Model Development and Data
Provision for Formal Analysis of
Cause Effect Chains

Tejas Pravin Phadnis

Advisors

Prof. Dr. Klaus Schneider
Mr. Max Jonas Friese [Daimler AG]
Mr. Hannes Walz [Daimler AG]

Department of Commercial Vehicle Technology
and
Department of Computer Science

I.: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

This project work is submitted in fulfillment for the degree of
Master of Science

April 12, 2019

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this project work are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This project work is my own work and contains nothing which is the out-
come of work done in collaboration with others, except as specified in the text and
in acknowledgements.

Tejas Pravin Phadnis
Kaiserslautern, April 12, 2019

Acknowledgement

I would first like to thank my project work supervisor Prof.Dr. Klaus Schneider who
was always present whenever I ran into some trouble or had a crazy thought. He
consistently steered me in the right direction whenever he thought I needed it and
at the same time provided tremendous academic support.

I would like to express my profound gratitude my enthusiastic mentors Mr.Max
Jonas Friese and Mr.Hannes Walz. I am particularly indebted to them for their con-
stant faith on my work. I thank them wholeheartedly, not only for their support, but
also for giving me so many wonderful opportunities. They contributed in all possi-
ble ways in the projectwork and made sure I am on the right path.

I'would also like to acknowledge University of Kaiserlautern for providing me with
the opportunity for writing the project work and Daimler AG for providing me with
the computation power.

Finally, but by no means least, thanks go to mom and dad for almost unbelievable
support. They are the most important people in my world and I dedicate this project
work to them.

Abstract

A cyber-physical system, electrified vehicles are the most emerging fields for the re-
search and development of the automobile because of high efficiency and the zero
emission. The sensors and actuators have an interaction with the physical environ-
ment in the embedded system. Therefore, they must execute at a pace determined
by their environment. The performance analysis of the real-time embedded system
has more significance in the designing process of the complex system and the elec-
tric and electronic (E/E) architecture. This analysis provides an overall picture of
the system behavior in all situations before the start of actual implementation.

The main purpose of the project work is to create a model which is used for perfor-
mance analysis and verification of the powertrain. The tool is created to visualize
this model and collect all the timing attributes of hardware and software topolo-
gies. These topologies are focused on different layers of communication which in-
cludes various components such as software modules, runnables, bus, ECUs, and
have different timing attributes. The path of the signal transmission from the sensor
to the actuator in the cause-effect chain can be visualized in the time-augmented
model. The connection between the time-augmented topological model and the
formal analysis can be created by the database model.

In future, this tool will be used to find out the worst case scenario of the cause-
effect chains.

Contents

List of Figures xiii
List of Tables XV
Listing xvii
Nomenclature 1
1 Introduction 2
1.1 Driveforthedevelopment. 2

1.2 Background of projectwork Lo L 2

1.3 Purpose of the projectwork L Lo Lo L. 3

1.4 ToolOVerview i e e e e e 4

2 State of art 6
2.1 Powertrain e e e 6
2.1.1 Introduction of powertrain 6

2.1.2 Electrification of powertrain 6

2.2 Cyberphysicalsystem 7
2.3 Complexityofnetwork 8
2.4 Automotive architecture e 8
2.4.1 Embedded architecture 8

2.4.2 E/Earchitecture. 9

2.5 Typesof ECUsinpowertrain 10
2.6 Network Communication 12
2.7 BusTopology 12
2.8 Automotive Communication Buses and Network Protocols 13

3 Helping tools 15
3.1 XMLNotepad e e e 15
3.2 Microsoft Visual Studio 16
3.3 Git . 16
3.4 ARXMLVisualizer e 17
3.5 SQL Server ManagementStudio 17

4 Methodology 18
4.1 Software DevelopmentConceptso v v i vt 18

ix

X Contents

4.2 AgileMethod. 18
4.2.1 Implementation of Agilein project. 18

5 Data Exchange Formats 20
5.1 IndustryStandards 20
5.2 Available exchange formats, 20
5.3 Proprietaryformat o 21
5.4 Available exchange formats fordatamodel 22
54.1 Amalthea. 22

54.2 AUTOSARTImeX 24

6 Software Topology - Tool Release #1 26
6.1 Conceptofsoftwaretopology 26
6.2 Challenges 27

7 Development of tool for SW-XML 29
7.1 Analysisof SW-XML 29
7.2 Programmingenvironment 30
7.2.1 Purposeof programming 30

7.2.2 Modeling in object-oriented programming 30

7.3 Automotive software development concepts 31
73.1 UMLDiagram, 31

732 ClassDiagram 32

7.3.3 Modularization e 33

74 Codedevelopment, 33
741 USECaseso v vttt it e 36

7.4.2 Output of runnable chain formation. 39

8 Hardware Topology - Tool Release #2 44
8.1 Conceptofhardwaretopology 44
8.2 Definitions of communicationcluster 45
8.3 Focusof ARXML e 46
8.4 CommunicationCluster 47
8.4.1 ARXML:OSILayers 47

8.4.2 Aim of communication cluster consideration 48

9 Code Development for ARXML 51
9.1 Analysisof ARXML 51
9.2 Challengesindevelopment 51
9.3 Developmentstrategy 52
9.4 ARXMLOutput e 55

10 Database Management-Tool Release #3 57

10.1 Necessity of database management 57

Contents xi
10.2 Database management strategyt 57
10.3 Database connection e 58

11 Conclusion 60

A Apendix 61

Bibliography 63

List of Figures

1.1 Chainofaction 3
1.2 Tooloverview i e 5
2.1 (a) Networked embedded system (b) Cyber physical system 7
2.2 E/E architecture designexample 9
2.3 Automotive ECUs e 10
2.4 Functional module of an electronicsystem 12
2.5 Vehicle architectureexample 13
3.1 TreeviewoftheXMLfile 15
3.2 TextviewoftheXMLfile 16
3.3 ARXMLVisualizer 17
4.1 Agile methodology : softwarerelease 19
5.1 Amaltheasystemmodel 23
5.2 AUTOSARTIMEX e e s e e 24
6.1 Softwaremodule 26
6.2 RunnablesincorporatedinECUs 27
6.3 TasksandrunnablesinECUs 28
7.1 TextviewoftheXMLfile, 29
7.2 UMLclasstypes o i i it e e 31
7.3 Classdiagram 32
7.4 Runnable onthe bottompanel 36
7.5 Preference box to select starting point of thechain 40
7.6 Userinterfaceofthetool, 40
7.7 Addingthesuccessor 41
7.8 Not allowed to add predecessorinbetween. 41
7.9 Addingthe predecessor 42
7.10 Not allowed to add successorinbetween 42
7.11 Deleting the chainpartially 43
8.1 Overview of ECU and gateway connection 44
8.2 Focused of hardwaretopology 46
8.3 Requirement of time estimation by considering bus and ECU nodes . . 48

xiii

List of Figures

Xiv
8.4 BusnodewithOSIlayers. 49
8.5 Overview of common layers in communication stack within all buses . 49
9.1 Differentversionsof ARXML 52
9.2 Outputof ARXMLcode. 56
10.1 Database connection L 58
10.2 Database model of complete project 59
A.1 Electric/Hybrid Vehicle 61

A2 AUTOSARLayers i i s i e 61

List of Tables

2.1
2.2

5.1

7.1
7.2
7.3

8.1

Different types of control units and their functionalities 11
Comparison of functional classes of communication protocols 14
Data Exchange Formats 21
Usecasesfortoppanel 37
Usecases for bottompanel, 38
Usecases for breakingchain 39
OSIModel e 47

Listings

7.1 Example of class body of datatypes 34
7.2 Example of classbodyofreader. 34
7.3 Example ofread function, 35
9.1 Overviewoftheallclasses 53
9.2 Collection of timing attributes information from separate class 53
9.3 Example of frame class representation 54
9.4 Dictionaryoftheframe, 55
9.5 Reading and comparing file with attributes 55
10.1 Parameters of signal attribute table with key-value implementation . . 58

xvii

Nomenclature

AUTOSAR AUTomotive Open System ARchitecture

CPS Cyber-Physical System

ECU Electronic Controlled Unit

GUI Graphical User Interface

IDE Integrated Development Environment
0SsI Open System Interconnection

RTE Run Time Execution

SQL Structured Query Language

UML Unified Modeling Language

XML Extensible Markup Language

1 Introduction

1.1 Drive for the development

Cyber-Physical systems are systems that integrate, control and monitor the physi-
cal environment with software systems. An automobile can be treated as a cyber-
physical system which has been the drivers of many concurrent innovations for sev-
eral years. This is realized through distributed embedded systems, involving several
controlled units, sensors and communication channels to improve safety and secu-
rity of automobiles. These control units require precise monitoring and signal pro-
cessing. Therefore, it is necessary to accurately model a real time-triggered scheme
to implement a deterministic model of the system, emphasizing a new importance
on electric and electronic (E/E) architecture.

1.2 Background of project work

Presently, automotive systems have complex embedded systems with complex ar-
chitecture of control units and actuators. These embedded system have to interact
with the physical environment and communicate with other control units. The per-
formance is a key quality attribute of such a complex embedded system. It is very
important to identify the reaction time between the signal initialization and actua-
tion of actuator. In a cyber-physical system, consider one system-function example
as gear shifting or braking. In the process instant, a signal is initiated, transformed
and processed by many different control units. Signal follows various paths to reach
the actuator and after a certain interval of time the actuator gets actuated. This is
referred as the cause-effect chain [figure 1.1]. Considering safety and driving ex-
perience, the reaction time for such a cause-effect chain is critical. Therefore, it is
necessary to estimate this reaction time for the worst case situation.

Major challenge in the embedded system of powertrain is to minimize reaction time
and finding out the bounding of worst case reaction time. The performance of the
powertrain depends on reaction time. Therefore, it is very important to predict the
reaction time before start of the development and its implementation. This pre-
diction can be achieved with the help of formal methods. Formal methods are the

1.3 Purpose of the project work 3

techniques used for design and verification of software and hardware systems.

ECU; ECU, ECU;

Sensor —j (Pa —> actuatror

bus

Figure 1.1: Chain of action
[LSS*12]

1.3 Purpose of the project work

The embedded structure of electric and hybrid vehicle is complex and it will further
increase in near future. Therefore, the performance analysis of such architecture is
very difficult; because it includes large number of input events, resource sharing,
interconnections among shared units, scheduling of hardware and software control
modules. For such a system it is required to create an abstract model for perfor-
mance analysis. The time verification, formal analysis are also possible with the
help of abstract model. But this predicting time behavior tasks always prove to be
expensive in terms of computational resources. To deal with such a problem, the
tool support is needed. In such tool, a software developer can work on hardware
and software topologies together, understand the flow of signal, identification of
resources, and perform the analysis which finally supports important decisions of
cause-effect chain. The development of this tool will be discussed later.

The main aim of the project work is to support the development in terms of concep-
tual and implementation by means of formal methods focused on the performance
analysis of the cause-effect chain. The main problems “a system integrator" deals
with are as follows:

1. Which data must be collected for a continuous, formal description of the ef-
fect chain?

2. What exchange formats are available and how can information that changes
with different frequencies (hardware vs. software development) be brought
together in a consistent way?

3. How can system model and formally described cause effect chain be brought
together? At which points is a ‘cut’ of the analysis of the chain possible?

To reduce complexity, we divide the chain into multiple parts which can be ana-

4 1 Introduction

lyzed seperately. The results of the individiual analyses need to be aggregated in a
following way.

The purpose of the project work is to develop a concept and a tool which brings au-
tomotive hardware and software topologies together. In research and development
department, currently, these two topologies are developing independently. There-
fore their worst-case scenarios, effect chains are studied separately. From the me-
chanical point of view there are many software systems like Ansys, HyperWorks, 3DS
MAX which can be used for analysis and visualization of car model from different
perspectives like air and fluid dynamics, bending force analysis etc. Hence, there is
also a need to develop a tool to visualize hardware and software topologies of a car
under one roof. With the help of that, developers can understand the flow of signals
and latency time of software task as well as the time required through hardware
components. So it is useful to analyse the worst case scenario of the cause-effect
chain.

