
Objektorientierte Modellierung
einer Simulationsumgebung

mit Patterns

Jan Peter Riegel
Martin Schütze

Gerhard Zimmermann

09/1996

Sonderforschungsbereich 501

Fachbereich Informatik

Universität Kaiserslautern

Postfach 3049

D-67653 Kaiserslautern

- 1 -

Inhaltsverzeichnis

1 Einleitung ...3

2 Modellierung mit Patterns..5
2.1 Software-Entwurf..5

2.2 Notation der EER-Diagramme..7

2.3 Patterns..8

2.4 Wiederverwendung..9

2.5 Pattern-Notation..10

2.6 Software-Entwurf mit Patterns..14

2.7 Beispielentwurf...17

2.8 Bindung der Patterns...27
2.8.1 Bindung auf Klassenebene...28
2.8.2 Bindung der Funktionen und Instanzenvariablen...28
2.8.3 Parameteranpassung...29

2.9 Implementierung der Patterns..30
2.9.1 Implementierung durch Delegation..31
2.9.2 Implementierung durch Vererbung...32
2.9.3 Implementierung durch spezielle Generatoren...33

3 Simulation ..34
3.1 Simulationsmethoden..34

3.2 Simulator-Modell..36
3.2.1 Events...38
3.2.2 Steuerung des Simulators...39

3.3 Pufferung...40

4 Ausblick ..42
4.1 Zusammenfassung...42

4.2 Vor- und Nachteile des patternbasierten Entwurfs..43

4.3 Weitere Arbeiten...44

Anhang A Pattern Katalog...45

A.1 Simulations-Patterns..45
A.1.1 Berechnungsformeln...45

Simulation thermischer Masse..45
Simulation thermischer Verbindung...49
Thermischer Austausch...51

A.1.2 Scheduling...53
Kontinuierliche Simulation...53
Aktuator..55

A.2 Framework-Patterns..57
A.2.1 Implizite Patterns..57

Instanzenvariable..58

- 2 -

Relation...59
A.2.2 Klassen..61

Funktion..61
Konstanter Wert..63
Tabelle...65

A.2.3 Relationen...67
Einfache Indirektion..67
Komplexe Indirektion...69

A.2.4 Strukturierungen..72
Komposition..72
Iterator...76

Anhang B Literaturverzeichnis...79

1 Einleitung

- 3 -

Kapitel 1 Einleitung

Ziel dieser Arbeit ist es, eine Methode zur Verfügung zu stellen, mit der ein Simulator für
gebäudespezifische Aufgaben modelliert werden kann. Die Modellierung muß dabei so ange-
legt sein, daß sowohl einfache als auch sehr komplexe Simulatoren für spezielle Gebäude ent-
worfen werden können. Aus dem erstellten Modell ist es anschließend möglich, mit Hilfe von
Generatoren automatisch ein Programm zu erzeugen. Dadurch kann ein Entwerfer ohne spezi-
elle Kenntnisse auf dem Gebiet der Simulation einen Gebäude-Simulator entwickeln.
Simuliert werden sollen im Gebäudebereich auftretende Gegebenheiten, also hauptsächlich
physikalische Größen wie Raumtemperatur, Luftfeuchtigkeit oder Luftdruck. Diese Größen

werden quasi-kontinuierlich1 berechnet; es können dabei sowohl kontinuierliche Vorgänge
(z.B. Änderung der Lufttemperatur) als auch atomare Ereignisse (Tür wird geöffnet) berück-
sichtigt werden. Der Simulator kann jeweils so konfiguriert bzw. modelliert werden, daß er für
ein spezielles Gebäude die momentan interessanten Größen berechnet. Weiterhin kann der
Simulator sukzessive verfeinert werden: wird beispielsweise in einem frühen Stadium der
Simulation nur eine grobe Abschätzung der Raumtemperatur benötigt, so kann diese später
durch genauere Berechnungsformeln verfeinert werden.
Eine weitere Anforderung an den Simulator ist, daß einzelne Teile durch reale Hardware
ersetzt werden können (Hardware-In-The-Loop). So können zum Beispiel die Messwerte
eines Temperaturfühlers benutzt werden, um die Lufttemperatur zu bestimmen, und die
gemessenen Werte können herangezogen werden, um die Luftfeuchtigkeit zu simulieren. Um
die Integration von Hardware in den Simulator zu ermöglichen, muß dieser echtzeitfähig sein.

Der SFB-Bericht beschreibt eine Möglichkeit zur Modellierung (und Generierung) einer flexi-
blen Simulationsumgebung für Gebäude mit deren Hilfe Gebäudesteuerungen ausgetestet
werden können (siehe [SFB94]). Die hier vorgestellte Modellierungstechnik geht von einem
sehr eingeschränkten Entwurfsbereich (Domäne) für Applikationen aus: es sollen nur Gebäu-
desimulatoren modelliert werden. Für diese Domäne werden typische Entwurfs- und Pro-

grammuster gesucht und in Patterns2 zusammengefaßt. Mit diesen Patterns kann dann ein
Simulator modelliert und anschließend generiert werden.

1. siehe dazu Kapitel 3.1 oder [MaM89].
2. Patterns werden in Kapitel 3 und in [GHJ95] und [Pre95] beschrieben.

