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1 Einleitung

Kapitel 1 E|n|9|tung

Ziel dieser Arbeit ist es, eine Methode zwerfigung zu stellen, mit der ein Simulator fur
gebaudespezifische Aufgaben modelliert werden kann. Die Modellierung muf3 dabei so ange-
legt sein, daf} sowohl einfache als auch sehr komplexe Simulatoren fur spezielle Gebaude ent-
worfen werden konnen. Aus dem erstellten Modell ist es anschliel3end madglich, mit Hilfe von
Generatoren automatisch ein Programm zu erzeugen. Dadurch kann ein Entwerfer ohne spezi-
elle Kenntnisse auf dem Gebiet der Simulation einen Gebaude-Simulator entwickeln.

Simuliert werden sollen im Geb&audebereich auftretende Gegebenheiten, also hauptsachlich
physikalische GroRen wie Raumtemperatwftfeuchtigkeit oder Luftdruck. Diese Grdol3en

werden quasi-kontinuierli&hberechnet; es kénnen dabei sowohl kontinuierlicheyadhge

(z.B. Anderung der Lufttemperatur) als auch atomare Ereignisse (Tur wirfthe®dferiick-
sichtigt werden. Der Simulator kann jeweils so konfiguriert.bmadelliert werden, daf3 er fur

ein spezielles Gebaude die momentan interessanten Grof3en beredhiterhivkann der
Simulator sukzessive verfeinert werden: wird beispielsweise in einem frihen Stadium der
Simulation nur eine grobe Abschéatzung der Raumtemperatur benétigt, so kann diese spater
durch genauere Berechnungsformeln verfeinert werden.

Eine weitere Anforderung an den Simulator ist, dal} einzeéile durch reale Hardware
ersetzt werden kénnen (Hardware-In-The-Loop). So kdnnen zum Beispiel die Messwerte
eines ‘EBmperaturfihlers benutzt werden, um die Lufttemperatur zu bestimmen, und die
gemessenen &te konnen herangezogen werden, um die Luftfeuchtigkeit zu simulieren. Um
die Integration von Hardware in den Simulator zu ermdglichen, mul3 dieser echtzeitfahig sein.

Der SFB-Bericht beschreibt eine Moglichkeit zur Modellierung (und Generierung) einer flexi-
blen Simulationsumgebung fir Gebaude mit deren Hilfe Gebaudesteuerungen ausgetestet
werden konnen (siehe [SFB94]). Die hier gestellte Modellierungstechnik geht von einem

sehr eingeschrankten Entwurfsbereich (Doméane) fur Applikationen aus: es sollen nur Gebau-
desimulatoren modelliert werden. Fiur diese Domane werden typische Entwurfs- und Pro-

grammuster gesucht und in Patt@mssammengefaf&t. Mit diesen Patterns kann dann ein
Simulator modelliert und anschliel3end generiert werden.

1. siehe dazu Kapitel 3.1 oder [MaM89].
2. Patterns werden in Kapitel 3 und in [GHJ95] und [Pre95] beschrieben.




Das 2. Kapitel behandelt den Software-Entwurf mit Patterns. Dieser wird zun&chst allgemein
beschrieben, und anschlieend wird gezeigt, wie Patterns zur Modellierung und Generierung
eines Gebaude-Simulators benutzt werden kénnen. Im Kapitel 3 wird auf die Simulation und
das SimulateModell eingegangen. Zusatzlich wird kurz die Steuerung der Simulation
besprochen, und ein Refungs-Konzept wird vgestellt, mit dem die wahrend der Simula-
tion anfallenden Integrations- und Interpolationsprobleme geldst werden kénnen. Der Aus-
blick in Kapitel 4 schliel3t den Hauptteil der Arbeit ab.

Im Anhang A wird ein Pattern-Katalog \g@stellt, mit dem ein Gebaude-Simulator modelliert
werden kann. Der Katalog enthalt speziell auf den Entwurfsbereich ,Gebaude-Simulation*®
zugeschnittene Patternsifd/ein Pattern aus diesem Katalog iexfreferenziert, so erfolgt
dieses unter Angabe des Pattern-Namlkmssivgedruckt) und der Seitennummauf der das
Pattern beschrieben ist. Dadurch ist dasdaffinden der Patterns im Katalog einfacher




2 Modellierung mit Patterns

«apiel2  Modellierung mit Patterns

2.1 Software-Entwurf

Im folgenden wird ein Ansatz zum Software-Entwurfgestellt, der sich zur Modellierung

von Anwendungen eines speziellen Entwurfsbereiches eignet. Dabei soll aus den aufgestellten
Modellen ein Grof3teil der Applikation automatisch generiert werden. Der Software Entwurfs-
prozel? ist genauer in [SFB96] erlautert.

In einem ersten Schritt der Software-Erstellung muf3 die Problembeschreibgiédtigoana-

lysiert werden, um einen Anforderungskatalog fur die zu erstellende Software aufzustellen.
Dabei werden die in der ,realenelWf vorkommenden Begifié abstrahiert und strukturiert,

um einen systematischen Zugang zur Aufgabenstellung zu erhaltengalnisrder Analyse

erhalt man ein Basismodell, mit derargange und Zusténde aus dem Problembereich model-
liert werden kdnnen. Zuséatzlich erhalt man zu den einzelnen Anwendungsprojekten Charakte-
ristiken, die das spezielle Projekt naher spezifizieren. Die Charakteristiken sind also
Verfeinerungen und Erweiterungen des Basismodells. Sie erlauben, die Aufgabenstellungen
des Anwendungs-Projektes adaquat zu beschreiben. Der Anforderungskatalog an die zu ent-
werfende Software umfaldt das Basismodell mit seinen Charakteristiken und die Beschreibung
des urspriunglichen Problems im Umfeld dieser Modelle. Wahrend der Entwurfs-Phase wer-
den nun €ile der Basismodelle und die Charakteristik flr eine Applikation zusammengefihrt
und verfeinert. Als Egebnis erhéalt man ein Applikationsmodell, in dem alle applikationsspe-
zifischen Daten und Algorithmen enthalten sind. Aus diesem Applikationsmodell kann dann
die endgiltige Software moglichst vollstandig generiert werden.




2.1  Software-Entwurf

Der Software-Entwurfsprozel3 ist noch einmal in Abbildung 3 (siehe [SFB9gpstalit.

Problem- Sofgvare Software
beschreibung Anforderungen Entwurf Code

Q% Analyse O Entwurf O Im?;%?nen_ %Q

Anwenf Basis | Bibliothek
dungs- Architekturmodell
feld Q% manuell @
Modell Applikations-

Charak- | transfor- | “Modell Code
A terlstii mation N
nwen- .
dungs- N\ W, Generierung %Q
projekt ( F—= manuell W,

Dokumentation

Abb. 3: Allgemeiner Software-Entwurfsprozel3

Als Beispiel sei hier die Programmierung einer Heizungssteuerung erwahnt. Bei der Modellie-
rung der Heizungsanlage treten so allgemeine Begsile ,Raum®, ,Heizkorper®, ,Kessel*

oder auch ,Raumtemperatur” auf. Die hinter diesen Beegrilstehenden Konzepte und
Objekte werden in moglichst optimaler Form (das heif3t kurz, aussagekréftig und vollstandig)
in einem geeigneten Basismodell zusammengefal3t. Spezielle Eigenschaften der Steuerung
(zum Beispiel Begrfe wie ,Kesseltemperatur®, ,&htilsteuerung” etc.) bilden die Charakteri-

stik der Heizungssteuerung.iM/zusétzlich noch ein weiteres Anwendungs-Projekt geschrie-
ben, zum Beispiel ein Simulator zur Uberpriifung der Steuerung, so kann dieses auf
demselben Basismodell operieren; in der Charakteristik des Simulators treten dann zuséatzlich
neue Begrile wie ,Warmeubegangskodfzient* oder &hnliches auf.

Um den Analyseprozel3 zu unterstiitzen, kann auf ein breites Spektrum von Modellierungs-
techniken und Notationen zurlckgetgit werden (siehe [RBP91], [Boo90]). Bei gfattig
durchgefiihrten Problemanalysen konnailefgebnisse und Analyseverfahren aus anderen
Projekten ibernommen werden (,reuse of design®).

Anschliel3end an die Analysephase erfolgt der Entwurf. Ziel der Entwurfs-Phase ist ein Appli-
kationsmodell, das die Problemlésung beschreibt. In diesem Modell ist also erklart, wie die
einzelnen €ilaspekte geldost werden kénnen und wie adldéeTdes Programmes zusammen-
spielen. Das Applikationsmodell stellt eine formale Spezifikation der Softwar®aldurch

kann die eigentliche Implementierung des Programmes derart von Generatoren unterstitzt
werden, dal3 eine Programmierung ,von Hand“ auf ein Mindestmalf? reduziert wird. Die Gene-
ratoren greifen auf eine Bibliothek von fertigen Software-Bausteinen zurtick, die anhand des
Applikationsmodelles zum fertigen Programm zusammengestellt werden. Auf diese Art und
Weise konnen, korrekte Bibliotheken vorausgesetzt, Flichtigkeitsfehler und unsaubere Pro-
grammiermethoden vermieden werden.




2 Modellierung mit Patterns

Ist das Programm fertig erstellt beziehungsweise generiert worden, so mul elstclalid
Konsistenz mit der urspriinglichen Anforderung tberprift werden. Zuséatzlich sollte abschlie-
Rend der gesamte Erstellungsprozel? nacfakiren und dilaspekten durchsucht werden, die

in einem spateren Entwurf wiederverwendet werden kdnnen.

Zur Modellierung von Applikationen gibt es mehrere Beschreibungsmethoden, die sich
jeweils fur unterschiedliche Gesichtspunkte besonders eignen. In dieser Arbeit werden vor
allem erweiterte Entity-Relationship-Diagramme verwendet. Die darin benutzte Notation ist
von der Object-Modelling-8chnique (OMTsiehe [RBP91]) und der Software-Entwicklungs-
umgebung MOOSE (siehe [SSA94]) ubernommen und wird kurz im folgenden Kapitel
beschrieben. Anschlieend wird eine tUber EER-Diagramme hinausgehende Modellierungs-
methode mit Patterns \gestellt.

2.2 Notation der EER-Diagramme

Zentraler Bestandteil der Entity-Relationship Diagramme ist natirlich das ,Entity“. Bei der
objektorientierten Modellierung kann ein Entity als Objekttyp oder Objektklasse aufgefal3t
werden. Ein Objekttyp wird im folgenden als Rechteck aufgeschrieben und die Beziehungen
zwischen einzelnen Objekttypen werden durch Linien reprasentiert. Mogliche Relationenty-
pen sind die Generalisierung oder ,lIs-A Relation” (reprasentiert durch einen Kreis am Ende
der Relation), die Aggregation oder ,Part-Of Relation* (reprasentiert durch einen Pfeil) und
eine unspezifische Relation. An den einfachen Relationen stehen Kardinalitdten, um anzuzei-
gen wieviele Objekte eineyps mit wievielen Objekten des anderg/mpd in \erbindung ste-

hen kdnnen.

Zur Gruppierung von Objekttypen kénnen diese im Schemata zusammengefal3t werden und
die Schemata selbst konnen hierarchisch angeordnet werden, um Abhangigkeiten einzelner
Objektgruppen zu modellieren. Ein Schema wird durch ein Rechteck mit ausgefillten Ecken
dagestellt.

Die folgende Abbildung zeigt ein einfaches EER-Diagramm in MOOSE-NotatiogeBtatlt

sind vier Objekttypen ,Raum®, ,Raumteiler’, &Wd“ und ,Fenster” die zum Schema
,Gebaude” gehodren. Ein Raum aggregiert dabei mehrere Raumteiler (d.h. er ,besteht* aus




2.3 Patterns

Raumteilern). Ein Raumteiler kann entweder eiren@oder ein Fenster sein. Ein Fenster ist
genau einer \&hd zugeordnet, wahrend in eineafWdl mehrere Fenster seien konnen.

PV Gebaude |

Raum ——»| Raumteiler

Wand Fenster
1...1 0...n

Wand_Fenster

A y

Abb. 4: EER-Diagramm in MOOSE-Notation

Um die Objekttypen weiter zu spezifizieren, kbnnen auch noch Attribute und Methoden der
Objekte mit in die Notation hinzugenommen werden. Die Namen der Attribute und Methoden
werden einfach mit in das Rechteck aufgenommen, das den Objekttyp darstellt. Der Raum in
Abbildung 5 hat beispielsweise die Attribute ,T“ und ,V* und eine Methode ,calculate()".
Kommentare kdnnen an beliebigen Stellen eingefligt werden und stehen in grauen Kastchen.

V' Gebaude N
Raum Raumteiler

T Temperatur '
V Volumen
calculate()

,/ Wand Fenste

A Flache

Berechne neue
Raumtemperatur 1 0..1 0...n

Wand_Fenster ‘

Abb. 5: Erweiterte MOOSE-Notation

2.3 Patterns

Ein Pattern (engl. ,Muster”) beschreibt sowohl eineil &ines Systems, als auch, wie dieser

Teil erzeugt werden kann. Software-Patterns beschreiben normalerweise Programmiermuster
und Abstraktionen, die von erfahrenen Programmierern in ihrer Software benutzt werden. Pat-
terns kombinieren und vereinigen andere Abstraktionen wie zum Beispiel Objekte und Proze-
duren und flgen diese zu einer umfassenden Beschreibung eines kkglaateil Software
zusammen.
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Der Begrif ,Pattern” als Entwurfsmethode wurde erstmals von dem Architekten Christopher
Alexander (siehe [AIS77]) verwendet. In den 60er Jahren untersuchten Architekten Moglich-
keiten eines automatisierten und computerisierten Gebaude-Designs. Gesucht wurden Regeln
und Algorithmen, um Anforderungen in eine Konfiguration vorgetertigten Gebaudeteilen
umzusetzen. Alexander bemerkte, dal3 mit dieser Methode keine guten Architekturen gebaut
werden konnten, sondern daf3 vielmehr a#deTeines Geb&udes individuell und von Hand
zusammengesetzt werden missen. Zur Unterstitzung dieses kreativen Prozesses stellte er
Beschreibungen und Regeln zum Entwurf ,guter® Architektur auf, die er ,Patterns® nannte.
Zum Beispiel ist ,Fenster auf zwei Seiten jedes Raumes” eine solche Beschreibung. Sie gibt
eine Regel fur einen€ll eines guten Entwurfs wiedesagt jedoch nichts daruber aus, wie

grol3 die Fenster sein sollen oder aus welchem Material der Fensterrahmen besteht. Zusam-
mengefallt geben diese Patterns eine Sprache, auf deren Basis Entwirfe gemacht werden
konnen.

Im Bereich des Software-Engineerings wurde der Begdpdttern“ tbernommen und bezeich-

net dort Regeln und Anleitungen zum guten Software Entwurf.

Patterns kdnnen grob generativeund bescheibendePatterns gruppiert werden. Beschrei-
bende Patterns geben wiedwarie ein bereits bestehendes System realisiert wurde (siehe
[GHJ95]). Sie sind rein deskriptiv und pas$Benerative Patterns hingegen geben Regeln und
Hinweise an, wie ein System erzeugt werden kann. Sie gehen also Uber den rein beschreiben-
den Charakter hinaus und abstrahieren soweit, dal3 sie an verschiedenen Stellen wiederver-
wendet werden kdnnen. Generative Patterns sind also erklarend und aktiv im dem Sinne, dal3
sie zur Erzeugung von Systemen benutzt werden kénnen.

Der in dieser Arbeit vagrestellte Modellierungsansatz verwendet ausschlief3lich generative
Software-Patterns und formalisiert diese soweit, dalRaeit@matisché&enerierung von Soft-

ware moglich wird.

2.4 Wiederverwendung

Patterns werden beim Software-Engineering eingesetzt, um ein moglichst hohes Maf an W
derverwendung (reuse) zu erreichen. In frihen Stadien des Software-Engineeringsefand W
derverwendung nur auf der Basis von Prozeduren statt. Diese kdnnen von einem Programm in
ein anderes kopiert werden und missen dort entsprechend angepalf3t werden. Um diese Art der
Wiederverwendung zu erleichtern, werden fertige und meist sehr allgemeine Prozeduren zu
Programmbibliotheken zusammengefalgileTsolcher Bibliotheken kénnen recht einfach aus
Programmen referenziert und benutzt werden. Die eigentlichdeiverwendung findet aber

nur auf Code-Ebene statt.

Eine héhere Ebene deri&derverwendung wird durch objektorientierte Programmiersprachen
maoglich. Hier kbénnen bei sgidltiger Planung ganze Objekte in mehreren Programmen ver-
wendet werden. Ein Objekt beinhaltet dabei sowohl Instanzenvariablen (seinen Zustand), als
auch Methoden, um diesen Zustand manipulieren zu kénnen. Durch die sinnvolle Zusammen-
fassung mehrerer Objekte zu einem Framework kann ein hoher Grag@er¥®¥rwendung
sowohl auf Code- als auch auf Design-Ebene erreicht werden. Unter denf Begunihe-

work’ wird im folgenden eine Menge von Objekten und Klassen, ihre Funktionalitat und ihr
Zusammenspiel aufgefal3t (siehe [Che94]). Ein typisches Beispiel fiir solch ein Framework ist




2.5 Pattern-Notation

das Model-\ew-Controller (MVC) Framework, das zur Modellierung von graphischen
Benutzeroberflachen benutzt werden kann (siehe [KrP88]). In dem Modell wird angegeben,
wie die einzelnen dile einer Anwendung (Anzeige, Datenbasis und Eingabe) miteinander
zusammenspielen. Zuséatzlich zu diesen Entwurfsinformationen sind auch bereits konkrete
Code-Informationen im MVC-Framework enthalten.

Ausgabe

Eingabe View Nachrichten

Zugriffs- und
Editier Nach-
richten

Abhéangigkeiten/

Abhéangigkeiten/
Change Nachrichten

Change Nachrichten

Abb. 6: Model-View-Controller Framework

Ein Entwerfer der eine Benutzeroberflache modellieren will und das MVC-Framework kennt,
kann durch einfache Mechanismen wier&bung oder Delegation die Funktionalitat des
Frameworks nutzen.odv allem erhalt er durch die vom Frameworkgemebene Strukturie-

rung schon Hinweise, wie er seine Applikation &il& partitionieren kann und welche Funk-
tionen die einzelnenélle haben missen.

Eine noch hohere (das heildt abstraktere) Form der objektorientierten Modellierung kann mit
Patterns erfolgen. Patterns verfolgen hauptsachlich die Idee iddemerwendung auf der
Ebene des Designs. Im Gegensatz zu Frameworks, die immer einen recht komplexen Gesamt-
Uberblick eines Modells liefern, konzentrieren sich Patterns auf die Modellierung von kleine-
ren Teilproblemen. Patterns beschreiben jeweils eine Problemsituation, wo sie auftritt und wie
sie geldst werden kann. Dadurch sind sie in vielen verschiedenen Bereichen einkatzbar
Gegensatz dazu sind Frameworks eher starre und komplexe Gebilde, die nur in wenigen unter-
schiedlichen Applikationen eingesetzt werden kdnnen.

Patterns werden haufig eingesetzt, um Frameworks zu dokumentieren. Ist die ,Pattern-Spra-
che® bekannt, so kann schnell ein Einblick in daggggebene Framework erhalten werden.
Jedes Pattern beschreibt dabei das Zusammenspiel zwischen einigen Einzelkomponenten des
Frameworks. Mit ihnen kann Schritt fir Schritt das gesamte Modell beschrieben werden. Eine
kurze Gegenuberstellung von Patterns und Frameworks findet sich in [GHJ95] auf den Seiten
26 bis 28.

2.5 Pattern-Notation

Es gibt verschiedene Notationen, um Patterns aufzuschreiben; diese unterscheiden sich jedoch
nicht wesentlich voneinanddm folgenden wird die Notation von Gamma, Helm, Johnson
und Vlissides (siehe [GHJ95]) wgmstellt.

« Name des Patterns
Der Name soll in kurzer Form den Inhalt des Patterns charakterisieren abieies ein-

-10 -
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Modellierung mit Patterns

fachen, grifigen und selbsterklarenden Namens ist eine wichtige Entscheidung, da diese
Namen im Wkabular der Entwerfer auftreten und eine schnelle Methode zur Kommunika-
tion der Entwerfer untereinander bilden.

Beispiel (siehdeinfache Indiektion (67):

Einfache Indir ektion

Zweck des Patterns
An dieser Stelle wird kurz beschrieben, wozu das Pattern da ist, welches Problem oder wel-
che Design-Entscheidung es I6st und welchen Zweck es erfllt.

Das Pattern dient zur nédheren Beschreibung einer Gruppe
von Objekten. Alle Eigenschaften, die mehrere Objekte
gemeinsam haben, werden dabei in eine extra Klasse aus-
gelagert.

Bekannt unter
Hier werden andere bekannte Namen des Patterns angegeben, falls solche vorhanden sind.
Es sollte auch angegeben werden, wo das Pattern unter dem anderen Namen benutzt wird.

Item Descriptionsiehe [C0a92], Seite 153)

Motivation

Hier wird an einer Beispielsituation erklart, wann das Pattern eingesetzt werden kann und
wie es das Problem in dem Beispiel 16st. Diese Beispielsituation soll helfen, die eher
abstrakte Strukturbeschreibung des Patterns leichter zu verstehen.

Bei einem Gebaude werden haufig nur wenige verschie-
dene Véndtypen verwendet. Eine Aul3enwand beispiels-
weise besteht immer aus denselben Materialien und hat
immer den gleichen Schichtaufbau. Andererseits hat auch
jede Aufenwand ihre individuellen Eigenschaften wie
Lage, GrofRe oder Raumzugehorigkeit. Die gemeinsamen
Attribute Materialien und Schichtaufbau eineafd kon-

nen also in einer neuen Klasse ghdtyp” gespeichert
werden.

