
Embedded Software 
Synthesis of Heterogeneous 
Dataflow Models

Omair Rafique
10.09.2021



Contents

2

01 02 03 04

Introduction Contributions Evaluation Conclusions



3

Model-based Design
Introduction

Model
Code

CPU GPU

Target Hardware

FPGA

MoC precisely determines
“why, when, which atomic action 

of a system is executed”



4

Model-based Design
Introduction

Code
Global Clock

Synchronous Model

CPU

Target Hardware

FPGA



5

Model-based Design
Introduction

Global Clock

Synchronous Model

CPU GPU

Heterogenous PlatformsCode

 synchronization overhead

 communication overhead



6

Model-based Design
Introduction

Dataflow Process Network
Code

CPU GPU

Heterogenous Platforms

buffer boundedness

deadlock-freeness



7

Model-based Design
Introduction

Global Clock

Synchronous Model
Dataflow Process Network

Code

CPU GPU

Heterogenous Platforms



8

Model-based Design
‚the starting point‘

Introduction

Global Clock

Synchronous Model

desynchronization

Dataflow Process Network

„Averest framework [http://www.averest.org/]“

„Model-based Design of Embedded Systems by Desynchronization [Yu Bai, 2016]“



9

Motivation
‚dataflow process network (DPN)‘

Introduction

increased expressiveness

increased analyzability

Dataflow Process Network

Static 
DPNs

Homogeneous
Dataflow

(HSDF)

Static
Dataflow

(SDF)

Cyclo-Static
Dataflow

(CSDF)

Dynamic 
DPNs

Boolean
Dataflow

(BDF)

Kahn Process 
Networks

(KPN)

Dynamic
Dataflow

(DDF)

Static
Dataflow

(SDF)

Kahn Process 
Networks

(KPN)

Dynamic
Dataflow

(DDF)



10

Motivation
‚dataflow process network (DPN)‘

Introduction

Dataflow Process Network

Static Sequential Parallel

Heterogeneous
Dataflow Process Network

Static
Dataflow

(SDF)

Static
Dataflow

(SDF)

Kahn Process 
Networks

(KPN)

Kahn Process 
Networks

(KPN)

Dynamic
Dataflow

(DDF)

Dynamic
Dataflow

(DDF)

-static behaviors

-statically determined data

-static evaluation

-sequential behaviors

-dynamically determined data

-sequential evaluation 

-

-parallel behaviors

-dynamically determined data

-independent evaluation



Motivation
‚related work‘

Introduction

 state-of-the-art design tools for modeling

 Ptolemy project (Eker et al., 2003)

 SysteMoC (Haubelt et al., 2006)

 FERAL (Kuhn et al., 2013)

 emphasis on the design and analysis of systems

 synthesis facility

11

„lack of automatic synthesis methods“



Motivation
‚related work‘

Introduction

 state-of-the-art design tools for synthesis
 (Yviquel et al., 2013)
 (Lund et al., 2015)
 (Boutellier et al., 2018)
 based on a specific dataflow MoC
 ORCC framework (Yviquel et al., 2013)
 heterogeneous DPNs
 performance degradation
 manual deployment

12

Abstract 
Model

Simulation

Mapping

Code Generation

C/C+
+
C/C++

Architecture
Model

Target Hardware

Multi-core CPUs

non-trivial manual deployment

„simply employing DPNs not enough“



Motivation 
‚research goals‘

Introduction

 a common model-based design tool
 focuses on the software synthesis of DPNs
 enables automatic implementation of different dataflow MoCs
 SDF, KPN and DDF 
 systematic exploration of the tradeoffs

 a smarter synthesis method
 exploits heterogeneity in the network
 scheduling/execution precisely based on the kinds of processes

13

 further automating the design process
 mapping models on cross-vendor COTS target hardware
 integral part of the synthesis method



