 4 \

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 29 5 0.78 4882 11242

10 54 7 4.50 5751 60298

15 79 7 20.71 7405 155344

20| 104 9 58.33 14325 315798

25| 129 10 | 2:09.01 27573 612178

30| 154 10 | 3:30.27 20972 940240

Pentium 3, 1GHz, 1GB

Table A.8: Verification of Quantitative Properties at Pentium 4 for Arbiter

\ Arbiter: Low-Level TKS Verifi cation - Ultrasparc \

Number of | Variables Time | Memory | BDD nodes
Processes | states | time | h:m:s kB

5 29 8 1.01 4914 13286

10 54 9 6.80 5580 49056

15 79 10 33.05 8090 196224

20| 104 11 | 1:20.15 15263 376096

25| 129 12 | 2:15.80 19876 643860

30| 154 13 | 5:48:00 35474 1070034

Pentium 3, 1GHz, 1GB

Table A.9: Verification of Quantitative Properties at Ultrasparc 111 for Arbiter

135

Bus Arbiter

t/s

320

280 :
.I. /
1
240 ,
-I-/
1
200 H—4
il
j /

160 i
%/

120 /»’ 7 — Pentium 3
7 //
/1
80 X7 - — Pentium4
/./
2/
40 g// —-— Ultrasparc
5 10 15 20 25 30 Number of Processes

Figure A.8: Arbiter: Low-Level TKS Verification Time

Memory / MB

40

35 ;
/

30

25 / 7
AN
./

20 >
./V
4
15 ¥ — Pentium 3
/
./'
10 (){’ - = Pentium4
5 3@2’9 —-— Ultrasparc
5 10 15 20 25 30 Number of Processes

Figure A.9: Arbiter: Low-Level TKS Verification Memory

136

Primality

A.2 Primality

Another benchmark that we have tested was a program for checking the primality of a given
number. The idea is to first check if the number is even, and if not, to divide the number by all
odd numbers starting from 3 up to the half of the number to be tested.

Fig. A.10 shows the algorithm in pseudo code. If n is even and n # 2 holds, then n is not
a prime number (n = 2 is by definition a prime number). If n is odd, then n is divided by odd
numbers z between 3 and n/2. Then the algorithm checks if the rest of the division is 0. If the
algorithm detects a number x which results 0 as rest of the division, then the n is not prime -
otherwise, it is.

Primality(n)
if even(z) then
if z =2then
return prime;
end;
else
forall z >=3 A odd(z) ANz < n/2do
if n mod z = 0 then
return non_prime;
end;
end;
return prime;
end;

Figure A.10: Algorithm for Checking the Primality of a Number n

In principle, this program is a transformational algorithm. Nevertheless, nowadays different
encoding and encrypting algorithms exist, which are based on prime numbers. Thus, if we
consider the real-time encryption of data in systems, this algorithm underlies certain real-time
constraints. For the Primality benchmark, as well as for the following Euclid’s GCD algorithm,
is important to notice that, in order to focus on testing the tool’s performance, we do not exploit
the arithmetic instructions of the microprocessors. Instead, the arithmetic operations of a syn-
chronous program are mapped to the Boolean level and are implemented as bit-operations on
the microprocessors.

The program has been instantiated in Quartz for different bits and is given in Figure A.11.
The algorithm’s input is the number to be checked. As output, the program returns the signals
prime or non_prime. The divisions given by div 2 in the algorithm are performed by means of
a binary shift operation. As division is hard to implement by a combinatorial circuit, we have
chosen a sequential algorithm that requires b steps for a division of two b-bit numbers.

137

Primality

module Primality :
input p : int[n];
output prime, non_prime;
local Is, z : int[n — 1] in
a:=p;
if a[0] then
weak abort
T = 3;
if z < (a div 2) then emit Is end,;
while Is do
d:= a;
D : run Division()(d, z, m);
if m = 0 then emit non_prime end,;
£y : pause;
next(z) := = + 2;
{9 : pause;
if z < (d div 2) then emit Is end
end
when non_prime;
if non_prime then emit prime end
else
if a = 2 then emit prime
else emit non_prime end;
end;
tc : pause
end
end

Figure A.11: Algorithm to Test Primality

138

Primality

A.2.1 UDS Generation

We start again by first generating the unit-delay structure for the Primality algorithm. Table
A.10 shows the results for the UDS generation for n bits. All experiments were run on a Pen-

tium 3 with 1GHz and 1GByte of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram, which means that the system has 2" reach-
able states. Column three shows the determined runtimes for the UDS generation. Columns
four and five show memory consumption, expressed in required BDD nodes and kBytes of

memory respectively.

Primality: UDS generation

Bitwidth | Variables | Time | BDD nodes | Memory
states | h:m:s kB
4 44 0.85 1267 5036
5 55 2.25 6705 6059
6 66 11.13 9280 8992
7 77| 4711 53516 27845
8 88 | 3:43.25 86848 35150
Pentium 3, 1GHz, 1GB

Table A.10: UDS Generation for Primality Algorithm

Note that the runtimes include also the time needed for exporting and storing the formal

model and all other needed data on hard disk.

139

Primality

t/s
210

180 /
150

120 /
90

. /

30

4 5 6 7 8 Bitwidth

Figure A.12: Primality: UDS Generation Time

Memory / MB

35
30 /
25

20 /
15

10 /
1

4 5 6 7 8 Bitwidth

Figure A.13: Primality: UDS Generation Memory

140

Primality

A.2.2 High-Level TKS Generation - Chronos

The generation of a high-level TKS for the primality benchmark uses the algorithm Chronos,
explained in section 6.1.2. The benchmark is well-suited to perform abstractions. We have
abstract away from the states that regard the internal operations of the division. In particular,
we have used the following abstraction (cf. Fig. A.11):

abstract
D : run Division()(d, z, m);
end;

Table A.11 shows the obtained results. All experiments were run on a Pentium 3 with 1GHz
and 1GByte of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram and the logical times on the transitions. This
means that the system has 2°-*%" reachable states and the longest transition of the system is
not exceeding 2-*" logical time units. Column three shows the determined runtimes for the
high-level TKS generation. Columns four and five show memory consumption, expressed in
required BDD nodes and kBytes of memory respectively. The required BDD nodes are given
for both, the generated TKS and the obtained UDS (the TKS with untimed transitions), which
is then used by the algorithms for all qualitative computations of the JCTL-operators. Column
six finally, shows the minimum and maximum duration (in logical time units) of the transitions
contained in the high-level TKS.

\ Primality: High-Level TKS Generation - Chronos

Bitwidth | Variables Time BDD nodes | Memory | Transition
dtates | time | h:m:s UDS | TKS kB min | max

4 44 3 0.67 667 691 4956 1 4

5 55 3 368 | 1791 | 1796 6063 1 5

6 66 3 8.62 | 5292 | 5427 10145 1 6

7 77 3| 4561 | 13639 | 13655 12856 1 7

8 88 4| 2:01.43 | 46490 | 46505 32839 1 8

Pentium 3, 1GHz, 1GB

Table A.11: High-Level TKS Generation for Primality Algorithm

Again we see also for this benchmark, that the size in BDD nodes of the abstract structures is
significantly smaller than the size of the first generated UDS (cf. Table A.10).

141

Primality

t/s

140
120

100 /
80

60 /

4 5 6 7 8 Bitwidth

Figure A.14: Primality: High-Level TKS Generation Time

Memory / MB

35
30

25 /
20

15 /

10

4 5 6 7 8 Bitwidth

Figure A.15: Primality: High-Level TKS Generation Memory

142

Primality

A.2.3 Low-Level TKS Generation - Runtime Analysis

Similar to the previous benchmarks, we have performed an exact runtime analysis for the pri-
mality algorithm, in order to generate low-level TKSs for low-level verification purposes (cf.
section 6.2). We have performed this for three different architectures:

e Pentium 3, 1GHz, 1GB
e Ultrasparc 111, 750MHz, 512MB
e Pentium 4, 2GHz, 512MB

The results for the obtained low-level TKSs and the runtime analysis are given in Tables A.12,
A.13 and A.14.