Haufig wird bereits in der Motivation die Beispielsituation graphisctyefaellt, um
schneller einen Uberblick Uber die Problemsituation zu vermitteln.
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Wand WandTyp

” yp -
A Flache n 711 M Materialien

R Warmewiderstand

setMaterialien(_Mat))
getMaterialien()

setMaterialien(_Mat)

tR( R
ZitR((Y ) getMaterialien()
—+ setR(_R)
getR() j
— 1 \ "R.
Anwendbarkeit

Dieser Abschnitt soll Anworten zu folgenden Fragen geben:

In welcher Situation kann das Pattern angewendet werdetth&Vschlechten Entwurfe
konnen durch dieses Pattern verbessert werdea2Mennt man eine Situation, in der das
Pattern angewendet werden kann?

Die Einfache Indirektion kann angewendet werden, wenn

mehrere unterschiedliche Objekte eine Eigenschaft mitein-
ander teilen. Ebenso kann sie verwendet werden, wenn
Daten entlang einer Relation zwischen zwei Objekten aus-
getauscht werden sollen.

Struktur

Hier folgt nun der eigentliche Aufbau des Patterns. Die Modellnotation, in der das Pattern
prasentiert wird, ist prinzipiell beliebig. ihtig ist, dal’ die Grundprinzipien des Patterns
deutlich werden und daf3 genug Informationen angegeben werden, damit das Pattern ange-
wendet werden kann. Da die Patterns in dieser Arbeit zur automatischen Generierung von
Software herangezogen werden, muf3 ihre Struktur in einer formalen Form vorliegen. Dazu
wird die OMTNotation benutzt. Sie beschreibt den Aufbau des jeweiligen Patterns und
enthalt zugleich den zu generierenden Code. 2udadtlichung der dynamischen Struktu-

ren werden eventuell zusatzlich noch andere Modellnotationen benutzt.

Das Pattern beruht darauf, dal? es zu den individuell unter-
schiedlichen Objekten (hier in der KlasSbjekt zusam-
mengefaldt) eine weitere Klasdbjektbesclaibunggibt.

Diese beiden Klassen sind mit einer n:1 Relation ver-
knupft. Die Zugrifsfunktionen der gemeinsamen Attribute
(also Instanzenvariablen) werden bei den Objekten nach-
gebildet, so dal3 auf diese Attribute genau wie auf lokale
Attribute zugegrifen werden kann. Die einzelnen Objekte

-12 -



2 Modellierung mit Patterns

merken also gar nicht, wenn auf eine gemeinsame Instan-
zenvariable zugegfén wird.

Objekt Einfache Indirektion
...lokale Attribute... Typ , :

= 71| Objektbeschreibung
getV() V Variable
setV(_V)

getV()
v setV(_V)

ATyp->setV(_V). 1 ATyp->getV(). 1

» Mitwirkende Objekte

Anschliel3end an die Strukturbeschreibung erfolgt eine Erlauterung der an dem Pattern mit-
wirkenden Objekte bzvKlassen und den Relationen. Es werden @ienwortlichkeiten
der einzelnen Objekte beschrieben und Hinweise gegeben, wie die Objekte im spéateren

Entwurf verwendet werden kénnen.

 Zusammenarbeit

Die KlasseObjekt wird mit der KlasseObjektbesctei-
bung verbunden. Gemeinsame Attribute werden als
Instanzenvariablen bei der Klass@bjektbescleibung
angelegt. Zusatzlich werden bei beiden Klassen Zagrif
funktionen auf die Instanzenvariablen angelegt. Die
Zugriffsfunktionen der Klass@bjektverweisen dabei auf
die entsprechenden Methoden ihrer Objektbeschreibung.

Wie arbeiten die einzelnen Objekte zusammen, um ihre Aufgabe zu erflllen?

* Konsequenzen

Die Instanzen der Klasse Objekt arbeiten auf den gemein-
samen Attributen so, als ob sie lokal waren. Die Ztsyrif
funktionen sind so definiert, dal3 keine lokalen Attribute
verandert oder gelesen werden, sondern es wird der
Zugriff an die Objektbeschreibung weeteitet.

Wie gut erfullt das Pattern seine Aufgabe@ltlle Zugestandnisse an den restlichen Ent-
wurf missen gemacht werden2Mhe Eile des Patterns sind fest gegeben und wo lie-
gen die Eile, die bei jedem Entwurf individuell anzupassen sind?

Die Anwendung des Patterns hat sowohl Konsequenzen
fur den (schreibenden) Zudriéiuf gemeinsame Attribute,

als auch fur die Instanziierung.

Beim Schreiben eines gemeinsamen Attributes muf}
immer bedacht werden, dafl? eventuell andere Objekte auch
noch denselben Attributwert haben. Das Schreiben eines
Attributes beeinflul3t also immer eine ganze Gruppe von
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2.6

Software-Entwurf mit Patterns

Objekten.

Bei der Instanziierung der Objekte mufd darauf geachtet
werden, dalR die passenden Objektbeschreibungen auch
immer richtig mit den Objekten verknupft werden.

Implementation
Falltiren, Hinweise und ethniken, wie das Patternfadtiv angewendet werden kann.
Hinweise auf sprachspezifische Konstrukte.

Dieser Abschnitt ist fir einen Entwerfeder mit den in
dieser Arbeit vagestellten Patterns umgeht, wenig interes-
sant, da die Implementierungsarbeit ja von einem Genera-
tor ibernommen wird. Fur den Generator allerdings kann
an dieser Stelle eingetragen werden, wie das Pattern am
besten implementiert wird.

Beispielimplementierung und Benutzung

Quelltexte, die eine Anwendung des Patterns zeigen. Ublicherweise sind diese Beispiele in
Smalltalk oder C++ geschrieben. Die Beispiele in dieser Arbeit sindismaVWbrks
(Smalltalk-Dialekt, siehe [(¢95]) oder in C++ geschrieben.

Klasse Objekt:

getVv
,Gibt Wert des Attributes V einer
Objektbeschreibung zurtick”
yp getV

Bekannte Anwendungen
In diesem Abschnitt kbnnen bekannte Anwendungen des Patterns angegeben werden.

Dieser Eil ist fur den Umgang mit den hier gastellten
Patterns von keiner grof3en Bedeutung, da sie alle im sel-
ben Kontext angewendet werdermrMnteresse waren an
dieser Stelle Anwendungen des Patterns aus unterschiedli-
chen Gebieten, um Hinweise zu geben, an welchen Stellen
das Pattern uberall benutzt werden kann.

Verwandte Patterns

Zuletzt werden ¥rweise auf ahnliche Patterns angegeben. Kann ein spezielles Pattern in
einem Entwurf nicht benutzt werden, so sollten in diesem Abschnitt andere Patterns aufge-
fuhrt werden, die eine ahnliche Aufgabe erflillen. Auch sollte kurz auf Unterschiede zwi-
schen den Patterns eingegangen werden.

Komplexe Indiektion (69)- Verfolgen einer 1:n Relation.

2.6 Software-Entwurf mit Patterns

Der Software-Entwurf mit Patterns erfolgt durch sukzessive Anwendung der entsprechenden
Patterns. Dazu wird das urspringliche Problemeifpiobleme aufgespalten und diese wer-

-14 -



2 Modellierung mit Patterns

den, wenn mdglich, durch die einzelnen Pattern gel6st. Im Gegensatz zum reinen ,Divide and
Conquer* Entwurf stehen die Patterns jedoch nicht ganz fur sich alleine, sondern sie arbeiten
zusammen und génzen sich gegenseitig. Im folgenden wird eine Software-Modellierungs-
moglichkeit vogestellt, die es erlaubt, die korrekte Anwendung der Patterns zu automatisie-
ren, um die Software-Entwicklung fir einen eingeschrankten Bereich (der
Geb&udesimulation) zu vereinfachen.

Patterns spiegelnethniken und Beispiele wiedewie gute Software geschrieben werden
kann. Wrden sie mit Bedacht und kreativ eingesetzt, so kdnnen sie in egizatV von
Anwendungen verwendet werden. Eingeschrankte Patterns, die nur zur Losung eines speziel-
len Problems dienen, machen fur den Entwurf beliebiger Programme wenig Sinn. Schrankt
man jedoch den Einsatzbereich der Patterns ein (beispielsweise auf die Simulation von Geb&u-
den), so liegt in diesen ,Spezialpatterns” eine grof3e Einsatzmoglichkeit. Spezielle Patterns
kénnen die Probleme, die sie I6sen, viel genauer eingrenzen und erlautern, und ihre Imple-
mentierung (d.h. Anwendung) kann automatisch erfolgen.

Der Entwerfer eines Simulators braucht daher kein Spezialist auf dem Gebiet der Simulation
zu sein. Er sucht einfach zu den in der Simulation auftretenden Problemen ein passendes Pat-
tern heraus. \Iche Seitenétkte und Konsequenzen die Anwendung des Patterns hat, kann in
der Pattern-Beschreibung nachgelesen werden.

Die Patterns, so wie sie im folgenden benutzt werden, stellen jeweils eine eigene Funktionali-
tat (auf Code-Ebene) zurexfigung und bilden ein Bindeglied zwischen einzelnen Kompo-
nenten aus unterschiedlichen Modellen. Durch die Bindung der Patterns an Modell-
Komponenten wird die Rolle der Patterns quasi umgekehrt: statt der reinen Beschreibung
eines Frameworks dienen sie jetzt zur Modellierung wr@e\herung von Modellen.

Als Vorgabe fur den Entwurf eines Simulators gibt es zum einen den Pattern-Katalog, und
zum anderen dienen schon bereitsgetertigte Modelle als Eingabe flr den Entwurf. Die
Benutzung der Patterns bewirkt nun, dal3 einzelne Komponenten der Eingabe-Modelle ausge-
wahlt und mit zusatzlicher Funktionalitdt versehen werden. Alle diese Wierden dann zu

einem komplexen Simulatdviodell zusammengesetzt, das den Gebaude-Simulator komplett
beschreibt.
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2.6  Software-Entwurf mit Patterns

Der Entwurf eines Simulators wird in Abbildung 7 beschrieberg(eehe Abbildung 3 auf

Seite 6).
Gebaude Katalog -
Automati- Gebaude- Bibliothek
sierung modell Architekturmodell

Q—> manuell

Applikations-
Modell | Model fur

den Simulato Code
Genaude

Simulator transfor- ( > >
: . — Generierun 4>©
Simulator Modell mation g

() manuell 3 ( > ’ Dokumentation

Abb. 7: Entwurf eines Gebaude-Simulators

=

Das aktuelle Anwendungsfeld des Sonderforschungsbereiches 501 ist die Gebaudeautomati-
sierung. Es sollen Programme zur Steuerung, Simulation und Konstruktion von Gebauden ent-
wickelt werden. Um die in der Gebaudeautomatisierung anfallendenBeqyriérklaren und

um Zusammenhange zwischen den Bégnmifzu erlautern, wurde ein Lexikon geschrieben
(siehe [Sah96]). Dem Lexikon liegt ein Gebaudemodell zu Grunde, in dem die prinzipielle
Struktur eines Gebaudes und die Beziehungen zwischen den einzelnen Gebaudekomponenten
beschrieben sind. Es kann daher als Grundlage fur sdmtliche Applikationen im Gebaudebe-
reich dienen.

Das spezielle Anwendungsfeld, das im folgenden behandelt werden soll, ist ein Simulator fr
Gebaude, die mit dem Gebaudemodell modelliert werden kénnen. Hier konnte man sich auch
andere Anwendungen, wie zum Beispiel eine Heizungssteuerung, vorstellen, die auch auf &hn-
liche Weise behandelt werden kdnnen.

Bei einem Simulator treten einige Besonderheiten auf. Dazu zahlen sowohl eigene Objekte
und Algorithmen, wie zum Beispiel Scheduling oder Evestaxbeitung, als auch spezielle
Probleme wie Echtzeitfahigkeit uneéiteilung. Diese Besonderheiten kdonnen in Patterns und
speziellen Datenmodellen codiert werden und machen die Charakteristik des Anwendungs-
projektes ,Simulator® aus. Jedes Pattern beschreibt und 16st ein spezielles Problem des Simu-
lators und bildet zusammen mit allgemeinen Patterns die Entwurfsgrundlage fir den
Simulator Die Patterns sind also speziell an das Anwendungsgebiet ,,Gebaude-Simulator®
angepalidt (domain-modelling).

Der Entwurf des SimulateGesamtmodells besteht nun aus der Zuordnung dieser Patterns zu
Objekten aus dem Gebaudemodell. Um zum Beispiel diap€ratur in den Raumen des
Gebaudes zu simulieren, wird das Pattern ,Simulation thermischer Masse” der Klasse Raum
aus dem Gebaude-Modell zugeordnet. Die Konsequenzen, die die Anwendung des Patterns
hat, sind in dem Pattern beschrieben, ebenso, was aul3erdem modelliert werden muf3. Samtli-
che Patterns sind in einem Pattern-Katalog enthalten (siehe beispielsweise Anhang A). Die
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2 Modellierung mit Patterns

einzelnen Patterns aus diesem Katalog kbnnen zur Modellierung des Simulators herangezogen
werden. Ebenso enthalten die Patterns Hinweise, wie sie von einem Generator implementiert
werden kénnen. Zusammen mit Hinweisen, wie das Architekturmodell in Programm-Code
umgesetzt werden kann, ist es moglich, den Simulator anhand der Modellierung zu generie-
ren.

2.7 Beispielentwurf

In diesem Kapitel soll der Software-Entwurf mit Patterns verdeutlicht werden. Die verwende-
ten Patterns befinden sich im Anhang A, eine genaue Erklarung der Moglichkeiten und
Anwendungsarten der Patterns steht in Kapitel 2.8.

Als Beispiel soll die €mperatur zweier Raume eines einfachen Hauses simuliert werden
(siehe Abbildung 8). Die beiden Turen kénnen wéhrend der Simulatiofngedkerden, und

die Temperaturen der Raume passen sich dann entsprechend an. Der Heizkérper in Raum 1
heizt zunachst konstant mit einer Leistung von 0,5 HM/Heizleistung kann aber auch dyna-
misch von einer Simulateé8teuerung angepaldt werden.

| 5m 5m —  ~

Raumhdhe: 2m

5 Raum 1 Raum 2 AuRentemp.: 8° C
Raum 1:

- 7] 50o

1im Tur 1 ) Tur 2 5m 16 Clemperatur

Heizkorper RE?(t)Jnrg 2:
ZJ/n m 16° C Temperatur

Abb. 8: Beispielhaus
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2.7 Beispielentwurf

Zur Simulation werden &nsichtlich die Objekte ,Raum®, ,Raumteiler” @dd und Tur),
.Heizkorper* und ,Umgebung” bendétigt. Der entsprechende Ausschnitt des Gebaudemodells
sieht vereinfacht folgendermal3en aus:

4 Gebaude ‘
| 2 Abtrennung n ]
Gebiet Raumteiler
Umgebun Raum Wand Tar
Heizung

A 4

Abb. 9: Ausschnitt aus dem Gebaudemodell

Ein Gebiet kann entweder ein Raum oder die Umgebung sein. Je 2 Gebiete sind durch Raum-
teiler getrennt. Ein Raumteiler ist entweder eirend/oder eine Tar

In dem Beispiel soll die dmperatur der Raume simuliert werden. Dazu kann das Pattern
»Simulation thermischer Masse* eingesetzt werden. Die thermische Masse ist in diesem Fall
die Luft in den Raumen. Dieévbindung zwischen zwei Raumen geschieht tber Raumteiler
Die Bindung des Patterns an das Gebaudemodell ist der Graphik aus Abbildung 10 zu entneh-
men.

thermische Masse Simulation thermischer
T Temperatur Masse
tasZeitpunkt der letzter
Raum Berechnung
V Volumen der Masse
calcT (ty) Berechnung Sy
der Temperatur tlast := takt.

etC(T) spezifische ¢ := getC(T).
g V\/(ar)m elfap g SerT(getQlast: ! (V * ) + ).
getQ(t, t,)Warmemenge

Abb. 10: Asnwendung des Patterns ,Simulation thermischer Masse*
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2 Modellierung mit Patterns

Bindungen:

Klassen:
e thermische Masse> Raum

Durch die Bindung des Patterns an die Kl&Raemaus dem Gebaudemodell werden die in

dem Pattern angegebenen Instanzenvariablen und Funktionen automatisch fur alle Raume
angelegt. Gleichzeitig mit der Bindung auf Klassenebene kénnen auch Umbenennungen und
bei Funktionen Parameteranpassungegeamommen werden. N&heres dazu ist in Kapitel 2.8
beschrieben. Das PatteBimulation thermischer Masse (48ibt fur die FunktioncalcT()
gleichzeitig das Interface und die Implementierung @@s heildt, dal’ fur jeden Raum die

_ Q (tlast’ takt)

: 0 O . : -
Temperatur mit derselben Formgiiﬂ_ VIt +Ti%3 berechnet wirll Die spezifische

akt)
Warmekapazitat eines Raumes und die Warmemenge, die auf ihn wahrend des letzten Berech-
nungsintervalles eingewirkt hat, mussen getrennt modelliert werden. Das Interface der
entsprechenden Funktionen ist allerdings durch das Pattern schegefoen, so dal® erkenn-

bar ist, daf3 sie noch entworfen werden mussen.

Bei der Instanziierung des Patterns, das heil3t bei der eigentlichen Erzeugung der Simulations-
objekte, mul3 noch fir jede Instanzenvariable, die im Pattern vorkommt, ein passender
(Initial=) Wert eingetragen werden. Im Beispiel ware das also:

Raum 1: T :=16, v:=50, tlast := 0.
Raum 2: T :=16, vi=50, tlast := 0.

Als néchstes mussen die FunktiorggiC() und getQ() modelliert werden, da im Pattern nur

ihr Interface vogegeben wurde. Die spezifische Warmekapazitat der Raumluft kann man der
Einfachheit halber als konstant annehmen. Also kann an die FugktiG()das PatteriKon-
stanter ért (63)gebunden werden.

Raum A—-‘ Klasse Konstaner \grt
C e V bel. Wert (const)

getC(t) )\ getV() liefert V zuriick S\

Abb. 11: Konstante Warmekapazitat der Raumluft

Die Anbindung des Patterns an eine (oder mehrere) Klassen aus dem Geb&audemodell wird
graphisch durch die fettgedruckten Pfeileggatellt. Dabei geht jeweils ein Pfeil von einer im
Pattern definierten Klasse zu einem Objekttypen aus einem der bisherigen Modelle. Dadurch

3. Die meisten Formeln, die in dieser Arbeit erwéhnt werden, stammen aus [LJK94] und [PDr80] und
werden dort ausfihrlich beschrieben.

4. Gibt es unterschiedliche Raumtypen, die verschieden berechnet werden sollen, so miissen diese uiber
den \érerbungsmechanismus im Ausgangsmodell separat modelliert werden.
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2.7 Beispielentwurf

werden die Klassen ausgewahlt, flr die neue Funktionalitdt modelliert werden soll. Die Pfeile
auf Variablen- oder Funktionenebene geben jeweils an, welche Instanzenvariablen oder Funk-
tionen korrespondieren. Dabei sind Namensumbenennungen moglidreikié \ariable oder
Funktion unmodifiziert aus dem Pattern ibernommen, so ist ein entsprechender Pfeil Gberflis-
sig und kann weggelassen werden.

Bindungen:

Klassen:

» Klasse ->Raum
Funktionen:

e getV() ->Raum::getC(t)
Initialisierung:

V :=1,007

Als néachstes soll die Berechnung der Warmemenge (Funktion get(tles Raumes)
modelliert werden. Diese setzt sich aus dem$missionswarmemenge und der Strahlungs-
warmemenge der Heizung zusammep.{Q Qr + Q). Diese Summe kann einfach mit dem
Formel-Pattern gebildet werden, wobei als Formel die Addition zwegete\\¢ingetragen
wird (siehe Patterfunktion (61)und Abbildung 12).

Raum |~ Klasse Formel (Addition)
getQ(tl, ©2) A—-getV()Ilefert V1+V2\\A A (getvi() + 1

zuruck
getQ(t1, t2) getvi() getV2()).
getQy(tl, t2) getV2()

Abb. 12: Addition der Warmemengen-Anteile

Die FunktiongetQ(tl, t2)wird implementiert als Summe der Ruckgabewerte der (neuen)
FunktionengetQ(t1, t2) und getQ(t1, t2). Die Parameter t1 und t2 werden also aus dem
bereits bestehendem Interface der FunkgietQ(t1, t2)ibernommen:

Bindungen:

Klassen:

» Klasse -> Raum

Funktionen:

* getV() -> Raum::getQ(t1, t2)

* getV1() -> Raum::getQ(t1, t2)
* getV2() -> Raum::getQ(tl, t2)

Als nachstes mussen die beiden Warmemengam@®Q modelliert werden. Die Strahlungs-
warmemenge aller Heizungen ist einfach die Summe der Warmemengen der einzelnen Hei-
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2 Modellierung mit Patterns

zungen eines Raumes. Diese indirekte Summe (der Raum bendétigt die Summerteon W
seiner Heizungen) &Rt sich mit dem Patt¢omplexe Indiektion (69)berechnen.

Objekt Relation referenziertes Obje
1.1 n
getv() | getV()
Vtemp := 0.

foreach rel: Relation do
Vtemp := Vtemp + rel->getV().
od

Vtemp

Komplexe Indirektion

Raum Heizung

getQs(t1, t2 getQs(tl, t2

N—r

Abb. 13: Aufsummieren der einzelnen Warmekapazitaten

Bindungen:

Klassen:

* Objekt -> Raum

» referenziertes Objekt -> Heizung

Relationen:

* Relation -> partOf (Raum, Heizung)
Funktionen:

* Objekt::getV() -> Raum::getQtl, t2)

* referenziertes Objekt::getV() -> Heizung::getQ(t1, t2)

Die Strahlungswarmemenge (Q) einer Heizung berechnet sich nun durch das Integral Uber
dem Warmestrom der Heizung im aktuellen Zeitinteraltt,, t,) :ﬁztb(t)dt%. Solche Inte-

grale kdnnen leicht mit einem Peif (siehe 3.3) berechnet werden. Unter der Annahme, daf}
sich der Warmestrom nicht stark andert, kann ein einfaché&rRaf B. Lineare Pdiérung)
verwendet werden. Dazu wird das PattEmfache Indiektion (67)zur Verbindung der Hei-
zung mit einem linearen Haf verwendet (Abbildung 14). Die Raf stammen aus einem
separaten Modell (siehe Kapitel 3.3), so dal3 der verwenddier Bahr einfach (durch die
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Neubindung der Klass®bjektbeschgibung an einen andern Haf) ausgetauscht werden
kann.

