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Model-based Design
Introduction
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MoC precisely determines
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Model-based Design
Introduction
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 synchronization overhead

 communication overhead
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Model-based Design
Introduction
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buffer boundedness

deadlock-freeness



7

Model-based Design
Introduction

Global Clock

Synchronous Model
Dataflow Process Network

Code

CPU GPU

Heterogenous Platforms



8

Model-based Design
‚the starting point‘

Introduction

Global Clock

Synchronous Model

desynchronization

Dataflow Process Network

„Averest framework [http://www.averest.org/]“

„Model-based Design of Embedded Systems by Desynchronization [Yu Bai, 2016]“
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Motivation
‚dataflow process network (DPN)‘

Introduction
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Motivation
‚dataflow process network (DPN)‘

Introduction

Dataflow Process Network

Static Sequential Parallel

Heterogeneous
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Static
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-static behaviors

-statically determined data

-static evaluation

-sequential behaviors

-dynamically determined data

-sequential evaluation 

-

-parallel behaviors

-dynamically determined data

-independent evaluation



Motivation
‚related work‘

Introduction

 state-of-the-art design tools for modeling

 Ptolemy project (Eker et al., 2003)

 SysteMoC (Haubelt et al., 2006)

 FERAL (Kuhn et al., 2013)

 emphasis on the design and analysis of systems

 synthesis facility
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„lack of automatic synthesis methods“



Motivation
‚related work‘

Introduction

 state-of-the-art design tools for synthesis
 (Yviquel et al., 2013)
 (Lund et al., 2015)
 (Boutellier et al., 2018)
 based on a specific dataflow MoC
 ORCC framework (Yviquel et al., 2013)
 heterogeneous DPNs
 performance degradation
 manual deployment
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Abstract 
Model

Simulation

Mapping

Code Generation

C/C+
+
C/C++

Architecture
Model

Target Hardware

Multi-core CPUs

non-trivial manual deployment

„simply employing DPNs not enough“



Motivation 
‚research goals‘

Introduction

 a common model-based design tool
 focuses on the software synthesis of DPNs
 enables automatic implementation of different dataflow MoCs
 SDF, KPN and DDF 
 systematic exploration of the tradeoffs

 a smarter synthesis method
 exploits heterogeneity in the network
 scheduling/execution precisely based on the kinds of processes

13

 further automating the design process
 mapping models on cross-vendor COTS target hardware
 integral part of the synthesis method
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The Design Flow
‚overview‘

Contributions
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The Design Flow
‚the general CAL model‘

Contributions

Definition 1 (Input Constraint):
each input channel must have sufficient input tokens

Definition 2 (Output Constraint):
each output channel must contain space for output tokens

Definition 3 (Guard Constraint):
required values on the inputs are available i.e., the guard must be true

Actions

processes
guarded actions

FIFO buffers

actor merge() int X1, int X2 ==> int Y1
act1: action X1: [x1] ==> Y1: [y1]

guard true
do

y1:= x1;
end

act2: action X2:[x2] ==> Y1: [y1]           
guard true
do

y1:= x2;
end

end
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The Design Flow
‚the supported dataflow models‘

Contributions

actor ITE() int X1, int X2, int X3 ==> int Y 
act1: action X1: [x1], X2:[x2], X3:[x3] ==> 
Y: [y]

guard x1 >= 0
do

y:= x2;
end

act2: action X1:[x1], X2:[x2], X3:[x3] ==> 
Y: [y]

guard x1 < 0
do

y:= x3;
end

end

Static (SDF)
actor split() int X1, int X2 ==> int Y1, 
int Y2
act1: action X1: [x1], X2:[x2] ==> 
Y1: [y1]

guard x1 = 1
do

y1:= x2;
end

act2: action X1:[x1], X2:[x2a, x2b] ==> 
Y1: [y1], Y2:[y2]

guard x1 = 2
do

y1:= x2a;
y2:= x2b;

end
end

Sequential (KPN)
actor POR() bool X1, bool X2 ==> 
bool Y 
act1: action X1:[x1] ==> Y: [y]

guard x1 = true
do

y:= 1;
end

act2: action X2:[x2] ==> Y: [y]
guard x2 = true
do

y:= 1;
end

act3: action X1:[x1], X2:[x2] ==> 
Y: [y]

guard x1 = false and x2 = false
do

y:= 0;
end

end

Parallel (DDF)
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The Design Flow
‚the synthesis tool chain‘
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The Design Flow
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The Design Flow
‚the synthesis tool chain‘
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The Design Flow
‚ the synthesis tool chain‘

Contributions
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The Design Flow
‚the synthesis tool chain‘
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The Design Flow
‚the synthesis tool chain‘
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The Design Flow
‚ the synthesis tool chain‘

Contributions
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The Design Flow
‚the synthesis tool chain‘
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Evaluation

Experimental Setup
‚the target devices‘
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Evaluation

Case-Study I
‚the ConceptCar‘
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EvaluationCase-Study I
‚dataflow emulation of the ConceptCar
(open-loop setting)‘
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Evaluation

Case-Study I
‚results: open-loop setting‘

CPU2 GPU3 (Dedicated)

 generate implementations based on the individual dataflow MoCs
 does using a more generalized dataflow MoC than needed affect performance?



31

Evaluation

Case-Study I
‚dataflow emulation of the ConceptCar
(closed-loop setting)‘
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EvaluationCase-Study I
‚results: closed-loop setting‘

CPU2

GPU3 (Dedicated)

 how does a feedback loop in the network affect performance?
 does exploiting heterogeneity improve performance?
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Evaluation

Case-Study II
‚the smart building automation system‘



34

EvaluationCase-Study II
‚results: end-to-end performance‘

CPU1 GPU1 (Integrated)

GPU2 (Dedicated)

 does exploiting heterogeneity improve performance?
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Summary
Conclusions
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 a common dynamic environment for synthesis
 goal 1: systematic exploration of the tradeoffs
 implementations based on the precise dataflow MoCs

 goal 2: a smarter synthesis method that exploits heterogeneity
 ability to exploit heterogeneity significantly improves performance

 goal 3: a design process for cross-vendor portability
 employing OpenCL as an integral part of the synthesis process
 systematic deployment of generated versions on various COTS hardware
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