The columns of the tables are as follows: The first column denotes the instantiation of the
benchmark’s parameter (number of processes). The second column shows how many Boolean
variables were necessary to encode the state transition diagram and the physical times on the
transitions. This means that the system has 2°-%" reachable states and the longest transition
of the system is not exceeding 2:-**" x 10-% seconds. Column three shows the determined
runtimes for the runtime analysis and the low-level TKS generation, which are executed paral-
lel. Columns four and five show memory consumption, expressed in required BDD nodes and
kBytes of memory respectively. The required BDD nodes are given for both, the generated TKS
and the obtained UDS (the TKS with untimed transitions), which is then used by the algorithms
for all qualitative computations of the JCTL-operators. The last column finally, shows the de-
termined runtimes for the minimal and maximal macro steps (in seconds x10~%) on the target
machines.

Note that each transition within the system holds exactly the time, which is needed for its
own execution and this time lies always between the minimal and the maximal value. As can
be seen, JERRY has again no difficulties in generating a system that contains 88 state— and
11 time variables. Due to the different machine architectures (e.g. use of different pipelines,
caches, etc.), the performance of the generated code may show some irregularities, like the 5-bit
variant on Pentium 4 (cf. Table A.13). This demonstrates again clearly the necessity of an exact
runtime analysis, since an estimation of runtime, based on a few example-data only, can be very
misleading.

143

Primality

\ Primality: Low-Level TKS Generation - Runtime Anaysis |

Bitwidth | Variables Time BDD nodes | Memory | Transition [5]-10~°
states | time | him:s UDS | TKS kB min max

4 44 7 6.12 918 | 1153 4848 65 118

5 55 8 792 | 3045 | 3527 5063 92 129

6 66 8 1551 | 9363 | 9928 5670 140 198

7 77 9 30.50 | 28407 | 27929 6680 305 425

8 88 10 | 1:33.36 | 86479 | 90163 8926 455 604

Pentium 3, 1GHz, 1GB

Table A.12: Low-Level TKS Generation for Primality Algorithm on Pentium 3 Architecture

\ Primality: Low-Level TKS Generation - Runtime Anaysis |

Bitwidth | Variables Time BDD nodes | Memory | Transition [5]-10~°
states | time | him:s UDS | TKS kB min max

4 44 6 3.93 932 | 1151 4844 33 43

5 55 7 504 | 3046 | 3348 5063 46 121

6 66 7 11.25 | 9363 | 9945 5670 72 86

7 7 7 23.50 | 25526 | 25703 6461 93 112

8 88 8 | 1:34.39 | 86479 | 90084 8890 125 151

Pentium 4, 2GHz, 512MB

Table A.13: Low-Level TKS Generation for Primality Algorithm on Pentium 4 Architecture

\ Primality: Low-Level TKS Generation - Runtime Analysis |

Bitwidth | Variables Time BDD nodes | Memory | Transition [5]-10~°
states | time | him:s UDS | TKS kB min max

4 44 9 8.56 926 1282 4871 175 257

5 55 9 11.72 | 3047 | 3700 5063 259 374

6 66 10 21.73 | 9424 | 10868 5654 392 532

7 7 10 38.78 | 25982 | 26087 6616 565 725

8 88 11 | 1:30.70 | 86176 | 89985 8921 829 1068

Ultrasparc 111, 750MHz, 512MB

Table A.14: Low-Level TKS Generation for Primality Algorithm on Ultrasparc I11 Architecture

144

Primality

tls

105

90

75 '/.
AI
AI

60

45 Ly — Pentium 3

30 - - — Pentium4

15 —-— Ultrasparc

4 5 6 7 8 Bitwidth

Figure A.16: Primality: Low-Level TKS Generation Time

Memory / MB

/

8.0 T
i
i
75 o
it
/,
I'I
7.0 ol

6.5 7
/ |
4
6.0 — Pentium 3

55

Pentium 4

5.0 —-— Ultrasparc

4 5 6 7 8 Bitwidth

Figure A.17: Primality: Low-Level TKS Generation Memory

145

Primality

A.2.4 WCET Analysis

The WCET analysis of the Primality benchmark gives very interesting results. A rough esti-
mation of the WCET would be as follows: as the largest input number for n bits is 2 — 1, we
have to calculate no more than 272 — 1 divisions, since we divide only by odd numbers up to
2n~1 — 1. The division with n bits will take n steps, and there are two further macro steps (the
pause statements labeled with ¢; and ¢5) in the loop body, and one after the loop (the pause state-
ments labeled with tc). Hence, an analytical estimation for the WCET is (n +2)(2" 2 —1) + 1.
Table A.15 shows some results that we have obtained for n € {4, 5,6,7, 8}.

\ Primality: WCET and BCET analysis - EHLA |

Bitwidth | Variables | Time | Memory | BDD nodes | BCET | WCET | # Div.
states | h:m:s kB

4 44 0.94 5606 54166 1 13 2

5 55 5.18 6615 112420 1 43 6

6 66 | 1248 14305 331128 1 113 14

7 77 | 1:00.64 31454 860524 1 271 30

8 88 | 3:47.62 56832 1467592 1 611 61

Pentium 3, 1GHz, 1GB

Table A.15: WCET and BCET Analysis for Primality Algorithm

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram, which means that the system has 2" reach-
able states. Column three shows the determined runtimes for the WCET analysis. Columns four
and five show memory consumption, expressed in kBytes of memory and required BDD nodes
respectively. Columns six and seven show the best— and worst execution times respectively.
Column eight finally, shows the maximum number of executed divisions, i.e. loop iterations.
(cf. section 7.1.1).

As 22 — 1 is 15, 31, and 63 (for 6,7, and 8 bits, respectively), we see that our analytical
estimation was too pessimistic. For the WCET, the analytical prediction would yield the num-
bers 121, 280, and 631 (for 6,7, and 8 bits, respectively) which is also too pessimistic. We see,
that our exact bounds are better than the pessimistic analytical estimation.

146

Primality

t/s

240
210
180 /
150 /
120

90 /

60

A

4 5 6 7 8 Bitwidth

Figure A.18: Primality: EHLA Time

Memory / MB

64
56

48 /
. /

32
24 /
16 é
8 M
4 5 6 7 8 Bitwidth

Figure A.19: Primality: EHLA Memory

147

Primality

A.2.5 High-Level TKS Verification

In order to perform high-level verification for the primality benchmark, we have tested the
operator AF*¢, according to the results of WCET and BCET analysis. In particular, we have
proved the correctness of the WCET and BCET analysis by checking the following real-time
specification:

AF< WOET (test complete)

where test_complete simply means that the primality test is completed. The verification results
are shown in Table A.16.

\ Primality: High-Level TKS Verifi cation \

Bitwidth | Variables Time | Memory | BDD nodes
dtates | time | h:m:s kB

4 44 3 0.77 4892 9198

5 55 3 2.61 5036 16352

6 66 3 9.33 5986 73584

7 77 3| 2691 13773 288204

8 88 4| 3:16.33 30377 823732

Pentium 3, 1GHz, 1GB

Table A.16: Verification of Quantitative Properties at High-Level for Primality Algorithm

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram and the logical times on the transitions. This
means that the system has 2°-Y%" reachable states and the longest transition of the system is not
exceeding 2-*%" logical time units. Column three shows the determined runtimes for the high-
level TKS verification. Columns four and five show memory consumption, expressed in kBytes
of memory and required BDD nodes respectively. The verification results of Table A.16 again
show that JERRY has no difficulties in verifying the primality benchmark.

A.2.6 Low-Level TKS Verification

We have tested JERRY's performance for the low-level verification of the primality benchmark.
Here, the original system is endowed by additional physical times, required for the code exe-
cution of the synchronous program on specific architectures (cf. section 6.2). This results an
enormous increase of the system’s complexity, specially for the Ultrasparc 11l machine, where
the code was executed slower (cf. Table A.14) and hence, the time variables are more. Never-
theless, it is a challenge for us to check JERRY with such a high complex system.

Similar to the high-level verification, we tested the system according to the results of WCET

analysis. In particular, we have proved the correctness of the WCET analysis by checking the
following real-time specification:

148

Primality

t/s

240

210
180

150 /
120 /
90

60 /

30

4 5 6 7 8 Bitwidth

Figure A.20: Primality: High-Level TKS Verification Time

Memory / MB

32
28
24 /
20
16 /
12

8 /

4 5 6 7 8 Bitwidth

Figure A.21: Primality: High-Level TKS Verification Memory

149

Primality

AFS (WCETx max_trans) (test complete)

where test_complete simply means that the primality test is completed and max_trans is the
maximum transition included in the system, as can be obtained from the Tables A.12, A.13 and

A.14. The verification results are shown in Tables A.17, A.18 and A.19.