Objekt Einfache Indirektion
Typ
getV() . 1..1 | Objektbeschreibung
set;/(_V) V Variable
* getV()
ATyp->setV(_V). 1 "Typ->getV(). setV(_V)

Heizung | Warmepufer Linearer Puer

Qs

getQs(t1, t2 i
integrate(tl, t2
setQs(t, Q) add(t, Q)

Abb. 14: Thermische ¥rbindung zwischen Gebieten

Bindungen:

Klassen:

* Objekt -> Heizung

» Objektbeschreibung -> Linearer Pukr

Relationen:

* Typ -> Warmepufer (Heizung, Linearer Ptdr)
Funktionen:

* Objekt::getV() -> Heizung::getQtl, t2)

* Objekt::setV(t) -> Heizung::set@t, Q)

» Objektbeschreibung::getV() -> Linearer Puer::integrate(tl, t2)
» Objektbeschreibung::setV(t) -> Linearer Puer::add(t, Q)

Als letztes fehlt zur Heizungssimulation noch der von der Heizung produzierte Warmestrom.
Dieser soll von einer Gebaudesteuerung oder durch manuelle Eingaben in den Simulator
gesteuert werden. Aus der Sicht des Simulators stellt der Warmestrom also einen Aktuator
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(Steueglied) dar Mit dem PatterrAktuator (55)wird die entsprechende Funktionalitat zur
Verfigung gestellt. Abbildung 15 zeigt die Struktur des Patterns.

Aktuator Aktuator
Heizung Vv activeObject
s — n 1..1 | active Object
§eth(t1 t2 getV8 ) j
, L.setV( V
Thread
setQs(t, Q) changed() read()
. |
A= V. YA 1

Abb. 15: PatternAktuator (55)

Bindungen:

Klassen:

 Aktuator -> Heizung

Relationen:

* activeObject -> activeObject (Heizung, ActiveObject)
Funktionen:

 Aktuator::getV() -> Heizung::getQtl, t2)
 Aktuator::setV(_V)  -> Heizung::sett, Q)

Dasactive Objectdient zur Anbindung der Heizung an die Steuerung. Dadurch ist eine Hei-
zung in der Lage, Events von Simulator zu bearbeiten (siehe dazu auch Kapitel 3.2). Das
active Objekt ist in der Lage, Nachrichten von der Simul8teuerung zu empfangen und
entsprechend zu bearbeiten. Um beispielsweise die Leistung einer Heizung zu verandern,
kann die Instanzesvariable Qs der Heizung von der Steuerung direkt gesetzt werden. Diese
Anderung macht es jedoch eventuell erforderlich, daR sofort Neuberechnungen einiger Simu-
lationsgrof3en stattfinden missen. Dazu kann an das Active Object der Heizung eine changed-
Nachricht geschickt werden, die dann die Funktdbanged(der Heizung aufruft. Daraufhin
werden alle abhangigen Simulationsgrof3en neu berechnet.
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Was jetzt noch fehlt, ist die Berechnung dearlBmissionswdrmemenge durch die an einen
Raum angrenzenden Wéande. Dazu dient das P&tennation thermischerevbindung (49)
dasan die KlasseRaumundRaumteilergebunden wird (Abbildung 16).

ythermische ¥rbindung thermische Masse
R Warmewiderstand | |nnenseite
S Flache getT(t) liefert die

Aul3enseite
Remperatur  zum

calcQ(t) berechnet Zeitpunkt t
den Warmestrom

zum Zeitpunkt t A(Innenseite->getT(t) -

getg(t’dM)M ”eferlt/l Q\ AuBenseite->getT(t)) / R.
ur die iviasse

Qtemp = calcQ(t). L
if (M == AuRRenseite)
Simulation thermi- Qtemp = “Qtemp:
scher \érbindung fi
Qtemp-

Raumteiler Abtrennung

Gebiet

Abb. 16: PatternSimulation thermischerevbindung (49)

Bindungen:

Klassen:

* thermische ¥rbindung -> Raumteiler

* thermische Masse -> Gebiet

Relationen:

* Innenseite  -> Abtrennung[0](Gebiet, Heizung)
* AuRBenseite  -> Abtrennung[1](Gebiet, Heizung)

Die MethodecalcQ(t) berechnet jeweils den aktuellen Warmestrom durch eiaedWDie
Funktion getQ(t, M) liefert diese dann vorzeichenrichtig an eine thermische Masse zurlck.
Um den Warmestrom durch eine thermiscleebihdung berechnen zu kénnen, mufd bei der
thermischen Masse die FunktigetT(t) vorhanden sein. Sie soll dieemMperatur zum Zeit-

punkt t zurlckliefern. Dazu wird ein weiterer Rufbenotigt. Dieser wird an die Klasse
Gebiet des Gebaudemodells gebunden (Paiefache Indiektion (67),vgl. Abbildung 17)

und speichert die berechneteaniperaturen ab. Ist das Gebiet die Umgebung, so wird der
Puffer einfach mit einem konstantenew (PatternrKonstanter Wrt (63) gefullt und nicht

weiter aktualisiert (Die Aulientemperatur wird als konstant angenommen). Im Falle eines Rau-
mes, wird bei jeder Aktualisierung deemiperatur die FunktiosetT (T)(vgl. Abbildung 10)
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2 Modellierung mit Patterns

aufgerufen. Diese wird mit dem Pattdfmfache Indiektion (67)so Uberschrieben, dafd die
aktuelle Bmperatur in dem Pigr abgelegt wird.

Bindungen:

Klassen:

* Objekt

* Objektbeschreibung
Relationen:

* Typ

Funktionen:

* Objekt::getV()

* Objekt::setV(t)

Objekt Einfache Indirektion
Typ

getV() n., 1..1 | Objektbeschreibung
setv(LV) V Variable

* getV()
ATyp->setV(_V). ] Typ->getV(). SEtV(—V)

Gebiet Temperaturpdér - Lin. Pufer
g:g((% interpolate(t)

add(Scheduleryjg, T)

Abb. 17: Pufferung der €mperaturen

-> Gebiet
-> Linearer Puer

-> Temperaturpdér (Gebiet, Tapezregel)

-> Gebiet::getT(t)
-> Gebiet::setT(T)

» Objektbeschreibung::getV() -> Linearer Puer::interpolate(t)
» Objektbeschreibung::setV(t) -> Linearer Puer::add(Schedulerggy, T)

Da die aktuelle Zeit, zu der dieemperatur berechnet wurde, eine fur alle Simulationsobjekte
globale \ariable ist, kann diese vom Scheduler abgefragt und als Parameter an die Funktion
adddes Pukrs Ubegeben werden (siehe 2.8.3).

Was jetzt noch fehlt, ist ein Haf, der die berechneten Warmestrome zwischenspeichert und
die vom Raum bendtigte Warmemenge daraus berechnet. Das Eatfeche Indiektion
(67) wird dazu an den Raumteiler und einenf@ufebunden. Die Bindungen sehen wie folgt

aus:
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2.7 Beispielentwurf

Bindungen:

Klassen:

* Objekt -> Raumteiler

» Objektbeschreibung -> Trapezregel

Relationen:

* Typ -> Gebiete (Gebiet, Raumteiler)
Funktionen:

» Objekt::getV() -> Raumteiler::getQ(t1, t2)

» Objekt::setV(t) -> Raumteiler::setQ(Schedulegit Q)

» Objektbeschreibung::getV() -> Trapezregel:integrate(tl, t2)
» Objektbeschreibung::setV(t) -> Trapezregel::add(t, Q)

Damit ist die Modellierung des Simulators fast fertig. Es fehlt lediglich noch die kontinuierli-
che Simulation der Raumteiler und der Rdume. Diese wird dadurch erreicht, dal? das Pattern
Kontinuierliche Simulation (53n die entsprechenden Objekte gebunden wird. Das vollstan-
dige Gesamtmodell ist in Abbildung 18 zu sehen. Die Patterns sind in diesem Bilolleds W
dagestellt, die Uber Pfeile an die Objekttypen gebunden sind. Der Simulator konnte durch die
Anwendung von 14 Patterns (davon 8 unterschiedliche) modelliert werden.

' Gebéaude ‘
. Tore

Puffer ont.Si
Gebietl 2 Abtrennung 1] Raumteiler

Active Objec

Heizung

Abb. 18: Komplettes Modell mit Patterns
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2 Modellierung mit Patterns

Ein einmal angefertigtes Modell kann im Bedarfsfall recht einfach abgewandelt oder verfei-
nert werden. Soll beispielsweise einaMd aus mehreren Schichten bestehen und der Wéarme-
durchgangskoétient (,k-Wert*) mehrschichtiger Wande berechnet werden, so kann die
Modellierung dahingehend angepal3t werden. Dazu mul3 eine neue Modell-Klassd- ,W
schicht* aufgenommen werden. Jedandischicht kennt ihren Warmewiderstand und ihre
Dicke. Um daraus den Warmedurchgangswiderstand der gesansed ¥M berechnen,
genugt es, die einzelnen Schichten mit dem PaEarfache Indiektion (67)an eine VEnd
anzubinden und durch eif@nktion (61)den gewinschten &t zu berechnen.

Soll zusatzlich noch jede einzelneaMdschicht als eigene thermische Masse betrachtet wer-
den, ist eine kleine Umstrukturierung der bereits gebundenen Patterns notwendig. Der War-
melbegang vom Raum auf die ersteadschicht wird Gber eine Zwischenschicht modelliert.
Die neue Modell-Klasse ,Zwischenschicht” dient also als thermisebindlung zwischen

den Klassen ,Raum® und ,#hdschicht*. Das Patter@imulation thermischereévbindung

(49), das vorher an den Raum und dian¥ gebunden wamuf} jetzt an die Zwischenschicht
gebunden werden. Der Warmewiderstand solch einer Zwischenschicht hangt von der Beschaf-
fenheit der aulersten afhdschicht ab und kann inaBellen nachgelesen werden (siehe
[LIK94] auf der Seite 131). Jetzt fehlt nur noch, die einzelnandathichten als thermische
Massen zu betrachten. Dies geschieht durch die Bindung des P&tteutation thermischer
Masse (45)an die Modell-Klasse Whdschicht. Zuletzt sgt die Kontinuierliche Simulation

(53) fur eine quasi-kontinuierliche Aktualisierung degniperatur einer @hdschicht (siehe
Abbildung 19).

“therm.\erb.> Raumteiler

. .
Raum 1 Zwischenschic Wand

Indirketion

I e

' n
Schicht —q Wandschicht

Abb. 19: Verfeinerter Ausschnitt aus Abbildung 18

2.8 Bindung der Patterns

Wie im vorigen Beispiel gesehen, besteht die Modellierung eines Simulators hauptsachlich
aus der Bindung von Patterns an bereits bestehende oder neu anzulegende Modellkomponen-
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2.8 Bindung der Patterns

ten. Den Ausgangspunkt bilden ein oder mehrere Objektmodelle, die durch Anbindung an Pat-
terns verfeinert werden. Die einzelnen Objektklassen erhalten dabei die in den Patterns
spezifizierte Funktionalitat. Die Bindung eines Patterns an Objektekdassen geschieht in
mehreren Ebenen, die im folgenden néher erlautert werden:

2.8.1 Bindung auf Klassenebene

In diesem Schritt wird jeder Klasse, die in dem Pattern vorkommt, eine Klasse aus einem der
bereits bestehenden Objektmodelle zugeordnet. Dies geschieht durch einfaches Auswahlen
einer Klasse aus einem der ,Eingabe“-Modelle (Gebaude-Modell, Simidatdell, etc.,

siehe Abbildung 7 auf Seite 16). Eventuell kann es vorkommen, dal} eine bendtigte Klasse in
keinem dieser Modelle existiert.aih es sich dabei nur um ein selten bendtigtes Hilfsobjekt
handelt, so kann an dieser Stelle auch eine neue, ,leere” Klasse angelegt werden, die ihre erste
Funktionalitat durch das aktuelle Pattern bekommtd\Wiese neue Klasse jedoch an mehre-

ren Stellen im Simulator bendtigt, so ist es eventuell besigein eines der Eingabe-Modelle
aufzunehmen, damit der Sinn der Klasse und ihr Zusammenspiel mit anderen Objekten deut-
lich wird.

Durch die Bindung der Patterns auf Klassenebene werden also alle Objektklassen ausgewahlt
bzw angelegt, die durch das Pattern erweitert werden sollen.

2.8.2 Bindung der Funktionen und Instanzenvariablen

Sind alle Klassen ausgewabhlt, auf die das Pattern angewendet werden soll, so missen in einem
zweiten Schritt die Instanzenvariablen und die Funktionen, die im Pattern definiert sind, ange-
paldt werden. Ist keine Anpassung notwendig (d.h. eine Instanzenvariable oder Funktion soll
ohne Anderung aus dem Pattern iibernommen werden), so braucht an dieser Stelle nichts
unternommen zu werden. Haufig sind jedoch Anpassungen nétig, da die Funktionen im spate-
ren Programm andere Namen haben sollen, als im Pattegragetren. In diesen Fallen kann

der vogegebene Name geandert werden. Dabei kann der urspriingliche (im Pattern definierte)

Name durch einen beliebigen, giilti§ésamen ersetzt werden.

Instanzenvariablen kénnen an bereits im Modelgggebene &iablen gebunden oder - falls
keine passenderaviablen im Modell enthalten sind - neu angelegt werden. Im letzteren Fall
wird fur die entsprechende Modell-Klasse eine neaga¥dle mit dem gewlnschten Namen
erzeugt und es werden zusétzlich Zdgfiinktionen auf dieseariable vogesehen (siehe Pat-

tern Instanzenvariable (58) Nachdem die Instanzenvariable angelegt wurde, kann sie tber
die Zugriffsfunktionen auch von anderen Patterns aus gelesen oder neu gesetzt werden.
Funktionen treten in den Patterns in zwei Formen auf. Entweder wird in dem Pattern nur das
Interface, also die Schnittstelle der Funktion, beschrieben, oder es wird zusatzlich noch die
Implementierung derselben gageben. Ist die Funktion vollstéandig im Pattern beschrieben
(also Interface und Implementierung), so wird diese Funktion bei der Generierung komplett
erzeugt. Ein vaggegebenes Interface kann mit einer beliebigen Funktions-Implementierung
verknlpft werden. Das Pattekomposition (72)eispielsweise beschreibt, wie eine Opera-
tion auf einer Menge von Objekten ausgefuhrt werden kann. Angenommen, eine Menge von
Raumen soll aufgefordert werde, sich neu zu berechnen. Dies geschehe durch den Aufruf der

5. ,gultige” Namen fiir Instanzenvariablen und Funktionen sind alle diejenigen, die auch in der Ziel-Pro-
grammiersprache gultig sind.
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2 Modellierung mit Patterns

Funktioncalculate()der Klasse Raum. Eine Klasdausbeinhaltet ¥rweise auf alle Raume,

die den Funktionsaufruf varelculate()erhalten sollen. Konsequenterweise wird also die Pat-
tern-KlasseMengean die Modell-Klassélausgebunden. Die Klasg€omponenteavird dann

mit dem Raum identifiziert. FUr eifdengewird im Pattern die Funktionperation() kom-

plett vogegeben. Bei der Bindung dieser Funktion an die Kléksesfindet also nur eine
Umbenennung statt, so daf3 im spéateren Programm diese Methode unter dencélamen
late() aufgerufen werden kann. Fir einen Raum ist nur das Interfacpedete()Funktion
vorgegeben. Also wird nur vermerkt, daf? der Raum (nach einer Umbenennung) eine Funktion
mit dem Namercalculate()haben mul3. Die eigentliche Funktionalitat dieser Methode kann
durch ein anderes Pattern spezifiziert werden. In diesem anderen Pattern muf3 dann eine Funk-
tion komplett spezifiziert sein, die sich durch Umbenennung acattelate()Methode bin-

den l&ft.

Durch diese Aufspaltung der Methoden in Interface und Implementation kdnnen also mehrere
Pattern zusammenarbeiten. Ein Pattern gibt die Struktur einer Funktiomndoein anderes
implementiert dann die eigentliche Funktionalitat.

2.8.3 Parameteranpassung

In einigen Fallen kann es vorkommen, daf} die Parameter einer Funktion, wie sie im Pattern
vorgesehen sind, nicht mit denen Ubereinstimmen, die im spateren Modell benétigt werden.
Dabei kann sowohl vorkommen, dal3 mehr Parameter ajeegelben bendtigt werden, als
auch, dal3 Parameter weggelassen werden kénnen (siehe folgende Beispiele).

Gebiet
Klasse Konstaner Wrt
K bel. Wert (const) getT(t)
getK() liefert V zurlckefe—p| ~k | l
Umgebung

Abb. 20: Parameter hinzufligen

In Abbildung 20 soll fir die Klasse Umgebung die FunkgetlT modelliert werden. Sie soll

die konstante AufRentemperatur zurtckliefern. Dazu wird das PEestanter \&'rt (63)an

die Klasse Umgebung gebunden. Ohne eine Parameteranpassung wirde eine neue, parameter-
lose Funktion erzeugt werden. In diesem Fall soll aber die durch die Obefkésstbereits
vorgegebene FunktiogetT(t)Uberladen werden. Daher ist es zusatzlich zu der Umbenennung

der Funktion getK aus dem Pattern notwendig, einen neuen Paramaetenfihren. Dieser

wird dann in der Funktion selbst nicht beriicksichtigt und dient nur zur Anpassung des Metho-
dennamens. Wi im Pattern nur das Interface einer Funktiongegeben und dieses soll an

eine bereits bestehende Klassenmethode angepalit werden, so sind eventuell komplexere Para-
meteranpassungen nétig. Dann kann es namlich vorkommen, dal3 der zusatzliche Parameter
nicht einfach ignoriert werden kann, sondern es wird ein sinnvoket Wgn dieser Funktion
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erwartet. In diesem Fall kann angegeben werden, welcberalg¢ Parameter Ulggben wer-
den soll. Mdglich sind dabei Konstanten, Instanzenvariablen des aufrufenden Objektes, Funk-
tionsparameter der aufrufenden Methode oder emwv¥is auf die aufrufende Instanz.

Objekt referenziertes Objekt

Relation

getV() I n 1...1 getV()

'

Vtemp := 0. Komplexe Infirektion
foreach rel: Relation do
Vtemp := Vtemp + rel->getV().

Raum Wand

}.e.l->getQ(t, self). e

Abb. 21: Zuséatzliche Aufrufparameter einfiihren

In dem Beispiel in Abbildung 21 soll die FunktigetV()des referenzierten Objektes auf die
FunktiongetQ(t, M)der Wand abgebildet werden. Als Parameter erwartet diese Methode den
aktuellen Zeitpunkt der Berechnung und einen Zeiger auf das aufrufende Objekt (vgl. 2.7).
Zur Bindung der FunktiogetV()an die FunktiorgetT(t)des Raumes wurde bereits der Para-
meter t neu eingefiihrt. Dieser kann zum Aufruf y&tQ(t, M)benutzt werden. Zusatzlich

wird ein Zeiger auf den aktuellen Raum mit gedyen.

2.9 Implementierung der Patterns

Unter dem Begrifimplementierung wird im folgenden derégy verstanden, wie man von den

eher abstrakten Patterns zu einem konkreten Programm kommt. Prinzipiell gibt es mehrere
Wege, die gebundenen Patterns in Quelltext zu verwandeln. Entweder wird fur jede Funktion
des Patterns spezieller Code generiert, oder es werden die Patterns selbst als eigenstandige
Klassen generiert und tibeerérbung oder Delegation mit dem restlichen Modell verknupft.

Fir jeden beim Software-Entwurf im Modell benutzten Objekttyp wird im Programm eine
eigene Klasse bendtigt. Diese Modell-Klassen missen zusatzlich zu ihrer Grundfunktionalitét
(z.B. Initialisierungsmethoden oder Ein-/Ausgabe) noch die Funktionalitat erhalten, die sie bei
der Modellierung durch die Bindung an Patterns zugewiesen bekommen haben. Die folgenden
drei Abschnitte beschéftigen sich mit Moglichkeiten, diese Funktionalitat zu implementieren.

-30-



2 Modellierung mit Patterns

2.9.1 Implementierung durch Delegation

Die Implementierung der Patterns Uber Delegation wird unter anderem in [Sou95] beschrie-
ben. Jedes Pattern wird dabei im Programm durch eine eigene Klasse reprasentiert. Die Bin-
dungen der Patterns an die Modellierungs-Objekte (in diesem Fall also an das Geb&aude-
Modell) erfolgen tGber Relationen. Deogeil dieser Implementierungstechnik ist, daf3 im fer-
tigen Programm die Patterns und das Objektmodell nach wie vor getrennt vorliegen und
dadurch unterscheidbar bleiben, und es kann auch sehr einfach erkannt werden, welches
Objekt durch welches Pattern beeinfluf3t wird.

Bei dieser Implementierung der Patterns werden samtliche Funktionsaufrufe an die entspre-
chenden Funktionen der Pattern-Klassen wgertet. Dies ist in Abbildung 22 am Beispiel

des PatternKomposition (72)erdeutlicht.