- 4 -

Das 2. Kapitel behandelt den Software-Entwurf mit Patterns. Dieser wird zunächst allgemein
beschrieben, und anschließend wird gezeigt, wie Patterns zur Modellierung und Generierung
eines Gebäude-Simulators benutzt werden können. Im Kapitel 3 wird auf die Simulation und
das Simulator-Modell eingegangen. Zusätzlich wird kurz die Steuerung der Simulation
besprochen, und ein Pufferungs-Konzept wird vorgestellt, mit dem die während der Simula-
tion anfallenden Integrations- und Interpolationsprobleme gelöst werden können. Der Aus-
blick in Kapitel 4 schließt den Hauptteil der Arbeit ab.
Im Anhang A wird ein Pattern-Katalog vorgestellt, mit dem ein Gebäude-Simulator modelliert
werden kann. Der Katalog enthält speziell auf den Entwurfsbereich „Gebäude-Simulation“
zugeschnittene Patterns. Wird ein Pattern aus diesem Katalog im Text referenziert, so erfolgt
dieses unter Angabe des Pattern-Namens (kursiv gedruckt) und der Seitennummer, auf der das
Pattern beschrieben ist. Dadurch ist das Wiederfinden der Patterns im Katalog einfacher.

2 Modellierung mit Patterns

- 5 -

Kapitel 2 Modellierung mit Patterns

2.1 Software-Entwurf

Im folgenden wird ein Ansatz zum Software-Entwurf vorgestellt, der sich zur Modellierung
von Anwendungen eines speziellen Entwurfsbereiches eignet. Dabei soll aus den aufgestellten
Modellen ein Großteil der Applikation automatisch generiert werden. Der Software Entwurfs-
prozeß ist genauer in [SFB96] erläutert.
In einem ersten Schritt der Software-Erstellung muß die Problembeschreibung sorgfältig ana-
lysiert werden, um einen Anforderungskatalog für die zu erstellende Software aufzustellen.
Dabei werden die in der „realen Welt“ vorkommenden Begriffe abstrahiert und strukturiert,
um einen systematischen Zugang zur Aufgabenstellung zu erhalten. Als Ergebnis der Analyse
erhält man ein Basismodell, mit dem Vorgänge und Zustände aus dem Problembereich model-
liert werden können. Zusätzlich erhält man zu den einzelnen Anwendungsprojekten Charakte-
ristiken, die das spezielle Projekt näher spezifizieren. Die Charakteristiken sind also
Verfeinerungen und Erweiterungen des Basismodells. Sie erlauben, die Aufgabenstellungen
des Anwendungs-Projektes adäquat zu beschreiben. Der Anforderungskatalog an die zu ent-
werfende Software umfaßt das Basismodell mit seinen Charakteristiken und die Beschreibung
des ursprünglichen Problems im Umfeld dieser Modelle. Während der Entwurfs-Phase wer-
den nun Teile der Basismodelle und die Charakteristik für eine Applikation zusammengeführt
und verfeinert. Als Ergebnis erhält man ein Applikationsmodell, in dem alle applikationsspe-
zifischen Daten und Algorithmen enthalten sind. Aus diesem Applikationsmodell kann dann
die endgültige Software möglichst vollständig generiert werden.

2.1 Software-Entwurf

- 6 -

Der Software-Entwurfsprozeß ist noch einmal in Abbildung 3 (siehe [SFB96]) dargestellt.

Abb. 3: Allgemeiner Software-Entwurfsprozeß

Als Beispiel sei hier die Programmierung einer Heizungssteuerung erwähnt. Bei der Modellie-
rung der Heizungsanlage treten so allgemeine Begriffe wie „Raum“, „Heizkörper“, „Kessel“
oder auch „Raumtemperatur“ auf. Die hinter diesen Begriffen stehenden Konzepte und
Objekte werden in möglichst optimaler Form (das heißt kurz, aussagekräftig und vollständig)
in einem geeigneten Basismodell zusammengefaßt. Spezielle Eigenschaften der Steuerung
(zum Beispiel Begriffe wie „Kesseltemperatur“, „Ventilsteuerung“ etc.) bilden die Charakteri-
stik der Heizungssteuerung. Wird zusätzlich noch ein weiteres Anwendungs-Projekt geschrie-
ben, zum Beispiel ein Simulator zur Überprüfung der Steuerung, so kann dieses auf
demselben Basismodell operieren; in der Charakteristik des Simulators treten dann zusätzlich
neue Begriffe wie „Wärmeübergangskoeffizient“ oder ähnliches auf.
Um den Analyseprozeß zu unterstützen, kann auf ein breites Spektrum von Modellierungs-
techniken und Notationen zurückgegriffen werden (siehe [RBP91], [Boo90]). Bei sorgfältig
durchgeführten Problemanalysen können Teilergebnisse und Analyseverfahren aus anderen
Projekten übernommen werden („reuse of design“).
Anschließend an die Analysephase erfolgt der Entwurf. Ziel der Entwurfs-Phase ist ein Appli-
kationsmodell, das die Problemlösung beschreibt. In diesem Modell ist also erklärt, wie die
einzelnen Teilaspekte gelöst werden können und wie alle Teile des Programmes zusammen-
spielen. Das Applikationsmodell stellt eine formale Spezifikation der Software dar. Dadurch
kann die eigentliche Implementierung des Programmes derart von Generatoren unterstützt
werden, daß eine Programmierung „von Hand“ auf ein Mindestmaß reduziert wird. Die Gene-
ratoren greifen auf eine Bibliothek von fertigen Software-Bausteinen zurück, die anhand des
Applikationsmodelles zum fertigen Programm zusammengestellt werden. Auf diese Art und
Weise können, korrekte Bibliotheken vorausgesetzt, Flüchtigkeitsfehler und unsaubere Pro-
grammiermethoden vermieden werden.