Primality: Low-Level TKS Verifi cation - Pentium 3

Bitwidth | Variables Time Memory | BDD nodes
states | time h:m:s kB
4 44 7 2.56 6964 134904
5 55 8 11.62 7952 191114
6 66 8 1:42.93 12281 451724
7 77 9| 1:41:53.78 58749 1513582
8 88 10 | 12:20:02.30 | 121160 5460546
Pentium 3, 1GHz, 1GB

Table A.17: Verification of Quantitative Properties at Pentium 3 for Primality Algorithm

Primality: Low-Level TKS Verifi cation - Pentium 4

Bitwidth | Variables Time Memory | BDD nodes
states | time h:m:s kB
4 44 6 1.50 6459 105266
5 55 7 11.05 7994 191114
6 66 7 1:42.98 11027 370986
7 77 7 14:21.50 40093 1367436
8 88 8 | 4:12:56.52 87995 3195794
Pentium 3, 1GHz, 1GB

Table A.18: Verification of Quantitative Properties at Pentium 4 for Primality Algorithm

Primality: Low-Level TKS Verifi cation - Ultrasparc

Bitwidth | Variables Time Memory | BDD nodes
dtates | time h:m:s kB
4 44 9 517 5204 26572
5 55 9 56.25 7357 154322
6 66 10 2:01.32 11453 394492
7 77 10 | 2:50:36.98 64399 1833468
8 88 11 >15h
Pentium 3, 1GHz, 1GB

Table A.19: Verification of Quantitative Properties at Ultrasparc 111 for Primality Algorithm

150

Primality

100000

10000

1000 7

100 - — Pentium 3

10 7 - — Pentium4

1 —-— Ultrasparc

4 5 6 7 8 Bitwidth

Figure A.22: Primality: Low-Level TKS Verification Time

Memory / MB

120 /
100 /

80
/
/
60 g 7 — Pentium 3
. /
Ay,
40 /I > - — Pentium4
/7
VA
20 (;’ —-— Ultrasparc
4 5 6 7 8 Bitwidth

Figure A.23: Primality: Low-Level TKS Verification Memory

151

Euclid’s Greatest Common Divisor Algorithm

This example demonstrates the high complexity of a division operation, implemented by
means of BDDs, but also JERRY’s stable memory consumption. It’s clearly to see that although
the BBD nodes and the runtimes increase significantly with the number of bits (approx. 5.5 mil-
lion nodes for Pentium 3), JERRY shows a stable, low main memory consumption, which made
it possible to handle the system, even after computing for a few hours. Due to JERRY’s modular
design, we can again start the analysis directly at the low-level verification stage, overcoming
repeated (and needless) model generations.

A.3 Euclid’'sGreatest Common Divisor Algorithm

As last benchmark we have analyzed Euclid’s algorithm to compute the greatest common di-
visor of two given numbers. Figure A.24 shows a generic form of the algorithm for numbers
represented by n bits. The subtractions were implemented by means of a combinational module.

module Euclid :
input a : int[n], b : int[n];
output z : int[n],y : int[n];
T = q;
y:=b;
do
if z > y then
next(z) ==z —y
else
next(y) .=y —z
end;
¢ : pause
while (z # 0) A (y # 0);
if z = 0 then next(z) := y end;
rdy : pause
[* z is the gcd of a and b */
end

Figure A.24: Euclid’s GCD Algorithm

The two numbers are given as a and b. If ¢ and b have a common divisor, then both numbers
can be considered as a := p - g and b := p - ¢. Upon the fact, that the greatest common divisor
of two numbers is positive, a case distinction has to be made for the following subtractions:

If @ > b, then the value b is subtracted from a. Thus, we get a positive number, which has
the same greatest common divisor as a as well as b, sincea — b= (p —p') - q.

If b < a, then the value « is subtracted from b.

152

Euclid’'s Greatest Common Divisor Algorithm

The algorithm terminates after a finite number of steps due to the fact, that at least the number
1 is the greatest common divisor of two numbers and consequently the termination-condition
a = 0 or b= 0 are fulfilled. The greatest common divisor is returned after the loop termination
from the remaining value, which is not 0.

A.3.1 UDS Generation

We have instantiated the Quartz program given in Figure A.24 with various numbers for the
bitwidth of the numbers n, and generated first unit-delay structures for the systems. Table A.20
shows the obtained results. All experiments were run on a Pentium 3 with 1GHz and 1GByte
of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram, which means that the system has 2v%" reachable
states. Column three shows the determined runtimes for the UDS generation. Columns four
and five show memory consumption, expressed in required BDD nodes and kBytes of memory
respectively.

Note that the runtimes include also the time needed for exporting and storing the formal
model and all other needed data on hard disk.

\ Euclid: UDS generation \

Bitwidth | Variables | Time | BDD nodes | Memory
states | h:m:s kB
4 23| 023 1631 4966
5 28 | 0.56 2004 5020
6 33| 087 2164 5359
7 38| 233 20405 5755
8 43 | 1.67 7884 5824
9 48 | 292 24988 6676
10 53| 4.06 19067 6897
11 58 | 5.97 53557 8612
12 63 | 10.07 61189 8835
Pentium 3, 1GHz, 1GB

Table A.20: UDS Generation for Euclid’s GCD Algorithm

153

Euclid’s Greatest Common Divisor Algorithm

t/s

10

1 //X

4 5 6 7 8 9 10 11 12 Bitwidth

Figure A.25: Euclid: UDS Generation Time

A.3.2 High-Level TKS Generation - Chronos

The generation of a high-level TKS for Euclid’s benchmark uses the algorithm Chronos, ex-
plained in section 6.1.2. The benchmark is well-suited to perform abstractions. We have ab-
stract away from the states that regard the internal do - while - loop operations of the algorithm
shown in Table A.24.

Table A.21 shows the obtained results. All experiments were run on a Pentium 3 with 1GHz
and 1GByte of main memory.

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram and the logical times on the transitions. This
means that the system has 2°-¥%" reachable states and the longest transition of the system is
not exceeding 2-*" logical time units. Column three shows the determined runtimes for the
high-level TKS generation. Columns four and five show memory consumption, expressed in
required BDD nodes and kBytes of memory respectively. The required BDD nodes are given

154

Euclid’'s Greatest Common Divisor Algorithm

Memory / MB

; =

4 5 6 7 8 9 10 11 12 Bitwidth

Figure A.26: Euclid: UDS Generation Memory

for both, the generated TKS and the obtained UDS (the TKS with untimed transitions), which
is then used by the algorithms for all qualitative computations of the JCTL-operators. Column
six finally, shows the minimum and maximum duration (in logical time units) of the transitions
contained in the high-level TKS.

\ Euclid: High-Level TKS Generation - Chronos

Bitwidth | Variables Time BDD nodes Memory | Transition
states | time h:m:s ubS TKS kB min | max

4 23 4 0.56 690 1041 5104 1 15

5 28 5 1.40 1736 4250 6450 1 31

6 33 6 5.46 7168 22385 8735 1 63

7 38 7 3541 | 19399 46259 20429 1| 127

8 43 8 59.39 | 34485 | 135341 28387 1| 255

9 48 9| 12:50.07 | 124482 | 349343 58014 1| 511

10 53 10 | 1:06:24.57 | 285073 | 1136793 79346 1| 1023

Pentium 3, 1GHz, 1GB

Table A.21: High-Level TKS Generation for Euclid’s GCD Algorithm

155

Euclid’s Greatest Common Divisor Algorithm

t/s

10000

1000
4

100
10

/ i
1 >

4 5 6 7 8 9 10 Bitwidth

Figure A.27: Euclid: High-Level TKS Generation Time

Memory / MB

70 /
60 /
50
. /

30 v

20

® P

4 5 6 7 8 9 10 Bitwidth

Figure A.28: Euclid: High-Level TKS Generation Memory

156

Euclid’'s Greatest Common Divisor Algorithm

A.3.3 Low-Level TKS Generation - Runtime Analysis

As in the previous examples, we have performed an exact runtime analysis in order to generate
low-level TKSs for the Euclid’s algorithm, according to the techniques presented in section 6.2.
In particular, we have considered again three different architectures:

e Pentium 3, 1GHz, 1GB
e Ultrasparc 111, 750MHz, 512MB
e Pentium 4, 2GHz, 512MB

The results for the obtained TKSs and the runtime analysis are given in tables A.22, A.23 and
A.24.