Pattern Komposition

Composite comp|RTE
: 1 1
operatlon(x\ calculate(
n I"RTE->caIcuIate() i"comp->operation()
Element
Composite Raumteiler| | Wandteil
Container calculate() | |calculate()
operation( add(E)
add(E) foreach e:Elemente remove(E)
remove(E) e->operation()

Abb. 22: Pattern-Implementierung durch Delegation

Mit dem Kompositions-Pattern kdnnen mehrere Objekte in einer baumartig strukturierten
Menge gruppiert werden. In diesem Beispiel wurden mehreaadd@bschnitte zu einem
Raumteiler zusammengefal3t. Der Aufruf der Methecaleulate() eines Raumteilers soll an
alle Wandteile dieses Raumteilers wegteleitet werden.

In der Implementierung wird das Kompositions-Pattern durch die zwei Kl&3semosite

und CompositeContainereprasentiert. Die Wande und Raumteiler sind Uber die 1:1 Relation
compmit diesen Klassen verbunden (Die Klasse Raumteiler agiert als Koritdarsse, wird

also mit Objekten aus der Klasse CompositeContainer verbunden). Die Fu#tolate()
eines RaumteilerelementesT(® ist nun so implementiert, dal? sie die Funktperation()

der Pattern-Klassen aufruft. Dageration() Methode eines CompositeContainersgsamun
dafur, daid fur samtliche Objekte in dem Kontainer die jewebigeration()Funktion aufgeru-

fen wird. Fur ein Composite-Objekt rudiperation() einfach die Funktiorcalculate() der
Klasse HE auf. Fur die Blatter des KontairnBaumes (in diesem Fall also fir die Klasse
Wandteil) mul3 die Methodealculate()also Uberladen werden, um die gewiinschte Funktio-
nalitat zu erreichen.

Wird jetzt calculate() bei einem Raumteiler aufgerufen, so wird der Aufruf an die Pattern-
Klasse CompositeContainer wedeteitet. Dort wird fur alle Elemente, die sich in dem Con-
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tainer befinden, die Methodperation()aufgerufen. Gelangt der Algorithmus an ein Blatt der
Baumstruktur (also an ein Objekt der Klasse Composite), so wird wieder der Rickschritt von
den Pattern-Klassen zu den urspriinglichen Modell-Klassegerommen und die dort (fur

eine Wand) Uberladene Methodalculate()aufgerufen.

Die Vorteile dieses &ffahrens, die Patterns als eigenstandige Klassen zu implementieren, sind
hauptsachlich die gute Strukturierung des Programmes (jedes Pattern kann eindeutig den
Modell-Klassen zugeordnet werden) und die Einfachheit der Implementierung (die Pattern-
Klassen koénnen fest vgegeben werden, und es sind nur kleine Anpassungen an die Modell-
Klassen notwendig). Samtliche Funktionalitat der Patterns ist bei diesem Ansatz in den Pat-
tern-Klassen implementiert. Nur die Anpassung der Modell-Klassen an die Patterns muf3 noch
(durch Uberladen der entsprechenden Methoden) implementiert werden.

Ein Nachteil ist jedoch die komplizierte Aufrufhierarchie der Methoden. Es muld genau
geplant werden, welche Methoden bei welchen Klassen tberladen werden kdnnen oder mus-
sen. AulRerdem sind die Pattern-Klassen geméild sehr allgemein gehalten. Da eventuell
Objekte derselben Pattern-Klasse ihre Funktionalitat fir unterschiedliche Modell-Objekte zur
Verfuigung stellen missen, kdnnen Optimierungen fir spezielle Modell-Klassen nicht durch-
gefuhrt werden.

2.9.2 Implementierung durch Vererbung

Eine ahnliche Implementierungsmethode der Patterns funktioniert mit Hilfeedles\Mngs-
mechanismus. Dabei sind die Patterns im Programm auch als eigenstandige Klaygsgat vor
ben, werden jedoch nicht Gber Relationen, sondern Uberbing an die Modell-Klassen
gebunden.

Pattern Komposition

Composite
operation() Wandteil

" operation()

Element

Composite .
Container @ Raumteilef
operation( operation()
add(E) foreach e:Elemente add(E)
remove(E) e->operation() remove(E)

Abb. 23: Pattern-Implementierung durch Delegation

Wie in Abbildung 23 dagestellt, erben die Klassenawdteil und Raumteiler ihre Funktionali-

tat von den entsprechenden Pattern-Klassen. Dadurch wird die Aufruf-Hierarchie der Methode
operation()wesentlich einfacheDie Klasse Vendteil Uberlad nach wie vor diese Funktion,
damit sie die gewunschte Aufgabe durchfihrt.
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Nachteilig bei dieser Implementierungs-Methode ist, dal3 die im Pattegagedrenen Funk-
tionen nicht umbenannt werden kénnen. Dadurch wird der Quelltext der Modell-Klassen unle-
serlich. Ein zweites Problem ist, dal3 bei diesem Ansatz sehr leicht Mehdeatinihg
auftreten kann. Diese ist in Smalltalk nicht vorhanden und bereitet auch in anderen Program-
miersprachen wie C++ Probleme.

Generell mul bei dieser Implementierungs-Methode sehr darauf geachtet werden, welche
Objekte von welchen anderen Objekten Eigenschaften erben. Bestehen im urspriinglichen
Modell bereits ¥rerbungs-Hierarchien (was ja auch durchaus sinnvoll zur Beschreibung die-
ser Modelle ist), so kdnnen durch die Patterns Mehrfachvererbung oder im Extremfall sogar
zyklische \érerbungen eingefiihrt werden. Ob diese Implementierungstechnik eingesetzt wer-
den kann, muf3 also im Einzelfall genau Uberdacht werden.

2.9.3 Implementierung durch spezielle Generatogn

Die weitaus flexibelste Methode Patterns zu implementieren besteht darin, fur jedes Pattern
speziell auf die Modell-Klassen angepaliten Code zu generieren. Ein Ansatz wie das gesche-

hen kann wird in [BFV96] beschrieb®rverwendet man spezielle Generatoren, so tauchen
die Patterns nicht mehr (unbedingt) als eigenstandige Klassen im Programm-Code auf, son-
dern sind vielmehr in die Modell-Klassen eingebettet. Dadurch geht der direkte Zusammen-
hang zwischen den Patterns und den an sie gebundenen Modell-Klassen etwas verloren, dafur
werden eine grof3e Flexibilitat und Optimierungsmdoglichkeiten gewonnen.

So kann dasselbe Pattern fur unterschiedliche Modell-Klassen auf verschiedene Arten imple-
mentiert werden, um Geschwindigkeits-Optimierungen durchzufiihren oder einfach nur besser
an das Modell angepaliten Code zu erhalten.

Die Aufruf-Hierarchie der Methoden bleibt bei diesem Ansatz Ubersichtlich und einfach.
Nachteilig ist nurdald bei mehrfachere¥ivendung desselben Pattern jedesmal wieder der-
selbe (oder zumindest &hnlicher) Code im Programm steht. Dies fuhrt zu gré3eren Program-
men und dadurch héheren Speicherplatzverbrauch.

Voraussetzung fur eine sinnvolle Anwendung dieses Implementierungs-Ansatzes ist ein Pro-
gramm-Generatoder die Modellierung in ein fertiges Programm Ubersetzen kann. Der Gene-
rator kopiert dazu bereits im Pattern gegebenen Programm-Code und fihrt dabel
Anpassungen an die jeweilige Modell-Klasse durch.

Jede der drei hier vgestellten Implementierungstechniken fur Pattern hat ilme vhd
Nachteile auf konzeptioneller oder Code-Ebene. Ein ,intelligenter* Generator kénnte im Ein-
zelfall entscheiden, welche Methode angewendet werden soll. Dabei kann je nach Program-
miersprache, Pattern und benutztem Modell eine andefenik verwendet werden.

6. In dieser Arbeit wird ein \Wrkzeug beschrieben, mit dem die Patterns aus [GHJ95] instanziieren kann.
Dabei wird allerdings jedes Pattern fur sich alleine betrachtet und der erzeugte Code muf3 von Hand zu
dem Gesamtprogramm zusammenkopiert werden.

-33-



3.1 Simulationsmethoden

Kapitel 3 SimUIation

3.1 Simulationsmethoden

Es gibt eine Yélzahl von Einsatzgebieten fir Simulatoren. Je nach dem, was mit Hilfe eines
Simulators untersucht werden soll, eignet sich die eine oder andere Simulationsmethode bes-
ser um die zu Grunde liegenden physikalischen Gro3en zu untersuchen. Die folgende Abbil-
dung ist aus [MaM89] entnommen und zeigt eine Klassifikation unterschiedlicher
Simulationsmethoden.

Simulation
kontinuierlich diskret
zeitgesteuert ereignisorientiert
quasi- ereignis- aktivitats- prozefl3-  transaktions-
kontinuierlich gesteuert orientiert orientiert orientiert

Abb. 24: Klassifikation von Simulationsmethoden

Bei der kontinuierlichen Simulation wird davon ausgegangen, dafld sich der Zustand des
Systems kontinuierlich im Laufe der Zeit &ndert. Das bedeutet, daf} alle Simulationsgré3en
jederzeit neuberechnet werden mussen.

Im Gegensatz dazu finden bei der diskreten Simulation Anderungen der Simulationsgréfzen
nur zu bestimmten, diskreten Zeitpunkten statt. Die Anderung einer SimulationsgrofRe wird
durch ein Ereignis (Event) hengarufen. Diese Events sind bei der ereignisorientierten Simu-
lation atomardal’ heildt, sie finden zu einem bestimmten Zeitpunkt statt und ,verbrauchen”
keine eigene Zeit. So ein Ereignis konnte zum Beispiel sein: , Tur 2 wird um 12:15 Ufr geof
net”. Direkt nach 12:15 Uhr ist die Tur danresf und kann entsprechend behandelt werden.
Da samtliche Ereignisse atomar sind, braucht die Zeit zwischen zwei aufeinander folgenden
Events nicht betrachtet zu werden (wahrend dieser Zeit kann ja keine Zustandéanderung statt-
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finden). Ein ereignisgesteuerter Simulator bearbeitet also immer den Event, der als nachstes
gerechnet werden soll. Lost die Bearbeitung dieses Events weitere Events aus (beispielsweise
kann das Ghen einer Tir die Auslosung der Alarmanlage zur Folge haben), so werden diese
in die Liste aller noch ausstehender Events einsortiert. Ist ein Event abgearbeitet, so wird die
Simulationsuhr einfach auf den néchsten Evengestellt und dieser wird dann als nachstes
bearbeitet. Die einzelnen Auspragungen der ereignisorientierten Simulation (ereignis-, aktivi-
tats-, prozel3- oder transaktionsgesteuert) unterscheiden sich darin, wie die einzelnen Events
aussehen und unter welchen Bedingungen sie den Zustand des Systems manipulieren. Naheres
dazu steht in [MaM89].

Der Simulationsvagang fur den Gebaude-Simulator ist prinzipiell kontinuierlicher Art da
kontinuierlichen Simulationsgréf3en wie ,Raumtemperatur” oder ,Luftfeuchtigkeit* auftreten.

Bei Digitalrechnern ist eine solche kontinuierliche Berechnung allerdings nicht mdglich. Da
jeder Computerbefehl zu einem diskreten Zeitpunkt stattfindet, kbnnen die Simulationsgroéf3en
auch nur zu diskreten Zeitpunkten aktualisiert werden. Zur Aktualisierung wird jeweils die
Anderung der SimulationsgroRe seit der letzten Berechnung bestinemteMdiese Zeitin-
tervalle genugend klein gewahlt, kann eine gute Approximation an den realaof\érreicht
werden.

Diese Art der Simulation heil3t quasi-kontinuierlich. Prinzipiell werden dabei die Simulations-
objekte zu diskreten Zeitpunkten berechnet, allerdings werden sie haufig genug aktualisiert, so
daf} jederzeit eine brauchbare Annéherung an den reaerzv \érfiigung steht. Abhangig-

keiten zwischen einzelnen SimulationsgrofRen missen teilweise vereinfacht werden, um sie
berechnen zu kdnnen.

Beispielsweise hangt die Raumtemperatur von der Warmemenge ab, die in den Raum ein-
stromt. Die Tansmissionswarmemenge, die durch eirntiMliel3t, ist umgekehrt aber abhén-

gig von den €mperaturen der angrenzenden R&um&m solche zweiseitigen
Abhangigkeiten berechnen zu kénnen, mufd eine der beiden Berechnungsformeln vereinfacht
werden. So kann zum Beispiel zur Berechnung dandmission durch einedid angenom-

men werden, dal3 sich diemperaturen der angrenzenden Raume unabhéngig vorader T
missionswarme verandert haben. Durch diessaokTkann zu diskreten Zeitpunkten die
aktuelle Tansmissionswarmemenge auf Grund von den letzten bekannten Raumtemperaturen
berechnet werden. Ebenso wird zu (eventuell unterschiedlichen) Zeitpunkten die Raumtempe-
ratur auf Grund der im letzten Zeitintervall berechneten Warmemenge aktualisiert. Konnte
man bei dieser Art der Berechnung die Zeitintervalle, zu denen Neuberechnungen stattfinden,
unendlich klein machen, so wéren die berechnetgeliisse immer korrekt. Die Hofing

ist nun, dald solcherleieveinfachungen auch schon bei ,hinreichend kleinen“ Zeitintervallen
Ergebnisse innerhalb gewissasl@ranzgrenzen liefern. Bei der Raumtemperatur ist es wahr-
scheinlich Uberflussig, die ggbnisse im Milligrad-Bereich genau zu berechnen.

Welches Zeitintervall ,hinreichend klein“ fir eine bestimmte Simulationsgrof3e ist, hangt sehr
stark von den Simulationsobjekten selbst ab. Eine haufige Neuberechnung der Simulations-
grol3en fuhrt zu einem erheblichen Rechenaufwand, liefert dafiir aber genaysdneidse.

t t
7. Es gilt fur die Raumtemperatdr, , = T, +J‘:‘k v%:(t()t) dt undQ(t) = ATR(t)
last

tion thermischer Masse (4bhd Simulation thermischerevbindung (49)

, siehe PatternSimula-
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3.2 Simulator-Modell

Bei zu grof3en Berechnungsintervallen kann daf3 System leicht ins Schwingen geraten und fal-
sche Egebnisse liefern. Um das zu verhindern, kdnnen Schrankgegelven werden, wie

grol3 ein Berechnungsintervall maximal werden darf.

Wird Hardware in den Simulator integriert, so mufd die Simulation zusatzlich synchron zur
Echtzeit ablaufen. Bei einer reinen Software-Simulation kann auch in komprimierter Echtzeit
gerechnet werden. Durch das hier verwendete eventbasierte Scheduling kénnen diese beiden
Bedingungen eingehalten werden.

Ein eigener Programmteil, der Scheduldimmert sich darum, dal3 alle Berechnungen zum
richtigen Zeitpunkt stattfinden. Dazu wird, &hnlich wie bei der ereignisorientierten Simulation,
eine Event-Liste verwaltet. Das Ereignis, dal} eine Simulationsgrof3e neu berechnet werden
muf3, ist ein besonderer Event, der zum richtigen Zeitpunkt beim Simulationsobjekfexntref
muf3. Durch die ¥rwendung von Event-Listen kdnnen also kontinuierliche Simulationsgro-
Ben angendhert und auch atomare Ereignisse berlcksichtigt werden.

3.2 Simulator-Modell

Die eigentliche Funktionalitat des ,Simulierens”, das heif3t, der quasi-kontinuierlichen
Berechnung der einzelnen Simulationsgrof3en, wird durch ein gesondertes Modell ausge-
drickt. Dieses Simulataviodell ist prinzipiell unabhéngig von einem bestimmten Simulator
(zum Beispiel einem Simulator fir Geb&ude) und kann so sehr flexibel eingesetzt werden. Das
SimulatorModell besteht aus 6 Klassen mit bereits fertiggegebenen Funktionen (siehe
[Hei96] und Abbildung 25).

' SimulatorKernel ‘

Event Thread SimObiject
o
ctiveObjeqt
o
SimTime Scheduler

Abb. 25: SimulatorModell
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3 Simulation

Um diese Funktionen flr einen speziellen Simulator nutzen zu kénnen, werden einige Klassen
aus diesem Modell mit entsprechenden Pattdfost(nuierliche Simulation (53)nd Aktua-

tor (55)) referenziert und dadurch mit in das Applikationsmodell des zu entwerfenden Simula-
tors aufgenommen. Zusatzlich wird automatisch ein Scheduler (also eine Instanz der Klasse
Scheduler) erzeugt, der sich um die Zuteilung von Rechenzeiten an die Simulationsobjekte
kimmert. Der Scheduler hat die Aufgabe, die einzelnen Simulationsobjekte zu bestimmten
Zeitpunkten aufzufordern, sich selbst (das heif3t ihre Simulationsgréf3en) neu zu berechnen,
und er kiimmert sich zudem um die Einhaltung der Echtzeit, das heil3t, er Gberpruft Deadlines
und kann Prioritaten fir unterschiedliche Ereignisse berucksichtigen. Aus der Sicht der Simu-
lationsobjekte braucht die genaue Arbeitsweise des Schedulers also gar nicht bekannt zu sein -
sie stellen nur ihre Berechnungsformeln zarfifgung und diese werden dann vom Scheduler
aufgerufen. Mit dem Patteontinuierliche Simulation (53ann daftir gesgt werden, dal3

in regelmafigen Abstanden ein Simulationsobjekt zur Neuberechnung aufgefordert wird.

Die Kommunikation der Simulationsobjekte untereinander und auch die Kommunikation mit
dem Scheduler funktionieren Uber Events. Ein Event ist eine Nachricht, die zwischen zwei
Objekten verschickt wird und die in einem bestimmten Zeitintervall beim Zielobjekt ankom-
men muf3. Der Inhalt einer solchen Nachricht kann zum Beispiel sein, eine Simulationsgrof3e
neu zu berechnen. Der Scheduler ist dafuir verantwortlich, daf alle Events punktlich bei ihren
Zielobjekten ankommen. Kann diese Zeitplanung nicht eingehalten werden (dadurch, daf3 die
vorgesehenen Ankunftszeiten zu knapp bemessen sind oder daf’ zu viele Events gleichzeitig
verschickt werden sollen), so gibt der Scheduler eine Fehlermeldung aus und kann in Spezial-
fallen eine Fehlerbehandlung starten (eventuell kbnnen einige Events geldscht oder verzégert
werden). Fur die Echtzeitfahigkeit des Simulators ist also der Scheduler (relativ unabhangig
von den Simulationsobjekten) verantwortlich. Er steuert die einzelnen Berechnungen so, dal
sie zum angeforderten Zeitpunkt stattfindenrdAzu einem Zeitpunkt keine Berechnung
gefordert, so wartet der Scheduler solange, bis das nachste Everit eddrifversendet wer-

den soll.

In Abbildung 26 ist die Funktionsweise des Schedulers skizziert. Der Scheduler verwaltet eine
sortierte Liste aller Events, die versendet werden mussen. Jeweils das Event, das zum friihe-
sten Zeitpunkt eintrégn soll, steht in dieser &teschlange ganz oben. Solange digese-

hene Ankunftszeit dieses Events noch nicht erreicht ist, wartet der Scheduler entsprechend
lange. Dazu wird einimer gestellt und nach Ablauf desniers wird das oberste Event in der
Warteschlange verschickt. ikl der Scheduler aufgefordert, ein neues Event zu verschicken,
so wird der Vdrtezustand unterbrochen, das neue Event in digedchlange einsortiert und
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3.2 Simulator-Modell

der Timer neu gestartet. Dadurch wird jeweils das Event mit der frilhesten Ankunftszeit zuerst
versendet (shortest deadline first).

ITimeout &
IEvent

Fuge Event in
Warteschlange ei

Y

Sortiere
Warteschlange

( Starte Tmer

Timeout

Verschicke
Event

Abb. 26: Zustandsdiagramm des Schedulers

3.2.1 Events

Ein Event wird versendet, indem eine Instanz der Klasse Event angelegt wird. Beim Anlegen
dieses Objektes werden alle relevanten Daten angegeben. Dazu zahlen der Absender und das
Zielobjekt, der ¥p des Events und zusétzliche igebbare Daten, sowieiriiestamp und
Deadline, also die Zeitpunkte, zu denen das Event ankommen soll und bis wann es vollstandig
bearbeitet sein muf3. Um solch ein Event empfangen zu kénnen, mul3 das Simulationsobjekt
Funktionalitat aus der Klasse ActiveObject erben. Dieses fiihrt eventuell zu der Notwendig-
keit, Mehrfachvererbung zu benutzen. Da jedoch Mehrfachvererbung in Smalltalk problema-
tisch ist, wird hier ein anderer &y gegangen. Fur jedes Objekt, das Events senden und
empfangen will, wird eine Instanz der Klasse ActiveObject angelegt, die dann vom
Ursprungs-Objekt referenziert wird. Sdmtliche simulationsrelevanten Befehle werden an die-
ses Objekt delegiert.