Analyse Entwurf
Implemen-

tation

Problem-
beschreibung

Software
Anforderungen

Software
Entwurf Code

Code

Bibliothek
Architekturmodell

manuell

Basis
modelleAnwen-

dungs-

Charak-
teristik

Applikations-
Modell

Dokumentation

Generierung

feld

Anwen-
dungs-
projekt

manuell
Modell

transfor-
mation

2 Modellierung mit Patterns

- 7 -

Ist das Programm fertig erstellt beziehungsweise generiert worden, so muß durch Tests die
Konsistenz mit der ursprünglichen Anforderung überprüft werden. Zusätzlich sollte abschlie-
ßend der gesamte Erstellungsprozeß nach Verfahren und Teilaspekten durchsucht werden, die
in einem späteren Entwurf wiederverwendet werden können.

Zur Modellierung von Applikationen gibt es mehrere Beschreibungsmethoden, die sich
jeweils für unterschiedliche Gesichtspunkte besonders eignen. In dieser Arbeit werden vor
allem erweiterte Entity-Relationship-Diagramme verwendet. Die darin benutzte Notation ist
von der Object-Modelling-Technique (OMT, siehe [RBP91]) und der Software-Entwicklungs-
umgebung MOOSE (siehe [SSA94]) übernommen und wird kurz im folgenden Kapitel
beschrieben. Anschließend wird eine über EER-Diagramme hinausgehende Modellierungs-
methode mit Patterns vorgestellt.

2.2 Notation der EER-Diagramme

Zentraler Bestandteil der Entity-Relationship Diagramme ist natürlich das „Entity“. Bei der
objektorientierten Modellierung kann ein Entity als Objekttyp oder Objektklasse aufgefaßt
werden. Ein Objekttyp wird im folgenden als Rechteck aufgeschrieben und die Beziehungen
zwischen einzelnen Objekttypen werden durch Linien repräsentiert. Mögliche Relationenty-
pen sind die Generalisierung oder „Is-A Relation“ (repräsentiert durch einen Kreis am Ende
der Relation), die Aggregation oder „Part-Of Relation“ (repräsentiert durch einen Pfeil) und
eine unspezifische Relation. An den einfachen Relationen stehen Kardinalitäten, um anzuzei-
gen wieviele Objekte eines Typs mit wievielen Objekten des anderen Typs in Verbindung ste-
hen können.
Zur Gruppierung von Objekttypen können diese im Schemata zusammengefaßt werden und
die Schemata selbst können hierarchisch angeordnet werden, um Abhängigkeiten einzelner
Objektgruppen zu modellieren. Ein Schema wird durch ein Rechteck mit ausgefüllten Ecken
dargestellt.
Die folgende Abbildung zeigt ein einfaches EER-Diagramm in MOOSE-Notation. Dargestellt
sind vier Objekttypen „Raum“, „Raumteiler“, „Wand“ und „Fenster“ die zum Schema
„Gebäude“ gehören. Ein Raum aggregiert dabei mehrere Raumteiler (d.h. er „besteht“ aus

2.3 Patterns

- 8 -

Raumteilern). Ein Raumteiler kann entweder eine Wand oder ein Fenster sein. Ein Fenster ist
genau einer Wand zugeordnet, während in einer Wand mehrere Fenster seien können.

Abb. 4: EER-Diagramm in MOOSE-Notation

Um die Objekttypen weiter zu spezifizieren, können auch noch Attribute und Methoden der
Objekte mit in die Notation hinzugenommen werden. Die Namen der Attribute und Methoden
werden einfach mit in das Rechteck aufgenommen, das den Objekttyp darstellt. Der Raum in
Abbildung 5 hat beispielsweise die Attribute „T“ und „V“ und eine Methode „calculate()“.
Kommentare können an beliebigen Stellen eingefügt werden und stehen in grauen Kästchen.

Abb. 5: Erweiterte MOOSE-Notation

2.3 Patterns

Ein Pattern (engl. „Muster“) beschreibt sowohl einen Teil eines Systems, als auch, wie dieser
Teil erzeugt werden kann. Software-Patterns beschreiben normalerweise Programmiermuster
und Abstraktionen, die von erfahrenen Programmierern in ihrer Software benutzt werden. Pat-
terns kombinieren und vereinigen andere Abstraktionen wie zum Beispiel Objekte und Proze-
duren und fügen diese zu einer umfassenden Beschreibung eines kleinen Teils der Software
zusammen.