Furthermore, the basic requirement of a formal method is to consider parameters
which affect the time of a signal. The hardware topology is based on the various
communication bus systems. So the project work includes a detailed study of com-
munication protocol stacks of each bus such as LIN, CAN, Ethernet, FlexRay, etc.
Determination of time relevant attributes and their values of each bus and other
components like ECU, connectors helped in the formal description of the cause-
effect chain.

1.4 Tool Overview

The hardware and software topologies of automotive are described with the help of
XML (Extensible Markup Language) file.The XML file which represents the software
topology has information about ECUs, tasks, runnable entities and various types
of signals. Similarly hardware topology described in XML file called as ARXML (Au-
tosar XML). It represents communication cluster, busses, controllers, transport pro-
tocols, and their time relevant attributes and values. The code is written in C++/CLI
to develop a tool which reads software XML file and depending on the selected sig-
nal and/or runnable it forms a chain of signal processing. Similar concept is used to
read ARXML file. It reads complete communication cluster of a bus, frames, PDUs,
resolve the references for controllers, and collect all time relevant attributes and its
value of each node and child nodes. As per the internal flow structure of Software
and Autosar XML file, the database structure is modelled and connection is estab-
lished with developing tool. All time relevant attributes and their values are stored
in database. When a powertrain engineer wants to analyze communication stack for
latency timing of frames, PDUs, buses or ECUs then it will be helpful to read these
values directly from database. This also be helpful to find largest path of cause effect

1.4 Tool Overview 5

chain and worst-case scenario. The complete overview of the tool is as described in
figure 1.2.

I Individual Timing Specification l

Software Architecture Hardware Topology

Timing
Constraint Bus

ECU1 ECU2
|SW1 }'r{SWZ HSWII | \

Communication

% Integration J

| Refined Timing Specnflcatlon

Interaction

Deployed System

Bus —>
SW1 SW3 Database
SW2

[swa_ | Model

Formal Analysis

Figure 1.2: Tool overview

2 State of art

2.1 Powertrain

2.1.1 Introduction of powertrain

Basically, the powertrain is a set of components such as energy source, transmis-
sion, differentials, etc. that generates power and deliver it to the wheel and surface.
In conventional powertrain, the engine is used as an energy source which requires
more components than an electric motor and battery used in an electric vehicle.
In the case of the hybrid powertrain, both energy sources can be used. The pow-
ertrain is the heart of a car and is the identity for high performance and efficiency
of a vehicle. Moreover, other important features of a car like top speed, drivability,
towing capacity, fun to drive also depend on the gradeability of a powertrain. On
the other hand, society imposes environmental demand on the manufacturer to re-
duce the emission and noise of a vehicle. This factor was the turning point to start
the electrification of a powertrain [HHGS18].

2.1.2 Electrification of powertrain

The electrification of the powertrain is started first with hybridization with the help
of an electric motor. In recent years, the environmental impact of pollutants has re-
ceived considerable attention from all levels of populations throughout the world.
Maximum CO2 is emitted from the automobiles. These emissions must be drasti-
cally reduced to save the environment. The environmental benefits of electric and
hybrid vehicles are the main endorsed for electrification of the drivetrain [LPWT15].

There is a worldwide necessity that air pollution has to be reduced, which encour-
ages the electrification of the powertrain in all vehicular applications. Electrifica-
tion of a powertrain means controlling mechanical parts with the help of electronic
and/or software else replace them completely by electric part. For example, the IC
engine is replaced by an electric motor/generator and battery. Loss of kinetic energy
during braking, heat energy generated due to friction, waste exhaust gas energy can
be recovered with the help of electric motor which acts either as an energy supplier
or an energy recover component when runs in generator mode. The paradigm shift

2.2 Cyber physical system 7

of powertrains from conventional to electrification has paved the way for innova-
tions. Driver assistance, Partial automation, high automation can be possible with
the help of electrification. Electric powertrains are inherently more efficient and
emission-free and it meets the customer demands in the best possible way. The
new attraction in electric powertrain is ’just push a button and enjoy the speed in
silence’.

2.2 Cyber physical system

Cyber-Physical System (CPS) is a branch of engineering which deals with interac-
tion of cyber i.e. computational with physical systems. In other words, it is a mech-
anism which is controlled by the computer based algorithm and interacting with all
possible ways.

() Information (b) Information Information
Electronics i Electronics Electronics
Network O Network Network
Physics cll Physics Physics

Figure 2.1: (a) Networked embedded system (b) Cyber physical system
[SJ18]

Earlier, electrical, mechanical and software subsystems were treated as a standalone
but now they are considered as a single system as CPS. Consider the figure A.1 as an
example of an electric vehicle. It is a ‘system of systems’ interacting with all hetero-
geneous systems. In such cases, the controller represent the cyber world and the
human driver represents the physical system. This CPS involves embedded system,
control theory, software engineering, etc. and have hardware and software real-
time requirements. Now-a-days, most of the systems are cyber-physical system like
aerospace, manufacturing, transportation, etc. To improve the control and perfor-
mance of the system it is very important to have a highly coupled and interactive

8 2 State of art

system. Mobility, efficiency, functionality, reliability and safety can be achieved with
the help of CPS. The main advantage of the CPS is that it forms a linkage between
embedded processing and network topology with the physical system. So that all
perspective of the system can be analyzed and a high level of automation can be
achieved. Electronic Controlled Unit (ECU) plays an important role in this system.
They control the actuation of the actuators by interconnecting in the system and
precise signal processing.

2.3 Complexity of network

Evolution of an automobile from the mechanical system into an electromechanical
system had many challenges. In beginning, in-vehicle communication can happen
with the help of sensors which senses all physical and environmental parameters
and convert into the electric signal. Further, these signals are transformed to the
controller for processing; as a result, the actuator gets actuated. The movement
of the actuator and their environmental values are again measured by the sensor
and this cycle continues further which creates a closed loop with feedback. In its
native form, controllers are connected to each other with the help of wires. As we
go further into this evolution of technology, the functionality of vehicle increased by
increasing the number of sensors and control units, which results into an increasing
number of wires and the complexity of the network. Pushing further, communica-
tion can be done between controlled units and connection between them can be
established with the help of automotive communication buses, which reduced the
number of wires on one hand side but increases the complexity of signal processing
on other hands [Bos14].

2.4 Automotive architecture

2.4.1 Embedded architecture

Automotive Electronic Control Units (ECUs) are the most dominant software con-
trolled electronic device which overcomes the main limitations of a mechanical sys-
tem like limited accuracy and efficiency. A modern car contains more than 70-100
ECUs which executes gigabytes of code. 50 to 70 % of the development regarding
ECU is related to software. The functionality of all the parts are controlled by the
ECUs. An increasing number of ECUs inside the vehicle accompanied by the in-
creasing complexity of the system. ECU reads the data from the sensor, and op-
erate within certain value to ensure the functionality of the vehicle. With the help
of ECU, it has interaction with the rest of the system. ECUs have different working

2.4 Automotive architecture 9

requirements based on priority and bandwidth. Therefore in-vehicle communica-
tion, buses can be used differently as per the applications. Electric and electronic
(E/E) architecture is a way to handle the problem of increasing complexity in a de-
cent manner [HMGI11].

2.4.2 E/E architecture

The automobile is leading to become more software and electronic intensive sys-
tem. The term electrical and electronic (E/E) architecture is used in automotive
technology in contemplation to implement an electrical system and their modules
such as processing units like ECUs, buses, sensors or actuators and their functions.
In the era of an intelligent system having functionalities like driver assistance, brake
assistance, skidding control or parking aid, etc. In deliberation of incorporating
these new functionalities into the car, its functional components need to be con-
nected to ECUs and sensors have to be placed in a relevant position in the hardware.
The E/E architecture is dealing with the electric and electronic network of the vehi-
cle, their interfaces and communication between them with software architecture.

O ECU Q Buses D Processing Unit
O Sensor O Actuator

Figure 2.2: E/E architecture design example

These components are communicating with each other via signals. So as per the
application suitable bus is selected for data communication and it is important to
make a connection with internal topology. Consider an architectural design exam-
ple given in figure 2.2; E/E incorporates the optimum position of electric compo-

10 2 State of art

nents and ensures the signal and data distribution of all components. It involves
transmitting actuator and sensors values to the control units via communication
buses. In other words, E/E architecture is not only handling the complexity of the
network but also optimizing the system. It plays a significant role in improving the
efficiency of an electrified powertrain. Based on the connections and data transmis-
sion path in network architecture, the system is becoming intelligent to take some
decisions regarding operating parameters such as the speed of the vehicle, optimum
battery charge, engine ON/OFE and maximum torque. As a result, the E/E system
and architecture reduce emissions and increases the vehicle range and efficiency.
Therefore, the importance of E/E architecture increases at an astonishing pace in
electric and hybrid vehicles [KCG*17].

2.5 Types of ECUs in powertrain

For the design of an automotive embedded architecture and design communication
between parts, the vehicle electronic system is divided into four functional parts as
Chassis, Powertrain or Drivetrain, Body, and Telematics. The sensors and ECUs are
also grouped into these categories. These 4 categories have many different sensors
and ECUs which placed at different locations inside the vehicle and have different
purposes (refer figure 2.3). As per their functionality, the abbreviation of ECU varies.

Powetrain Control Module (PCM) l

* Battery Engine Management

Body Control Module (BCM) * Engine Control Unit

+ Seating System Air System and Emission

= Light Control Control System
* Front & Rear Wiper * Transmission Control
* Power Window
* Door Lock

* Defogger

Telematics and Driver Assistance

* Autonomous Guidance

Assistance

Chassis System
* Intelligent Parking Assistance

* Anti - Brake System « Adaptive Cruise Control

+ Electronic Power Steering + Music System

* Display Screens

Figure 2.3: Automotive ECUs
[MB]

The features of a car can be achieved by sharing a signal and data through many
sensors and control unit connections. For different functionality requires different
ECUs. There is an interconnection between control units and these control units

2.5 Types of ECUs in powertrain

11

are sharing the network resources in one or other way. Some common examples of

control units with their functionality are given in table 2.1 and their names differ as

per the OEMs convention.

Abbreviation H Control Unit Main Function
ECM Engine Control Mod- | Responsible for con-
ule trolling engine perfor-
mance
EBCU Electronic Brake Con- | Controls braking of a
trol Unit car
PCU Powertrain =~ Control | Responsible for con-
Unit trolling powertrain
performance
TCM Transmission Control | Responsible for gear
Module transmission
VCU Vehicle Control Unit Responsible for driver
assistance
BCM Body Control Module | Responsible for sus-
pension, temperature
control

Table 2.1: Different types of control units and their functionalities

Earlier only one functionality is incorporated in an ECU. But now many functions
are assigned to the single ECU. The different sensor data is gathered at the ECUs.
These ECUs uses sensor data for further processing of a signal. And output data of
ECU can be used by other ECUs, or actuators.

ECUs are controlling all functions of the automotive like opening and closing of air
intake valve till adjusting the side mirror, from the battery management system till
front and rear wipers. Overview of cause effect chain and inside part of a control
unit is shown in figure 2.4. The main part of the control unit is a microcontroller
(EPROM). The function code is stored in this part. ECUs gathered all relevant data
and signals. The sensor sends analogous signals which get converted into digital
form in ADC (Analog to Digital Converter) module. This data acts as an input for
the controller functional code or processor which decides the behaviour of the unit.
Within a microsecond, it performs millions of calculations on this data and gener-
ates the output which decides the best result for the further process. Therefore, one
can say that, though the body of a car is made up of metal, but the brain and its
heart are processors and control units that regulate the entire system.