Bei der Modellierung eines Gebaude-Simulators mul3 keine besondere Ricksicht auf die
Struktur oder Implementierung des Schedulers oder der ActiveObjects genommen zu werden.
Um beispielsweise dieemperatur eines Raumes alle 10 Sekunden neu zu berechnen, kann
einfach das Pattetontinuierliche Simulation (53n den Raum gebunden werden. Dadurch
wird fur jeden Raum ein ActiveObject angelegt, das dafigtsdal? die Funktion zur Berech-

nung der Raumtemperatur rechtzeitig aufgerufen wird. Die Periodendauer wird bei der Instan-
ziierung der einzelnen Objekte eingetragen und kann bei Bedarf auch dynamisch angepalf3t

werdeff. Um die quasi-kontinuierliche Simulation durchzufuhren, wird ein neuer Thread
angelegt, der auf das Eintiei eines Events zur Neuberechnung dsnperatur wartet.rif ft

8. Die Periodendauer wird als Instanzenvariable bei den Simulationsobjekten angelegt (siehe Pattern
Kontinuierliche Simulation (53) Diese kann (zum Beispiel durch d&guator (55)Pattern) beein-
fludt werden. AulRerdem kann durch dassénden eines entsprechenden Events das Simulationsob-
jekt unabhangig von seiner Periodendauer aufgefordert werden, sich neu zu berechnen.
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3 Simulation

dieses Event ein, so wird die entsprechende Berechnungsformel beim Raum aufgerufen. Zur
Neuberechnung der Raumtemperatur kann es notwendig sein,etlie Vén abh&ngigen
Simulationsobjekten wie zum Beispiel von Wanden oder Heizkdrpern abzufragen. Dieses
kann direkt durch Prozeduraufrufe bei den abhangigen Objekten geschehen. Miissen bei den
abhangigen Simulationsobjekten vorher noch aufwendige Berechnungen durchgefihrt wer-
den, so ist es sinnvollediese unabhangig durchzufiihren und die Abfrage der berechneten
Werte durch schnelle Funktionsaufrufe (eventuell gekoppelt mit einer ZwiscFenmjog)
durchzufihren, damit keine Deadlineflétzungen auftreten. Um die Berechnung der abhan-
gigen Simulationswerte kiimmern sich die entsprechenden Simulationsobjekte selbst. Wé&h-
rend der Berechnung der Simulationsgrof3en kann der Scheduler (quasi-)parallel dazu
weiterarbeiten, da er in einem separaten Prozel3 lauft. Abbildung 27 zeigt noch einmal die
Aufrufhierarchie zur Event-&farbeitung.

abhangiges Simulations- Active

Simulations- objekt Object Scheduler
objekt
(Wand) (Raum)
Event: berechne &t I
= anderes Event
Fkt.-Aufruf = >
Wert Abfragen =
Rickgabewer ;\
Ricksprung = der Scheduler
o = lauft parallel
Event: nachste Berchning 5, Berechnung
in 10 Sekunden weiter.

Abb. 27: Aufrufreihenfolge bei der Berechnung von Simulationsgrof3en

3.2.2 Steuerung des Simulators

Bisher wurde noch nicht behandelt, wie der Simulator Gberhaupt vom Benutzer gesteuert wer-
den kann und wie Simulationsgréf3en fur einen Benutzer visualisiert werden konnen.

Die Steuerung des Simulators ist prinzipiell von der Modellierung desselben unabhéngig. Fur
den Simulators ist es unwichtig, ob und wie die berechneten Simulationsgréf3en angezeigt
werden oder durch welche Aktionen er stimuliert wird.

Um den Vért einer Simulationsgrof3e abzufragen, genugt es, bei den Simulationsobjekten eine
entsprechende Methode aufzurufen. Ebenso kann der Simulator durch das Setzen von Simula-
tionsgrofRen stimuliert werden. Die Simulatorsteuerung und -anzeige kann also ,von aul3en*
das eigentliche Simulations-Modell beeinflussen, ohne daf’ dieses bemerkt, wodurch es beein-
fluldt wird. Das Simulations-Modell kann also zunachst vollkommen unabhangig von seiner
Steuerung entworfen werden. Die Steuerung wird erst zum Schluf3 an das Modell angepal3t.
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3.3 Pufferung

Die Modellierung einer SimulateBteuerung kann sogar auf die einfache Konfigurierung vor-

gefertigter \lsualisierungs- und Eingabe-Komponenten reduziert wérdzirse Komponen-
ten werden einfach mit den Simulationsobjekten verknipft und arbeiten dann anschlielend
eigenstandig und unabhangig von der Berechnung.

3.3 Pufferung

Durch die quasi-kontinuierliche Simulation werden Simulationsgréf3en, die sich eigentlich
kontinuierlich verandern, nur noch zu diskreten Zeitpunkten berechnet. Um die dadurch ent-
stehenden Rechenfehler so klein wie moglich zu halten, muR die korrekte zeitliche Anderung
dieser Grol3en so genau wie moglich (bgavgenau wie notig) approximiert werden.

Dazu werden die berechneterif¢ der Simulationsgrof3en mit inren Berechnungszeitpunkten
zwischengespeichert. Ein spezielles fEuObjekt kann dann automatisch Zwischenwerte
interpolieren oder Integrale bilden. Je nach dem, wie genau eritvéilauf angenahert wer-

den muf} eignen sich unterschiedlichef@ufur Interpolation bzwintegration. Im einfachsten

Fall reicht es, sich den zuletzt berechnetesrt\¥u merken. Aber auch aufwendigerfeh-

ren wie die Integration mit der Simpson-Regel sind eventuell notwendig.

9. Eine Bibliothek solcher Anzeige- und Eingabekomponenten wurde bereits in der AG ,VLSI Entwurf
und Architektur der Universitat Kaiserslautern von Daniel Bolender implementiert.
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Um eine einfache Austauschbarkeit zwischen verschiedentariPmfi erhalten, sind mehrere
Puffer und die dazugehdrigen Berechnungsmethoden in einem eigenen Modell zusammenge-
fal3t (siehe Abbildung 28).

'Puﬂ‘erung ‘

Puffer

add(x, y)
remove(x)
clear()
compress()
interpolate(x)
integrate(x4, Xo)

Konstanter Linearer Komplexer
Puffer Puffer Puffer
Yiast X; Xjast
Yi Wertepaare
Xj+1
Yit1
Trapezregel Simpson-Regel Sonstige

A 4

Abb. 28: Klassendiagramm der Haf

Samtliche Puer haben dieselbe Funktionsschnittstelle. Es kdnnen neut W den Pdér
aufgenommen werden, der Rarfkann geldscht werden, und man kann Integrale Uber einem
Intervall oder Funktionswerte an bestimmten Punkten berechnen. Unterschiedlich sind die
Puffer nur in ihrer Implementierung. Hauptsachlich unterscheiden sie sich in ihrer Genauig-
keit und der Berechnungsgeschwindigkeit. Einfachere Algorithmen sind schneller als aufwen-
dige, die dafir in der Regel genauergdfmisse liefern. Durch die Aufstellung eines eigenen
Puffer-Modells (im Gegensatz zur Kapselung derf@uin ein spezielles Pattern) kann sehr
leicht mit unterschiedlichen Fefn experimentiert werden. Sogar unterschiedlichéPir
Objekte derselben Klasse sind moglich.
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4.1 Zusammenfassung

Kapitel 4 AUSb“Ck

4.1 Zusammenfassung

Die Modellierung eines Gebaude-Simulators erfordert eine flexible, ausdrucksstarke aber den-
noch einfach benutzbare Entwurfsmethode. Patterns scheinen hier ein geeignetes Mittel zu
sein, um Entwerfern, die sich nicht im Bereich der Simulation auskennen, Methoden an die
Hand zu geben, mit denen ein Simulator entwickelt werden kann.

Einem Entwerfer werden dazu bereitsgafertigte Modelle bereitgestellt, die jeweils einen
kleinen Ausschnitt aus dem Gebaude-Simulator beschreiben. Zu diesen Modellen gehdrt das
Gebaude-Modell, das den prinzipiellen Aufbau eines Gebaudes und den Zusammenhang zwi-
schen den einzelnen Geb&audsldn beschreibt, das Simulatigiodell, in dem der Kern eines
Simulators zur quasi-kontinuierlichen Simulationgegeben ist, sowie moglicherweise wei-

tere Modelle (z.B. zur Ptdrung, vgl. 3.3). Diese Modelle beschreiben recht allgemein jeweils
einen Eil des Gesamtsystems. Durch spezielle Patterns kénnen nun einzééndidser
Modelle zusammengebracht und mit zusatzlicher Funktionalitat versehen werden.

Jedes Pattern beschreibt die Losung eines Problems, das bei der Gebaude-Simulation auftreten
kann. Durch die Bindung der Patterns an einzelne Modell-Klassen werden diese um die ent-
sprechende Funktionalitat erweitert. Am Ende kommt dabei ein komplexes Applikationsmo-
dell heraus, das den Simulator darstellt. Durch geeignete Generatoren kann aus diesem Modell
ein fertiges Programmpaket erzeugt werden. Dazu muf3 nur die Funktionalitat der einzelnen
Patterns auf geeignetedi§e in Programm-Fragmente umgesetzt werden (siehe 2.9).

Was nach dieser Modellierung auf Klassen-Ebene noch fehlt, ist eine konkrete Instanziierung
der Klassen, um einzelne Objekte zu erhalten, die simuliert werden sollen. Dieser Instanziie-
rungs-Schritt kann (gréf3tenteils) automatisch erfolgen, wenn die einzelnen Objekte bereits in
einem an das Gebaude-Modell angepaldten Format vorliegen. Es ist geplant, die zu simulieren-

den Hauser in der CAD-Software Speedﬂfbeinzugeben. Ein geeigneterahsformator

kann die in Speedikon vorliegenden Daten an das Geb&ude-Modell anpassen. Da das Applika-
tionsmodell auf das Gebaude-Modell aufsetzt, kann so also automatisch ein Grol3teil der zur
Simulation bendétigten Daten gewonnen werden. Der gesamte Entwurfsprozel ist in Abbil-
dung 29 zusammengefal3t.

10.Speedikon ist ein eingetrageneandhzeichen der Firma IEZ AG.
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4 Ausblick

Lexikon
Entwurf Instanziierung | Quell-
Text
Applikations-
Patterns] Modell 5 .
Gebaude- é *
Modell
Tranformation
I\S/limdulialltm: A
ode
Pattern ;
Katalog Speedikon
weitere
Modelle D

Abb. 29: Entwurfsprozeld mit Patterns

4.2 Vor- und Nachteile des patternbasierten Entwurfs

Durch die Patterns erh&lt man eine sehr flexible und ausdrucksstarke Modellierungsmdglich-
keit. Da jedes Pattern eine Problemlosung fur eineitbd8reich des zu modellierenden
Systems liefert, kann das Modell Schritt fir Schritt durch sukzessives Anwenden der Patterns
aufgebaut werden.ovteilhaft an den Patterns ist dabei, dafl? sie neben der Problemlésung auch
ausfuhrlich die Problemsituation beschreiben, bei denen sie verwendet werden kdnnen. Das
erleichtert den Umgang mit Patterns und ermoéglicht auch Nichtspezialisten auf dem Gebiet
der Gebaudesimulation, einen Simulator zu erstellen.

Sind die Patterns einem Entwerfer bekannt, so kbnnen sie gut als Entwurfsvokabular benutzt
werden. Dies erleichtert die Kommunikation zwischen mehreren Entwerfern. Durch einfache
Angabe eines Pattern-Namens wird bereits eine bestimmte Problem-Situation beschrieben und
ein Losungsvorschlag gemacht.

Ein weiterer Vdrteil der Modellierung mit Patterns ist, dal3 andere Modelle und Ideen verwen-
det werden kdnnen. So kénnen separat vom Gebaude-Simulator bereits Modelle aufgestellt
werden, die den Aufgabenbereich charakterisieren. Das Gebaude-Modell ist beispielsweise
solch ein Modell. In ihm ist beschrieben, wie ein Haus aufgebaut ist und welche Eigenschaften
es hat. Dieses Modell kann in vielen Bereichen zum Einsatz kommen. Beispielsweise kann
eine Steuerung oder ein CAD-Programm genauso auf das Gebaude-Modell aufbauen wie der
Gebaude-Simulatobaher ist es sinnvoll, solcherlei Modelle separat zu modellieren und dann
fur das aktuelle Anwendungsprojekt adaquat zu verwenden. Der higgsebiagene Model-
lierungsansatz kann verschiedene Modelle integrieren und fugt durch die Patterns zusatzliche
Funktionalitat hinzu.
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4.3 Weitere Arbeiten

Da die Patterns problemorientiert arbeiten, eignen sie sich auch sehr gut zur Dokumentation
des erstellten Modells. Durch einen speziellen Generator kénnte aus einem Applikationsmo-
dell automatisch eine Dokumentation erstellt werden, in der beschrieben wird, wie die einzel-
nen eilprobleme beim Entwurf geldst wurden.

Voraussetzung fur einen guten Entwurf mit Patterns sind natirlich gute Patterns. Die Patterns
mussen einerseits so flexibel sein, dal sie an mehreren Stellen eingesetzt werden kénnen, und
andererseits mul} jedes Pattern auch konkret genug sein, damit aus ihnen automatisch Code
generiert werden kann. Dazu kommt noch, dal3 genug Patterns vorhanden sein missen, um
eine durchgangige Modellierung mit Patterns zu ermdglichen. Zu viele Patterns wiederum
verkomplizieren den Simulat&ntwurf, da langer nach einem anwendbaren Pattern gesucht
werden mul3.

Um die Modellierung mit Patterns einfach und ubersichtlich zu gestalten, sollte sie von ent-
sprechenden ¥Wkzeugen unterstitzt werden. Ein spezieller Editor konnte die Auswahl der
bendtigten Patterns erleichtern, und mit ihm kdénnten auch die Patterns an Modellklassen
gebunden werden. Zusatzlich sind mit dem Editor Konsitenztberprifungen maoglich.

Auf jeden Fall muf3 die Modellierung in computesbarer Form vorliegen, um eine automati-

sche Codegenerierung zu ermdoglichen.

4.3 Weitere Arbeiten

Der im Anhang A vaggestellte Pattern-Katalog ist sicherlich nicht vollstandig. Er kann zur
Modellierung einfacher Simulatoren herangezogen werden, muf3 aber beim Entwurf konkreter
Gebaudesimulatoren noch angepaldt und erweitert werden. Derzeit wird im Rahmen einer Pro-
jektarbeit Gberprift, wie praktikabel der hier gestellte Modellierungsansatz ist und ob die
vorgestellten Patterns ausreichen, um einen einfachen Gebaudesimulator zu generieren.

Weiterhin ist die ¥rwendung der Patterns, vor allem unter dem Gesichtspun&titienati-
schenGenerierung eines Programmes, nur mit Hilfe geeignetekx&uge maoglich. s fehlt

ist also eine passende Reprasentation der Patterns in einem Computerprogramm, das die Bin-
dung der Patterns an Modellklassen, wie in Kapitel 2.8 beschrieben, erlaubt. Auf dieses
Modellierungs-Programm muf3 dann ein Generator aufgesetzt werden, der anhandeder vor
nommenen Pattern-Bindungen und aufgrund entsprechendengtinhvissens in der Lage

ist, einen Gebaude-Simulator zu generieren.

Ein solcher Generator wird momentan in einer Diplomarbeit entwickelt. Dazu werden die Pat-
terns selbst und die Bindungen der Patterns weiter formalisiert. Der Generator liest eine for-
male Beschreibung der Pattern-Bindungen ein und generiert daraus, zusammen mit den
Eingabemodellen, den fertigen Simulatorcode. Der Generator selbst ist dabei generisch aufge-
baut, so daf? er Code flr unterschiedlichste Patterns generieren kann und leicht erweiterbar ist.

Ein langerfristiges Ziel ist es, eine integrierte Entwicklungsumgebung zu erstellen, mit der
Modelle und Patternbindungen eingegeben werden kdnnen, um anschlieRend daraus einen
Gebaudesimulator zu generieren.
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A.1 Simulations-Patterns

ahanga  Pattern Katalog

Im folgenden werden Patterns zur Modellierung eines Gebaude-Simulatgestetit. Der

Katalog ist in seiner jetzigen Form sicherlich nicht vollstandig und mul3 bei Bedarf noch
erweitert und angepal3t werden.

Der Katalog ist in zwei dile aufgeteilt: Kapitel A.1 beinhaltet Patterns, die sich speziell mit

der Simulation beschaftigen. Im anschlieBenden Kapitel werden dann allgemeinere Patterns
beschrieben, die sich um das Zusammenspiel der einzelnen Komponenten eines Frameworks
kiimmern.

A.1 Simulations-Patterns

Simulations-Patterns kimmern sich zum einen um die korrekte Berechnung der einzelnen
Simulationsgréfien (Kapitel A.1.1) und zum anderen um Probleme des Scheduling (A.1.2).
Bei der Modellierung eines Simulators sollte sich zunachst um die Modellierung der Simulati-
onsobjekte (also um die Berechnungsformeln und um das Zusammenspiel unterschiedlicher
Objekte) gekiimmert werden. Die zeitliche Abfolge, wann welches Objekt berechnet werden
soll, kann in einem zweiten Schritt einfach hinzumodelliert werden.

A.1.1 Berechnungsformeln

Die folgenden Patterns beschaftigen sich hauptséchlich mit der thermischen Simulation. Ahn-
liche Patterns fir andere Simulationsgrof3en (Luftdruck, Luftfeuchtigkeit, Licht, etc.) kbnnen
aber sehr leicht neu in den Katalog aufgenommen werden.

Simulation thermischer Masse

» Zweck
Dieses Pattern dient dazu, dienfperatur einer thermischen Masse in Abhangigkeit von
auf die Masse einwirkenden Warmemengen zu berechnen. Als thermische Masse kann die
Luft in einem Raum angesehen werden, ebensogut kdnnen aber auch Wande oder Zwi-
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schendecken als Warmemasse betrachtet werden. Die spezifischen Eigenschaften einer
Masse sind ihr Mumen und ihre Warmekapazitat. Die Warmekapazitat ist abhangig von
der Temperatur der thermischen Masse, wird aber in der Regel als konstant angesehen.

Auf eine thermische Masse wirken Warmemengen ein. Diese entstehen entweder durch
Heizkorper durch direkte Sonneneinstrahlung oder dun@n3mission von angrenzenden
Gebieten (Warmeaustausch).

» Motivation
Um die Temperatur an einer (beliebigen) Stelle eines Gebaudes zu messen, mul3 diese als
thermische Masse agieren. Bei diesem Pattern wird angenommen, da@wgieratur
Uberall innerhalb der thermischen Masse gleich hoch ist (die Warmeleitung innerhalb der
Masse ist also unendlich groR3ypischerweise werden die Raume des Gebaudes als ther-
mische Masse aufgefal3t. Aber auch Wande oder Decken und FulRbdden kdnnen als eine
eigene thermische Masse betrachtet werden. Ausschlaggebend fur eine thermische Masse
ist, dal3 diese eine gewisse Warmemenge speichert und (eventuell) an umliegende Bereiche
abgibt. Der Warmeaustausch zwischen den einzelnen Massen geschieht entweder direkt
(siehe Patterithermischer Austausch (51der Uber eine Zwischenschicht (Patt®mmu-
lation thermischer &bindung (49) und mufd extra modelliert werden.
Das folgende Bild zeigt, wie eirell des Simulators fur ein einfaches Haus modelliert wer-
den kann:

Simulation Thermische Simulation
thermische Masse Verbindung thermische Masse
1 1 n| Zwischen- | n 1
: Wand
Raum Schicht
n
Thermischer Verbindung Verbindung
Austausch

Bei dieser Modellierung werden Raume und Wande als thermische Masse aufgefalit. Ein
Warmeaustausch zwischen diesen findet Uber Zwischenschichten statt, die jeweils eine
Wand mit einem Raum verbinden. Dies entspricht einer Luftschicht, die sich vor den Wan-
den befindet und in der der groRtel Tdes Warmelbganges stattfindet. Zusatzlich zum
Warmeaustausch tber Wande tauschen die Raume auch direkt, zum Beispiel Uber Zwi-
schentlren, Warmemengen aus.
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Da die Art der Relationen zwischen den Objekten RauamdNind Zwischenschicht von
Gebaudemodell zu Gebaudemodell verschieden sein kann, muld diese explizit Gber ein
Verbindungspattern (siehe A.2.3) modelliert werden.

Anwendbarkeit

Dieses Pattern kann an eine beliebige thermische Masse gebunden wgrteheTMog-
lichkeiten sind Raume und dickere Wéande oder Decken. Aber auch eine Nachtspeicherhei-
zung kann man als thermische Massdamsen. Wehtige Eigenschaft einer thermischen
Masse ist, dal3 sie eine gewisse Warmemenge speichern kann. Die Speicherfahigkeit ist
abhangig von der spezifischen Warmekapazitat des Materials (oder Gases), aus dem die
Masse besteht, und ihrenolMmen. Zusétzlich zu diesen Kennwerten muf3 bekannt (bzw
berechenbar) sein, welche Warmemenge in die thermische Masse einfliel3t.

Struktur
Dieses Pattern beinhaltet nur Funktionalitat fir eine Klasse, namlich die thermische Masse
selbst. Die Berechnungsformel zur inkrementellen Berechnung epératur lautet

+ Q (tlast’ tact)
fast Vie (tlast’ tact)

(t,ast, tact) in die thermische Masse eingeflossen ist, \blkuven der Masse, ¢, tac) =

T .=T

act mit Q(izsy tae) = Warmemenge, die im Zeitintervall

durchschnittliche spezifische Warmekapazitat im Inter¢gll, t,.) . Durch die Anbin-

dung dieses Patterns an ein Objekt, das als thermische Masse agieren soll, kann die jewei-
lige Temperatur&nderung in Abh&ngigkeit der beeinflussenden Warmemenge und der
spezifischen Warmekapazitat (Materialkonstante) berechnet werden.

thermische Masse Simulation thermischer
T Temperatur Masse
tasZeitpunkt der letzter
Berechnung
V Volumen der Masse
calcT () Berechnung———p [ ¢
der Temperatur tiast *= tact-
getC(y, t)spezifische ¢ := getC(tiast, tact)-
Warmekapazitat setT(getQ(tast, tact)/ (V * ) +T).
getQ(t, t,)Warmemenge

Mitwirkende Objekte

Klassen:
thermische Masse: Die Masse, fir die die émperatur simuliert werden soll. Als

Kennwerte der thermischen Masse mul3 daarwen und die spezifische Wéarme-
kapazitat bekannt seinypische Beispiele fir eine thermische Masse sind ein
Raum oder auch dickereaMdschichten.
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Instanzenvariablen / Konstanten:
T  Beinhaltet die jeweils zuletzt berechnetmperatur
tast Zeitpunkt, an dem dieemperatur T zuletzt berechnet wurde.

V  Volumen der thermischen Masse (konstant)

Funktionen:
calcT (e Funktion zur Berechnung derefperatur Als Ubegabeparameter
wird die aktuelle Zeit Gbgeben.
getC(T) Liefert die spezifische Warmekapazitat der thermischen Masse zurlck.