Gebäude

Raum

Wand Fenster

Raumteiler

1…1 0…n
Wand_Fenster

n

Gebäude

Raum

Wand

Raumteiler
T Temperatur
V Volumen

calculate()

A Fläche
Fenster

0…1 0…n
Wand_Fenster

Berechne neue
Raumtemperatur

2 Modellierung mit Patterns

- 9 -

Der Begriff „Pattern“ als Entwurfsmethode wurde erstmals von dem Architekten Christopher
Alexander (siehe [AIS77]) verwendet. In den 60er Jahren untersuchten Architekten Möglich-
keiten eines automatisierten und computerisierten Gebäude-Designs. Gesucht wurden Regeln
und Algorithmen, um Anforderungen in eine Konfiguration von vorgefertigten Gebäudeteilen
umzusetzen. Alexander bemerkte, daß mit dieser Methode keine guten Architekturen gebaut
werden konnten, sondern daß vielmehr alle Teile eines Gebäudes individuell und von Hand
zusammengesetzt werden müssen. Zur Unterstützung dieses kreativen Prozesses stellte er
Beschreibungen und Regeln zum Entwurf „guter“ Architektur auf, die er „Patterns“ nannte.
Zum Beispiel ist „Fenster auf zwei Seiten jedes Raumes“ eine solche Beschreibung. Sie gibt
eine Regel für einen Teil eines guten Entwurfs wieder, sagt jedoch nichts darüber aus, wie
groß die Fenster sein sollen oder aus welchem Material der Fensterrahmen besteht. Zusam-
mengefaßt ergeben diese Patterns eine Sprache, auf deren Basis Entwürfe gemacht werden
können.
Im Bereich des Software-Engineerings wurde der Begriff „Pattern“ übernommen und bezeich-
net dort Regeln und Anleitungen zum guten Software Entwurf.
Patterns können grob ingenerative und beschreibende Patterns gruppiert werden. Beschrei-
bende Patterns geben wieder, wie ein bereits bestehendes System realisiert wurde (siehe
[GHJ95]). Sie sind rein deskriptiv und passiv. Generative Patterns hingegen geben Regeln und
Hinweise an, wie ein System erzeugt werden kann. Sie gehen also über den rein beschreiben-
den Charakter hinaus und abstrahieren soweit, daß sie an verschiedenen Stellen wiederver-
wendet werden können. Generative Patterns sind also erklärend und aktiv im dem Sinne, daß
sie zur Erzeugung von Systemen benutzt werden können.
Der in dieser Arbeit vorgestellte Modellierungsansatz verwendet ausschließlich generative
Software-Patterns und formalisiert diese soweit, daß eineautomatische Generierung von Soft-
ware möglich wird.

2.4 Wiederverwendung

Patterns werden beim Software-Engineering eingesetzt, um ein möglichst hohes Maß an Wie-
derverwendung (reuse) zu erreichen. In frühen Stadien des Software-Engineerings fand Wie-
derverwendung nur auf der Basis von Prozeduren statt. Diese können von einem Programm in
ein anderes kopiert werden und müssen dort entsprechend angepaßt werden. Um diese Art der
Wiederverwendung zu erleichtern, werden fertige und meist sehr allgemeine Prozeduren zu
Programmbibliotheken zusammengefaßt. Teile solcher Bibliotheken können recht einfach aus
Programmen referenziert und benutzt werden. Die eigentliche Wiederverwendung findet aber
nur auf Code-Ebene statt.
Eine höhere Ebene der Wiederverwendung wird durch objektorientierte Programmiersprachen
möglich. Hier können bei sorgfältiger Planung ganze Objekte in mehreren Programmen ver-
wendet werden. Ein Objekt beinhaltet dabei sowohl Instanzenvariablen (seinen Zustand), als
auch Methoden, um diesen Zustand manipulieren zu können. Durch die sinnvolle Zusammen-
fassung mehrerer Objekte zu einem Framework kann ein hoher Grad an Wiederverwendung
sowohl auf Code- als auch auf Design-Ebene erreicht werden. Unter dem Begriff „Frame-
work“ wird im folgenden eine Menge von Objekten und Klassen, ihre Funktionalität und ihr
Zusammenspiel aufgefaßt (siehe [Che94]). Ein typisches Beispiel für solch ein Framework ist

2.5 Pattern-Notation

- 10 -

das Model-View-Controller (MVC) Framework, das zur Modellierung von graphischen
Benutzeroberflächen benutzt werden kann (siehe [KrP88]). In dem Modell wird angegeben,
wie die einzelnen Teile einer Anwendung (Anzeige, Datenbasis und Eingabe) miteinander
zusammenspielen. Zusätzlich zu diesen Entwurfsinformationen sind auch bereits konkrete
Code-Informationen im MVC-Framework enthalten.

Abb. 6: Model-View-Controller Framework

Ein Entwerfer, der eine Benutzeroberfläche modellieren will und das MVC-Framework kennt,
kann durch einfache Mechanismen wie Vererbung oder Delegation die Funktionalität des
Frameworks nutzen. Vor allem erhält er durch die vom Framework vorgegebene Strukturie-
rung schon Hinweise, wie er seine Applikation in Teile partitionieren kann und welche Funk-
tionen die einzelnen Teile haben müssen.
Eine noch höhere (das heißt abstraktere) Form der objektorientierten Modellierung kann mit
Patterns erfolgen. Patterns verfolgen hauptsächlich die Idee der Wiederverwendung auf der
Ebene des Designs. Im Gegensatz zu Frameworks, die immer einen recht komplexen Gesamt-
überblick eines Modells liefern, konzentrieren sich Patterns auf die Modellierung von kleine-
ren Teilproblemen. Patterns beschreiben jeweils eine Problemsituation, wo sie auftritt und wie
sie gelöst werden kann. Dadurch sind sie in vielen verschiedenen Bereichen einsetzbar. Im
Gegensatz dazu sind Frameworks eher starre und komplexe Gebilde, die nur in wenigen unter-
schiedlichen Applikationen eingesetzt werden können.
Patterns werden häufig eingesetzt, um Frameworks zu dokumentieren. Ist die „Pattern-Spra-
che“ bekannt, so kann schnell ein Einblick in das vorgegebene Framework erhalten werden.
Jedes Pattern beschreibt dabei das Zusammenspiel zwischen einigen Einzelkomponenten des
Frameworks. Mit ihnen kann Schritt für Schritt das gesamte Modell beschrieben werden. Eine
kurze Gegenüberstellung von Patterns und Frameworks findet sich in [GHJ95] auf den Seiten
26 bis 28.