The columns of the tables are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram and the physical times on the transitions. This
means that the system has 2°-%" reachable states and the longest transition of the system is not
exceeding 28" x 102 seconds. Column three shows the determined runtimes for the runtime
analysis and the low-level TKS generation, which are executed parallel. Columns four and five
show memory consumption, expressed in required BDD nodes and kBytes of memory respec-
tively. The required BDD nodes are given for both, the generated TKS and the obtained UDS
(the TKS with untimed transitions), which is then used by the algorithms for all qualitative
computations of the JCTL-operators. The last column finally, shows the determined runtimes
for the minimal and maximal macro steps (in seconds x10~°) on the target machines. Note that
each transition within the system holds exactly the time, which is needed for its own execution
and this time lies always between the minimal and the maximal value.

It is somehow surprisingly, that the executable code shows the best performance on the
Ultrasparc 11l machine (only 750 MHz). In particular, the longest transition for 8 bit on a
Pentium 3 is approx. 7 times slower and on a Pentium 4 is approx. 5 times slower. This
results to a much more compact model for the Ultrasparc, where only 8 time variables are used,
compared to 11 time variables for the Pentiums 3 and 4.

157

Euclid’s Greatest Common Divisor Algorithm

\ Euclid: Low-Level TKS Generation - Runtime Analysis |

Bitwidth | Variables Time BDD nodes | Memory | Transition [g]-107°
states | time | h:m:s | UDS TKS kB min max

4 23 4 7.20 | 1257 1864 5179 4 11

5 28 6 20.24 | 1575 4049 6645 6 41

6 33 9| 1:29.74 | 3974 | 13575 8067 8 375

7 38 11| 9:13.02 | 7920 | 40680 20429 11 1089

8 43 11 | 53:28.06 | 4670 | 119739 38990 16 1623

Pentium 3, 1GHz, 1GB

Table A.22: Low-Level TKS Generation for Euclid’s GCD Algorithm on Pentium 3 Architec-
ture

\ Euclid: Low-Level TKS Generation - Runtime Analysis |
Bitwidth | Variables Time BDD nodes | Memory | Transition [g]-107°

states | time | h:m:s | UDS TKS kB min max
4 23 5 433 | 1224 1801 5179 2 16
5 28 5 11.15 | 1572 3861 6512 3 31
6 33 8 48.48 | 4007 | 12544 8018 4 194
7 38 9| 3:04.06 | 7970 | 29654 17670 5 369
8 43 11 | 21:12.11 | 5483 | 161476 38434 7 1154

Pentium 4, 2GHz, 512MB

Table A.23: Low-Level TKS Generation for Euclid’s GCD Algorithm on Pentium 4 Architec-
ture

\ Euclid: Low-Level TKS Generation - Runtime Analysis |

Bitwidth | Variables Time BDD nodes | Memory | Transition [5]-107°
states | time h:m:s uDS TKS kB min max

4 23 5 14.91 | 1200 2170 5217 13 29

5 28 6 1:00.94 | 1584 4523 6467 20 45

6 33 7 5:10.89 | 4035 | 15495 8102 27 70

7 38 8 26:58.29 | 7224 | 40996 17029 36 183

8 43 8 | 2:20:49.90 | 4966 | 102972 39078 46 222

Ultrasparc 111, 750MHz, 512MB

Table A.24: Low-Level TKS Generation for Euclid’s GCD Algorithm on Ultrasparc 111 Archi-
tecture

158

Euclid’'s Greatest Common Divisor Algorithm

t/'s
10000 P
'/
"/A
1000 - 7
/'/ (/
. 7/
',>< X
100 =
X L
S
10 </ — Pentium 3
7
e - — Pentium 4
1 ==+ Ultrasparc
4 5 6 7 8 Bitwidth

Figure A.29: Euclid: Low-Level TKS Generation Time - Log. Scale

Memory / MB

35

30

25

20

15

— Pentium 3
= — Pentium 4
5 --= Ultrasparc

10

4 5 6 7 8 Bitwidth

Figure A.30: Euclid: Low-Level TKS Generation Memory

159

Euclid’s Greatest Common Divisor Algorithm

A.3.4 WCET Analysis

For the WCET analysis of the Euclid’s algorithm we have obtained the results given in Table
A.25 for n processes. In particular, we have determined the smallest and largest number of
macro steps needed in order to complete the test.

\ Euclid: WCET and BCET analysis - EHLA

Bitwidth | Variables Time Memory | BDD nodes | BCET | WCET
states h:m:s kB
4 23 0.29 4861 13286 2 16
5 28 0.54 5237 35770 2 32
6 33 1.78 5997 79716 2 64
7 38 7.87 8740 238126 2 128
8 43 13.84 15106 361788 2 256
9 48 1:14.11 52448 1072078 2 512
10 53 10:38.38 58620 1510516 2 1024
11 58 | 41:02.10 | 112830 2687860 2 2048
12 63 | 5:07:25.30 | 288358 9083536 2 4096
Pentium 3, 1GHz, 1GB

Table A.25: WCET and BCET Analysis for Euclid’s GCD Algorithm

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram, which means that the system has 2" reach-
able states. Column three shows the determined runtimes for the WCET analysis. Columns four
and five show memory consumption, expressed in kBytes of memory and required BDD nodes
respectively. Columns six and seven show the best— and worst execution times respectively.

It can be observed that Euclid’s algorithm for n bits has a WCET of 2™ macro steps. The
crucial macro step is the one that corresponds to the loop body that consists of a subtraction, a
comparison and two tests on equality to 0. If a low-level analysis for a hardware implementation
could tell us that the program for 8 bits can be implemented by a hardware circuit with a clock
speed of 40 MHz, then we know that a gcd computation will be done in at least 256,/40 - 10°
seconds, and for 12 bits, the circuit would require about 2'2/40 - 107 seconds (~ 0.1024
milliseconds).

160

Euclid’'s Greatest Common Divisor Algorithm

t/s

100000

10000

1000

100

10

Memory / MB

300

270

240

210

180

150

120

90

60

30

7
—
g
"
g

//

4 5 6 7 8 9 10 11 12 Bitwidth
Figure A.31: Euclid: EHLA Time - Log. Scale

Me—*/
4 5 6 7 8 9 10 11 12 Bitwidth

Figure A.32: Euclid: EHLA Memory

161

Euclid’s Greatest Common Divisor Algorithm

A.3.5 High-Level TKS Verification

In order to perform high-level verification for the Euclid benchmark, we have tested the the
operator AF* ¢, according to the results of WCET analysis. In particular, similar to the primality
benchmark, we have proved the correctness of the WCET analysis by checking the following
real-time specification:

AF< WOET (test complete)

where test_complete simply means that the Euclid test is completed. Table A.26 contains the
results for Euclid’s algorithm to compute the greatest common divisor of two given n bit broad
numbers.

\ Euclid: High-Level TKS Verifi cation \

Bitwidth | Variables Time | Memory | BDD nodes
dtates | time | h:m:s kB

4 23 4 0.38 4959 17374
5 28 5 101 5323 38836
6 33 6 5.79 7828 184982
7 38 7 48.30 20002 945350
8 43 8 | 2:40.66 59200 1508472

Pentium 3, 1GHz, 1GB

Table A.26: Verification of Quantitative Properties at High-Level for Euclid’s GCD Algorithm

The columns of the table are as follows: The first column denotes the instantiation of the
benchmark’s parameter (bits). The second column shows how many Boolean variables were
necessary to encode the state transition diagram and the logical times on the transitions. This
means that the system has 2°-%" reachable states and the longest transition of the system is not
exceeding 2¢-*9" logical time units. Column three shows the determined runtimes for the high-
level TKS verification. Columns four and five show memory consumption, expressed in kBytes
of memory and required BDD nodes respectively.

The verification results of Table A.26 show that JERRY behaves here similar to the Primality
benchmark.

162

Euclid’'s Greatest Common Divisor Algorithm

t/s

175
150
125 /
100

75 /

50

25
2&’9/

4 5 6 7 8 Bitwidth

Figure A.33: Euclid: High-Level TKS Verification Time

Memory / MB
525
45.0 /
375
30.0 /
225 /
15.0

75 = /

4 5 6 7 8 Bitwidth

Figure A.34: Euclid: High-Level TKS Verification Memory

163

Euclid’s Greatest Common Divisor Algorithm

A.3.6 Low-Level TKS Verification

Considering the low-level verification for Euclid’s GCD algorithm, we have tested JERRY's
performance on the low-level TKSs obtained by the runtime analysis (cf. Tables A.22, A.23 and
A.24).