Contents

14

01 02 03 04

Introduction Contributions Evaluation Conclusions



15

The Design Flow
‚overview‘

Contributions

𝟏

𝟐

𝟑

𝟒 𝟓𝟎
 𝒇𝟎

 𝒇𝟏

 𝒇𝟐

 𝒇𝟑

 𝒇𝟒

 𝒇𝟓

M
od

el
 

Sy
nt

he
si

s

OpenCL Abstraction

Code-Generators

Runtime 
Manager

𝒑𝟏

𝒑𝟏

(Core0)
Dispatcher

𝒑𝟐

𝒑𝟑

𝟏

Process-Queue Device-Queue

Core 0

Core 1

CU 0

𝒑𝟐

(Core1)

Kernels

𝒑𝟑

(CU 0)

𝟐

𝟑

𝒑𝟏

(Core0)
𝒑𝟐

(Core1)
𝒑𝟑

(CU 0)
𝒑𝟏

(Core0)
𝒑𝟐

(Core1)
𝒑𝟑

(CU 0)
Dispatcher

[static]

[static]

[parallel]

[static]

[sequential] [static]

Centralized-Host

Sy
nt

he
si

s

OpenCL Abstraction

Code-Generators

Runtime 
Manager

𝒑𝟏

𝒑𝟏

(Core0)
Dispatcher

𝒑𝟐

𝒑𝟑

𝟏

Process-Queue Device-Queue

Core 0

Core 1

CU 0

𝒑𝟐

(Core1)

Kernels

𝒑𝟑

(CU 0)

𝟐

𝟑

𝒑𝟏

(Core0)
𝒑𝟐

(Core1)
𝒑𝟑

(CU 0)
𝒑𝟏

(Core0)
𝒑𝟐

(Core1)
𝒑𝟑

(CU 0)
Dispatcher

Centralized-Host

Code-Generators

OpenCL Abstraction

Centralized-Host Kernels

Process-Queue Device-Queue

Runtime 
Manager

C
A

L
   

   



The Design Flow
‚the general CAL model‘

Contributions

Definition 1 (Input Constraint):
each input channel must have sufficient input tokens

Definition 2 (Output Constraint):
each output channel must contain space for output tokens

Definition 3 (Guard Constraint):
required values on the inputs are available i.e., the guard must be true

Actions

processes
guarded actions

FIFO buffers

actor merge() int X1, int X2 ==> int Y1
act1: action X1: [x1] ==> Y1: [y1]

guard true
do

y1:= x1;
end

act2: action X2:[x2] ==> Y1: [y1]           
guard true
do

y1:= x2;
end

end

16



The Design Flow
‚the supported dataflow models‘

Contributions

actor ITE() int X1, int X2, int X3 ==> int Y 
act1: action X1: [x1], X2:[x2], X3:[x3] ==> 
Y: [y]

guard x1 >= 0
do

y:= x2;
end

act2: action X1:[x1], X2:[x2], X3:[x3] ==> 
Y: [y]

guard x1 < 0
do

y:= x3;
end

end

Static (SDF)
actor split() int X1, int X2 ==> int Y1, 
int Y2
act1: action X1: [x1], X2:[x2] ==> 
Y1: [y1]

guard x1 = 1
do

y1:= x2;
end

act2: action X1:[x1], X2:[x2a, x2b] ==> 
Y1: [y1], Y2:[y2]

guard x1 = 2
do

y1:= x2a;
y2:= x2b;

end
end

Sequential (KPN)
actor POR() bool X1, bool X2 ==> 
bool Y 
act1: action X1:[x1] ==> Y: [y]

guard x1 = true
do

y:= 1;
end

act2: action X2:[x2] ==> Y: [y]
guard x2 = true
do

y:= 1;
end

act3: action X1:[x1], X2:[x2] ==> 
Y: [y]

guard x1 = false and x2 = false
do

y:= 0;
end

end

Parallel (DDF)