2.5 Pattern-Notation

Es gibt verschiedene Notationen, um Patterns aufzuschreiben; diese unterscheiden sich jedoch
nicht wesentlich voneinander. Im folgenden wird die Notation von Gamma, Helm, Johnson
und Vlissides (siehe [GHJ95]) vorgestellt.

• Name des Patterns
Der Name soll in kurzer Form den Inhalt des Patterns charakterisieren. Die Wahl eines ein-

Controler

Model

View
View Nachrichten

Abhängigkeiten/
Change Nachrichten

Abhängigkeiten/
Change Nachrichten

Zugriffs- und
Editier Nach-
richten

Eingabe Ausgabe

2 Modellierung mit Patterns

- 11 -

fachen, griffigen und selbsterklärenden Namens ist eine wichtige Entscheidung, da diese
Namen im Vokabular der Entwerfer auftreten und eine schnelle Methode zur Kommunika-
tion der Entwerfer untereinander bilden.

Beispiel (sieheEinfache Indirektion (67)):

Einfache Indirektion

• Zweck des Patterns
An dieser Stelle wird kurz beschrieben, wozu das Pattern da ist, welches Problem oder wel-
che Design-Entscheidung es löst und welchen Zweck es erfüllt.

Das Pattern dient zur näheren Beschreibung einer Gruppe
von Objekten. Alle Eigenschaften, die mehrere Objekte
gemeinsam haben, werden dabei in eine extra Klasse aus-
gelagert.

• Bekannt unter
Hier werden andere bekannte Namen des Patterns angegeben, falls solche vorhanden sind.
Es sollte auch angegeben werden, wo das Pattern unter dem anderen Namen benutzt wird.

Item Description (siehe [Coa92], Seite 153)

• Motivation
Hier wird an einer Beispielsituation erklärt, wann das Pattern eingesetzt werden kann und
wie es das Problem in dem Beispiel löst. Diese Beispielsituation soll helfen, die eher
abstrakte Strukturbeschreibung des Patterns leichter zu verstehen.

Bei einem Gebäude werden häufig nur wenige verschie-
dene Wandtypen verwendet. Eine Außenwand beispiels-
weise besteht immer aus denselben Materialien und hat
immer den gleichen Schichtaufbau. Andererseits hat auch
jede Außenwand ihre individuellen Eigenschaften wie
Lage, Größe oder Raumzugehörigkeit. Die gemeinsamen
Attribute Materialien und Schichtaufbau einer Wand kön-
nen also in einer neuen Klasse „Wandtyp“ gespeichert
werden.

Häufig wird bereits in der Motivation die Beispielsituation graphisch dargestellt, um
schneller einen Überblick über die Problemsituation zu vermitteln.

2.5 Pattern-Notation

- 12 -

• Anwendbarkeit
Dieser Abschnitt soll Anworten zu folgenden Fragen geben:
In welcher Situation kann das Pattern angewendet werden? Welche schlechten Entwürfe
können durch dieses Pattern verbessert werden? Wie erkennt man eine Situation, in der das
Pattern angewendet werden kann?

Die Einfache Indirektion kann angewendet werden, wenn
mehrere unterschiedliche Objekte eine Eigenschaft mitein-
ander teilen. Ebenso kann sie verwendet werden, wenn
Daten entlang einer Relation zwischen zwei Objekten aus-
getauscht werden sollen.

• Struktur
Hier folgt nun der eigentliche Aufbau des Patterns. Die Modellnotation, in der das Pattern
präsentiert wird, ist prinzipiell beliebig. Wichtig ist, daß die Grundprinzipien des Patterns
deutlich werden und daß genug Informationen angegeben werden, damit das Pattern ange-
wendet werden kann. Da die Patterns in dieser Arbeit zur automatischen Generierung von
Software herangezogen werden, muß ihre Struktur in einer formalen Form vorliegen. Dazu
wird die OMT-Notation benutzt. Sie beschreibt den Aufbau des jeweiligen Patterns und
enthält zugleich den zu generierenden Code. Zur Verdeutlichung der dynamischen Struktu-
ren werden eventuell zusätzlich noch andere Modellnotationen benutzt.

Das Pattern beruht darauf, daß es zu den individuell unter-
schiedlichen Objekten (hier in der KlasseObjekt zusam-
mengefaßt) eine weitere KlasseObjektbeschreibung gibt.
Diese beiden Klassen sind mit einer n:1 Relation ver-
knüpft. Die Zugriffsfunktionen der gemeinsamen Attribute
(also Instanzenvariablen) werden bei den Objekten nach-
gebildet, so daß auf diese Attribute genau wie auf lokale
Attribute zugegriffen werden kann. Die einzelnen Objekte

A Fläche

setMaterialien(_Mat))
getMaterialien()
setR(_R)
getR()

Wand

M Materialien
R Wärmewiderstand

WandTyp

^Typ->getR(). ^R.

setMaterialien(_Mat)
getMaterialien()
setR(_R)
getR()

Typ

n 1…1

2 Modellierung mit Patterns

- 13 -

merken also gar nicht, wenn auf eine gemeinsame Instan-
zenvariable zugegriffen wird.