Die Warmekapazitat ist abhangig von der aktuellemferatur; sie wird jedoch
meist als konstant angenommen. Die Berechnungsformel fur die Warmekapazitat
muld explizit Gber ein weiteres PatteKofistanter \Wrt (63) oderFunktion (61)
angegeben werden.

getQ(t, t,) Die Temperatur in einer Masse wird durch die Warmemenge beein-
fluldt, die in sie einstromt. Um also dierfiperaturanderung im letzten Zeitinter-
vall berechnen zu kdnnen, mufl3 die Warmemenge ermittelt werden, die im
Intervall ({54 tac) @uf die thermische Masse eingewirkt istieWilie Berechnung

dieser Warmemenge aussieht, muf3 durch andere Patterns modelliert werden.

* Zusammenarbeit
Dieses Pattern hangt hauptséchlich von einer sinnvollen Berechnung der Warmemenge ab,
die in die thermische Masse einflieRt. Ublicherweise setzt sich die Warmemenge aus drei
Komponenten zusammen: derrasmissionswarmemenge (Warmedurchgang durch
Wande etc.), der Strahlungswarmemenge von Heizkodrpern oder Sonneneinstrahlung und
dem Warmeaustausch. Samtliche Warmemengen, die auf eine thermische Masse einwir-
ken, missen separat modelliert werden.

» Konsequenz
Zur Anwendung des Patterns missen ddarien und die spezifische Warmekapazitat der
thermischen Masse bekannt sein. Nach der Bindung dieses Patterns an eine Modell-Klasse
muf3 vor allem noch modelliert werden, woher welche Warmemengen in die Masse einflie-
Ren. Dazu werden in der Regel die entsprechenden abhangigen Objekte lber eines der Pat-
tern Einfache Indiektion (67)oder Komplexe Indiektion (69)an die thermische Masse
gebunden (Ein Raum als thermische Masse kann beispielsweise die Klasset,,Wir",
.Fenster* und ,Heizkorper* als Warmequellen haben).

» Beispielimplementierung und Benutzung
Siehe Abbildung 10 auf Seite 18.

* Verwandte Patterns
Thermischer Austausch (52)r Berechnung des direkten Warmeaustausches.
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Simulation thermischer Verbindung

Zweck

Eine thermische &fbindung ist ein fennelement zwischen zwei thermischen Massen, die
Warme untereinander austauschen. Dieses Pattern dient dazu, den Warmestrom zwischen
den zwei thermischen Massen zu berechnen.

Motivation

Im einfachsten Fall kann einedaM als Tennelement zweier R&ume aufgefal3t werden.
Haben beide Raume unterschiedlicleenperaturen, so flie3t zwischen ihnen ein Warme-
strom. Dieser Warmestrom ist abhangig vom Warmewiderstand der thermisatam V

dung und der @mperaturdfierenz der beiden angrenzenden Masge# g).

Dieses Pattern stellt zwei Funktionen zw@arfigung: eine zur Berechnung des aktuellen
Warmestroms und eine zur vorzeichenrichtigen Abfrage desselben von einer thermischen
Masse aus.

Anwendbarkeit
Bei jeder thermischeneévbindung. Der Warmewiderstand degrbindung mufd bekannt
oder zumindest berechenbar sein.

Struktur

Eine thermische &fbindung verbindet zwei thermische Massen miteinaridierch eine
thermische ¥rbindung flie3t, abhangig von deeriperaturdiierenz der beiden thermi-
schen Massen, ein Warmestrom. Dieser Warmestrom berechnet sich durch die Formel

= AET wobei R den Warmewiderstander thermischen afbindung beschreibt. Der
Warmewiderstand einer thermischeerbindung ist in der Regel konstant und wird entwe-

der bei der Instanziierung der Klassen eingegeben oder durch eine Formel berechnet (Pat-
ternFunktion (61). Zusatzlich zu der Berechnungsformel fiir den Warmestrom stellt dieses
Pattern eine Funktion zur Abfrage desselben bereit. Dies ist notwendig, damit eine vorzei-
chenrichtige ¥rarbeitung des Warmestroms maoglich ist. Dazu wird als zusatzlicher Para-

1. Je nach Art der &fbindung wird der Warmewiderstand unterschiedlich berechnet. Folgende vier Félle
sind maglich:

i) Widerstand eines homogenen Warmefeld&gs:= )%B mit & = Schichtdickeh = Warmeleitfa-

higkeit (Materialkonstante) und S = Schnittflache
i) Warmeiibegangswiderstand fiir den Ulgaing an der Oberflache eines festenf€saduf ein Fluid

(z.B. Gas, VsserDampf): R, = &%5 mit dem Warmelbgangskodizientena.

i) Der Warmedurchgangswiderstand beschreibt denddingrvon einem Fluid durch eineawd auf
ein anderes Fluid. Er berechnet sich durgh= %S mit dem Wéarmedurchgangzkdiefenten

k=1

ay
iv) Fir die Wandung eines geraden Rohres mit kreisférmigen Querschnitt (Auendurchrmgesser d
In (d,/d,)

21t A

+R, B+ 0(12 (0 = Warmelubeagangskodizienden der Fluids).

Innendurchmessenrfgilt: R =
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meter die thermische Masse an die FunkgetQ tibegeben, die momentan als Innenseite
agiert.

Die beiden Relationen Innenseite und Aul3enseite beschreiben die Nachbarschaft der ther-
mischen ¥rbindung zu ihren thermischen Massen. Sie konnen im Modell auch zu einer
zweistelligen, geordneten Relation zusammengefal3t werden.

thermische ¥rbindung thermische Masse

R Warmewiderstand | |nnenseite
S Flache AuRenseite

getT(t) liefert die
Remperatur  zun
calcQ(t) berechnet Zeitpunkt t

den Warmestrofy
zum Zeitpunkt t \ - -
. (Innenseite->getT(t) -
getQ(t, M) liefert Q AuRenseite->getT(t)) / R.

fur die Masse M ™
Qtemp = calcQ(t). e
if (M == AuRRenseite)
Simulation thermi- Qtemp = “Qtemp:
scher \érbindung f
"Qtemp-
Mitwirkende Objekte
Klassen:
thermische ¥rbindung: Beschreibt die ®rbindung zweier thermischer Massen.

Die Verbindung selbst besteht aus einem festemmaterial, so dal durch die
angegebene Formel der Warmedurchgang durch dieses Material berechnet wird.

thermische Masse: Die beiden thermischen Massen, die durch @&dMdung
miteinander verbunden werden.

Instanzenvariablen / Konstanten:
R  Der Warmedurchgangswiderstand derbindung. Er ist wahrend einer Simula-
tion normalerweise konstant und setzt sich bei mehrschichtigen Wanden aus der
Summe der Warmewiderstéande der einzelnen Schichten und den beiden Warme-
ubegéangen von den Randschichten in die benachbarte thermische Masse zusam-
men.
S  Die GroR3e der Schnittflache der thermischerbihdung.

Funktionen:
thermische ¥rbindung::calcQ(t) Dient zur Berechnung des Warmestromes durch die

Verbindung zum Zeitpunkt t.
thermische ¥rbindung::getQ(t, M) Liefert den Warmestrom zum Zeitpunkt t
zurlick, wobei die thermische Masse M als Innenseite angenommen wird.
thermische Masse::getT(t) Gibt die Temperatur der thermischen Masse zum
Zeitpunkt t zurtck.

-50 -



A.1 Simulations-Patterns

Zusammenarbeit

Eine thermische &bindung verbindet immer genau zwei Massen miteinansieeine
thermische Masse mit mehreren anderen Massen verbunden, so mul} jede dieser Nachbar-
schaften durch ein separates Objekt vop thermische ®rbindung ausgedriickt werden.

Um beispielsweise die Beziehung zwischen Raumen (= thermische Masse) und Wanden
auszudricken, lohnt es sich, einen neuen Objekttypen ,Raumteilerelement” einzufihren.
Ein Raumteilerelement verbindet immer genau zwei RAume miteinander und kann so als
thermische ¥rbindung aufgefal3t werden. Das komplexere Gebilde eiaedWirde in

diesem Fall dann mehrere Raumteilerelemente aggregieren (siehe Abbildung 30).

Wand

2 Abtrennung n _
Raum Raumteilerelemen

—

Abb.30: Eine Wand wird zusammengesetzt aus mehreren Raumteilerelementen

Konsequenz

Um dieses Pattern anwenden zu kénnen, mufld der Warmewiderstanerdardihg
bekannt beziehungsweise berechenbar sein. Dieser mul3 bei der Initialisierurghiles V
dungs-Objektes in die Instanzenvariable R eingetragen werden.

Zusatzlich mul3 es moglich sein, dieniperatur einer thermischen Masse zu einem Zeit-
punkt t abzufragen. Um dieses zu bewerkstelligen, missen samtliche oder zumindest die
letzten Bmperaturen der thermischen Massen zwischenigepwierden. Ein weiterer Puf-

fer ist eventuell notwendig, um die zuletzt berechneten Warmestrome aufzunehmen, damit
bei Bedarf daraus die Warmemenge (= Integral Gber den Warmestromverlauf) in einem
Zeitintervall berechnet werden kann. Siehe dazu auch das Beispiel in Kapitel 2.7.

Verwandte Patterns

Simulation thermischer Masse (48)r Berechnung deremperatur einer Masse in Abhan-
gigkeit des Warmestromes.

Das Patterihermischer Austausch (5t¢schreibt die direkte Mischung zweier Gase.

Thermischer Austausch

Zweck

Haufig tauschen sich verschiedene Gase direkt miteinander aus, es findet also kein Warme-
Ubegang statt, sondern eine direktervischung der beiden (Luft-)Massen. Dies geschieht
zum Beispiel durch ein fé#nes Fenster in einem Raum, durch das sich die Luft im Raum
mit der AuRRenluft vermischt. Dieses Pattern stellt die nétigen Funktionenreriilgvng,

um die aus der&mischung resultierendemperaturen zu berechnen.
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Motivation

Durch ein ofenes Fenster oder eindaie Tir stromt Luft, so dal3 sich die Luftmassen zu
beiden Seiten des Fensters vermischen. Dadurch gleichen si@ntper&turen der beiden
Luftmassen allméhlich aus. Die resultierenggnperatur ist abhangig vonoMmen der
ausgetauschten Luftmengen und den Luftdricken.

Anwendbarkeit

Das Pattern wird angewendet, um die aus @emischung zweier Gase entstehendmT
peraturveranderung zu berechnen. Die angegebene Berechnungsformel liefert exakte
Ergebnisse fir gleichatomige Gase und kann als gute Annaherung fur verschiedenatomige
Gase benutzt werden.

Struktur

Zwei thermische Massen sind mit einer Relation verbunden, die die Nachbarschaft aus-
drickt. Um zu berechnen, wie sich dienperatur einer Gasmenge verandert, wenn eine
andere Menge sich mit ihr vermischt, wird die Funkkonvektion(VG) bereitgestellt. Als
Ubegabeparameter erhalt sie dagwhnen der ausgetauschten Gasmenge und einen Zeiger
auf das einstromende Gas. Dasdwhen und der Druck der Masse, in die das zweite Gas
einstromt, mul? auch bekannt sein. Die Berechnungsformel firetmidchung zweier

- PVitpV, . . _
Gase lautetT = . Sie kann auch fir dieevmischung von mehr als zwei
P.Vi PyVs
T T

1
Gasen erweitert werden.

2

thermische Masse thermischer Austausgh
V  Volumen M98
p  Druck 1 fempl = p V. |
T Temperatur temp2 := G->getV() * _V.
n » T := (templ + temp2) /
konvektion ( VG) ((templ/T) +
(temp2 / G->getT())).
Mitwirkende Objekte
Klassen:
thermische Masse: Objekte dieser Klasse reprasentieren die Gase, die sich vermi-
schen.
Instanzenvariablen / Konstanten:
thermische Masse::V Volumen des Gases in®m
thermische Masse::p Gasdruck in Pascal.
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thermische Masse::T Temperatur in Grad Celsius.

Funktionen:
thermische Masse::konvektion(, &) Dient zur Anpassung deremperatur wenn
ein \blumen _V des Gases G in das aktuelle Gas einstromt.

Zusammenarbeit
Die thermischen Massen sind liber die 1:n Reldtiachbarmiteinander verbunden.

Verwandte Patterns
Simulation thermischer evbindung (49)zur Berechnung des thermischen Austausches
durch ein Zwischenmedium @nd etc.).

A.1.2 Scheduling

Die folgenden Patterns beschéaftigen sich mit dem Problem des Scheduling, also mit dem Auf-
ruf bestimmter Funktionen zu einem festen Zeitpunkt und in der gewtinschten Reihenfolge.
Die Funktionsweise des Scheduler ist in Kapitel 3.2 und in [Hei96] beschrieben.

Kontinuierliche Simulation

Zweck

Dieses Pattern sgirdafir dal3 das Simulationsobjekt, an das es gebunden wird, kontinuier-
lich zur Berechnung seiner Simulationsgro3e aufgefordert wird. Durch die Bindung des
Patterns wird auch ein Evenyyd erzeugt, mit dem das Simulationsobjekt jederzeit (also
auch aul3erhalb der periodischen Berechnungen) aufgefordert werden kann, seine Simulati-
onsgroRe zu aktualisieren.

Motivation

Die Modellierung der Berechnungsformeln einer Simulationsgré3e alleine reicht nicht aus,
um einem Simulator ,Leben einzuhauchen®. Das Simulationsobjekt mufR auch in bestimm-
ten Abstanden aufgefordert werden, seine Berechnungen durchzufuhren. Bei den meisten
Objekten ist dies sinnvoll, wenn sie sich in regelmafligen Abstanden neu berechnen, um
jederzeit eine gute Annaherung an die nachgeahmte physikalische Gro3e zu haben. Die
Periodendauer ist je nach Simulationsobjekt unterschiedlich und kann sich auch wahrend
der Simulation noch andern. Bei der Raumtemperatur beispielsweise reicht es aus, wenn sie
jede Minute neu berechnet wird.f@ét jedoch jemand die Tirr zu diesem Raum, kann sich

die Temperatur sehr rasch &ndern. Das macht dann eine haufigere Berechnung (z.B. alle 5
Sekunden) notwendig.

Um eine kontinuierliche Berechnung durchfiihren zu kénnen, muld das Simulationsobjekt
eine Anbindung an den Scheduler haben. Diese Kopplung geschietidiiver Objects

(vgl. 3.2). Durch dieses Pattern wird das Simulationsobjekt mit einem Active Object ver-
bunden (falls das nicht bereits durch ein anderes Pattern geschehen ist). In diesem Active
Object wird ein neuer Thread (= unabhangig von der restlichen Simulation laufender Pro-
zel3) erzeugt. Dieser Thread wird aufgerufen, wenn er Gber den Scheduler ein entsprechen-
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des Event zugesendet bekommt. Daraufhin veranlaf3t er die Neuberechnung der
SimulationsgrofRe (durch den Aufruf der Metodaculate() beim Simulationsobjekt).
Anschlief3end verschickt der Thread einfach ein Event an sich selbst und gibt darin an, daf3
es erst zu einem spéateren Zeitpunkt (ndmlich genau zum Beginn der nachsten Periode)
ankommen soll. Dadurch tfeh dann zu den entsprechenden Zeitpunkten Events mit der
Aufforderung zur Neuberechnung an.

* Anwendbarkeit
Das Pattern kann prinzipiell an jede Klasse gebunden werden. Beachtet werden muf3 aller-
dings, dal3 eine zu haufige Berechnung einer Simulationsgrof3e zu einem erheblichen
Rechenaufwand fihren kann, so daf3 im Extremfall die Echtzeitfahigkeit des Simulators
nicht aufrecht erhalten werden kann. Andererseits fihrt eine zu langsame Berechnung zu
mathematischen Ungenauigkeiten, die dagehknis der Simulation verfalschen kénnen.

» Struktur

Durch die Bindung des Patterns Kontinuierliche Simulation an eine Klasse wird diese mit
einem Active Object verbunden. Die Simulations-Klasse braucht von dieser Ankopplung
nichts zu wissen, da die Kommunikation nur in der anderen Richtung stattfindet: das Active
Object ruft in periodischen Zeitabstanden die Methzaleulate()des Simulationsobjektes

auf. Zusatzlich zu der Anbindung an ein Active Object wird in diesem noch ein neuer
Thread erzeugt, und es wird ein neugp Yon Events varesehen, der die Simulationsob-
jekte zum Rechnen dofdern soll.

Simulationsobjekt ActiveObject
SImObl I« letzte Berechnung

n 1...1 .
calculate() delta_t Zeitintervall
Thread() *
if (Event = calculateEvent) N
SimObj->calculate();
tnext = t|ast+de|ta_t;
. . if (takt == thext)
Kontinuierliche new Event(this, this, calculateEvent,
Simulation thext);
tast = thext

Der Thread reagiert auf das Einfesf eines calculate-Events. Daraufhin ruft er eine
Methode zur Neuberechnung der Simulationsgrd&écijlate() auf. Zuletzt schickt er
einen neuen calculate-Event an sich selbst, der erst zur ndchsten Perioderesulef

* Mitwirkende Objekte

Klassen:
Simulationsobjekt: Das Objekt, deren Simulationsgré3e quasi-kontinuierlich neu
berechnet werden soll.
ActiveObject: Die entsprechende Klasse aus dem Simulsimdell.
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Instanzenvariablen / Konstanten:
ActiveObject::fyst Zeitpunkt der letzten Berechnung (genauer: des letzten Peri-
odenanfanges)
ActiveObject::delta_t Dauer einer Periode. Kann im Bedarfsfall an die momentane
Situation angepaf3t werden (z.B. kiirzere Periode ndclei®éines Fensters).

Funktionen:
Simulationsobjekt::calculate() Methode zur Neuberechnung der Simulationsgro-

Ren.
ActiveObject::Thread() Der Thread (= zeitlich unabhangiger Programmteil),

der sich um die Kontinuitat kimmert.

Zusammenarbeit

Hauptséachlich kiimmert sich der Scheduler darum, dal3 die Neuberechnung der Simulati-
onsgrofRen immer zum richtigen Zeitpunkt angestof3en wird. Dazu wird dem Active Object
ein Event geschickt. Bei Ankunft dieses Events fordert das Active Object sein Simulations-
objekt auf, sich neu zu berechnen. Anschliel3end schickt es sich selbst ein neues Event, das
aber erst zu einem spéateren Zeitpunkt wieder efatrefoll. Der Scheduler merkt sich die-

ses Event und schickt es an das ActiveObject zurtick, sobald der entsprechende Zeitpunkt
gekommen ist.

Konsequenz

Prinzipiell kann dieses Pattern an jede Modell-Klasse gebunden werden. Da es jedoch
einen gewissen Overhead mit sich fuhrt (fir das Active Object muld ja ein eigener Thread
angelegt werden), sollte es sparsam eingesetzt werden. Jedes Simulationsobjekt braucht nur
mit maximal einem ActiveObject verbunden zu werden. Der Thread des ActiveObjects
kann auch durchaus mehrere unterschiedliche Events verarbeiten.

Verwandte Patterns
Mit dem PattermAktuator (55)kann ein Simulationsobjekt zu einer einmaligen (asynchro-
nen) Berechnung seiner Simulationsgréf3en aufgefordert werden.

Aktuator

Zweck

Ein Aktuator ist aus Sicht des Simulators eine StellgroR3e, die von aul3en gesetzt wird. Diese
Grof3e kann dann zur Berechnung weiterer Simulationswerte herangezogen werden. Durch
dieses Pattern wird einem Simulationsobjekt prinzipiell die Mdéglichkeit gegeben, von
aul3erhalb der Simulation (Simulat8teuerung oder Hardware-In-The-Loop) verandert zu
werden.

Motivation

Die Heizleistung eines Radiators ist ein typisches Beispiel, bei dem ein Aktuator verwendet
werden kann. Die Heizleistung ist normalerweise ein feseat,\Wer sich &ndert, wenn ein
Benutzer das Heizungsventilfiiét oder schliel3t. Diese Benutzereingabe verlauft prinzipi-
ell asynchron zur eigentlichen Simulation.
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Um eine SimulationsgroéRe derart beeinflussen zu kénnen, mu3eztriadving zwischen

dem Simulationsobjekt und dem Scheduleghstellt werden. Dann kann Uber entspre-
chende Events jederzeit - asynchron zur Simulation - der Zustand des Simulationsobjektes
abgefragt werden.

Anwendbarkeit

Dieses Pattern braucht nur eingesetzt zu werden, wenn Anderungen der SimulationsgroRRe
zu einem bestimmten Zeitpunkt stattfinden sollen. Um ein Simulationsobjekt sofort zu
andern, kann auch direkt die entsprechende Instanzenvariable modifiziert werden (Uber die
Zugriffsfunktionen). Um jedoch Aktionen fir die Zukunft einzuplanen (Beispiel: um 7:00
Uhr soll die Heizung eingeschaltet werden), mul3 das Objekt, das angesprochen werden soll
(in diesem Fall also die Heizung), in der Lage sein, Events zu empfangen. Dann kann nam-
lich ein Event verschickt werden, das genau in einem vorherbestimmten Zeitintervall beim
Ziel eintrifft. Mit diesem Pattern wird die Fahigkeit modelliert, Events empfangen zu kon-
nen.

Struktur

Um ein Event empfangen zu kénnen, muf3 ein Objekt wymAEtive Object sein. Zur&f-
meidung der Mehrfachvererbung, wird mit diesem Pattern fur ein Simulationsobjekt extra
ein ActiveObject angelegt und Uber Delegations-Mechanismen angesprochen. Das Active
Object legt einen Thread an, der auf das Eif@nefon Events wartet.rifft ein solches

Event ein, wird eine Funktion beim Simulationsobjekt aufgerufen. Diese kann eine
Zugriffsfunktion auf eine Instanzenvariable sein, kann aber auch genau so gut eine andere
Funktionalitat besitzen (beispielsweise zur Neuberechnung einer Simulationsgfoze auf
dern).