12 2 State of art

Sensors Control Unit Actuator
* Acceleration Pedal
. } * Ignition coil
Throttle valve position j Amp —* + Sparkplug
* Airflow ﬁ—’ G Functional
* Battery storage j Processor
. o o o e — | s * Fuelinjection
Intake air temperature ‘ Amp
* Engine temperature = ——
* Crankshaft speed » * Engine Speed Controller
¢+ Gear l - D AN Amp
* Vehicle speed - ‘
EEBON * Camshaft control
CAN ——¥ 4 D , ° Airvalve control
Amp * Sensor heater
Monitoring * Exhaust gas recirculation
Module

Figure 2.4: Functional module of an electronic system

2.6 Network Communication

Many systems in a car are dependent on each other, many times they used the same
data as an input. Or the output of one module could be the input of others. E.g. if
the driver gives the command to apply a break. So at the time, the same signal need
to be given to the engine management unit to reduce the engine speed by reducing
fuel intake and air mass flow. Meanwhile, the same signal has to be sent to gear
module to reduce the gear and if it is a hybrid vehicle then motor needs to operate
in generator mode to recover energy and store it in the battery. In this way, all are
dependent on each other in order to increase performance, efficiency and safety.
To this end, the system is networked with each other. For this purpose, they need to
communicate with each other in an efficient way and shared the data. The required
secure, accurate and fast communication between all resources can be achieved via
automotive communication buses (e.g. LIN, CAN).

2.7 Bus Topology

In topological methodology, ECUs, sensors are called nodes and their connection
via wire or bus is called as the transportation medium. A network is a system in
which a group of nodes can exchange information via a means of transport. The
network topology is the structure of nodes which represent how nodes are intercon-
nected with each other. Every node subscriber must have at least one connection to

2.8 Automotive Communication Buses and Network Protocols 13

the other network node. Then only communication is possible within the network.
Many varieties of network topology are possible by connecting different nodes and
using various communication buses. It will help to create optimize network and
selection of suitable bus for communication is possible.

In bus network topology, communication buses such as LIN, CAN, and Ethernet
are used to connect nodes. The data transmission is taking place via messages. A
message contains useful data (called payload) and data transfer information. Two
types of communication can be possible; one is via subscriber oriented method. In
this method, to transmit data, each node must have to subscribe to a channel and
the connected bus. The transportation information is attached to the message. It is
used to recognize the recipient and transfer the information to the correct destina-
tion. Another method is Message-Oriented-Method; each message is accompanied
by the address. This message is sent to all the receiver nodes and the receiver de-
cides to process this message or not. Because of these two methods, the latency,
time triggering events, periodic functions to trigger the data comes into the picture,
which are the relevant considerations in the cause-effect chain [Bos14]

2.8 Automotive Communication Buses and Network

?::Z? E % GPS, GSM, UMTS
rans-
M
otor RSl o Brake
control AT control
[1 JL —— [T 1) Navigation Radio
A control | """ | control
o (7 ¢>‘{
Q Powertrain bus (High-speed CAN) ;
k 2 |1 S
< el
.
8 Chassls bus (Low-speed CAN) < T Infotainment bus l
<€ I T T > O (MosT) Head unit
: Bluetooth & display
Door Climate Light WLAN CEEE
control control " | control uss

Steering wheel

P J nos
. s Cell MP3
on-board Door busses Lights (CAN) s phone " p",‘V“
(LIN) (LIN)

systems

Off-board *
&

systems)
T~
] 1 | 1
Garage Exhaust Production Application
tester tester tester tools

Figure 2.5: Vehicle architecture example

Each bus has a different communication method which is referred as data trans-
fer protocols. These protocols have accompanied by a different layer called an OSI

14 2 State of art

model (Open System Interconnection Model). Each layer represents the different
information of the communication data. The different application has different
constraints of communication like safety and priority. On other hands, all buses
(like LIN, CAN, FlexRay, Ethernet, MOST) have different properties like data trans-
fer rate, interference immunity, real-time capability, length of data transfer capac-
ity, etc. Therefore different buses and protocols are used for different applications.
This is explained in the table 2.2 in more detail. Moreover, the maximum number of
nodes are interconnected to each other by a bus in the different part of the car (refer
figure 2.5).

H Class A Class B Class C Class D
Transfer Rate || Low data rate | Medium data | High date rate | Very high date
(upto10kb/s) | rate (upto 125 | (up to 1 Mb/s) | rate (up to or
kb/s) >10 Mb/s)
Purpose Actuator sen- | Information Real time con- | Real time
sor control sharing trol control and
Networking in
telematics
Applications Body domain | Transfer in- | Powertrain Control of
i.e. comfort | formation as | control of en- | steering,
functions, vehicle speed, | gine, chassis, | braking,
wiper, light, | emission, suspension multimedia
door, seats, | mechanism functions
mirrors, cli- | for error
mate control | handling
Representative || LIN, TTP/A Low speed | High speed | FlexRay,
CAN CAN MOST
Priority Level || Low (for non- | Low (for non- | High (real | High (real
real time) real time) time) time)

Table 2.2: Comparison of functional classes of communication protocols

3 Helping tools

The project work contains variety of tasks from software development and elec-
tronic point of view such as reading and visualization of XML file, creating UML
(Unified Modeling Language) diagram, version control to develop a software, and
database management using SQL (Structured Query Language).

3.1 XML Notepad

XML Notepad is the Microsoft XML editor used for the visualization of large XML
files. This editor is very intuitive allowed to present data in both tree and text view
(refer figure 3.1 and 3.2). Therefore, it is very user-friendly to visualize all main/-
top nodes, their sub-nodes, child, and their attributes, etc. It has very good perfor-
mance measure on validation of XML schema. It also has incremental navigation
search which is helpful to navigate through all relevant nodes till their last child
nodes. So finding out the path of the signal processing is easy. The XML schema
also supports the XPath concept which is used to give the reference to the other
nodes.

) XML Notepad - D\Report\KGS_XML\example.xmi

V8@ 90 408X > \Roocrt G5 XML ecamgie e

Troe View | XS4 Output
. keaxmlikas

CLeeccercccel

Leereeere

Cheeefiss3ssst

Figure 3.1: Tree view of the XML file

15

16 3 Helping tools

hitp: [/ www.axample com /kgexmi kgexml.xsd

Figure 3.2: Text view of the XML file

3.2 Microsoft Visual Studio

It is an IDE (Integrated Development Environment) from Microsoft. This environ-
ment is used to develop a program, software and Apps. It works on the windows
platform. It supports many programming languages such as C, C++, C++/CLI, .NET,
XML, C#, Visual Basics. This visual studio includes code editor along with debugger.
Moreover, it provides a compiler, code completion tool, graphical designer, etc. It
also supports GUI applications and database connection. The latest version 2017 of
Microsoft Visual Studio is used in the development of tool during the project work.

3.3 Git

Git is one of the version control systems. It creates one repository on the server that
keeps the track of changes made in the code over time. This system is important in
the software industry when many developers are working on the same project. In
such cases, the individual developer is writing different functions of code. So each
time for further development, it would require for everyone to access the latest ver-
sion of source code to save changes. This global repository is accessible from any
geographical location within the respective industry network. The continuous im-
provement in the project can be possible by Git. Each time after doing any changes
in code, it is necessary to push those changes in the Git repository. So it will store
all versions of the source code. It is possible to access any version of a source file at
any point in time. Push, pull, add, commit are some examples of Git command to
reflect the changes into the repository.

3.4 ARXML Visualizer 17

3.4 ARXML Visualizer

ARXML visualizer is the software used to view the Autosar XML file. This tool is
used to load and identify cluster and other nodes within the ECU architecture rep-
resented by ARXML. This software is similar to XML notepad tool. But the only dif-
ference is editing, the creation of any node points, saving is not allowed.

& ARXML Visualzer - BC_F_STAR 2 V1_2013_d_Ecu_Details_Extract_NotReleased_Edited.anm

Fie Srowser | Properties SWC Graoh | COM Gragh | ML Structure | COM Detads

C:\0aten | ARM, Exporte\tmp m Resoive References n Text-Viey J Sexch Values -

2013 _d_Fau_Detads_Exty

Figure 3.3: ARXML Visualizer

This tool is used to visualize complete electronic architecture of automobile. Soft-
ware and hardware connections can be viewed with this tool (Refer figure 3.3).

3.5 SQL Server Management Studio

Microsoft SQL database server is a database management system used to storing
and/or retrieving the data as requested by the other software. The database can
be generated on the same machine or the different machine across the network.
SQL server management studio is used to managing the data of the database server.
This includes script editor and result window. Data is stored in the form of a table.
Attributes of data entries are stored as the table column. It is a very user-friendly
tool to view and analyze entire data storage and connections between them.

4 Methodology

4.1 Software Development Concepts

Now the world is shifting more towards technology, as a result software becoming
heart of the all development process. Software development is the process of de-
veloping software through progressive steps in specific manner with certain objec-
tives. The process contains not only writing a source code but also includes the
preparation and analysis of requirements, system design, documentation and test-
ing whether it has met the objective or not. The phases of software development
are 1.Identification of customer requirements, 2.Analysis of software requirements,
3.Feasibility study 4.Detailed specification of software requirements, 5.Software de-
sign, 6.Programming, 7.Testing, 8.Integration and 9.Maintenance. Software devel-
opment can be done by various methodologies such as waterfall model, iterative
development, agile process, etc. In this project work, the software development is
mainly focused on agile process [Lap17].

4.2 Agile Method

Agile is the methodology of software development based on the incremental and
iterative development where requirements and solutions evolved in each step. In
this agile method, the planning is incremental and design and delivery are iterative.

4.2.1 Implementation of Agile in project

Incremental delivery is the key feature of the agile method. The project work has
3 major sessions, which are independent from each other in terms of requirement,
understanding of input data, and coding environment. Therefore, as per agile de-
velopment, the complete software development of project work is divided into 3
iterative parts. In first step, the software topology is taken into consideration. The
entire design cycle is carried out on this topology and executable tool is generated.
In second step, the software development for hardware topology is taken into con-
sideration. In this case, again executable code is written to read AUTOSAR file and

18

4.2 Agile Method 19

time relevant data are identified in communication cluster. This code is integrated
with the first part. In third section, the data based model is created with top-down
approach and complete data is stored in database. In such way all three sections
are bring together to form an entire executable software which is used for perfor-
mance analysis of cause effect chain in accordance with real time embedded system
of powertrain. The overall agile process is shown in figure 4.1.

Agile Methodology
Release #1 Release #2 Release #3
Planning Software XML ARXML Database
It1 | 1t2] It3 It1 | 1t2 | It3 It1 | 1t2 I It3

Release Complete

Iteration N

Iteration Development, Design, Code, Functional
Planning Testing, Integration, Acceptance Testing

Figure 4.1: Agile methodology : software release

Each iteration is accompanied with specific functionality of the specific software
part and after each release, the size of tool is gradually increased. These releases
represents the checkpoints in the project and also used to decide the timeline of the
project work. Therefore the first step is to collection of data; e.g. which informa-
tion exchange formats are available and analysis of current existing tools in market.
Pros and cons of these tools is studied and need to our tool is discussed with devel-
opment in further sessions.

5 Data Exchange Formats

5.1 Industry Standards

Data exchange is the process of transforming one schema or structure of the data
into another structure without changing the meaning of the source data. In our
case, the source data is the architecture of distributed embedded system. So it is
very important to represent all control units, signals, their connections in a very
accurate manner in one file or in a software. Therefore, data exchange formats and
data exchange languages plays an important role in the project work.

In the automotive industry, software is developed in a distributed manner. On one
hand side, the functionalities inside the car are increases, on other hand side com-
plexity of software architecture also increases. The end automotive software is grow-
ing day by day. Therefore, OEM divided software development into subparts and
given it to the suppliers for the development. At the end, OEM has to integrate all
these parts. To make this emerging process manageable, OEM has to follow some
method and format for data, architecture and their interface representation. So that
OEMs can harmonize exchange of the information between the suppliers and car-
ried out the development in a secured manner. There are many data exchange for-
mats and modelling formats are available which are described in further sections.

5.2 Available exchange formats

There are many data exchange formats are available and are used for different ap-
plications. Some examples are shown in table 5.1. XML is found to be the most
versatile and universally compatible method of representation. Moreover, it is open
and extensible method. It is more secure than any other formats of data transfer.
Therefore, many organizations follow XML [for].