• Mitwirkende Objekte
Anschließend an die Strukturbeschreibung erfolgt eine Erläuterung der an dem Pattern mit-
wirkenden Objekte bzw. Klassen und den Relationen. Es werden die Verantwortlichkeiten
der einzelnen Objekte beschrieben und Hinweise gegeben, wie die Objekte im späteren
Entwurf verwendet werden können.

Die KlasseObjekt wird mit der KlasseObjektbeschrei-
bung verbunden. Gemeinsame Attribute werden als
Instanzenvariablen bei der KlasseObjektbeschreibung
angelegt. Zusätzlich werden bei beiden Klassen Zugriffs-
funktionen auf die Instanzenvariablen angelegt. Die
Zugriffsfunktionen der KlasseObjekt verweisen dabei auf
die entsprechenden Methoden ihrer Objektbeschreibung.

• Zusammenarbeit
Wie arbeiten die einzelnen Objekte zusammen, um ihre Aufgabe zu erfüllen?

Die Instanzen der Klasse Objekt arbeiten auf den gemein-
samen Attributen so, als ob sie lokal wären. Die Zugriffs-
funktionen sind so definiert, daß keine lokalen Attribute
verändert oder gelesen werden, sondern es wird der
Zugriff an die Objektbeschreibung weitergeleitet.

• Konsequenzen
Wie gut erfüllt das Pattern seine Aufgabe? Welche Zugeständnisse an den restlichen Ent-
wurf müssen gemacht werden? Welche Teile des Patterns sind fest vorgegeben und wo lie-
gen die Teile, die bei jedem Entwurf individuell anzupassen sind?

Die Anwendung des Patterns hat sowohl Konsequenzen
für den (schreibenden) Zugriff auf gemeinsame Attribute,
als auch für die Instanziierung.
Beim Schreiben eines gemeinsamen Attributes muß
immer bedacht werden, daß eventuell andere Objekte auch
noch denselben Attributwert haben. Das Schreiben eines
Attributes beeinflußt also immer eine ganze Gruppe von

…lokale Attribute…

getV()
setV(_V)

Objekt

V Variable

Objektbeschreibung

^Typ->getV().^Typ->setV(_V).

getV()
setV(_V)

Typ

n 1…1

Einfache Indirektion

2.6 Software-Entwurf mit Patterns

- 14 -

Objekten.
Bei der Instanziierung der Objekte muß darauf geachtet
werden, daß die passenden Objektbeschreibungen auch
immer richtig mit den Objekten verknüpft werden.

• Implementation
Falltüren, Hinweise und Techniken, wie das Pattern effektiv angewendet werden kann.
Hinweise auf sprachspezifische Konstrukte.

Dieser Abschnitt ist für einen Entwerfer, der mit den in
dieser Arbeit vorgestellten Patterns umgeht, wenig interes-
sant, da die Implementierungsarbeit ja von einem Genera-
tor übernommen wird. Für den Generator allerdings kann
an dieser Stelle eingetragen werden, wie das Pattern am
besten implementiert wird.

• Beispielimplementierung und Benutzung
Quelltexte, die eine Anwendung des Patterns zeigen. Üblicherweise sind diese Beispiele in
Smalltalk oder C++ geschrieben. Die Beispiele in dieser Arbeit sind in Visual Works
(Smalltalk-Dialekt, siehe [Vis95]) oder in C++ geschrieben.

Klasse Objekt:
getV

„Gibt Wert des Attributes V einer
Objektbeschreibung zurück“
^Typ getV.

…

• Bekannte Anwendungen
In diesem Abschnitt können bekannte Anwendungen des Patterns angegeben werden.

Dieser Teil ist für den Umgang mit den hier vorgestellten
Patterns von keiner großen Bedeutung, da sie alle im sel-
ben Kontext angewendet werden. Von Interesse wären an
dieser Stelle Anwendungen des Patterns aus unterschiedli-
chen Gebieten, um Hinweise zu geben, an welchen Stellen
das Pattern überall benutzt werden kann.

• Verwandte Patterns
Zuletzt werden Verweise auf ähnliche Patterns angegeben. Kann ein spezielles Pattern in
einem Entwurf nicht benutzt werden, so sollten in diesem Abschnitt andere Patterns aufge-
führt werden, die eine ähnliche Aufgabe erfüllen. Auch sollte kurz auf Unterschiede zwi-
schen den Patterns eingegangen werden.

Komplexe Indirektion (69) - Verfolgen einer 1:n Relation.