Simulationsobjekt ActiveObject
SimObj

Funktion(data) Thread() *

-

if (Event = setEvent)
SimObj->Funktion(EventData)

Aktuator

Mitwirkende Objekte

Klassen:
SimulationsObjekt: Die Modell-Klasse, die Events zu bestimmten Zeitpunkten emp-
fangen konnen soll.
ActiveObject: Die Klasse ActiveObject ist bereits im Simulator Modellgesr
geben (siehe 3.2). Durch dieses Pattern wird nur ein Thread des Active Objects um
die Funktionalitéat erweitert, auf ein spezielles Event zu reagieren.
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Funktionen:

ActiveObject::Thread() Diese Methode wird unabhangig vom ubrigen Programm-
fluld ausgefuhrt und wartet kontinuierlich auf das Eifgrekines Events. Beim
Eintreffen eines Events wird eine dem EvegpTentsprechende Aktion beim
Simulationsobjekt ausgeldst, und anschlieRend wird wieder auf neue Events
gewartet.

SimulationsObjekt::Funktion(data) Die Funktion, die ausgefuhrt werden soll,
wenn ein Event eintrif. Als Ubeigabeparameter kdnnen die im Event mitgegebe-
nen Daten dienen.

» Zusammenarbeit
Jedes Simulationsobjekt braucht nur mit einem Active Object verbunden zu sein. Ist eine
Modell-Klasse bereits mit einem Active Object verbunden, so wird durch dieses Pattern
einfach nur der Thread dieses Objektes erweitert. Die Kommunikation verlauft immer aus-
gehend von einem Event Uber das Active Object zum eigentlichen Simulationsobjekt.
Dieses braucht sich ansonsten nicht weiter um das Active Object zu kiimmern.

* Konsequenz
Prinzipiell kann dieses Pattern an jede Modell-Klasse gebunden werden. Da es jedoch
einen gewissen Overhead mit sich fuhrt (fir das Active Object muld ja ein eigener Thread
angelegt werden), sollte es sparsam eingesetzt werden. Jedes Simulationsobjekt braucht nur
mit maximal einem ActiveObjekt verbunden zu werden. Der Thread des Active Objects
kann auch durchaus mehrere unterschiedliche Events verarbeiten.

* Verwandte Patterns
Kontinuierliche Simulation (53)

A.2 Framework-Patterns

Die folgenden Patterns kénnen zur Modellierung beliebiger Frameworks herangezogen wer-
den. Die impliziten Patterns in Kapitel A.2.1 kénnen von einem Generator automatisch ver-
wendet werden. Dadurch erhlt selbst ein ansonsten ,leeres* Framework (d.h. eines, das aul3er
Instanzenvariablen und Relationen noch keine Funktionalitat hat) bereits eine gewisse Grund-
funktionalitat. Dadurch, daRR diese Funktionalitat einheitlich fur alle Klassen generiert wird,
erleichtert sich der Umgang mit dem Framework. Zarf&nerung der einzelnen Modell-
Klassen dienen die Patterns in Kapitel A.2.2. Im folgenden Kapitel werden Methoden vor
stellt, wie man Relationen zwischen Klassen verfolgen kann. Zum Schlul? werden noch Struk-
turierungsmethoden der Modell-Klassengestellt.

A.2.1 Implizite Patterns

Die Patterns in diesem Abschnitt konnen von einem Generator automatisch angewendet wer-
den, um eine einheitliche Zugsschnittstelle auf alle Objekte des Gesamtmodells zu erhal-
ten. Bei der Modellierung eines Frameworks kann daher davon ausgegangen werden, dafl3 die
folgenden Patterns bereits auf jede Modell-Klasse angewendet worden sind.
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Instanzenvariable

Zweck

Dient zur automatischen Kapselung von Instanzenvariablen. Fur samtliche Instanzenvaria-
blen, fur die durch andere Patterns noch keine Zsfyritktionen erstellt wurden, werden
entsprechende Zugisinethoden erzeugt. Der Zudrduf eine Instanzenvariable, ausge-
hend von einem Objekt einer anderen Klasse, sollte nur Uber diese Funktionen geschehen.

Bekannt unter
Attribut

Motivation

Jedes Objekt sollte bei einem objektorientierten Programm nur direktenfZudrdeine
eigenen, lokalen Daten haben. Auf Daten anderer Objekte wird UberfZugitionen
operiert. Durch diese Indirektion ist es mdglich, zusatzliche Sicherheitsabfragen (zum Bei-
spiel Bereichsuberschreitungen oder Schutzverletzungen) in die jeweiligenfsZugk

tionen einzubauen, um somit die Daten eines Objektes konsistent zu hattem.auwf
samtliche Instanzenvariablen tber eigene Funktionen zuigeguferden kann und dar-
Uberhinaus die Namenskonvention dieser Funktionen gleichbleibend ist, so kann auf einfa-
che Art und Veise der Zustand jedes Objektes gelesen und verandert werden.

Anwendbarkeit

Dieses Pattern wird vom Generator implizit angewendet. Es braucht daher nicht explizit an
Objekte gebunden zu werden. Im generierten Programm kann davon ausgegangen werden,
daR fur sdmtliche Instanzenvariablen Zugfifnktionen vorhanden sind.

Struktur

Die Struktur des Patterns ist sehr einfach. Jede Instanzenvariable erhalt eine Lesefunktion
und eine Schreibfunktion. Die Lesefunktion heif3t dabei genau so, wieadi&bl im

Modell selbst, erhalt nur den zusatzliche Prgget bei der Schreibfunktion (Préafise)

wird ein zusatzlicher Parameter Ufpeloen.

Klasse Instanzenvariablg
V Instanzenvariable -
getV()liefert V zuriick ] "V
setV(_V) setzt V auf neuer

Wert | V1= V. .l

Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, fur die Zugffi§funktionen generiert werden.

Instanzenvariablen / Konstanten:
V  Die entsprechendeaviable. Um Namenskonflikte zu vermeiden, kann sie im
Quelltext umbenannt werden (z.B. _V).
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Funktionen:

getV() Methode, um den ¥rt der \ariablen abzufragen.
setV(_V) Methode zum Setzen der Instanzenvariable.

Konsequenz
Der Zugrif auf Instanzenvariablen von auf3erhalb eines Objektes sollte nur Gber die
Zugriffsfunktionen geschehen.

Implementierung/Bindung
Die Instanziierung dieses Patterns erfolgt automatisch durch den Generator

Verwandte Patterns

Funktion (61)zur Modellierung einer neuen Funktion. Instanzenvariablen sind ,nach
auf3en* hin nur dber ihre Zugsfunktionen sichtbarks ist also auch mdglich, Gber die
Nachbildung dieser Zugfgfunktionen eine Instanzenvariable nachzubilden oder ihr
zusatzliche Funktionalitat zu geben.

Relation

Zweck

Dieses Pattern generiert automatisch Zégriethoden fur Relationen. Fir eine zweiseitgie
Relation werden Funktionen zuneNdinden zweier Objekte und zum Auflésen einer beste-
henden ¥rbindung angelegt. Dabei werden immer beide Richtungen berlcksichtigt; ver-
bindet man also Objekt A mit einem Objekt B, so kann auch von B aus auf A ztegegrif
werden.

Motivation

Zum einen dient dieses Pattern zur Datenkapselung. Auf den Instanzenvariablen, die die
Relation bilden, soll nur tber Zugsfunktionen operiert werden. Zum anderen wird dafur
gesogt, dal’ die Relationen auf beiden Seiten immer konsistent sind.

Besteht beispielsweise eine Relation zwischen einem Raum und dessen Wanden, so wer-
den fur den Raum die Funktionean\Wand() und dcoV\and() zum \érbinden einer \&hd

mit einem Raum generiert (die Prafigen und dco stehen fiir connect bzwlisconnect).
Gleichzeitig wird eine Zugr$funktion @etWande() angelegt, um alle mit einem Raum
verbundenen Wande zu erhalten.

Raum - Wand

m
Wénde R&aume
conW\and(W) conRaum(R)
dcovand(W) dcoRaum(R)
getWande() getRaume()
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Hat man in obigen Beispiel einead W1 und einem Raum R1, so kdnnen diese mit dem
Aufruf R1.conVend(W1)miteinander verbunden werden. Dasselbe NiteconRaum(R1)
bewirkt. Mit der FunktionWande()wird die Menge von Wanden zurlickgegeben, die mit
dem aktuellen Raum verbunden sind. Bei einer 1:1 oder n:1 Relation wird jeweils nur eine
Wand zurlckgegeben.

* Anwendbarkeit
Das Pattern wird vom Generator automatisch fur jede Relation verwendet. Eine explizite

Anwendung ist nicht nétig.

» Struktur
Fur jede Relation zwischen zwei Objekten werden auf beiden Seiten connect und discon-
nect Methoden angelegt. Konnen von einem Objekt aus mehrere andere Objekte referen-
ziert werden (ein Raum wird zum Beispiel von mehreren Wanden umgeben), so werden
alle diese Objekte in einer Menge gespeichert. Handelt es sich dagegen um eine 1:1 Rela-
tion, so kanrdasrefenzierte Objekt auch in einefigienteren Form (z.B. als Zeiger) abge-
legt werden.
Wird bei einer Klasse die connect-Methode aufgerufen, so wird in dieser Klasse die ent-
sprechende Referenz eingetragen und gleichzeitig eine connectintern-Methode beim refe-
renzierten Objekt aufgerufen. Diese interne Methodgtstaflr da alle Referenzen
jeweils auf beiden Seiten der Relation eingetragen werden.

Klasse A Klasse B Relation
1 n

Bs A

conB(_B) conA(_A)

Bs.add(_B) . ]}dcoB(_B) dcoA(_A) A=A . 1
B->conlinternA(this) etBs() getA() B->conlInternB(this)
["Bs coninternB(_B) coninternA(_A A 1
[Bs add(B) colnternB(_B) dcolnternA(_A) A 1

In der Abbildung sind aus Platzgriinden nur die connect-Methoden aufgefihrt. Die discon-
nect-Methoden funktionieren aber analog.

* Mitwirkende Objekte

Klassen:
Klasse_A: Beliebige Klasse, die eine 1:n Relation zu einer anderen Klasse hat.

Klasse_B: Die Klasse B soll in diesem Beispiel eine 1:1 Relation zur Klasse A haben.

Instanzenvariablen / Konstanten:
Klasse_A::Bs Menge aller referenzierten Objekte der Klasse B

Klasse B::A  Zeiger auf das referenzierte A-Objekt
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Funktionen:

Klasse_A::conB(_B) Verbindet ein Objekt der Klasse A mit einem der Klasse B (und
umgekehrt)

Klasse_A::dcoB(_B) L6st eine vorhandeneeybindung wieder auf.

Klasse A::Bs() Methode zum Abfragen aller referenzierten Objekte.

Klasse_A::coninternB(_B) Diese Methode verbindet nur einseitig ein B-Objekt mit
einem Objekt der Klasse A. Sie wird von der Methode KlasseB::conA(_A) aufge-
rufen und sollte ansonsten nicht direkt verwendet werden.

Klasse_A::dcolnternB(_B) Zum einseitigen l6sen eineekbindung.

Die entsprechenden Methoden der Klasse B besitzen dieselbe Funktionalitét.

Zusammenarbeit
Beim Ein- oder Austragen einer Relation wird jeweils die entsprechende interne Methode
der anderen Klasse aufgerufen, damit die Relationen auf beiden Seiten konsistent sind.

Verwandte Patterns

Um eine Relation zu verfolgen und Methoden bei den referenzierten Objekten aufzurufen,
kénnen die Patterrisinfache Indiektion (67)und Komplexe Indiektion (69)benutzt wer-

den.

A.2.2 Klassen

Die Patterns in diesem Abschnitt dienen zarf®inerung einzelner Klassen. Statt sich um das
Zusammenspiel zwischen Klassen zu kiimmern, fokussieren sie hauptséchlich die Funktiona-
litat einzelner Klassen.

Funktion

Zweck

Bei der Modellierung werden haufiger Berechnungsformeln benotigt, die nicht durch ein
Pattern ausgedrickt werden kdnnen. Um diese Formeln ausdriicken zu kénnen, kann in die-
ses Pattern die entsprechende Funktion eingesetzt werden.

Motivation
Angenommen, es sind im Gebaudemodell die Mal3e (Breite, Hoheiefa) fir einen
Raum eingetragen. Um diemperatur dieses Raumes zu berechnen, wird jedoclotias V
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men (= Breite * Hohe * iEfe) bendtigt. Diese Berechnungsformel kann einfach Uber dieses
Pattern an den Raum gebunden werden.

Raum
H Ho6he m
B Breite

T Tiefe

getV() Volumen ‘

des Raumes P "HB).

Anwendbarkeit

Jederzeit, wenn eine zusatzliche Berechnungsformel oder ein Prozeduraufruf, der nicht
durch andere Patterns abgedeckt werden kann, benétigt wird. Zur Anwendung dieses Pat-
terns mul3 deQuellcode der generiert werden soll, eingegeben werden. Die Benutzung
dieses Patterns ist also von der Ziel-Programmiersprache abh&angig und erfordert Kennt-
nisse dieser Sprache. Daher sollte dieses Pattern moéglichst sparlich eingesetzt werden.
Alternativ ware auch denkbaden Quelltext der Formel aus einer allgemeinen Beschrei-
bungssprache heraus zu generieren. In diesem Fall kdnnte bei der Benutzung des Patterns
die gewiunschte Formel in einer speziellen Sprache eingegeben werden und bei der Gene-
rierung dann in entsprechenden Quelltext transformiert werden. Dadurch wird das Modell
unabhé&ngig von der Ziel-Programmiersprache.

Struktur
Die Struktur des Patterns ist sehr einfach. Es wird fur die Klasse, an die das Pattern gebun-
den wird, eine neue Funktion erzeugt, die die geforderten Berechnungen ausfihrt.

Klasse [ Funkion ]

Funktion() ——————""1 i ouelitext

Beliebige Funktioq

Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, fur die die Funktion angelegt werden soll.

Funktionen:
Funktion() Die Funktion, die erzeugt werden soll. Bei der Bindung des Patterns muf}
der Quelltext eingegeben werden.

Konsequenz
Bei der Bindung des Patterns mul3 die gewiinschte FunktiQuetitextder Ziel-Program-
miersprache eingegeben werden. Dadurch wird das Pattern von der Programmiersprache
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abhangig. Ein Generator kopiert wahrend der Generierung den eingegebenen Quelltext ein-
fach an die entsprechende Stelle im Programm hinein.

Verwandte Patterns
Tabelle (65)um Funktionswerte aus eineadelle auszulesen oder zu interpolieren.
Konstanter Wrt (63) zur Modellierung einer Konstante.

Konstanter Wert

Zweck
Liefert einen konstanten & zuriick. Dieser &ft ist fur alle Objekte einer Klasse gleich.

Motivation

Viele Algorithmen hangen von Konstanten ab, die sich zwar von Anwendung zu Anwen-
dung &ndern, wahrend einer Anwendung jedoch konstant bleiben,

Legt man bei der Simulation beispielsweise ein vereinfachtdte¥hodell zugrunde, so
andert sich die AuRentemperatur wahrend eines Simulationslaufes nicht.

Aul3entemperatur

T Temperatur (const
getT() liefert T zurlckem——p| AT ]
* Anwendbarkeit

Uberall dort, wo mit konstantenaften gerechnet wird. Kann es vorkommen, daf sich der
Wert wéhrend einer Simulation andert, so sollte eingaldle benutzt werden (Pattern
Instanzenvariable (58)

o Struktur
Die Struktur des Patterns ist sehr einfach. Das Pattern wurde nur in den Pattern-Katalog
aufgenommen, um eine durchgangige Modellierung mit Patterns zu ermdglichen.

Klasse Konstanter \#rt
K bel. Wert (const)

getK() liefert V zurlckef——p: ~x 1
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* Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, fur die der konstanteew gelten soll. Die Klasse mul3 bereits
existieren.

Instanzenvariablen / Konstanten:
K  Die verwendete Konstante. Fur deeMter Kostante wird kein zusatzlicher Spei-
cherplatz bendtigt; vielmehr wird derei direkt in den Programmtext hineinko-
piert.

Funktionen:
getK() Methode, um den Wft der Konstanten abzufragen. Um eine transparente
Datenkapselung zu erhalten, sollte nur mit dieser Funktion auf die Konstante
zugegrifen werden.

» Konsequenz
Ist ein Wert als konstant festgelegt, so kann er nachtraglich nicht geandert werden. Eine
Anderung erfordert in der Regel die Neugenerierung des gesamten Programmes.

* Implementierung/Bindung
Klasse  -> beliebige, bereits existierende Klasse.
K -> beliebiger Vriablenname, der &t wird direkt eingesetzt.
getK() -> beliebige Funktion. Die Funktion wird vollstandig angelegt (Struktur und
Implementierung).
Quelltext:

Klasse
getK
"Liefert konstanten Wert zurtick"
"generiert aus Pattern: Konstanter Wert"
K
» Beispielimplementierung und Benutzung
Bei der Einfachheit des Patterns sollte die Beschreibung unter Struktur und Motivation aus-
reichen.

* Verwandte Patterns
Tabelle (65) Werte aus einerabelle auslesen.
Funktion (61) (Beliebige) Funktionen berechnen.
Instanzenvariable (58) Um Speicherplatz fir eine avlable zu reservieren und
Zugriffsfunktion bereitstellen.
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Tabelle

» Zweck
Eine Tabelle bietet die Mdglichkeit, zu gegebenen Eingabewerten vorher abgespeicherte
Ausgabewerte zuriickzuliefern. Bei numerischabélleneintragen besteht auch die Mog-
lichkeit, Werte zu interpolieren.

* Motivation
Viele physikalische Grof3en wie Materialkennwerte sind in der Regel nur schwer zu berech-
nen. Daher werden Melreihen aufgestellt, wie sich diese Kennwerte bei unterschiedlichen
Randbedingungen veréndern. Die Dichte von Luft ist beispielsweise von émgeTatur
abhéangig. Um die Dichte bei einer beliebigamperatur anzunéhern, kann eine Mel3reihe
aufgestellt (oder berechnet) werden, in der Dichtewerte bei einzeémeperaturen ver-
merkt sind. Durch Interpolation dieserewié kann die gesuchte Dichte dann ermittelt wer-
den.

Tabelle 1: Dichte von Luft in Abhangigkeit der Temperatur

v [°C] |-4o 20 [0 |20 |40 |60 |80 |100 {120
o [kg/m?] |1,49 1,37/1,27|1,18(1,11 | 1,04|0,99|0,93| 0,88

Die Dichte der Luft bei 25C egibt sich bei linearer Interpolation zu 1,16 kd/taus der
Tabelle kénnen die @tev; = 20,v, = 40,p; = 1,18,p, = 1,11 abgelesen werden. Mit die-

+ (pz_pl)

sen Eckdaten gibt sich p(3) =p, ©.o5)
27 Y1

O3 -9,) . also

r(25°C) =1, 16kg/m°).

* Anwendbarkeit
Dieses Pattern kann zum Auslesen und Interpolieren numerisabelteh benutzt werden.
Diese Rbellen kénnen fest vgegeben sein oder auch wahrend des Programmlaufes ver-
andert werden.

o Struktur
Eine Tabelle wird durch ein eigenes Objekt repréasentiert. Dieses speicheatbdiéemein-

trage in einem sortierten DictionaryZatZur Interpolation wird dieses Dictionary durch-
sucht, um das kleinste Intervall zu finden, in dem der zu interpoliereaddi®gt. Danach
wird linear interpoliert.

2. Ein Dictionary ist eine Menge vonéktepaaren der Form (Schliissekrt),
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Eine Tabelle wird Uber die Relatidmble an einen Objekttyp angebunden. Fr diesen wird
auch lokal eine interpolate() Methode zueriigung gestellt, die die entsprechende
Methode bei demabellen-Objekt aufruft.

Objekt Tabelle

table
1.1 1.1 | labelle

interpolate(x)
]

i suche Eintrage x;, x5z interpolate(x)

TabTabelleneintrage

in Tab mit xO[xq, X5 add(x, y)

Myrt(2-yD)* remove (X, y)
“able->interpolate(x). 1 (X -%x7) 1 (X2 - X7))

* Mitwirkende Objekte

Klassen:
Objekt: Fur diese Klasse soll ein@fielle zur ¥rfligung stehen.
Tabelle: Stellt die eigentliche dbellen-Funktionalitat zurérsfigung.

Instanzenvariablen / Konstanten:
Tabelle:: &b Ein sortiertes Dictonaryas die &belleneintrage beinhaltet.

Funktionen:

Objekt::interpolate(x) Diese Funktion dient zum vereinfachten Zugaitif die Tbelle
und ruft die gleichnamige Methode bei dabélle auf.

Tabelle::interpolate(x)Zum linearen Interpolieren des yefes an der Ubgebenen x-
Position.

Tabelle::add(x, y) Diese Funktion dient zum Hinzufiigen voreiépaaren in die
Tabelle. Dabei sollte dieabelle aus Geschwindigkeitsgriinden sortiert gehalten
werden. Aus Platzmangel wurde die Implementation dieser Funktion nicht in der
Graphik des Patterns aufgefihrt.

Tabelle::remove(x, y) Loscht ein Vértepaar aus deralbelle.

e Zusammenarbeit
Die Klasse @abelle speichert selbst alle Informationen, die zum Auslesen eoteMhotig
sind. Dadurch beschrankt sich die Zusammenarbeit zwischen abellelTund einem
Objekt, das die dbelle benutzen will, auf das simple Aufrufen von Funktionen.

* Konsequenz
Um die Funktionalitat einerabelle zu erweitern (beispielsweise eine genauere Interpolati-
onsmethode), kann ein eigenes Modell aufgestellt werden, in dem mehletkei-Ypen
beschrieben sind. Bei der Bindung dieses Patterns kann dann der Objekilp &n die
gewdulnschte dbelle aus dem Modell gebunden werden.
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Verwandte Patterns
Mit dem PatterrFunktion (61)kann eine @belle auch nachmodelliert werden.

A.2.3 Relationen

In diesem Abschnitt sind Patterns zusammengestellt, die es erlauben, Relationen zu verfolgen
und Methoden bei referenzierten Objekten aufzurufen.