Here, the original systems are endowed by additional physical times, required for the code
execution of the synchronous program on the appropriate architectures (cf. section 6.2). This
results an enormous increase of the system’s complexity.

Similar to the high-level verification, we tested the system according to the results of WCET
analysis. In particular, we have proved the correctness of the WCET analysis by checking the
following real-time specification:

AES (WCETx max_trans) (t@St complete)

where test_complete simply means that the primality test is completed and mazx_trans is the
maximum transition included in the system, as can be obtained from the Tables A.22, A.23 and
A.24. The verification results are shown in Tables A.27, A.28 and A.29.

In contrast to the Primality benchmark, the executable code for Euclid’s GCD algorithm
showed the best performance on the Ultrasparc 111 machine, where less time variables were
needed. However, the Pentium 4 model is for 7 bits much more compact than the Ultrasparc
model. This has an enormous “amplifying” effect on the verification performance: the Pentium
4 model required approx. 1,9 million BDD nodes, compared to approx. 3,2 million BDD nodes
for the Ultrasparc model. The worst model is the Pentium 3 one, requiring approx. 4,5 million
BDD nodes. Naturally, these model sizes directly effect also the runtimes.

This example demonstrates again JERRY's stable memory consumption. It’s clearly to see
that although the BBD nodes and the runtimes increase significantly with the number of bits
JERRY shows here again a stable, low main memory consumption, which made it possible to
handle the systems. Due to JERRY'’s modular design, we can again start the analysis directly at
the low-level verification stage, overcoming repeated (and needless) model generations.

164

Euclid’'s Greatest Common Divisor Algorithm

\ Euclid: Low-Level TKS Verifi cation - Pentium 3

Bitwidth | Variables Time Memory | BDD nodes
dtates | time h:m:s kB
4 23 4 1.34 5276 37814
5 28 6 10.34 7044 142058
6 33 9 1:49.48 19870 872788
7 38 11 | 1:44:03.43 | 143494 4533592
Pentium 3, 1GHz, 1GB

Table A.27: Verification of Quantitative Properties at Pentium 3 for Euclid’s GCD Algorithm

\ Euclid: Low-Level TK S Verifi cation - Pentium 4

Bitwidth | Variables Time | Memory | BDD nodes
dtates | time | him:s kB
4 23 5 1.20 5196 32704
5 28 5 3.87 7210 150234
6 33 8 35.11 19498 632618
7 38 9| 12:46.51 65339 1868216
Pentium 3, 1GHz, 1GB

Table A.28: Verification of Quantitative Properties at Pentium 4 for Euclid’s GCD Algorithm

\ Euclid: Low-Level TKS Verifi cation - Ultrasparc

Bitwidth | Variables Time | Memory | BDD nodes
states | time | him:s kB
4 23 5 1.76 5557 53144
5 28 6 14.12 10682 351568
6 33 7| 216.28 40473 1862084
7 38 8 | 58:11.51 72808 3234630
Pentium 3, 1GHz, 1GB

Table A.29: Verification of Quantitative Properties at Ultrasparc 111 for Euclid’s GCD Algorithm

165

Euclid’s Greatest Common Divisor Algorithm

t/s

10000

1000 /i
100 /4

¥
10 / — Pentium 3

7 X - — Pentium 4
1 ==+ Ultrasparc

4 5 6 7 Bitwidth

Figure A.35: Euclid: Low-Level TKS Verification Time - Log. Scale

Memory / MB

175

150

125 /
100 /

75
///%
./ /
50 N — Pentium 3
a // - — Pentium 4
25 - k’ --=+ Ultrasparc
]
4 5 6 7 8 Bitwidth

Figure A.36: Euclid: Low-Level TKS Verification Memory

166

Appendix B

List of Logosand Abbreviations

A The universal path quantifier (V)

Al- B -] The CTL-operator A[- B -]

Al- B -] The CTL-operator A[- B]

Al- "B - The left-bounded JCTL-operator A[- *B]
Al- B -] The left-bounded JCTL-operator A[- *B]
Al- B* - The right-bounded JCTL-operator A[- B* -]
Al- B®] The right-bounded JCTL-operator A[- B* -]
AF The CTL-operator AF

AF”® The JCTL-operator AF*

AG The CTL-operator AG

AG” The JCTL-operator AG*

Al- U] The CTL-operator A[- U -]

Al- U] The CTL-operator A[- U -]

Al- U ‘] The left-bounded JCTL-operator A[- U -]
Al-*U ‘] The left-bounded JCTL-operator A[- *U |
Al- U*] The right-bounded JCTL-operator A[- U* -]
Al-U"] The right-bounded JCTL-operator A[- U” -]
AX The CTL-operator AX

AX The CTL-operator AX

AX" The JCTL-operator AX*

AX"® The JCTL-operator AX"

BCET Best Case Execution Time

BDD Binary Decision Diagram

B The modal operator weak before

B The modal operator strong before

Cadence-SMV A variant of the SMV verification tool by Cadence

167

APPENDIX B. LIST OF LOGOSAND ABBREVIATIONS

Equinox

Esterel

I;
JCTL
JCTL:
JERRY
Kronos
LTL
NuSMV
Quartz
SKS

SMV

The branching-time temporal logic CTL (Computation Tree Logic)

The BDD-package CUDD (Colorado University Decision Diagrams)

The existence path quantifier (3)

The CTL-operator E[- B -]

The CTL-operator E[- B -]

The left-bounded JCTL-operator E[- B -]

The left-bounded JCTL-operator E[- “B -]

The right-bounded JCTL-operator E[- B* -]

The right-bounded JCTL-operator E[- B* -]

The CTL-operator EF

The JCTL-operator EF”

The CTL-operator EG

The JCTL-operator EG"

Formal Framework for the Specification, Modelling, Verification
and Runtime Anylysis of Real-Time Systems

The synchronous language Esterel

The CTL-operator E[- U -]

The CTL-operator E[- U -]

The left-bounded JCTL-operator E[- *U -]

The left-bounded JCTL-operator E[- *U -]

The right-bounded JCTL-operator E[- U” -]

The right-bounded JCTL-operator E[- U” -]

The CTL-operator EX

The CTL-operator EX

The JCTL-operator EX*

The JCTL-operator EX®

The modal operator future

The modal operator globally

Stuttering Interpretation of a timed transition system

Jumping Interpretation of a timed transition system

The real-time temporal logic JCTL (Time-Jumping Computation Tree Logic)

A fragment of the real-time temporal logic JCTL

The real-time verification tool JERRY (JCTL vERIifier for Real-time sYstems)

The real-time verification tool Kronos

The linear-time temporal logic LTL (Linear-Time Temporal Logic)

A variant of the SMV verification tool based on the CUDD-package

The synchronous language Quartz

A timed transition system based on stuttering interpretation

(Stuttering Kripke Structure)
The verification tool SMV (System Model Verifier)

168

APPENDIX B. LIST OF LOGOSAND ABBREVIATIONS

TCTL
TKS

U

U

uDS
UPPAAL
WCET

X

X

The real-time temporal logic TCTL (Timed Computation Tree Logic)
The real-time formal model TKS (Timed Kripke Structure)

The modal operator weak until

The modal operator strong until

A qualitative Kripke structure (Unit Delay Structure)

The real-time verification tool UPPAAL

Worst Case Execution Time

The modal operator weak next

The modal operator strong next

169

APPENDIX B. LIST OF LOGOSAND ABBREVIATIONS

170

Bibliography

[1] ALUR, R., COURCOUBETIS, C., AND DiLL, D. Model Checking for Real-Time Sys-

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

tems. In IEEE Symposium on Logic in Computer Science (LICS) (Washington, D.C.,
June 1990), IEEE Computer Society Press, pp. 414-425.

ALUR, R., COURCOUBETIS, C., AND DiLL, D. Model Checking in Dense Real-time.
Tech. rep., Stanford University, University of Crete, 1991.

ALUR, R., COURCOUBETIS, C., AND DiLL, D. Model-checking in dense real-time.
Information and Computation 104, 1 (1993), 2-34.

ALUR, R., AND DiLL, D. Automata for Modeling Real-Time Systems. In International
Colloguium on Automata, Languages and Programming (ICALP) (New York, 1990),
vol. 433 of LNCS, Springer-Verlag.

BALDAMUS, M., AND SCHNEIDER, K. Extending Esterel by asynchronous concur-
rency. In GI/GMM/ITG Fachtagung zum Entwurf Integrierter Schaltungen (Darmstadt,
Germany, September 1999), VDE Verlag.