20

5.3 Proprietary format 21

File Extension | Name of the format Description of format
CSV Values separated by | In this document, data is repre-
comma sented in a tabular format where
columns are represented by com-
mas.
JSON Notation od JavaScript | Lightweight data exchange for-
objects mat, JavaScript is used for the pro-
gramming, easy for machines to
interpret data.
RDF-XML Infrastructure of De- | Used for modeling of a web re-

scription of Resources | sources in the form of objects. It
is used in representation of data in

web pages.
API Application Program- | API are runs through HTTP pro-
ming Interfaces tocols. This format is used for
machine-to-machine interaction.
XLS Microsoft Office Excel | It has cells in rows and columns

structure. Each cell represents a
data. It is used to represent infor-
matory structure but does not fol-
low any tree structure.

XML eXtensible Markup | It has a tree structures to repre-
Language sent data, all properties/attributes
of the data can be include in
this method, easy for represent-
ing complex data structure, repre-
sentation of interconnections and
linkages within the data are also
possible

Table 5.1: Data Exchange Formats

5.3 Proprietary format

It is the file format specific to the company or organization which stored the data
according to particular encoding-decoding scheme. This scheme is designed by
the company and only the employees who are working on that file can decode the
meaning of the data. This is done to achieved high level safety secretes. The in-
terpretation of stored data in such file is only possible with the help of particular
hardware and software developed internally by that company. In the working de-

22 5 Data Exchange Formats

partment of project work, XML file format has been used as a proprietary data stor-
age format.

The data model approach of any hardware and software system has main 4 prob-
lems such as identification, data retrieval, storage and exchange. These problems
are effectively handled by the XML format which has elevated its importance. Using
xml it is possible to exchange the data between incompatible systems. Many data
structures are complex, therefore converting the data into xml format greatly re-
duces the complexity. Xml also creates a data which can be read and used by many
different types of applications. XML allows to structure the data into standardized
schema. Therefore it is easier for the combined development of hardware and soft-
ware. It also creates the platform independent way of storing data. Therefore, it
becomes widely accepted ‘self-describing’ open standard for data exchange format
[XML].

5.4 Available exchange formats for data model

Data models are defined as how the data is stored in a particular format and struc-
tured. For modelling of complex data, formats like AUTOSAR, AMALTHEA can be
used. The main big problems in the automotive industry are to handle parallelism
exploitation of the embedded system. This problem can be solved by the AUTOSAR
and AMALTHEA. These both methods also provide suitable processes for various
applications.

5.4.1 Amalthea

AMALTHEA is one of the open source toolchain platform and/or environment. The
main goal of this platform is to do data exchange in a scalable, modular and com-
prehensive way, which is also a platform independent. It enables the creation and
modelling of a complex chain including simulation and validation. Amalthea repre-
sents the software and hardware models. The software model is more detailed than
the AUTOSAR Timex model. It also supports chains of large model size, their map-
ping, and code generation. In this, the mapping section is used to join hardware
and software parts.

In software model part, it defines the functional behavior in terms of runnable and
tasks. Runnable elements are the software unit that defines the behavior of commu-
nication. Labels define the shared data and runnable are mapped to the tasks. In-
terrupts are also taken into consideration during runtime. The hardware model de-
scribes the system which contains ECUs, control units, microcontrollers, etc. More-
over, in the constraint module, event and event chain based constraint are taken

5.4 Available exchange formats for data model 23

into consideration. For example, order, synchronization, repetition, age constraints,
etc. With reference to figure 5.1, the consideration of all parts can create the system
model [SSH*16].

SW Application

<
D a4

Constraints Costs
Period T,=2ms T, takes 10ps on
Deadline D,=15ms Core0, 20us on
Period T, =5ms
Deadline D, = 5ms

HW Platform Decisions

RunT, on Corel
Offsetof T, =1ms

Figure 5.1: Amalthea system model
[SSH*16]

Overall, the advantages of Amalthea system model are consideration of static and
dynamic software architecture with runtime functions, event chain consideration
based on timing requirements, software design constraints for execution and whole
mapping. But the drawback of the Amalthea system model has a limitation in con-
sideration of hardware topology. In the hardware model, it covers only a single ECU.
It is not considering cores, memories and peripherals. Furthermore, it ignores the
data network i.e. the communication between ECUs via buses. Therefore, neglect-
ing buses means neglecting physical channels, ports, their signals, latencies and
many more time-dependent modules. This leads to the only partly correct abstract
model of the entire system. These drawbacks are the call for the new development
in data exchange format.

24 5 Data Exchange Formats

5.4.2 AUTOSAR Timex

In automotive development, the subsystems are divided as ECUs, software, and
communication buses. The different development is done at different suppliers.
But the overall system design and integration are done at the car manufacturer i.e.
at the end of OEMs. The structure of the subsystems, as well as the timing require-
ments, are known as time model, are modelled using TIMEX. AUTOSAR Timing Ex-
tension (TIMEX) depends on the AUTOSAR standard. It provides predefined events
and event chains. Whereas event is the predefined behavior of the system and event
chain represents stimulus and responses. With the help of TIMEX, it is possible
to do the analysis of timing behavior and validation of the system with respect to
time constraints. The timing properties of PDUs, frames, software tasks are taken
from the AUTOSAR files. It also includes functional bus timing (VfbTiming), soft-
ware component timing (SwcTiming), system timing, electronic control unit timing
(ECUTiming), etc. and all are brought together in TIMEX. Therefore this is another
purpose of the TIMEX to support temporal behavior by providing sufficient timing
information. The overview of the TIMEX is shown in figure 5.2.

CSWC_001

- 7]

Response

CSWC_002

R

’a =1

#@

Event 2

4

CSWC Composition Software Component RE Runnable Entity LC Latency Constraint
SWC Software Component ETC Event Triggering Constraint

Figure 5.2: AUTOSAR TIMEX
[Con]

AUTOSAR TIMEX depends on the top-down development process i.e. timing re-
quirements are considered at the system development level. But in actual world ap-
plications, time attributes and their guarantees are relevant in the implementation
and integration phase of different subsystems i.e. it needs a bottom-up approach.
Therefore, this exchange format is not completely suitable for model-based devel-
opment of the effect chain [AUT].

Therefore, the limitations of AMALTHEA and AUTOSAR TIMEX highlights the need

5.4 Available exchange formats for data model 25

for a sophisticated framework for exchange formats. By taking into consideration
the need for formal verification by using the abstract model of the entire system
and overcoming the limitations of currently available formats, the new framework
need to develop. The sections 5.4.1 and 5.4.2 also represents the first step in the soft-
ware development process as a requirement analysis which contains identification
of customer’s requirements and feasibility study.

6 Software Topology - Tool Release #1

6.1 Concept of software topology

ECU has many functionalities as shown in figure 2.4 and it has to execute those
functionalities during runtime. The functional behavior of the ECU which is de-
fined by the software component. The software components contain the piece of
code wrapped in a unit called as runnable shown in figure 6.1. One software mod-
ule has many runnables and are stored at the application layer in the architecture
(refer figure A.2). The mapping of the instances of the runnables, Operating system,
and/or sensor-actuator hardware system is undergone during ECU configuration
and it followed during Run Time Execution (RTE).

Software Module A

Runnable 1 Runnable 2

Runnable 3 Runnable N

Figure 6.1: Software module

Therefore, during run time execution, the runnable entities are assembled into the
tasks and these tasks are assigned to the ECU. And the system has many ECUs.
Each runnable has an individual execution semantics. Depending on the imple-
mentations, runnable are divided into 2 categories; periodically running and spon-
taneously running. Periodic runnables have a definite executable time period and

26

6.2 Challenges 27

they run after a certain interval of time. The execution of spontaneous runnables
are depending on signal processing. Depending on the time required for an ex-
ecution, an instance of the runnables are group together into the tasks and have a
definite schedule in the multicore system. At RTE, according to the semantics, when
any task is activated, it receives the data then it executes the operation and returns
the data. The overview of the ECUs containing runnables and connected over the
network are shown in figure 6.2.

SC1 SC1
R1 R2 R1 R2
SC2
R1 R2 R3
ECU1 ECU 2
SC: Software Component
Network Bus R: Runnable

Figure 6.2: Runnables incorporated in ECUs

6.2 Challenges

The software topology is extracted in an XML file with reference to the advantages
mentioned in section 5.3. The hierarchical structure of the XML schema represents
the tasks (called as a function), runnables and their local, input and output signals
in terms of nodes, sub-nodes and childs. The signal is coming from the network
i.e. sensors and is transmitted through various ECUs. When it arrives at the ECU,
different tasks are getting activated inside an ECU as per the schedule and time trig-
gered activities. The signal is transmitting through the runnable in the activated
task. There are many input signals and many output signals for a runnable. The
output of the one signal can act as an input for one or many runnable. Similarly, the
signal gets transmitted and form the chain of runnable. Many times signal changes
during transmission. So the output signal of one runnable may or may not be the
same as the input signal.

28 6 Software Topology - Tool Release #1

The tasks, runnables and signal transmission are explained in figure 6.3. The first
challenge is to identify the properties or description of a signal and path during
transmission. Secondly, it is important to find out which runnable is using which
signal and finally how it is propagating and forming a chain. To solve this problem
it is important to develop a tool in which one can visualize the signal processing
in a runnable chain. This development is discussed in the next sections. Another
challenge is with an XML file. Each XML file is focused on one ECU. Therefore, the
number of ECUs used in powertrain is equal to the number of XML files need to be
considered in the development of the tool. It is important to handle this problem in
a data management system which will be discussed in further sections.

ECU

Task A
Network

Signal

|RAOI|RA1I IRAO”RAlI IRAOHRAlI IRAO”RAII

Task B Network
Signal

|RBOI|R51”RBZ||RBSI [RBOlIRBl“RBZ”RBSl

Task C

|RCO”RC1HRCZI IRCOHRCI”RCZ' |RCU||RC1||RCZI

R: Runnable
» :Signal Path

Figure 6.3: Tasks and runnables in ECUs

7 Development of tool for SW-XML

7.1 Analysis of SW-XML

The XML file represents the structure of software topology of one of the ECU. XML
has particular schema and syntax to represent the interconnections. The sections
are represented in the start and end Tag. For example, <section> called as start-
tag and </section> indicates the end-tag. As per the explanation of the previous
section, tasks contains runnables and runnables contains signals. This structure is
shown in figure 7.1 of an XML file.

Testfunktion
"RUNNABLE-ENTITY">
RUNNABLE-ENTITY">

"Testfunktion1
RUNNABLE-ENTITY" >

Figure 7.1: Text view of the XML file

In this case, tasks are represented by the <Funktion> which is also called as the node
and <runnable-entity> are the sub-nodes. Similarly, output, local and input signals
are known as child nodes, represented as <Dekl_Ausgangssignal>, <Lokales_SIgnal>,
<Ref_Eingangssignal> respectively. The ‘beschreibung’, ‘datensatz, ‘name’, ‘vari-
ante’, ‘version’, ‘vcycle’, ‘type’, etc. are called as the properties or attributes of the
respected elements. These properties represent the identification of the elements,

29

30 7 Development of tool for SW-XML

data carried by them and its own value. By considering the confidentiality and se-
curity, the file data elements are modified by keeping the schema and purpose the
same. Referring to figure 7.1, the runnable with name “TestRunnableB’ has ‘Testssig-
nal2A’ as an output signal which act as an input of ‘TestRunnableD’. Similarly, its
output signal is the input for ‘TestRunnableC’. In such a way the chain of runnable
continues. Therefore, in such a case, the main aim is to write a code to read identifi-
able attributes of the respective entities. Secondly, read all signals with distinguish-
able properties and relevant data. Stored these value and types in the database.
Then identify the linkage of the runnables based on the signals and display the for-
mation of the chain.

7.2 Programming environment

7.2.1 Purpose of programming

XML visualization is very difficult for the analysis of big data files. Therefore, there is
a need to create a user-friendly tool which converts XML data into the easily under-
standable form and developed a GUI (Graphical User Interface) where the linkages
between runnables can be visualized and chain between them can be formed. The
Microsoft Visual Studio version 2013 and 2017 are used for the GUI application. Its
advantages are discussed in section 3.2. It provides entire support to create win-
dows application features such as buttons, textbox, empty box, scroll bars, tables,
etc.