2.6 Software-Entwurf mit Patterns

Der Software-Entwurf mit Patterns erfolgt durch sukzessive Anwendung der entsprechenden
Patterns. Dazu wird das ursprüngliche Problem in Teilprobleme aufgespalten und diese wer-

2 Modellierung mit Patterns

- 15 -

den, wenn möglich, durch die einzelnen Pattern gelöst. Im Gegensatz zum reinen „Divide and
Conquer“ Entwurf stehen die Patterns jedoch nicht ganz für sich alleine, sondern sie arbeiten
zusammen und ergänzen sich gegenseitig. Im folgenden wird eine Software-Modellierungs-
möglichkeit vorgestellt, die es erlaubt, die korrekte Anwendung der Patterns zu automatisie-
ren, um die Software-Entwicklung für einen eingeschränkten Bereich (der
Gebäudesimulation) zu vereinfachen.
Patterns spiegeln Techniken und Beispiele wieder, wie gute Software geschrieben werden
kann. Werden sie mit Bedacht und kreativ eingesetzt, so können sie in einer Vielzahl von
Anwendungen verwendet werden. Eingeschränkte Patterns, die nur zur Lösung eines speziel-
len Problems dienen, machen für den Entwurf beliebiger Programme wenig Sinn. Schränkt
man jedoch den Einsatzbereich der Patterns ein (beispielsweise auf die Simulation von Gebäu-
den), so liegt in diesen „Spezialpatterns“ eine große Einsatzmöglichkeit. Spezielle Patterns
können die Probleme, die sie lösen, viel genauer eingrenzen und erläutern, und ihre Imple-
mentierung (d.h. Anwendung) kann automatisch erfolgen.
Der Entwerfer eines Simulators braucht daher kein Spezialist auf dem Gebiet der Simulation
zu sein. Er sucht einfach zu den in der Simulation auftretenden Problemen ein passendes Pat-
tern heraus. Welche Seiteneffekte und Konsequenzen die Anwendung des Patterns hat, kann in
der Pattern-Beschreibung nachgelesen werden.
Die Patterns, so wie sie im folgenden benutzt werden, stellen jeweils eine eigene Funktionali-
tät (auf Code-Ebene) zur Verfügung und bilden ein Bindeglied zwischen einzelnen Kompo-
nenten aus unterschiedlichen Modellen. Durch die Bindung der Patterns an Modell-
Komponenten wird die Rolle der Patterns quasi umgekehrt: statt der reinen Beschreibung
eines Frameworks dienen sie jetzt zur Modellierung und Verfeinerung von Modellen.
Als Vorgabe für den Entwurf eines Simulators gibt es zum einen den Pattern-Katalog, und
zum anderen dienen schon bereits vorgefertigte Modelle als Eingabe für den Entwurf. Die
Benutzung der Patterns bewirkt nun, daß einzelne Komponenten der Eingabe-Modelle ausge-
wählt und mit zusätzlicher Funktionalität versehen werden. Alle diese Teile werden dann zu
einem komplexen Simulator-Modell zusammengesetzt, das den Gebäude-Simulator komplett
beschreibt.

2.6 Software-Entwurf mit Patterns

- 16 -

Der Entwurf eines Simulators wird in Abbildung 7 beschrieben (vergleiche Abbildung 3 auf
Seite 6).

Abb. 7: Entwurf eines Gebäude-Simulators

Das aktuelle Anwendungsfeld des Sonderforschungsbereiches 501 ist die Gebäudeautomati-
sierung. Es sollen Programme zur Steuerung, Simulation und Konstruktion von Gebäuden ent-
wickelt werden. Um die in der Gebäudeautomatisierung anfallenden Begriffe zu erklären und
um Zusammenhänge zwischen den Begriffen zu erläutern, wurde ein Lexikon geschrieben
(siehe [Sah96]). Dem Lexikon liegt ein Gebäudemodell zu Grunde, in dem die prinzipielle
Struktur eines Gebäudes und die Beziehungen zwischen den einzelnen Gebäudekomponenten
beschrieben sind. Es kann daher als Grundlage für sämtliche Applikationen im Gebäudebe-
reich dienen.
Das spezielle Anwendungsfeld, das im folgenden behandelt werden soll, ist ein Simulator für
Gebäude, die mit dem Gebäudemodell modelliert werden können. Hier könnte man sich auch
andere Anwendungen, wie zum Beispiel eine Heizungssteuerung, vorstellen, die auch auf ähn-
liche Weise behandelt werden können.
Bei einem Simulator treten einige Besonderheiten auf. Dazu zählen sowohl eigene Objekte
und Algorithmen, wie zum Beispiel Scheduling oder Event-Verarbeitung, als auch spezielle
Probleme wie Echtzeitfähigkeit und Verteilung. Diese Besonderheiten können in Patterns und
speziellen Datenmodellen codiert werden und machen die Charakteristik des Anwendungs-
projektes „Simulator“ aus. Jedes Pattern beschreibt und löst ein spezielles Problem des Simu-
lators und bildet zusammen mit allgemeinen Patterns die Entwurfsgrundlage für den
Simulator. Die Patterns sind also speziell an das Anwendungsgebiet „Gebäude-Simulator“
angepaßt (domain-modelling).
Der Entwurf des Simulator-Gesamtmodells besteht nun aus der Zuordnung dieser Patterns zu
Objekten aus dem Gebäudemodell. Um zum Beispiel die Temperatur in den Räumen des
Gebäudes zu simulieren, wird das Pattern „Simulation thermischer Masse“ der Klasse Raum
aus dem Gebäude-Modell zugeordnet. Die Konsequenzen, die die Anwendung des Patterns
hat, sind in dem Pattern beschrieben, ebenso, was außerdem modelliert werden muß. Sämtli-
che Patterns sind in einem Pattern-Katalog enthalten (siehe beispielsweise Anhang A). Die