BENGTSSON, J., LARSEN, K., LARSSON, F., PETTERSSON, P., AND Y1, W. UPPAAL
in 1995. In Tools and Algorithms for the Construction and Analysis of Systems (March
1996), no. 1055 in Lecture Notes In Computer Science, Springer-Verlag, pp. 431-434.

BERNAT, G., AND BURNS, A. An approach to symbolic worst-case execution time
analysis. In IFAC Workshop on Real-Time Programming (2000).

BERRY, G. The foundations of Esterel. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT Press, 1998.

BERRY, G. The constructive semantics of pure Esterel. http://www-
sop.inria.fr/meije/esterel/, July 1999.

BERRY, G. The Esterel v5_91 language primer. http://www.esterel.org, June 2000.

BERTHET, C., COUDERT, O., AND MADRE, J. C. New ideas on symbolic manipulations
of finite state machines. In IEEE/ACM International Conference on Computer Aided
Design (ICCAD) (1990).

171

BIBLIOGRAPHY BIBLIOGRAPHY

[12] BERTIN, V., PoIizE, M., PuLoOU, J., AND SIFAKIS, J. Towards validated real-time
software. In Euromicro Conference on Real Time Systems (Stockholm, 2000), pp. 157-
164.

[13] BORNOT, A., SIFAKIS, J., AND TRIPAKIS, S. Modelling urgency in timed systems.
In International Symposium: Compositionality - The Significant Difference (Holstein,
Germany, 1997), vol. 1536 of LNCS.

[14] BORNOT, S., AND SIFAKIS, J. An algebraic framework for urgency. Information and
Computation 163, Elsevier publisher (2000), 172-202.

[15] BoussINOT, F. SugarCubes implementation of causality. Research Report 3487, Institut
National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis
Cedex (France), September 1998.

[16] BROWNE, M., CLARKE, E., DiLL, D., AND MISHRA, B. Automatic Verification of
Sequential Circuits Using Temporal Logic. IEEE Transactions on Computers C-35, 12
(December 1986), 1034-1044.

[17] BRYANT, R. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans-
actions on Computers C-35, 8 (August 1986), 677-691.

[18] BURCH, J., CLARKE, E., AND LONG, D. Representing Circuits More Efficiently in
Symbolic Model Checking. In ACM/IEEE Design Automation Conference (DAC) (Los
Alamitos, CA, June 1991), IEEE Computer Society Press, pp. 403-407.

[19] BURCH, J., CLARKE, E., AND LONG, D. Symbolic model checking with partitioned
transition relations. In International Conference on Very Large Scale Integration (VLSI)
(Edinburgh, Scotland, August 1991), A. Halaas and P. Denyer, Eds., IFIP Transactions,
North-Holland, pp. 49-58.

[20] BURCH, J., CLARKE, E., MCMILLAN, K., AND DiLL, D. Sequential Circuit \erifi-
cation Using Symbolic Model Checking. In ACM/IEEE Design Automation Conference
(DAC) (Los Alamitos, CA, June 1990), ACM/IEEE, IEEE Society Press, pp. 46-51.

[21] BURCH, J., CLARKE, E., MCMILLAN, K., DiLL, D., AND HWANG, L. Symbolic
Model Checking: 10%° States and Beyond. In IEEE Symposium on Logic in Computer
Science (LICS) (Washington, D.C., June 1990), IEEE Computer Society Press, pp. 1-33.

[22] BURCH, J., CLARKE, E., McMiLLAN, K., DiLL, D., AND HWANG, L. Symbolic
Model Checking: 102° States and Beyond. Information and Computing 98, 2 (June
1992), 142-170.

[23] BURNS, A., AND WELLINGS, A. Real-Time Systems and their Programming Lan-
guages. Addison-Wesley, 1990.

172

BIBLIOGRAPHY BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

BUTLER, K., Ross, D., KAPUR, R., AND MERCER, M. Heuristics to compute variable
orderings for efficient manipulation of ordered binary decision diagrams. In ACM/IEEE
Design Automation Conference (DAC) (1991), ACM/IEEE, IEEE, pp. 417-420.

BuTTAZZO, G. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, 1997.

CADENCE SMV. Website. http://www-cad.eecs.berkeley.edu/ kenmcmil/smvy/.

CAMPOS, S., AND CLARKE, E. Real-Time Symbolic Model Checking for Discrete
Time Models. In Theories and Experiences for Real-Time System Development (May
1994), T. Rus and C. Rattray, Eds., AMAST Series in Computing, World Scientific Press,
AMAST Series in Computing.

CAMPOS, S., CLARKE, E., MARRERO, W., AND MINEA, M. Verus: a tool for quanti-
tative analysis of finite-state real-time systems. In Workshop on Languages, Compilers,
and Tools for Real-Time Systems (1995).

CAMPOS, S., CLARKE, E., AND MINEA, M. The Verus tool: A quantitative approach
to the formal verification of real-time systems. In Conference on Computer Aided Ver-
ification (CAV) (June 1997), O. Grumberg, Ed., vol. 1254 of LNCS, Springer Verlag,
pp. 452-455.

CERANS, K. Decidability of bisimulation equivalences for parallel timer procasses. In
Conference on Computer Aided Verification (CAV’92) (Berlin, 1992), vol. 663 of LNCS,
Springer Verlag.

CIMATTI, A., CLARKE, E., GIUNCHIGLIA, F., AND RoOVERI, M. NUSMV: A new
symbolic model verifier. In Conference on Computer Aided Verification (CAV) (Trento,
Italy, 1999), N. Halbwachs and D. Peled, Eds., vol. 1633 of LNCS, Springer-Verlag,
pp. 495-499.

CLARKE, E., AND EMERSON, E. Design and Synthesis of Synchronization Skeletons
using Branching Time Temporal Logic. In Workshop on Logics of Programs (Yorktown
Heights, New York, May 1981), D. Kozen, Ed., vol. 131 of LNCS, Springer-Verlag,
pp. 52-71.

CLARKE, E., EMERSON, E., AND SISTLA, A. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems 8, 2 (April 1986), 244-263.

CLARKE, E., GRUMBERG, O., AND LONG, D. Verification Tools for Finite State Con-
current Systems. In A Decade of Concurrency-Reflections and Perspectives (Noordwijk-
erhout, Netherlands, June 1993), J. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds.,
vol. 803 of LNCS, REX School/Symposium, Springer-Verlag, pp. 124-175.

173

BIBLIOGRAPHY BIBLIOGRAPHY

[35] CLARKE, E., GRUMBERG, O., AND LONG, D. Model checking and abstraction. ACM
Transactions on Programming Languages and systems 16, 5 (September 1994), 1512-
1542.

[36] CLARKE, E., GRUMBERG, O., AND LONG, D. Model checking. In Deductive Program
Design (Marktoberdorf, Germany, 1996), vol. 152 of Nato ASI Series F, Springer-Verlag.

[37] CouDERT, O., BERTHET, C., AND MADRE, J. Verification of synchronous sequential
machines using symbolic execution. In International Workshop on Automatic Verifica-
tion Methods for Finite State Systems (Grenoble, France, June 1989), vol. 407 of LNCS,
Springer-Verlag, pp. 365-373.

[38] CousoT, P. Abstract interpretation. ACM Computing Surveys 28, 2 (June 1996), 324—
328.

[39] CousoT, P., AND CousoT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ACM Symposium
on Principles of Programming Languages (POPL) (1977), ACM, pp. 238-252.

[40] DAws, C., OLIVERO, A., TRIPAKIS, S., AND YOVINE, S. The tool KRONOS. In
Hybrid Systems 111 (1996), vol. 1066 of LNCS, Springer.

[41] DAaws, C., OLIVERO, A., AND YOVINE, S. Verifying ET-LOTOS programs with KRO-
NOS. In International Conference on Formal Description Techniques (1994).

[42] DAws, C., AND TRIPAKIS, S. Model checking of real-time reachability properties
using abstractions. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (1998).

[43] DIKSTRA, E. Guarded commands, nondeterminiacy and formal derivation of programs.
Communications of the ACM 18, 8 (August 1975), 453-457.

[44] ECL HOMEPAGE. Website. http://www-cad.eecs.berkeley.edu/

[45] EDWARDS, S. Compiling Esterel into sequential code. In Design Automation Conference
(DAC) (Los Angeles, California, June 2000), pp. 322-327.