Einfache Indirektion

Zweck

Dieses Pattern dient hauptsachlich zur ndheren Beschreibung einer Gruppe von Objekten.
Jedes Objekt kann individuelle Eigenschaften (Attribute) haben und hat dariber hinaus
eventuell auch noch andere, die es mit anderen Objekten teilt. Diese gemeinsamen Eigen-
schaften werden dann vom eigentlichen Objekt ausgelagert und in einer eigenen Klasse
beschrieben. Zugfdmethoden beim urspringlichen Objektgsor fir einen transparenten
Zugriff auf die ausgelagerten Attribute.

Bekannt unter

Item Description(siehe [Coa92], Seite 153)

Dieses Pattern kann auch als Spezialisierunddddge Patterns ([GHJ95], Seite 151) auf-
gefal3t werden.

Motivation

Haufig ist es sinnvoll, Gruppen von Objekten zusammenzufassen. Zum Beispiel werden in
einem Gebé&ude viele Wande vom gleichgp gebaut. Diese Wande bestehen alle aus den
gleichen Materialien (Stein, Putz, Dammstetc.) und haben den gleichen Schichtaufbau,
allerdings hat jede ®hd eine individuell unterschiedliche GroR3e. Es ist also sinnvoll, ver-
schiedene Wénde gleicheypb zusammenzufassen und die gemeinsamen Attribute inner-
halb dieser neuen Klasse abzulegen. Graphisch lafit sich das folgerndermaf3en ausdriicken:

Wand WandTyp

B Typ -
A Flache = 711 M Materialien

R Warmewiderstand

setMaterialien(_Mat))
getMaterialien()

setR(_R) setMateri_aIi_en(_Mat)
getR() getMaterialien()
—+ setR(_R)

getR()
/\Typ->getR(), 1 \k AR. |
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* Anwendbarkeit
Das Pattern ist anwendbavenn mehrere Objekte einige Attrilugrte gemeinsam haben.
Ebenso kann es angewendet werden, wenn Objekte in einer Beziehung zueinander stehen
(d.h. mit einer Relation verbunden sind) und ein einfacher Datenaustausch entlang dieser
Relation gewtinscht ist (StichworDatenveerbung) Dabei kann theoretisch auch ein
zyklischer oder rekursiver Datenaustausch auftreten. In diesem Fall muf3 noch fir geeig-
nete Abbruchmechanismen gegowrerden.
Die Zugriffsfunktionen des \&hdtyps werden vom Generator automatisch erzeugt (siehe
Patterninstanzenvariable (58) Durch die einfache Indirektion werden nur Methoden fir
die Wand implementiert, um auf die ausgelagerten Attribute dasdWps zuzugreifen.
Diese Methoden rufen die entsprechenden Zisfuifiktionen des \Ahdtyps auf.

» Struktur
Das Pattern beruht darauf, dal3 es zu den individuell unterschiedlichen Objekten (hier in der
KlasseObjektzusammengefalt) eine weitere KlaGdgektbeschaibunggibt.
Diese beiden Klassen sind mit einer 1:1 Relatioyp)VerknUpft. Die Zugrisfuktionen
der gemeinsamen Attribute (also Instanzenvariablen) werden bei den Objekten nachgebil-
det, so daf’ auf diese Attribute genau wie auf lokale Attribute zulgggwerden kann. Die
einzelnen Objekte merken also gar nicht, wenn auf eine gemeinsame Instanzenvariable
zugegrifen wird. Beim Andern einer Objektbeschreibung ist besondersictit geboten
(siehe Punkt Konsequenz).

Objekt Einfache Indirektion
...lokale Attribute... Typ . :

= 71| Objektbeschreibung
getV() V Variable
setV(_V)

getV()
v * setV(_V)

Typ->setV(_V). 1 ATyp->getV(). 1

* Mitwirkende Objekte

Klassen:
Objekt: Die ursprungliche Klasse, fur die eine Beschreibung vorliegt, die meh-

rere Instanzen dieser Klasse teilen.

Objektbeschreibung: Die Beschreibung der urspringlichen Objekte. Hier werden die
Instanzenvariablen abgelegt, die von mehreren Objekten gemeinsam benutzt wer-
den. Dies kann auch eine neue Klasse sein.

Instanzenvariablen / Konstanten:
V Das beschreibende Attribut.
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Funktionen:
getV(), setV(_V) Zugriffsfunktionen auf die &ftiable V setV() verandert eine
Instanz der Objektbeschreibung, was bedeutet, dal3 dadurch eventuell mehrere
Objekte betrden sind.

Zusammenarbeit

Die Zugrifisfunktionen auf Attribute der Klasse Objekt sind so benannt, daf? es keinen
Unterschied macht, ob auf ein lokales oder ein gemeinsames Attribut ziegegrnifd.
Funktionsaufrufe, die gemeinsame Attribute bétref werden einfach an die Objektbe-
schreibung weitgeleitet.

Die Objektbeschreibung ihrerseits braucht keine Kenntnis davon zu haben, fur welche
Objekte sie als Beschreibung dient.

Konsequenz

Benutzen mehrere Objekte dieselben Attributwerte (das heif3t, die Objekte sind vom selben
Typ), so kénnen die Attribute in eine eigene Klasse ausgelagert werden. Dadurch brauchen
diese Attribute nicht bei jedem Objekt desselbgpsiabgespeichert zu werden; Redundan-
zen in der Datenbasis werden also vermiedanmsitht ist jedoch beim Andern dieser
gemeinsamen Attribute geboten: bei einer Anderung wird immer die gesamte Objektbe-
schreibung geandert, was Auswirkungen auf andere Objekte dessglizemal. Beim
Schreiben auf ein gemeinsames Attribut mufd also immer bedacht werden, was damit
erreicht werden soll. Soll die Objektbeschreibung an sich geandert werden (zum Beispiel
weil alle Aufienwande eine zusatzliche Isolierung bekommen), so kann dieses direkt
geschehen. Andert sich hingegen nur ein ObjekieAuRenwand wird verstarkt) so muR
zunachst fur dieses Objekt die Objektbeschreibung kopiert werden und kann dann erst
abgeéandert werden.

Zusatzliche Yrsicht ist bei der Instanziierung der Objekte geboten. Es mul3 dafligigesor
werden, dal3 alle Objekte mit der richtigen Objektbeschreibung verbunden werden. Eventu-
ell kann es auch sinnvoll sein, mehrere gleiche Objektbeschreibungen zu haben. Dadurch
konnen gleichartige Objekte in Clustern zusammengefaRt werden, und die Anderung einer
Clusterbeschreibung wirkt sich dann nur auf diesen aus.

Verwandte Patterns
Komplexe Indiektion (69)- Verfolgen einer 1:n Relation.

Komplexe Indirektion

Zweck

Oftmals haben einzelne Objekte Beziehungen zu mehreren anderen Objekten einer Klasse.
Dieses Pattern ermdglicht den Zubatif einzelne Attribute der referenzierten Objekte und
verrechnet diese zu einem Gesamtwert (Summe, Durchschnitt, etc.).

Motivation
1:n Relationen treten an vielen Stellen eines Modells auf. Zum Beispiel grenzen an einen
Raum mehrere Wéande. Zur Simulation demperatur in einem Raum mufd die Gesamt-
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warmemenge ermittelt werden, die in (baus) dem Raum flief3t. Diese Gesamtwarme-
menge ist einfach die Summe der Warmemengen, die durch die einzelnen Wande flieRen.
Mit Hilfe der komplexen Indirektion kénnen fur alle Wande eines Raumes diese Warme-
mengen berechnet werden (durch den Aufruf einer entsprechenden Funktion), und
anschlieBend werden die erhaltenesrdd aufsummiert.

Raum Wand
Wande
Mn 1.1
getQ() | getQ()
Qtemp :=0.

foreach w: Wande do

Qtemp := Qtemp + w->getQ().
od
"Qtemp

Die FunktiongetQ()des Raumes (s. Abbildung) gbdabei fur die Abfrage der einzelnen
Warmemengen der referenzierten Wénde und summiert diege 8.

Die FunktiongetQ) der Wand wird in diesem Pattern nicht ndher beschrieben, da es in der
Verantwortung der Wéande steht, wie sie ihre Warmemengen ermitteln (durch Berech-
nungsformeln, Instanzenvariablen 0.4.).

* Anwendbarkeit
Das Pattern kann zurevfolgung beliebiger 1:n Relationen herangezogen werden. Mogli-
che \arianten zur Berechnung des resultierendent&8 sindSummeProdukt Mittelwert,
StandadabweichungundVarianz

» Struktur
Dieses Pattern ist sehr einfach aufgebaut. Ein Objekt referenziert mehrere Objekte einer
anderen (oder auch derselben) Klasse. Bei diesem Objekt wird eine Funktioarfiur V
gung gestellt, mit der bei allen referenzierten Objekten eine bestimmte Methode aufgerufen
werden kann. Hat diese Methode einen Rickgabewert, so kdnnen die erhalssteenlV
einem Gesamtwert verrechnet werderelde Berechnungsformel dabei zum Einsatz
kommt, wird bei der Bindung des Patterns festgelegt. Moglich sind dabei Formeln wie
Summe, Durchschnitt, Produkt oder Standardabweichung.
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Die Methode, die bei den referenzierten Objekten aufgerufen wird, muf3 separat modelliert
werden.

Objekt referenzierteObjekte
Relation
1.1 n

getV() | getV()

Vtemp := 0. ‘

foreach rel: Relation do
Vtemp := Vtemp + rel->getV().
,oder andere Berechnungsformel*
od
Ntemp

Komplexe Indirektion

Mitwirkende Objekte

Klassen:
Objekt: Das ,Ursprungsobjekt‘ von dem aus die 1:n Relation verfolgt

werden soll.

referenzierteObjekte: Die referenzierten Objekte.&kten diese beiden Klassen an die-
selbe Modell-Klasse gebunden, so mul3 darauf geachtet werden, dafl3 keine Zyklen
bei der Referenzierung auftreten.

Funktionen:
Objekt::getV() Diese Methode wird aufgerufen, um alle verbundenen

Objekte zu durchlaufen.
referenzierteObjekt::getV()Bei jedem referenzierten Objekt wird die Funktion getV()
aufgerufen. Diese mul3 an geeigneter Stelle genauer spezifiziert werden.

Zusammenarbeit

Die Relation zwischen den beiden Objekttypen wird nur in einer Richtung verfolgt. Die
Objekte werden in einer beliebigen Reihenfolge - je nach Implementierung der Relation
durch das PatterRelation (59) durchlaufen.

Konsequenz
Vorsicht ist geboten, falls zyklische Referenzierungen auftreten kénnen. Dann muf3 fr
Abbruchkriterien gesot werden, damit keine Endlos-Schleifen auftreten.

Verwandte Patterns

Einfache Indiektion (67)- Verfolgen einer 1:1 Relation.
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A.2.4 Strukturierungen

Diese Patterns fassen unterschiedliche Modell-Klassen zusammen und gruppieren sie in
bestimmte Strukturen.

Komposition

Zweck
Gruppiert unterschiedliche Objekte in einer Baumstruktur

Bekannt unter
CompositgGHJ95] und in leicht abgewandelter Form als
Rekursive Agggation[RBP91].

Motivation

Haufig treten in Applikationen heterogene Mengen auf. Dabei sollte auf die einzelnen
Objekte in der Menge mit gleichen Methoden zugégrifverden. Jedes Objekt der Menge
kann dann diese Methoden unterschiedlich abarbeiten (Polymorphie).

Zum Beispiel wird der Warmedurchgang durch Wéande und geschlossene Turen gleich
berechnet. Ist eine Tir hingegeffieof, so treten zusatzlich noch andereke auf (Aus-

tausch von Luftmassen). Der Warmedurchgang durch eine Tur mul3 also gesondert berech-
net werden. Einen Raum, der von Wanden und Turen umgeben ist, interessiert nur das
Ergebnis der Warmedurchgangsberechnung; die genauen Berechnungsformeln sollten nur
der W\and bzw der Tur bekannt sein. Um diese Situation in denf Gufoekommen, kann

man eine abstrakte Klasse RaumteilerelememEjRiefinieren. Diese Klasse stellt eine
Funktionsschnittstelle zur Berechnung des Warmedurchgangsedigiing. Die Klassen

Wand undTur sind von der KlassBTE abgeleitet und implementieren die entsprechenden
Berechnungsformeln.
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Um jetzt eine Menge von Wanden und Turen zusammenfassen zu kénnen, braucht man
eine weitere KlassRaumteiler Ein Raumteiler ist selbst wieder éRTE und aggregiert
zusatzlich mehrere Raumteilerelemente (siehe folgendes Bild).

Raum istUmgebendn RTE
n
}
getQ()
Elementg l ® l
Raumteiler Tar Wand
.getQ() getQ() getQ()
Q:=0.
foreach e:Elemente do
Q :=Q +e->getQ()
od
AQ_

Wird ein Raumteiler aufgefordert, einen Warmedurchgang zu berechnen, so leitet er diese
Aufforderung weiter (d.h. er ruft die entsprechenden Funktionen seiner aggregeieen T

auf) und liefert die Summe dieseeilBrgebnisse zurtick. Zurevrechnung der éilergeb-

nisse kdnnen auch andere Formeln verwendet werden (z.B Produkt, Mittelwert, etc.).

Jetzt ist ein Raum nicht mehr von mehreren unterschiedlichen Objekten umgeben. Jedes
Objekt, das den Raum abgrenzt, reagiert auf dieselben Nachrichten. Insbesondere kénnen
jetzt auch Wande und Turen beliebig hierarchisch geschachtelt sein (siehe das Objektdia-
gramm in der nachsten Abbildung).
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Grundrifd

Nordwand
|

Wand 1 '\ I
Tor 1

Wand2

* Anwendbarkeit

( Raum

Nordwand

( Raumteile; ’ Raumteilel

( Wand \ : Tar : / Wand

Wand 1

Tar 1

Wand 1

.

J

. J

.

J

Das Pattern wird angewendet, um Unterschiede zwischen einzelnen Objekten einer hetero-
genen Menge zu vereinheitlichen. Alle Objekte einer solchen Menge kdnnen gleichartig
angesprochen werden.

e Struktur

Das Pattern beruht darauf, daf3 es zu den individuell unterschiedlichen Objekten (hier in der
KlasseObjektzusammengefalt) eine weitere KlaGdgektbeschaibunggibt.

Diese beiden Klassen sind mit einer 1:1 Relation verknupft. Die Zafgkfionen der
gemeinsamen Attribute (also Instanzenvariablen) werden bei den Objekten nachgebildet,
so dald auf diese Attribute genau wie auf lokale Attribute zudergmierden kann. Die ein-
zelnen Objekte merken also gar nicht, wenn auf eine gemeinsame Instanzenvariable zuge-

griffen wird.

Kompon

ente

Operation()

.

Menge

Elemmente
Operation() s—f———-
add(E)
remove(E)

getChildren()

Komposition

foreach rel: Relation do
r->Operation().

od.
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Die MethodeMenge::Operation()kann mehrere unterschiedliche Auspragungen haben.
Neben dem Aufrufen von Prozeduren kdnnen auch Funktionen mir Rickgabewerten aufge-
rufen und die erhaltenenafife anschlie3end verrechnet werden. Mogliche Berechnungen
sind Summe Produkt Mittelwert, Standadabweichungund Varianz (vergleiche Pattern
Komplexe Indiektion (69).

Mitwirkende Objekte

Klassen:

Komponente: Diese abstrakte Klasse dient als Oberklasse fir alle Objekte, die in der
Menge aufgenommen werden sollen. Im wesentlichen stellt sie die Maipede
ration() zur \erfugung, die fur alle Objekte einer konkreten Menge aufgerufen
werden kann.

Menge: In einer Menge kdonnen mehrere Objekte der Klaseenponente
abgelegt werden. Dies kdnnen zum einem weitere Mengen sein oder es handelt
sich um Blatter der Baumstruktur

Funktionen:

Komponente::Operation() Abstrakte Methode, die bei allen Objekten der Menge vor-
handen ist. Sie mul3 Uberladen werden, um den Objekten die gewiinschte Funktio-
nalitat zu geben.

Menge::Operation() Bei einer Menge wurde die Funkti@peration() bereits
so Uberladen, dal3 automatisch die jeweili@gerate()Funktionen aller Objekte
in der Menge aufgerufen werden.

Menge::add(E) Nimmt ein neues Objekt in eine Menge auf. Dies kann
auch wiederum eine weitere Menge sein.

Menge::remove(E) Ldscht ein Objekt aus einer Menge.

Menge::getChildren() Liefert alle direktenKinder einer Menge. Handelt es sich

dabei um weitere Mengen, so mul} fir diese wiederurgad@hilden() Funktion
aufgerufenwerden, uile Kinder der Menge zu erhalten.

Zusammenarbeit

Die Instanzen der Klasse Objekt arbeiten auf den gemeinsamen Attributen so, als ob sie
lokal waren. Die Zugrfsfunktionen sind derart definiert, dal3 keine lokalen Attribute ver-
andert oder gelesen werden, sondern es wird der Zagrdie Objektbeschreibung weiter-
geleitet.

Konsequenz

Die Anwendung des Patterns hat sowohl Konsequenzen fiir den (schreibendehpdtigrif
gemeinsame Attribute, als auch fir die Instanziierung.

Beim Schreiben eines gemeinsamen Attributes mul3 immer bedacht werden, daf? eventuell
andere Objekte auch noch denselben Attributwert haben. Das Schreiben eines Attributes
beeinflult also immer eine ganze Gruppe von Objekten.

Bei der Instanziierung der Objekte mul’ darauf geachtet werden, dal3 die passenden Objekt-
beschreibungen auch immer richtig mit den Objekten verknupft werden.

Verwandte Patterns
Iterator (76)zum Iterieren Uber eine Menge.
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Iterator

Zweck

Dieses Pattern dient zur schrittweisesrfdlgung der Objekte in einer Menge. Die Reihen-
folge, in der die Objekte abgearbeitet werden, kann dabei in einem speziellen Iterator fest-
gelegt werden.

Bekannt unter
Iterator aus [GHJ95].

Motivation

Haufig missen Objekte einer Menge in einer bestimmten Reihenfolge verfolgt werden.
Wirde man die Reihenfolge der Objekte in der Menge bei dem Mengen-Objgé&beor

so wird das Interface dieser Menge sehr schnell recht komplex und untubersichtlich. Statt
dessen kann man eine neue (abstrakte) Klidsseor einfihren, die sich um die schritt-
weise Abarbeitung der Objekte kimmert. Ein spezieller Iterator kimmert sich um die
gewlnschte Reihenfolge. So kdnnen fir ein und dieselbe Menge mehrere Iteratoren existie-
ren, die die Elemente der Menge in unterschiedlichen Reihenfolgen abarbeiten. Um die
Elemente eines Arrays zu verfolgen, kann folgendes modelliert werden:

Array Arraylterator .
list Index:=0
Index
add(E) 1 1 // -
remove(E) first() _yp-| Index:=index+1
elements() next) ———"
currentltem() ' -
isDone() \\ Nist->elements()
->at(Index)

Anwendbarkeit

Das Pattern lohnt sich Uberall dort zu verwenden, wo in unterschiedlichen Reihenfolgen
auf Objekte einer Menge zugederh werden soll. \lWd eine Menge immer in derselben
Reihenfolge durchlaufen, so kann daflr auch eine einfache Funktion bei der Menge selbst
zur \erfugung gestellt werden.&in die Menge durch eine 1:n Relation reprasentiert wird,
kann sie alternativ auch mit dem Patt&omplexe Indiektion (69)durchlaufen werden.

Struktur

Das Pattern besteht aus einer Klasse, die die Menge reprasentiert, und einer abstrakten Ite-
ratorKlasse. Da die Iterations-Reihenfolge erst im konkreten Iterator festgelegt werden
soll, muf3 solch ein konkreter Iterator von der Iteriilasse dieses Pattern abgeleitet und

an anderer Stelle separat modelliert werden. Auch die konkrete Implementation der Menge
wird mit diesem Pattern nicht beschrieben, da sie prinzipiell vom Iterator unabhéngig sein
sollte.

Beim Anlegen eines neuen lIterators mufd die Menge, Uber die iteriert werden soll, bereits
vollstandig bekannt sein. Daher stellt die Klastngeeine Funktiorcreatelterator()zur
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Verfigung, die einen neuen Iterator anlegt. Dem Konstruktor des Iterators wird dabei die
aktuelle Menge als Parameter (deen.

Komposition

Menge Iterator

list

createlterator() |1 1
|

first()
v next()
currentltem()
“new lterator(this) 1 isDone()

» Mitwirkende Objekte

Klassen:
Menge: Die Menge, Uber die iteriert werden soll.
Iterator: Kapselt die eigentliche Iteration und liefert Schritt fur Schritt das
jeweils nachste Element der Menge zuriick (Uber die Funktioext) und cur-
rentlitem().

Funktionen:
Menge:.createlterator()  Legt einen neuen lterator tber der aktuellen Menge an.
Iterator::first() Setzt den Iterator auf das erste Element der Menge zuriick.
Iterator::next() Liefert das jeweils nachste Element der Menge.
Iterator::currentltem() Gibt das aktuelle Element aus der Menge zurtick.
Iterator::isDone() Gibt an, ob alle Elemente der Menge durchlaufen worden
sind.

Zusammenarbeit

Der Iterator merkt sich jeweils das aktuelle Element der Menge und kann das jeweils nach-
folgende Element berechnen.

Konsequenz

Durch die spezielle Iteratdtlasse wird das Interface einer Menge vereinfacht. Die Auf-
gabe das jeweils nachste Element der Menge zu berechnen, wird dem Iterator Uberlassen.
Dadurch ist es mdglich, eine Menge mit mehreren verschiedenen Iteratoren in unterschied-
lichen Reihenfolgen zu durchlaufen.

Verwandte Patterns
Komplexe Indiektion (69)zum einfachen Durchlaufen einer 1:n Relation.
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