17



18

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevices

Schedulers

Dispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model



19

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevices

Schedulers

Dispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model



20

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevices

Schedulers

Dispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model
Back-end

Code-
generators

Code-
generators



21

The Design Flow
‚ the synthesis tool chain‘

Contributions

Back-end

Code-
generators

start

end

static process

no more 𝒂𝒄𝒕𝒊𝒐𝒏

false

true

consume tokens from all inputs

iterate action

evaluate guard

execute action

SDF code generation

sequential process
no more 𝒂𝒄𝒕𝒊𝒐𝒏

false

iterate action

evaluated guard

consume tokens from inputs

execute action

KPN code generation

true

parallel process
no more 𝒂𝒄𝒕𝒊𝒐𝒏

iterate action

tokens available guard inputs

evaluate guard

inputs available action inputs

DDF code generation

space available action outputs

execute action

false

false

false
false

true

true

true

true

false



22

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevices

Schedulers

Dispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model



23

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevicesDispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model

devicesDevicesDevice 
Queue

Runtime System

Runtime Manager

OpenCL Abstraction

OpenCL 
Kernels

Host

SchedulersSchedulers



24

The Design Flow
‚ the synthesis tool chain‘

Contributions

SchedulersSchedulers

start

end

static process

no

yes

tokens available all inputs

space available all outputs

schedule for execution

SDF scheduler

yes

no

sequential process

yes

iterate action

space available in outputs

schedule for execution

KPN scheduler

tokens available in inputs

guard fulfilled
no

yes

block until 
tokens 

available

no

yes

block until 
space 

available

no

sequential process parallel process

no

yes

tokens available any input

space available any output

schedule for execution

DDF scheduler

yes

no



25

The Design Flow
‚the synthesis tool chain‘

Contributions

Back-end

Code-
generators

Runtime System

Process 
Queue

devicesDevices

Schedulers

Dispatcher
Handlers

Runtime Manager

OpenCL 
Kernels

Host

actorsActors

Device 
Queue

OpenCL Abstraction

Network
File

CAL DPN Model

SchedulersSchedulers

Runtime Manager

Dispatcher
Handlers

Kernel k𝒕𝟑𝒕𝟒𝒕𝟓𝒕𝟔𝒕𝟕 𝒕𝟎𝒕𝟏𝒕𝟐

Dispatcher

𝒌𝟏

𝒌𝟐

Device



Contents

26

01 02 03 04

Introduction Contributions Evaluation Conclusions



27

Evaluation

Experimental Setup
‚the target devices‘



28

Evaluation

Case-Study I
‚the ConceptCar‘



29

EvaluationCase-Study I
‚dataflow emulation of the ConceptCar
(open-loop setting)‘



30

Evaluation

Case-Study I
‚results: open-loop setting‘

CPU2 GPU3 (Dedicated)

 generate implementations based on the individual dataflow MoCs
 does using a more generalized dataflow MoC than needed affect performance?



31

Evaluation

Case-Study I
‚dataflow emulation of the ConceptCar
(closed-loop setting)‘



32

EvaluationCase-Study I
‚results: closed-loop setting‘

CPU2

GPU3 (Dedicated)

 how does a feedback loop in the network affect performance?
 does exploiting heterogeneity improve performance?



33

Evaluation

Case-Study II
‚the smart building automation system‘



34

EvaluationCase-Study II
‚results: end-to-end performance‘

CPU1 GPU1 (Integrated)

GPU2 (Dedicated)

 does exploiting heterogeneity improve performance?



Contents

35

01 02 03 04

Introduction Contributions Evaluation Conclusions



Summary
Conclusions

36

 a common dynamic environment for synthesis
 goal 1: systematic exploration of the tradeoffs
 implementations based on the precise dataflow MoCs

 goal 2: a smarter synthesis method that exploits heterogeneity
 ability to exploit heterogeneity significantly improves performance

 goal 3: a design process for cross-vendor portability
 employing OpenCL as an integral part of the synthesis process
 systematic deployment of generated versions on various COTS hardware



THANK YOU FOR LISTENING!!

01 02 03 04

Introduction Contributions Evaluation Conclusions