7.2.2 Modeling in object-oriented programming

The C++/CLI is the best programming language to migrate from native C++ into the
.NET platform. It has many advantages of using the features of this language. It can
also preferably interoperate with others. It is a unique language to build code for
user interface and powerful language to read the data from the XML file. Therefore,
this language can act as a bridge between the worlds of applications. The other fea-
tures like ‘for each’, ‘list’ are used for reading the large schema. One of the dominant
features of the C++/CLI is the allocation of managed objects on the unmanaged
heap is possible with “*’ and ‘new’. Furthermore, semantical allocation of unman-
aged objects on the managed heap can be achieved by *’ and gcnew. This language
gives the incomparable possibilities to develop a tool and handled the big data files.
This language and environment also provide a wider scope to deploy the applica-
tion on a secure database, for example, SQL server manager.

7.3 Automotive software development concepts 31

7.3 Automotive software development concepts

7.3.1 UML Diagram

A UML (Unified Modeling Language) diagram is the virtual representation of the
system. It includes main actors, roles, actions, and classes which are used for the
better documentation, understanding, maintaining and improvements of the sys-
tem. UML is not a standalone programming language like C++ or JAVA. It is used to
create the blueprint or pseudo programming of the system. Therefore, when input
data and requirements are large then it is required to design UML diagrams. It will
create an overview of the system such as various parts in the system, interconnec-
tions between the data, inheritance, dependencies, etc. All aspects of the system
will not be possible to implement in one UML diagram. Therefore, UML encom-
passes into different categories which include different diagrams and that can be
used for different purposes throughout the development [Tut]. UML divided into
2 broad categories such as Structural and Behavioral UML and their subcategories
are shown in the figure below. The class diagram and use case diagrams are used
in the development of project work and are explained in section 7.3.2 and 7.3.1 re-
spectively.

UML Diagram
'

Structural Diagrams Behavioral Diagrams
Deployment Class Activity State Machine
Diagram Diagram Diagram Diagram

Composite Structure Diagram Communication Diagram
Package Profile Use Case Sequence
Diagram Diagram Diagram Diagram
Object Component Interaction Timing
Diagram Diagram Diagram Diagram

Figure 7.2: UML class types

32 7 Development of tool for SW-XML

7.3.2 Class Diagram

A class diagram represents the static view of the application. The functions or ob-
jects which have similar role or purpose are groups together into a class. Different
classes together can form a system. So the class diagram helped for the better un-
derstanding of the schematics of the application. It states information about the
interconnections, data type, inheritance, associations, etc. The concepts of class
diagram helped in project work to understand the structure of XML. Therefore, the
XML tree data (nodes, childs, attributes) is converted to the different classes and in-
teractions between them can be identified. The class diagram is drawn by following
the standard procedure and syntax of the UML in the open source platform named
as ‘DIA’ which described in figure 7.3.

Function

[+Name Runnable Entity
+Description Belongs 0.:n

i +Name
+Variant >
+Version ! | slibe

|+Revision

Signal

+Name

n |{+Longname
+Description
+Address_schema
+Max_value
+Conversion

a . L

lOutput_signall Local_signal @

Figure 7.3: Class diagram

The relation between tasks, runnables and signals are explained in previous sec-
tions. The same relation can be explained in a class diagram in a sophisticated
manner with all the details. The rectangular blocks are known as the classes and
the lines or arrows connecting to them implied the relationship. The tasks have a
direct relation to the runnable, known as simple association with 1:n relationship
which is denoted by a solid line in the figure. It also means that one task has many
runnables. Similarly, one runnable have multiple signal association (1:n relation).
In this case, the signal is considered as a broad category of the class called a par-
ent class. The signals internally have an ‘is-a’ relationship with 3 more subclasses
such as Output_signal, Local_signal, Input_signal. These 3 subclasses are inherited

7.4 Code development 33

by the parent signal class which are shown by a solid line with a hollow arrowhead
pointing from child to the parent class.

The rectangular blocks of the class have 3 portions. The first portion is the class
name. The second portion is the class attributes. These attributes defined the data
members of the class in the code. The third portion is the class operations. They are
the services or the functions provided by the class (not shown in the diagram for the
confidential purpose). Therefore, the class diagrams help to start the implemen-
tation of the coding. It provides the background data required for the declaration
of classes which are the main building blocks of the object-oriented programming.
The number of rectangular blocks in this diagram is equal to the number of classes
declared in the code. It also states that the signal class can act as an abstract class
where the attributes of this class can be shared by the subclasses inherited by it.

7.3.3 Modularization

Modularization is one of the method of programming in which the dividing a pro-
gram into separate subprograms called as a module. As per the desired function-
ality, each module has some variety of applications and functions. Modular pro-
gramming has an emphasis on the small parts of the program to achieve reliability,
reusability, and readability. It also helped with debugging the complete program.
When the requirement changes, then it is suitable to implement changes into the
code at any point in the development process. Object-oriented programming sup-
ports modular programming in all aspects. Therefore, modular programming con-
cepts are used in the development of this project work.

7.4 Code development

Considering the modular programming and class diagrams, tool development is di-
vided into 3 sections. First is collecting data types called as attributes, second is
reading all nodes and storing it in lists and third is displaying the data in the form of
the chain as per the user requirements.

The first section of collecting the data types includes 3 classes called a Module,
RunnableEntity and Signal class. Module and RunnableEntity classes have private,
public data members as variables and functions. Variables are the attributes of the
entity i.e. the attributes which are shown in the class diagram block in figure 7.3.
The getter and setter functions are declared in a public access control level which is
used to access the private variables. The data variables of a Signal class are defined
in a protected access specifiers because it is an abstract parent class for 3 types of
signals. The body of the class is shown in listing 7.1 below as an example.

34 7 Development of tool for SW-XML

ref class Module;
ref class RunnableEntity;
ref class Signal;

public ref class Module {

public:
property String” Name {
String” get() { return _name; }
void set(System:: String” name) {
this —> name = name; }
}
private:

String” _name;

1

Listing 7.1: Example of class body of data types

public ref class Reader {
public:
Reader (System:: String” filename);

List <Moduler>A ReadAllModules ()
List<RunnableEntityA>A ReadAllRunnableEntity ();
List<SignalA>A REadAllSignal ();

private:
Module®r? ModuleFromNode (XmINode”Ar functionNode);
RunnableEntity”A RunnableFromNode (XmINode” runnableNode);
SignalA SignalFromNode (XmlNode” signalNode);

private:
System:: String” _filename;

1

Listing 7.2: Example of class body of reader

The second section is the Reader class, which includes the loading of the XML file
and reading each node line by line. All nodes are encapsulated with some entities
and have a relation with the child nodes. Therefore, 3 functions are made to distin-
guish the nodes as module, runnable and signals and stored them in different lists
with their attributes. As per the class diagram, the associations can be established
between these lists. The header file includes the declaration of read function which
is shown in the listing 7.2 and .cpp file includes its implementation. The pseudo

7.4 Code development 35

code associated with the implantation of the read functions with the help of XML
libraries is shown in listing 7.3.

// To read all functions
List <Moduler>A Reader:: ReadAllModules () {

Xml:: XmlNodeListA functionNodes =
xmlDoc—>SelectNodes (xpathForFunction);

/1 For reading all nodes
for each (Xml::XmINode” functionNode in functionNodes) {

}

//To read all attributes of function
Moduler Reader : : ModuleFromNode (Xml : : XmINode” functionNode) {

Xml:: XmlAttributeCollection”® nodeAttributes =
functionNode—>Attributes;

// To read attributes of node
for each(XmlAttributer nodeAttribute in nodeAttributes) {

Listing 7.3: Example of read function

In the first and second sections, all the required data is collected in a sophisticated
manner i.e. all tasks, runnables, different signals are collected in a separate list with
their attributes. Now the remaining third task is to display this data in a proper
manner to form a chain of runnable. Therefore, a window structure is created in a
visual studio which serves the purpose of the user interface of the application. The
outline of the main window is shown in figure 7.6. Each button on the window UI
represents one function in the .cpp file. The functionality of that button or text box
or a panel is defined in that function implementation.

Two inputs are mandatory to start the application. The first input is the XML file
which data want to analysis and the second one is the name of the signal from the
file to start the chain. The Ul is divided into 2 panels. The centered panel is used
to show all the possible connections between the runnables. As per the selected
signal, the centered runnable is decided. The input and output signal of the cen-

36 7 Development of tool for SW-XML

tered runnable accompanied by the successor and predecessors of the respected
runnable. When the user is selected one of the successor or predecessor runnable,
then it gets updated in the chain of the bottom panel. Some buttons are provided to
perform predefined operations and ease user interaction. For example,

1. ‘Select file’ button, which is used to ask the user to select the XML file from
the directory.

2. ‘Filter by the signal name’ and ‘Filter by the runnable name’- this search box is
used to filter the runnable by the signal name or the runnable name. For ex-
ample, in many cases approximately, 20 to 30 runnable are present as prede-
cessors or successors. So these search options are saved the efforts of finding
out the required runnable.

3. Vertical and horizontal scroll bars adds the flexibility to the predetermined
direction. The tool overview is shown in figure 7.6.

7.4.1 Use cases

Start Pointer End Pointer
Runnable Runnable Runnable Runnable

I

Current Pointer

Figure 7.4: Runnable on the bottom panel

Use cases are a methodology that describes how a user uses a system or applica-
tion to accomplish a certain goal. The use case is consists of the set of interactions
between the system and the user in a particular environment. It can be the collec-
tion of scenarios. The ‘actors’ which are the users of the application, ‘system’ which
defines the functional requirement and the ‘goal’ is the event or the procedure to
achieve a certain function are the main members of the use cases. The entire pro-
cess of how to open an application till how to achieve a certain goal is mentioned in
the use cases. It also helped to set the constraints on the use of some options. It is
used for the developer to write code according to the situation described in the use
cases. The detailed use cases for the application is given below. It illustrates how to
form a chain on the bottom panel.

7.4 Code development

37

Usecase 1-1: Adding a runnable to the front of the chain

Precondition The current pointer is equal to the start pointer of
the chain.

Trigger The user clicks on a predecessor in the upper panel.

Postcondition The predecessor selected added to the front of the

chain. The start pointer is now pointing at the new
start. The current pointer is now pointing at the new
start. The newly selected runnable is the one in the
center of upper panel. Its predecessors are shown.
Its successors are shown but faded out but only the
previous start of the chain is highlighted.

Usecase 1-2: Navigating through the chain to left (upper panel)

Precondition The current pointer is not equal to the start pointer
and the current pointer is not equal to the end
pointer.

Trigger The user clicks the highlighted predecessor in the
upper panel.

Postcondition The current pointer is now pointing to the selected

predecessor. The selected predecessor is the one
in the center of upper panel. Its predecessors are
shown but faded out. Its successors are shown but
faded out. The selected successor and predecessor
is highlighted.

Usecase 1-3: N

avigating through the chain to right (upper panel)

Precondition The current pointer is not equal to the start pointer
and the current pointer is not equal to the end
pointer.

Trigger The userUsecases clicks the highlighted successor
in the upper panel.

Postcondition The predecessor selected added to the front of the

chain. The start pointer is now pointing at the new
start. The current pointer is now pointing at the new
start. The newly selected runnable is the one in the
center of upper panel. Its predecessors are shown.
Its successors are shown but faded out but only the
previous start of the chain is highlighted.

Table 7.1: Usecases for top panel

38

7 Development of tool for SW-XML

Usecase 1-4: Navigating through the chain in the lower panel

Precondition

Trigger

The user clicks on a segment of the chain in the
lower panel.

Postcondition

The runnable which was clicked on is the centered
one in the upper panel. The current pointer points
to the position of the runnable in the chain. If the
current pointer is now the start pointer then all pre-
decessors of the selected runnable are shown and all
successors are shown but are faded out except the
selected one. If the current pointer is now the end
pointer then all successors of the selected runnable
are shown and all predecessors are shown but are
faded out except the selected one. If the current
pointer is greater than start pointer and less than
end pointer, the successors are predecessors are
shown but faded out and the selected oneés which
are on the chain are highlighted.

Usecase 1

5: Adding a runnable to the end of the chain

Precondition

The current pointer is equal to the end pointer of
the chain.