[46] EDWARDS, S., MA, T., AND DAMIANO, R. Using a hardware model checker to verify
software. In International Conference on ASIC (ASICON) (Shanghai, China, 2001).

[47] EMERSON, A., MOK, A., SISTLA, A., AND SRINIVASAN, J. Quantitative temporal
reasoning. In C3 Workshop on Automatic Verification of Finite State Systems (1989),
W.-P. de Roever, Ed., pp. S7-1-S7-15.

[48] EMERSON, E. Temporal and Modal Logic. In Handbook of Theoretical Computer
Science (Amsterdam, 1990), J. van Leeuwen, Ed., vol. B, Elsevier Science Publishers,
pp. 996-1072.

174

BIBLIOGRAPHY BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

EMERSON, E. Real time and the u-calculus. In REX’91 Workshop on Real Time: Theory
in Practice (1991), W.-P. de Roever, Ed., Springer Verlag, LNCS 600, pp. 176-194.

EMERSON, E., AND CLARKE, E. Characterizing correctness properties of parallel pro-
grams as fixpoints. In International Colloquium on Automata, Languages and Program-
ming (ICALP) (Berlin, 1981), vol. 85 of LNCS, Springer-Verlag, pp. 169-181.

EMERSON, E., MOK, A., SISTLA, A., AND SRINIVASAN, J. Quantitative Temporal
Reasoning. Journal of Real-Time Systems 4 (1992), 331-352.

EMERSON, E., AND SISTLA, A. P. Symmetry and model checking. In Workshop on
Computer Aided Verification (CAV) (June/July 1993), C. Courcoubetis, Ed.

ERMEDAHL, A., AND GUSTAFSSON, J. Deriving annotations for tight calculation of
execution time. In International European Conference on Parallel Processing (EuroPar)
(Passau, Germany, 1997), vol. 1300 of LNCS, Springer Verlag, pp. 1298-1307.

ESTEREL. Website. http://www.esterel.org.
ESTEREL-TECHNOLOGY. Website. http://www.esterel-technologies.com.

FORTH, R., AND MOLITOR, P. An efficient heuristic for state encoding minimizing the
BDD representations of the transition relations of finite state machines. In IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-DAC) (Tokyo, Japan, 2000),
pp. 61-66.

FROSSL, J., GERLACH, J., AND KROPF, T. An Efficient Algorithm for Real-Time
Model Checking. In European Design and Test Conference (EDTC) (Paris, France,
March 1996), IEEE Computer Society Press (Los Alamitos, California), pp. 15-21.

GHOSH, S., MARTONOSI, M., AND MALIK, S. Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Transactions on Program-
ming Languages and Systems 21, 4 (1999), 703-746.

GNU. gcc website. http://www.gcc.gnu.org.

HALBWACHS, N. Synchronous programming of reactive systems. Kluwer Academic
Publishers, 1993.

HALBWACHS, N., CAsPI, P., RAYMOND, P., AND PiLAUD, D. The synchronous
dataflow programming language LUSTRE. Proceedings of the IEEE 79, 9 (sep 1991),
1305-1320.

HALBWACHS, N., FERNANDEZ, J.-C., AND BOUAJIANNI, A. An executable temporal
logic to express safety properties and its connection with the language Lustre. In Sympo-
sium on Lucid and Intensional Programming (ISLIP) (Quebec, Canada, April 1993).

HALFHILL, T. Embedded market breaks new ground, 2000. Microprocessor Report.

175

BIBLIOGRAPHY BIBLIOGRAPHY

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]
[75]

[76]

[77]

[78]

HAREL, D., AND NAAMAD, A. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engenieering Methods 5, 4 (1996).

HARMON, M. G., BAKER, T. P., AND WHALLEY, D. B. A retargetable technique for
predicting execution time. In IEEE Real-Time Systems Symposium (1992), pp. 68-77.

HEALY, C., VAN ENGELEN, R., AND WHALLEY, D. A general approach for the tight
timing predictions of non-rectangular loops. In IEEE Real-Time Technology and Appli-
cations Symposium (1999).

HENZINGER, T., NICOLLIN, X., SIFAKIS, J., AND YOVINE, S. Symbolic Model
Checking for Real-Time Systems. In IEEE Symposium on Logic in Computer Science
(LICS) (Santa-Cruz, California, June 1992), IEEE Computer Society Press, pp. 394-406.

Ho, P. H.,, AND WONG-ToOI, H. Automated analysis of an audio control protocol.
In Conference on Computer Aided Verification (CAV) (Liege, Belgium, July 1995),
P. Wolper, Ed., vol. 939 of LNCS, Springer Verlag, pp. 381-394.

HoARE, C. An axiomatic basis for computer programming. Communications of the
ACM 12, 10 (October 1969), 576-583.

HoARE, C. Communicating sequential processes. Communications of the ACM 21, 8
(August 1978), 666—677.

HoLzMANN, G. Design and Validation of Computer Protocols. Prentice Hall, 1991.
INTEL. Intel vtune website. http://www.intel.com/software/products/vtune/vpa.

JAGADEESAN, L. J., PucHoL, C., AND OLNHAUSEN, J. E. V. Safety property verifi-
cation of Esterel programs and applications to telecommunications software. In Confer-
ence on Computer Aided Verification (CAV) (Liege, Belgium, July 1995), P. Wolper, Ed.,
vol. 939 of LNCS, Springer Verlag, pp. 127-140.

JESTER HOME PAGE. Website. http://www.parades.rm.cnr.it/projects/jester/jester.ntml.
KRONOS. Website. http://www-verimag.imag.fr/TEMPORISE/kronos/.

LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering 3, 2 (March 1977), 125-143.

LAMPORT, L. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems (1987).

LARSEN, K., AND Y1, W. Time-abstracted bisimulation: Implicit specification and de-
cidability. In MFPS 93 (1993), vol. 802 of Lecture Notes in Computer Scienece, Springer
Verlag.

176

BIBLIOGRAPHY BIBLIOGRAPHY

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

LASSEZ, J.-L., NGUYEN, V., AND SONENBERG, E. Fixed point theorems and seman-
tics. a folk tale. Information Processing Letters 14, 3 (1982), 112-116.

Liu, Y., AND GOMEZ, G. Automatic accurate time-bound analysis for high-level lan-
guages. In Languages, Compilers and Tools for Embedded Systems (LCTES) (1998).

LOETZBEYER, A. Temporale Realzeitverifikation. PhD thesis, Universitaet Karlsruhe,
March 1999.

LOGOTHETIS, G., AND SCHNEIDER, K. Abstraction from counters: An application
on real-time systems. In Design, Automation and Test in Europe (DATE) (Paris,France,
March 2000), IEEE Computer Society Press, pp. 486-493.

LOGOTHETIS, G., AND SCHNEIDER, K. A new approach to the specification
and verification of real-time systems. In Euromicro Conference on Real-Time Sys-
tems (Delft, The Netherlands, June 2001), IEEE Computer Society, pp. 171-180.
http://goethe.ira.uka.de/fmg/ps/LoSc01.ps.gz.

LOGOTHETIS, G., AND SCHNEIDER, K. Symbolic model checking of real-
time systems. In International Symposium on Temporal Representation and
Reasoning (Cividale del Friuli, Italy, June 2001), IEEE/ACM, pp. 214-223.
http://goethe.ira.uka.de/fmg/ps/LoSc0la.ps.gz.

LOGOTHETIS, G., AND SCHNEIDER, K. Extending synchronous languages for generat-
ing abstract real-time models. In European Conference on Design, Automation and Test
in Europe (DATE) (Paris, France, March 2002), IEEE Computer Society, pp. 795-802.
http://goethe.ira.uka.de/fmg/ps/LoSc02.ps.gz.

LOGOTHETIS, G., AND SCHNEIDER, K. Exact high level wcet analysis of synchronous
programs by symbolic state space exploration. In European Conference on Design, Au-
tomation and Test in Europe (DATE) (Munich, Germany, March 2003), IEEE Computer
Society, pp. 196-203. http://goethe.ira.uka.de/fmg/ps/LoSc03.ps.gz.

LOGOTHETIS, G., SCHNEIDER, K., AND METZLER, C. Exact low-level
runtime analysis of synchronous programs for formal verification of real-time
systems. In Forum on Specification and Design Languages (FDL) (Frank-
furt, Germany, September 2003), Kluwer Academic Publishers, pp. 385-404.
http://goethe.ira.uka.de/fmg/ps/LoSMO03b.ps.gz.

LOGOTHETIS, G., SCHNEIDER, K., AND METZLER, C. Generating formal models for
real-time verification by exact low-level analysis of synchronous programs. In 24th IEEE
International Real-Time Systems Symposium (RTSS) (Cancun, Mexico, December 2003),
IEEE Computer Society Press. http://goethe.ira.uka.de/fmg/ps/LoSMO03c.ps.gz.

177

BIBLIOGRAPHY BIBLIOGRAPHY

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

LOGOTHETIS, G., SCHNEIDER, K., AND METZLER, C. Runtime analysis of syn-
chronous programs for low-level real-time verification. In 16th Symposium on Inter-
grated Circuits and System Design (SBCCI) (Sao Paulo, Brazil, September 2003), IEEE
Computer Society Press, pp. 211-216. http://goethe.ira.uka.de/fmg/ps/LoSMO03a.ps.gz.

LOISEAUX, C., GRAF, S., SIFAKIS, J., BOUAJJANI, A., AND BENSALEM, S. Property
preserving abstractions for the verification of concurrent systems. Formal Methods in
System Design 6 (February 1995), 1-35.

LUNDQVIST, T., AND STENSTROM, P. Integrating path and timing analysis using
instruction-level simulation techniques. In Languages, Compilers and Tools for Em-
bedded Systems (LCTES) (1998).

LYNCH, N., AND VAADRAGER, F. Forward and backward simulation for timing-based
systems. In Workshop on Stepwise Refinement of Distributed Systems (1992), vol. 600 of
LNCS, Springer-Verlag, pp. 397-446.

McMILLAN, K. The SMV system, symbolic model checking - an approach. Tech. Rep.
CMU-CS-92-131, Carnegie Mellon University, 1992.

McMIiLLAN, K. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

MCMILLAN, K. Cadence SMV. Available on:
http://www-cad.eecs.berkeley.edu/~kenmcmil, 2000.

MILNER, R. Communication and Concurrency. Prentice-Hall International, London,
1989.

MUELLER, F. Timing analysis for instruction caches, 2000.

MUELLER, F., WHALLEY, D., AND HARMON, M. Predicting instruction cache behav-
ior, 1993.

NICOLLIN, X., AND SIFAKIS, J. An overview and synthesis on timed process alge-
bras. In Computer Aided Verification (CAV’91) (Aalborg, Denmark, 1991), LNCS 575,
Springer Verlag.

PELED, D. Combining partial order reductions with on-the-fly model-checking. In Con-
ference on Computer Aided Verification (CAV) (Stanford, California, USA, June 1994),
D. L. Dill, Ed., vol. 818 of LNCS, Springer-Verlag, pp. 377-390.

PNUELI, A. The temporal logic of programs. In Symposium on Foundations of Computer
Science (New York, 1977), vol. 18, IEEE, pp. 46-57.

178

BIBLIOGRAPHY BIBLIOGRAPHY

[102] PNUELI, A. Applications of temporal logic to the specification and verification of reac-
tive systems: A survey of current trends. In Current Trends in Concurrency (New-York,
1986), J. Baker, W.-P. de Roever, and G. Rozenberg, Eds., vol. 224 of LNCS, Springer-
Verlag, pp. 510-584.

[103] PUSCHNER, P. Worst-case execution time analysis at low cost. In Distributed Computer
Control Systems (Seoul, Korea, 1997), pp. 16-21.

[104] PUSCHNER, P., AND KozA, C. Calculating the maximum execution time of real-time
programs. Journal of Real-Time Systems 1, 1 (1989), 159-176.

[105] QUEILLE, J., AND SIFAKIS, J. Specification and verification of concurrent systems in
CESAR. In International Symposium in Programming (1981).

[106] RAMCHANDANI, C. Analysis of asynchronous concurrent systems by timed petri nets.
In Project MAC Technical Report MAC-TR-120 (1974), Massachusetts Institute for Tech-
nology, Cambridge MA.

[107] RESSOURCES, M. D. Embedded processor forum. http://www.mdronline.com.

[108] RuUF, J., AND KRoOPF, T. Using MTBDDs for composition and model checking of real-
time systems. In International Conference on Formal Methods in Computer Aided De-
sign (FMCAD) (November 1998), vol. 1166 of LNCS, Springer.

[109] RuF, J., AND KROPF, T. Using MTBDD:s for discrete timed symbolic model checking.
Multiple-Valued Logic - An International Journal (1998). Special Issue on Decision
Diagrams, Gordon and Breach Publishers.

[110] ScHNEIDER, K. CTL and equivalent sublanguages of CTL*. In IFIP Confer-
ence on Computer Hardware Description Languages and their Applications (CHDL)
(Toledo,Spain, April 1997), C. Delgado Kloos, Ed., IFIP, Chapman and Hall, pp. 40-59.

[111] SCHNEIDER, K. A verified hardware synthesis for Esterel. In International IFIP Work-
shop on Distributed and Parallel Embedded Systems (SchloR Ehringerfeld, Germany,
2000), F. Rammig, Ed., Kluwer Academic Publishers, pp. 205-214.

[112] ScHNEIDER, K. Embedding imperative synchronous languages in interactive theorem
provers. In International Conference on Application of Concurrency to System Design
(ICACSD 2001) (Newcastle upon Tyne, UK, June 2001), IEEE Computer Society Press,
pp. 143-156. http://goethe.ira.uka.de/fmg/ps/Schn0la.ps.gz.

[113] SCHNEIDER, K. Exploiting Hierarchies in Temporal Logics, Finite Automata, Arith-
metics, and p-Calculus for Efficiently Verifying Reactive Systems. Habilitation Thesis.
University of Karlsruhe, Faculty of Informatics (Fakultat fir Informatik), 2001.

[114] SCHNEIDER, K. Formal reasoning about synchronous programming lan-
guages. Internal report 2001-15, University of Karlsruhe, December 2001.
http://goethe.ira.uka.de/fmg/ps/Schn01c.ps.gz.

179

BIBLIOGRAPHY BIBLIOGRAPHY

[115] ScHNEIDER, K. Proving the equivalence of microstep and macrostep semantics.
In International Conference on Theorem Proving in Higher Order Logic (Hamp-
ton, Virginia, USA, 2002), vol. 2410 of LNCS, Springer Verlag, pp. 314-331.
http://goethe.ira.uka.de/fmg/ps/Schn02.ps.gz.

[116] SCHNEIDER, K., AND WENZ, M. A new method for compiling schizophrenic syn-
chronous programs. In International Conference on Compilers, Architecture, and Synthe-
sis for Embedded Systems (CASES) (Atlanta, USA, November 2001), ACM, pp. 49-58.
http://goethe.ira.uka.de/fmg/ps/ScWe01.ps.gz.

[117] SHYAMASUNDAR, R., AND AGHAV, J. Realizing real-time systems from synchronous
language specifications. In Real Time Systems Symposium, Work in Progress Session
(Orlando, Florida, USA, November 2000), IEEE.

[118] SiFAKIS, J. A unified approach for studying the properties of transition systems. Theo-
retical Computer Science, 18 (1982), Elsevier Publishers pp. 227-258.

[119] SiIFAKIS, J., AND YOVINE, S. Compositional specification of timed systems. In
13th Annual Symposium on Theoretical Aspects of Computer Science (STACS96) (1996),
no. 1046 in LNCS, Springer-Verlag, pp. 347-359.

[120] SomENzI, F. CUDD: CU decision diagram package, release 2.3.0, 1998.
ftp://visi.colorado.edu/pub/ and http://visi.Colorado.EDUYJ.

[121] STOREY, N. Safety-Critical Computer Systems. Addison-Wesley Publishing Company,
1996.

[122] TARsKI, A. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific J.
Math 5 (1955), 285-309.

[123] TELELOGIC. Website. http://www.telelogic.com.

[124] TRIPAKIS, S., AND YOVINE, S. Analysis of timed systems based on time-abstracting
bisimulations. In Conference on Computer Aided Verification (CAV) (New Brunswick,
NJ, USA, July/August 1996), R. Alur and T. A. Henzinger, Eds., vol. 1102 of LNCS,
Springer Verlag, pp. 232-243.

[125] TRIPAKIS, S., AND YOVINE, S. Analysis of timed systems based on time-abstracting
bisimulations. Formal Methods in System Design 18, 1 (January 2001), 25-68.

[126] UPPAAL. Website. http://www.uppaal.com.

180