Trigger

The user clicks on the successor on the panel.

Postcondition

The selected successor is added to the end of the
chain. The end pointer is now pointing to the new
end of the chain. The current pointer is now point-
ing to the new end of the chain. The newly se-
lected runnable is located at the center of the upper
panel. Its successors are shown. Its predecessors are
shown but faded out.

Table 7.2: Usecases for bottom panel

7.4 Code development

39

Usecase2-1: Deleting the last runnable from the bottom panel

Precondition The current pointer is equal to the end pointer of
the chain.

Trigger The user clicks on the delete button on the runnable
entity.

Postcondition The selected runnable entity is deleted i.e. removed

from the bottom panel. The second last runnable
entity is newly become the last entity. The end
pointer is pointing to new last entity. The current
pointer is pointing to new last entity. The newly
becoming last is shown on the center of the upper
panel. The successors are shown. The predeces-
sors are shown but faded out, only the previously
selected is highlighted.

Usecase2-2: Deleting intermediate runnable from bottom panel

Precondition The current pointer is greater than start pointer and
less than end pointer.

Trigger The user clicks on the delete button on the runnable
entity.

Postcondition The selected runnable entity and all further entities

are deleted i.e. removed from the bottom panel. The
end pointer is pointing to newly becoming last en-
tity. The current pointer is pointing to newly be-
coming last entity. The newly becoming last en-
tity is at the center of upper panel. All predecessors
are shown but faded out and only the previously se-
lected one is highlighted. All successors are shown.

Table 7.3: Usecases for breaking chain

7.4.2 Output of runnable chain formation

The procedure discussed in the use cases is helpful to achieve the required output
in terms of the runnable chain.

Step 1: Select and input the XML file from the directory.
After providing the XML file, the program will read all runnables and ask the user
about preference to select one runnable from where the chain has to start. The
preference box is shown in the figure 7.5 and the start of the chain is explained in

figure 7.6.

40

7 Development of tool for SW-XML

RunnableEnti
RunnableEntity [name TestRunnableB grid 01
RunnableEntity | name TestRunnableC grid 01
RunnableEntity [name TestRunnableD grid 0.1
RunnableEntity | name TestRunnableE gnd 01

name TestRunnableA gnd 0.1

Cancel Ok

Figure 7.5: Preference box to select starting point of the chain

| TestRumnsdleA |

Figure 7.6: User interface of the tool

Step 2: Adding the successors For each runnable successors and predecessors are
shown on the middle panel by the solid lines. As per the requirement user can click
on one of the available successors and the same will get added in the bottom panel

7.4 Code development 41

and chain continues further on the right side. At this situation, the user is not al-
lowed to add predecessor in between the chain. It has to add at the first part of the
chain so the chain can continue on the left side. The hidden blocks indicate that the
user is not allowed to click on such runnable.

List of successors

List of predecessors

TestRunnableA
TestRurnadieC TestRurnatieC
TostRunatie0 |
TestRurnatief i
|| Clicking on one
o 8 \ of the runnable

it gets added in
the chain

ot e

@bwu———
i by et i by rvran v Showrn 0 - 1201 2 postie ¥ty bt v [T T —
- b5Y: : = :
TestRunnadieA
TestRumatieC
TestRunnabieD
Clicking on one of TesRunadies
the predecessor, -
. o . T
it will give an TestRurabied
error
2
Capon mage

Figure 7.8: Not allowed to add predecessor in between

Step 3: Adding a predecessor

Predecessors can be added at the left side of the chain. Therefore, the user has to
select first runnable, then all available successors and predecessors will be visible.
And at such a point user is not supposed to add successors. The addition of prede-
cessors is illustrated in figure 7.9 and 7.10.

42 7 Development of tool for SW-XML

List of predecessors] List of successors

R

Py g e R —— Showng 0 - 1208 1 positle P by st s [—
r

Clicking on one
of the runnable
it gets added in
front of the

chain

Figure 7.9: Adding the predecessor

TesRunnatieA | l
TestRuvatieC |
Clicking on one of
the predecessor,
e e it will give an

= | | e

Figure 7.10: Not allowed to add successor in between

Step 4: Deleting the chain

The chain can be deleted completely or partially. If the user required to change or
replace certain runnable then it is permitted to delete the runnable. But the con-
straints are applied to this command. If one runnable is want to delete then it must
have to delete all the successors or all predecessors. Because, all runnables are con-
nected to each other, so deleting a single entity in between can cause the loss of
reference for the entire chain.

7.4 Code development

Delete left part Delete right part
includes deleting includes deleting
all predecessors all successors
including including
selected one selected one

| [| S | reroeaves |

| | 2
e [e]

Figure 7.11: Deleting the chain partially

8 Hardware Topology - Tool Release #2

8.1 Concept of hardware topology

The E/E architecture as explained in section 2.4.2 have more complexity because
of interconnections between ECUs, sensors, actuators and the communication me-
dia. The description of all these networking components is broadly named as a
hardware topology. The powertrain contains different types of control units such as
ECUs, powertrain control units, torque control unit and they are transmitting data
between each other via communication buses like LIN, CAN, Ethernet, FlexRay, etc.
The overview of the different ECUs and their connections via buses are illustrated
in figure 8.1.

ECUA Gateway ECUB
Application SW Application SW Application SW
Run Time OS Run Time OS Run Time OS
Sensor Basic SW —— Basic SW Actuator

Bus € (LIN, CAN, Ethernet, FlexRay, MOST)

Basic SW

Run Time OS

Application SW

ECUC

Figure 8.1: Overview of ECU and gateway connection

The signal starting from the network has to transmitted through different ECUs as
per the determined path and finally, again it becomes the network signal at the ac-

44

8.2 Definitions of communication cluster 45

tuator. While transmitting via ECUs, it has to process by all the layers of ECUs, such
as application software, run-time operating system and basic software, etc. The in-
side parts of the ECU software modules are already discussed in section 6. In this
section, the main focus is on the communication network. The connection between
two ECUs is carried out by the buses and special control unit called a gateway. In
general, the gateway is defined as a link between different elements. In hardware
topology, it is a control unit which denotes the linkage between two different net-
works or different communication protocols. It is often used for the converter be-
tween different formats. Therefore, it can be possible in powertrain architecture
that the connection between ECU A and gateway is via CAN bus and gateway to
ECU B with the help of LIN bus. Therefore, signal processing from ECU A to ECU
B has to pass through CAN and LIN. Moreover, the communication protocols of all
the buses are different. Hence to analyze a hardware topology it is necessary to
consider physical channels, connectors at ECU nodes, OSI layers, physical layers of
buses and their communication protocols.

AUTOSAR (AUTomotive Open System ARchitecture) is a standard an open automo-
tive architecture. It helped to analyze software and hardware architecture indepen-
dently. The different layers of AUTOSAR are shown in figure A.2. AUTOSAR helped
to manage the complexity of the interconnections and mapping between all com-
ponents and their communication network. Therefore, it is a key enabling the hard-
ware topology of the electric architecture of the automobile. It is used to extract the
entire ECU or architecture in one file named as ARXML (AUTOSAR XML). It mainly
focused on how ECUs are communicating with each other i.e. the entire communi-
cation cluster including signals and buses and their connections.

8.2 Definitions of communication cluster

1. Cluster: It is the group of ECU nodes which are connected by a communica-
tion medium like LIN, CAN, etc.

2. Channel: ACommunication network provides the channels for data transmis-
sion.

3. Controller: It is a hardware component that allows to ECU to send and receive
the data on the communication medium.

4. Connector: Itis the bus interface of the ECU which represent send and receive
behavior of the node.

5. Frame: Itis a pack of information that shared over a communication network.

6. PDU: Itis a Protocol Data Unit which is a collection of signals.

46 8 Hardware Topology - Tool Release #2

7. Frame Triggering: It represents the condition on which the frame is transmit-
ted on the network [Bos14]

8.3 Focus of ARXML

Section 2.8 discussed the different buses and their communication protocols. The
communication protocols are the methods by which two electronic units can ex-
change the data with each other. To ensure the runtime accurate exchange of data
and timely delivered the commands to the other units or actuators, it is crucial that
the protocol must be ensured the response time of the frame. Therefore, the tim-
ing relevant attributes of the protocols are very important in data transfer. Each
unit of the communication cluster such as PDUs, frames, signals, buses, ECUs, con-
trollers, etc. have the time relevant attributes. The main focus of hardware topology
is shown in figure 8.2.

ECUA - ECUB

- Communication Connector of ECUs
== Bus Conditional Information

=== Physical Channels of the Bus

Figure 8.2: Focused of hardware topology

The connection between 2 ECUs is mainly focused on communication connectors
between them, information about the bus and the physical channels. Therefore the
main aim of consideration of hardware topology is to find out the timing attributes
of these components. All the information of these components will be available in
the ARXML file in terms of packages. The packages example is shown in figure 3.3.
The main tasks are to deal with the ARXML file to extract the relevant information
regarding figure 8.2. It includes understanding the hierarchy of the file, contents of
each package, references and xpaths in the file, etc. The main challenging part is
to determine the bus conditional information i.e. how the frames or services, PDUs
and signals are encapsulated in the packages of different buses. Secondly, it is very
important to find out the significant time relevant attributes which affect the data

8.4 Communication Cluster 47

transfer. The third interested part is the physical channel of the bus. It includes the
transfer protocols of address, channels and nodes. Moreover, it is also related to the
frame, PDU and signal triggering.

8.4 Communication Cluster

8.4.1 ARXML: OSI Layers

The Open System Interconnection Models (OSI model) is a standardized communi-
cation functions which define the framework to implement the protocols on differ-
ent layers. OSI model is composed of 7 layers where application layer is closest to
the user and physical layer is at the down where actual data transfer will take place.
In the OSI model, the data is passed from one layer to another starting from the top
layer (application layer: layer 7) at one node and proceeding to the bottom layer of
physical layer and leads to the another node, then again follow the hierarchy in op-
posite direction of layers. OSI layers are helped to divide the large data into smaller
segments. At each layer, the some part of data gets added in a protocol. The detailed
information about the OSI layer is shown in the table 8.1.

Layer Layer Name PDU Function

7 Application Layer Data

6 Presentation Layer | Data

5 Session Layer Data

4 Transport Layer Segment Responsible for deliv-

ery of a message from
one process to another
3 Network Layer Packet Responsible for the de-
livery of packets from
the source host to the
destination host

2 Data Link Layer Frame Responsible for mov-
ing the frame from one
node to another

1 Physical Layer Bits Responsible for trans-
mission of Bits

Table 8.1: OSI Model

Each layer is associated with the PDU of different information. PDUs are used for
the peer to peer contact between corresponding layers. Data is handled by the top

48 8 Hardware Topology - Tool Release #2

2 layers and then segmented by the transport layer. Network layer places the infor-
mation into the packet and data link layer frames the packets for transmission.

8.4.2 Aim of communication cluster consideration

The figure 2.5 showed that powertrain or the entire vehicle have different ECUs lo-
cated at different places in vehicle architecture. The different ECUs are connected
via different buses. In a field of the project work, time estimation of different buses
for data transfer is concerned.

Time Estimator (12ms)

B e

CAN-FD
ECUA ECUB
LIN
@ Gateway @
X /
\ /,
\\ b
\ y,
\ FlexRay //
\ /
\ /
N\ /
N\ /
//
\ ¥

O = |®

Figure 8.3: Requirement of time estimation by considering bus and ECU nodes

The main focus of the work is to estimate the time required to communicate be-
tween 2 ECU nodes via a specific bus. For such estimation of time, it is important
to know how the message is transforming, which components are involved in the
process, description of bus protocols, and their latencies, etc. This background in-
formation is used to find out the timing attributes of the specific bus, which are fur-
ther used by the formal analysis methods of a system for the creation of an abstract
model. In such cases, it is required to consider the protocol stack of the communica-
tion medium. Furthermore, the work is concern about OSI layers to find out which
layer is significantly important at a certain level of communication. Hence, accord-
ingly, the timing attributes related to the layer will come into the picture in runtime
execution. For example, when horizontal communication between 2 nodes at com-
munication controller is estimated then the timing attributes related to OSI layer 1
and 2 and data unit called as frames need to be considered, which is explained by

8.4 Communication Cluster 49

the figure 8.4 below. Such type of consideration is used to create an abstract model
of the protocol stack.

Bus Node Bus Node
Application Application } Layer?
Communication Communication Protocol Communication Layerl, 2
Connector Connector
Transceiver 1< Physical Channel > Transceiver } Layerl

Bus

ICZO’

Figure 8.4: Bus node with OSI layers

Secondly, when talking about abstract generalize model, it is important to consider
all the buses and their communication properties. As discussed earlier, different
protocols are followed by different buses. Therefore, it is necessary to find out com-
mon layers used by the buses during different levels of communication. It is used to
write a code for reading communication cluster of ARXML files. The detailed study
of all bus protocols are carried out and common properties are noted down.

Layer 7 Application Application Application Application Application Application
Layeré Presentation Presentation Presentation
LayerS Session Session Session Session Session Session
Layer 4 Transport Transport Transport Transport Transport Transport
Layer3 Network Network Network Network Network Network
Layer 2 Data Link Data Link Data Link Data Link Data Link Data Link
Layer1 Physical Physical Physical Physical Physical Physical
CAN LIN FlexRay High Speed CAN MOST Ethernet

Figure 8.5: Overview of common layers in communication stack within all buses

For example, by considering LIN protocols as a case study, the LIN specification
package consist of 3 important parts. First part is LIN protocol specification which
is described by the Physical and Data-link layer. Second is LIN configuration de-
scription which is described by the Network layer. It includes information about the
number of nodes, frames, baud rate (is the rate at which the information is trans-
ferred in a communication channel), etc. The last part is LIN API (Application Pro-
gram Interface) which is the software implementation encapsulated in layer 7. A

50 8 Hardware Topology - Tool Release #2

similar study is carried out on all respective buses and the common parts are deter-
mined which are shown in figure 8.5. It results as Can, LIN and FlexRay buses need
physical, data link, transport and application layer. MOST, High Speed CAN, and
Ethernet bus covers all the 7 OSI layers for communication. All the buses used the
transport layer for the diagnostic services. The network layer is used for the routing
support for IP, Car2X and In-Car Wireless Communication.

9 Code Development for ARXML

9.1 Analysis of ARXML

ARXML file has the representation of hardware topology in the form of packages.
These packages represent different views of the system. It shows how the control
units are communicating with each other. Moreover, the entire topological informa-
tion is stored in the form of XML nodes, subnodes and child. The ARXML is focused
on either specific bus or the ECU like central ECU of the powertrain. Therefore, in a
similar way of the SW-XML, the analysis of ARXML is carried out in 2 steps.

The first part is to debug the encapsulated information of the hardware topology
from all the packages. It includes an understanding of the information available
in the respected package and its attributes. For example, there is a package called
I-Signal, which is the instance of the signal which sends via buses. Under work of
interest, it is required to collect all signal names and their time relevant attributes.
Furthermore, I-Signals are referred to the system signals which describe the system
value. For example, value of the engine torque. When such a value is send via bus
then it become the instance. These system signals are also encapsulated in a differ-
ent package. Therefore, collecting the system signals and finding out the reference
of system signal from I-Signal is important task in analysis. The second part is writ-
ing a code for reading the ARXML file, and collecting the timing attributes of each
components in consideration.

9.2 Challenges in development

The first step in the code development is to analyze the ARXML file and its struc-
ture. Accordingly, the strategy is made to write a code in C++/CLI with the help of
XML to read the ARXML and collect the required data. Consideration of all versions
of ARXML file such as version 3.1, 3.2, 4.2, etc. focused on all buses is the key point
in creating the generalize software. The different versions of ARXML have differ-
ent package names. For example, package name could be ISignals in version 3.1,
I_SIGNALS in version 4.1, etc. Moreover, the hierarchy of the file is also different.
For example PDU package in at level 1 in version 4.1 but at level 3 in version 3.1, etc.

51

52 9 Code Development for ARXML

The different hierarchy and package abbreviation are shown in figure 9.1. Therefore,
itis necessary to develop a program which takes all such cases under consideration.

When the file is specific to the bus then it has variation in communication cluster.
Because the protocols are different for Ethernet and LIN, CAN, etc. Therefore the
requirement in a program is to recognize the communication protocol and accord-
ingly collect the timing attributes with its value. Frames of LIN, CAN, FlexRay are
statically generated and encapsulated in the ARXML but the frames of Ethernet are
dynamically generated hence not directly specified in the ARXML file. They are indi-
rectly specified as services. Such type of variation in data transfer is the challenging
task in creating the generalized code for communication.

|- SystemSignals
|- Systems

|-#3 TpConfigs

|- £} Units

ARXML Version 4 ARXML Version 3
©) AUTOSAR (2) AUTOSAR 4 2, AUTOSAR (2)
+-L[Jl ADMIN-DATA (1) -(J)) ADMIN-DATA (1)
=-H AR-PACKAGES (23) - #3 TOP-LEVEL-PACKAGES (10)
[+- 3 AUTOSAR_Platform [+- ### BaseTypeGeneric
[+- #F ApplicationDataTypes +-## COMPUMETHODS
[+-## CommunicationClusters +- 3 CONSTANTS
[+-#3 CompuMethods +-#% DATA_TYPES
[+- 3 DataConstraints [+ ## ECU_INSTANCES
[+-#3 DataTransformations +-# END_2_END_PROTECTION
[+- £ DataTypeMappingSets —- # ENGINE
[+-#3 DiagnosticConnections (=83 ELEMENTS (1)
[+- 3 Eculnstances [+]-cam ENGINE
[+ £} Frames [=-H3 SUB-PACKAGES (1)
[+- % GlobalTimeDomains - # PKG_ENGINE
[+- # ISignalGroups [=}-£3 SUB-PACKAGES (4)
[+- # ISignallPduGroups [+ f# FRAMES
- ISignals [+- £ 1_SIGNALS
[+- £ ImplementationDataTypes (- ## PDUS
[+-#3 NmConfigs [+ £## PDU_GROUPS
[+ Pdus [+ SYSTEM
[+-# SecureCommunicationPropsSet +- 3} SYSTEM_SIGNALS
[+-# SystemSignalGroups +-#3 UNITS
53
£
b
(3

Figure 9.1: Different versions of ARXML

9.3 Development strategy

The program development strategy is divided into 2 parts. Initially in the first part,
all communication protocols are studied on one hand side and on other hand tim-
ing attributes of all components from ARXML file are found out. These timing at-
tributes are separately stored in the notepad file. One notepad file is created for tim-
ing attributes of one component and it is specific to the ARXML version. These files
are stored in one of the folder in the system. The second main part of the strategy
is to write a code in C++/CLI and XML to read all nodes of the ARXML file and their
attributes are collected. These attributes are compared with the respective notepad

9.3 Development strategy 53

file. For example, the part of code is used to read the PDU package, then attributes
of PDUs are compare with PDU_version3/4.txt file. When the match is found then
those attributes and its value are selected and stored.

The following pieces of pseudo codes are written and build together to collect tim-
ing attributes of ARXML file. Firstly, different classes are created for different com-
ponents which are shown in the listing 9.1. Each class represents public, private and
protected data members which are the attributes of their respective packages and
xpaths in ARXML file.

namespace NetDatatype {

ref class ARXML ECU;

ref class ARXML_Port;

ref class ARXML_ Connector;
ref class ARXML_Controller;
ref class ARXML Bus;

ref class ARXML Channel;
ref class ARXML Frame;

ref class ARXML_Socket;

ref class ARXML PDU;

ref class ARXML_SignalGroup;
ref class ARXML_Signal;

}s

Listing 9.1: Overview of the all classes

Another important class is the TimingAttributeType class in which the information
related to timing attributes and its value type are collected. The pseudo code is
given in listing 9.2. The data members of this class are used to identify name of the
attribute, the path of that attribute in ARXML file, relevant bus where the attribute
referred to and its value.

public ref class TimingAttributeType {
public:
TimingAttributeType (System : String A attributeName,
System :: String” arxmlRef) {
this —>Name = attributeName;
this —>ARXML Ref = arxmlRef;
}

property TimingAttributeParent Parent;

54 9 Code Development for ARXML

property System:: String” Name;
/+*the name of the attributex*/
property System::String” ARXML_Ref;
/+*where to find it in ARXMLx*/
property System::String” ParentVariant;
/+e.g. CAN/FlexRay for bus*/
property System::String” ValueType;
/+e.g. int, float or stringsx/

5

Listing 9.2: Collection of timing attributes information from separate class

In the communication protocols, the main parts are frames, PDUs and signals. So
as per the flow of data, frame has PDUs and PDU has signals. Therefore, the same
concepts are implemented in the code. The frame class has PDU collection func-
tion and PDU class has the signal collection function. The pseudo code of frame
class is represented in listing 9.3.

/*Frame, PDUs, Slgnals and Signalgroups=/
public ref class ARXML Frame : ARXML_Identifiable {
public:
ARXML,_Frame (System:: String” uid, System:: String” name)
ARXML Identifiable (uid, name) {
_pdus = gcnew List <ARXML PDUA >();
}

/+setter*/
void AddPDU (ARXML PDUA pdu) { _pdus—>Add(pdu); }

/xgetter*/
List <ARXML PDUA>A GetPDUs() { return _pdus; }

private:
List <ARXML PDUA>A _pdus;
b

Listing 9.3: Example of frame class representation

Similarly when talked about communication cluster, the class member contains
ECU, bus, frames, socket, channel and connector, etc. These above classes are used
to build the data types of communication cluster of ARXML. Now another type of
class required is the reader class, which reads the file nodes and attributes. From
the figure 9.1, it is clear that package names, and hierarchy is different for different

9.4 ARXML Output 55

versions. Therefore, separate reader files are created for different versions especially
for version 3 and version 4. This file has special functions to find the packages which
are specific to the XML node in hierarchy. Moreover dictionaries are also created to
fill all the types at the beginning (refer to listing 9.4) and it can be used throughout
the program for various purposes and make the program general.

Dictionary<String”, ARXML Frame/r>A frames =
gcnew Dictionary<String”, ARXML FrameX >();

array<System:: StringA>A frametypes =

gcnew array<System:: String/A>{
"ETHERNEI-FRAME", "CAN-FRAME", "FLEXRAY-FRAME",
"FRAME", "LIN-FRAME"

b

Listing 9.4: Dictionary of the frame

Furthermore, separate functions are required to read the timing attribute file line
by line and to compare the specific XML node attributes with the file. These two
functions are shown in the listing 9.5.

array<String/A>A lines = System::10:: File :: ReadAllLines (
ECT:: Resources :: GetFileByName ("BUS_V3", ".txt"));

_busTimingAttributeTypes =
ParseTimingAttributes (lines, TimingAttributeParent);

Listing 9.5: Reading and comparing file with attributes

9.4 ARXML Output

When certain ARXML file of any version is given as an input to the program then
the program determines participation of communication components with names
and their timing attributes with the value. The sample output is shown in the figure
9.2. It is helpful to visualize the complete communication cluster. From this output
developer can acquire a data of many cases or scenarios of states such as it is used
to determine the value of attributes when signal is passing through certain bus or
ECU, etc then which connector or controller is taking a part and what are the values
of their timing attributes. Furthermore, information about all layers of communica-
tion can be known from physical channel, Frames and PDUs, etc. In other way, the

56 9 Code Development for ARXML

entire information of real time embedded system can be known from this ARXML
reader program.

Timing Attributes of Uersion 3 ARXML:

ECU: Main Controller
Max-Number-of-Bits: 10
Min-Number-of-Bits: 5
Cycle-Offest: 0.001
Reduced-Time: 4.0
ECU Connector: Short-name
ECU Controller: Short-name

BUS: CAN
Delay: 0.001
Activation-Time: False
Sample-Point: 34
Timeout: 1.5

Frame: Frame-name
Length: 15

PDU: Pdu-name
Activation-Time: True
Repetition-Time: 0.002

Figure 9.2: Output of ARXML code

10 Database Management-Tool
Release #3

10.1 Necessity of database management

In the cyber physical system, the project is dealing with 2 different topologies and
that are considered as a real time embedded and software systems where param-
eters are continuously changing. On the other hand side, the timing relevant data
which is collected by software and hardware topologies are used for the formal anal-
ysis methods to find out the worst case scenario. Moreover, in automotive, both the
topologies have huge data to deal with. Therefore, it is required to manage the data
in a structural way between real time embedded system and the formal analysis
method.

10.2 Database management strategy

The database is the organized collection of data stored in same or different com-
puter system. The database is developed using design and modeling techniques.
The relational database is used where model the data in terms of rows and columns
of the table. The first step in the database is to distinguish between the components
storage. Each component relationship gets timing relevant attributes. Therefore,
separate table is created for each component. Next step is the creation of data based
model by considering the relationship between the components. The connections
between frames or services, PDUs and signals are established in the database also.
The whole database model is shown in the figure 10.2. In this model, for a simplifi-
cation of collecting the data, the timing attributes and connecting data are collected
at channel, ECU and communication connectors.

To achieve the collection at these components, the SQL database with key value de-
sign paradigm is used. With the help of this concept the interconnection between
the tables can be easily established. Database stores the data as a collection of key
value pair. The key in the key-value pair must be unique and this is the unique
identifier to access the data associated with it [KVD]. So it is possible to trace the

57

58 10 Database Management-Tool Release #3

interconnected data. For example, the signal table is referred to the PDU table by
specifying the key id in it. The example of SQL key-value table for signal attribute is
shown in the listing 10.1.

SELECT TOP (1000) [prj_id]
,[ncd_id]
, [nw_id]
,[ch_id]
,[res_id]
,[pdu_id]
,[signal_id]
Jlattr_id]
,[attr_parent]
,[attr_value]
,[attr_value_type]
From [DB].[TejasTestData].[NWSignal_TimingAttributes]

Listing 10.1: Parameters of signal attribute table with key-value implementation

10.3 Database connection

Itis very important to establish the connection between output of software XML and
ARXML code to the database. The structure of XML output and database are differ-
ent. Therefore, the intermediate layer of data types is required which convert both
topological outputs in a suitable form to store in a data base. It also used to establish
the window connection to the database. Therefore, in windows programming, the
retrieving or merging the data after analysis of files can be possible. Therefore both
way communications can be possible in a database management. The overview of

the database connection is shown in the figure 10.1
DB |

A 4

Software XML
Database Type |<
ARXML

Figure 10.1: Database connection

10.3 Database connection

‘ Communication
T Connector

Network Resources

Socket

|

i

1

PDU i
[

Task Runnable |

| Signal | - [
m

i |
t | } In I:NWSignaI
— = 3 X po— [
= ‘) ; =
=
b ~—

Software Topology

Hardware Topology

Figure 10.2: Database model of complete project

11 Conclusion

Failure of the real-time embedded system may endanger human life or cause the
economic loss for the company. It is very difficult to find out the behavior of the
embedded system and predict the performance. The path followed by the signal in
all the layers of the communication plays an important role in the performance.

The performance analysis is an important key in the design process of the distributed
embedded system. It is used to analyze the performance characteristics of the sys-
tem in the early phase of the design. Furthermore, this analysis helps the designer to
find out the path of the signal, the time required for execution and artifacts required
in the system. The tool created in the project work helped to deal with the complex-
ity of ECU architecture and communication network by bringing hardware and soft-
ware topologies together. The developer can visualize the complete data model of
the communication network. The system model and the formally described cause
effect chains are brought together using database. All the timing attributes along
with their values are stored in the database. This shows the complete data provi-
sion which is required for the formal analysis of cause effect chain is achieved in
the tool. These data models are further used to find out the worst time scenarios in
cause-effect chains.

In the future, there is a possibility of changes in software modules, runnable names,
etc. Therefore, consideration of such variation in the tool can be the future work.

60

START/LOW SPEED

Figure A.1: Electric/Hybrid Vehicle
(EHV]

EEEE
= Software

ol el e

AUTOSAR Runtime Environment (RTE)

"ot
s ECU-Hardware

Note: This figure is incomplete with respect 1o the possible interactions between the layers.

Figure A.2: AUTOSAR Layers
[A.D]

61

Bibliography

[A.D]

[AUT]

[Bos14]

[Con]

[EHV]

[for]

A.D., Corporation: AUTOSAR. - https://www.
global-greenhouse-warming.com/hybrid-electric-vehicle.
html

AUTOSAR: AUTOSAR development process. — https://www.autosar.
org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_
TR_TimingAnalysis.pdf

BoscH, Robert: Bosch Automotive Electrics and Automotive Electronics:
Systems and Components. In: Networking and Hybrid Drive. Springer
Vieweg, 2014

CONTINENTAL AUTOMOTIVE GMBH (Hrsg.): Timing Modelling with AU-
TOSAR. Continental Automotive GmbH

EHV: Electric and Hybrid vehicle. - https://www.
global-greenhouse-warming.com/hybrid-electric-vehicle.
html

FORMATS, Exchange: Examples of data exchange for-
marts. - http://www.para-agua.net/en/explorar/
herramientas/sistemas-redes-informacion/p3-publicaciones/
tipo-de-formato/formatos-de-intercambio-de-datos (n.d)

[HHGS18] HOFSTETTER, Martin ; HIRz, Mario ; GINTZEL, Martin ; SCHMIDHOFER,

[HMG11]

[KCG*17]

Andreas: Multi-objective system design synthesis for electric powertrain
development. In: 2018 IEEE Transportation Electrification Conference
and Expo (ITEC) IEEE, 2018, S. 286-292

HEGDE, Rajeshwari ; MISHRA, Geetishree ; GURUMURTHY, KS: Software
and Hardware Design Challenges in Automotive Embedded System. In:
International Journal of VLSI Design & Communication Systems 2 (2011),
Nr. 3,S.165

KUGELE, Stefan ; CEBOTARI, Vadim ; GLEIRSCHER, Mario ; HASHEMI,
Morteza ; SEGLER, Christoph ; SHAFAEI, Sina ; VOGEL, Hans-Jorg ; BAUER,
Fridolin ; KNOLL, Alois ; MARMSOLER, Diego u.a.: Research challenges
for a future-proof e/e architecture-a project statement. In: INFORMATIK

62

https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TR_TimingAnalysis.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TR_TimingAnalysis.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_TR_TimingAnalysis.pdf
https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
https://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html
http://www.para-agua.net/en/explorar/herramientas/sistemas-redes-informacion/p3-publicaciones/tipo-de-formato/formatos-de-intercambio-de-datos
http://www.para-agua.net/en/explorar/herramientas/sistemas-redes-informacion/p3-publicaciones/tipo-de-formato/formatos-de-intercambio-de-datos
http://www.para-agua.net/en/explorar/herramientas/sistemas-redes-informacion/p3-publicaciones/tipo-de-formato/formatos-de-intercambio-de-datos

Bibliography 63

(KVD]

[Lap17]

2017 (2017)

KEY-VALUE DATABASE?, What is a.: Database-guide. — https://
database.guide/what-is-a-key-value-database/

LAPLANTE, Phillip A.: Requirements engineering for software and systems.
Auerbach Publications, 2017

[LPWT15] LomoNoOvA, EA ; PAULIDES, JJH ; WILKINS, S ; TEGENBOSCH, J:

[LSS*12]

(MB]

[SJ18]

[SSH"16]

[Tut]

(XML]

ADEPT:“ADvanced electric powertrain technology"-Virtual and hard-
ware platforms. In: 2015 Tenth International Conference on Ecological
Vehicles and Renewable Energies (EVER) IEEE, 2015, S. 1-10

LUKASIEWYCZ, Martin ; STEINHORST, Sebastian ; SAGSTETTER, Florian
; CHANG, Wanli ; WASZECKI, Peter ; KAUER, Matthias ; CHAKRABORTY,
Samarjit: Cyber-physical systems design for electric vehicles. In: 2012
15th Euromicro Conference on Digital System Design IEEE, 2012, S. 477-
484

MERCEDES-BENZ: Powertrain Engine Technology. — https:
//www.mercedes-benz.com/en/mercedes-benz/vehicles/
aggregates/powertrain-engines/(2016, September 14)

SINGH, Ajeet ; JAIN, Anurag: Study of Cyber Attacks on Cyber-Physical
System. In: Communication and Technology (2018)

SAILER, Andreas ; SCHMIDHUBER, Stefan ; HEMPE, Maximilian ;
DEUBZER, Michael ; MOTTOK, Juergen: Distributed Multi-Core Develop-
ment in the Automotive Domain-A Practical Comparison of ASAM MDX
vs. AUTOSAR vs. AMALTHEA. In: ARCS 2016; 29th International Confer-
ence on Architecture of Computing Systems VDE, 2016, S. 1-8

TUTORIALSPOINT.COM.: UML - Class Diagram.. — https://www.
tutorialspoint.com/uml/uml_class_diagram.htm

XML: Managing Data Exchange/lntroduction to XML.. — https:
//en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/
Introduction_to_XML (n.d)

https://database.guide/what-is-a-key-value-database/
https://database.guide/what-is-a-key-value-database/
https://www.mercedes-benz.com/en/mercedes-benz/vehicles/aggregates/powertrain-engines/
https://www.mercedes-benz.com/en/mercedes-benz/vehicles/aggregates/powertrain-engines/
https://www.mercedes-benz.com/en/mercedes-benz/vehicles/aggregates/powertrain-engines/
https://www.tutorialspoint.com/uml/uml_class_diagram.htm
https://www.tutorialspoint.com/uml/uml_class_diagram.htm
https://en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/Introduction_to_XML
https://en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/Introduction_to_XML
https://en.wikibooks.org/wiki/XML_-_Managing_Data_Exchange/Introduction_to_XML

	List of Figures
	List of Tables
	Listing
	Nomenclature
	1 Introduction
	1.1 Drive for the development
	1.2 Background of project work
	1.3 Purpose of the project work
	1.4 Tool Overview

	2 State of art
	2.1 Powertrain
	2.1.1 Introduction of powertrain
	2.1.2 Electrification of powertrain

	2.2 Cyber physical system
	2.3 Complexity of network
	2.4 Automotive architecture
	2.4.1 Embedded architecture
	2.4.2 E/E architecture

	2.5 Types of ECUs in powertrain
	2.6 Network Communication
	2.7 Bus Topology
	2.8 Automotive Communication Buses and Network Protocols

	3 Helping tools
	3.1 XML Notepad
	3.2 Microsoft Visual Studio
	3.3 Git
	3.4 ARXML Visualizer
	3.5 SQL Server Management Studio

	4 Methodology
	4.1 Software Development Concepts
	4.2 Agile Method
	4.2.1 Implementation of Agile in project

	5 Data Exchange Formats
	5.1 Industry Standards
	5.2 Available exchange formats
	5.3 Proprietary format
	5.4 Available exchange formats for data model
	5.4.1 Amalthea
	5.4.2 AUTOSAR Timex

	6 Software Topology - Tool Release #1
	6.1 Concept of software topology
	6.2 Challenges

	7 Development of tool for SW-XML
	7.1 Analysis of SW-XML
	7.2 Programming environment
	7.2.1 Purpose of programming
	7.2.2 Modeling in object-oriented programming

	7.3 Automotive software development concepts
	7.3.1 UML Diagram
	7.3.2 Class Diagram
	7.3.3 Modularization

	7.4 Code development
	7.4.1 Use cases
	7.4.2 Output of runnable chain formation

	8 Hardware Topology - Tool Release #2
	8.1 Concept of hardware topology
	8.2 Definitions of communication cluster
	8.3 Focus of ARXML
	8.4 Communication Cluster
	8.4.1 ARXML: OSI Layers
	8.4.2 Aim of communication cluster consideration

	9 Code Development for ARXML
	9.1 Analysis of ARXML
	9.2 Challenges in development
	9.3 Development strategy
	9.4 ARXML Output

	10 Database Management-Tool Release #3
	10.1 Necessity of database management
	10.2 Database management strategy
	10.3 Database connection

	11 Conclusion
	A Apendix
	Bibliography