Code

Bibliothek
Architekturmodell

manuell

Gebäude-
modell

Gebäude
Automati-

Simulator

Applikations-
Modell für

Dokumentation

Generierung

sierung

Genäude
Simulator

manuell

Modell

transfor-

mationModell

Pattern-
Katalog

den Simulator

2 Modellierung mit Patterns

- 17 -

einzelnen Patterns aus diesem Katalog können zur Modellierung des Simulators herangezogen
werden. Ebenso enthalten die Patterns Hinweise, wie sie von einem Generator implementiert
werden können. Zusammen mit Hinweisen, wie das Architekturmodell in Programm-Code
umgesetzt werden kann, ist es möglich, den Simulator anhand der Modellierung zu generie-
ren.

2.7 Beispielentwurf

In diesem Kapitel soll der Software-Entwurf mit Patterns verdeutlicht werden. Die verwende-
ten Patterns befinden sich im Anhang A, eine genaue Erklärung der Möglichkeiten und
Anwendungsarten der Patterns steht in Kapitel 2.8.
Als Beispiel soll die Temperatur zweier Räume eines einfachen Hauses simuliert werden
(siehe Abbildung 8). Die beiden Türen können während der Simulation geöffnet werden, und
die Temperaturen der Räume passen sich dann entsprechend an. Der Heizkörper in Raum 1
heizt zunächst konstant mit einer Leistung von 0,5 KW, die Heizleistung kann aber auch dyna-
misch von einer Simulator-Steuerung angepaßt werden.

Abb. 8: Beispielhaus

Raum 1 Raum 2

5m 5m

5m

2m

1m

2m

Raumhöhe: 2m

Heizkörper

Außentemp.: 8˚ C

Raum 1:
50m3

16˚ C Temperatur

Raum 2:
50m3

16˚ C Temperatur

Tür 1 Tür 2

2.7 Beispielentwurf

- 18 -

Zur Simulation werden offensichtlich die Objekte „Raum“, „Raumteiler“ (Wand und Tür),
„Heizkörper“ und „Umgebung“ benötigt. Der entsprechende Ausschnitt des Gebäudemodells
sieht vereinfacht folgendermaßen aus:

Abb. 9: Ausschnitt aus dem Gebäudemodell

Ein Gebiet kann entweder ein Raum oder die Umgebung sein. Je 2 Gebiete sind durch Raum-
teiler getrennt. Ein Raumteiler ist entweder eine Wand oder eine Tür.
In dem Beispiel soll die Temperatur der Räume simuliert werden. Dazu kann das Pattern
„Simulation thermischer Masse“ eingesetzt werden. Die thermische Masse ist in diesem Fall
die Luft in den Räumen. Die Verbindung zwischen zwei Räumen geschieht über Raumteiler.
Die Bindung des Patterns an das Gebäudemodell ist der Graphik aus Abbildung 10 zu entneh-
men.

Abb. 10: Anwendung des Patterns „Simulation thermischer Masse“

Gebiet

Umgebung

Raumteiler

Wand Tür

2 nAbtrennung

Gebäude

Raum

Heizung

Simulation thermischer
MasseT Temperatur

tlastZeitpunkt der letzten
Berechnung

V Volumen der Masse

calcT(takt)Berechnung
der Temperatur

getC(T) spezifische
Wärmekapazität

getQ(t1, t2)Wärmemenge

thermische Masse

| c |
tlast := takt.
c := getC(T).
setT(getQ(tlast, takt)/ (V * c) + T).

Raum

2 Modellierung mit Patterns

- 19 -

Bindungen:
Klassen:
• thermische Masse-> Raum

Durch die Bindung des Patterns an die KlasseRaum aus dem Gebäudemodell werden die in
dem Pattern angegebenen Instanzenvariablen und Funktionen automatisch für alle Räume
angelegt. Gleichzeitig mit der Bindung auf Klassenebene können auch Umbenennungen und
bei Funktionen Parameteranpassungen vorgenommen werden. Näheres dazu ist in Kapitel 2.8
beschrieben. Das PatternSimulation thermischer Masse (45) gibt für die FunktioncalcT()
gleichzeitig das Interface und die Implementierung vor. Das heißt, daß für jeden Raum die

Temperatur mit derselben Formel 3 berechnet wird4. Die spezifische

Wärmekapazität eines Raumes und die Wärmemenge, die auf ihn während des letzten Berech-
nungsintervalles eingewirkt hat, müssen getrennt modelliert werden. Das Interface der
entsprechenden Funktionen ist allerdings durch das Pattern schon vorgegeben, so daß erkenn-
bar ist, daß sie noch entworfen werden müssen.
Bei der Instanziierung des Patterns, das heißt bei der eigentlichen Erzeugung der Simulations-
objekte, muß noch für jede Instanzenvariable, die im Pattern vorkommt, ein passender
(Initial−) Wert eingetragen werden. Im Beispiel wäre das also:

Raum 1: T := 16, v:= 50, tlast := 0.
Raum 2: T := 16, v:= 50, tlast := 0.

Als nächstes müssen die FunktionengetC() undgetQ()modelliert werden, da im Pattern nur
ihr Interface vorgegeben wurde. Die spezifische Wärmekapazität der Raumluft kann man der
Einfachheit halber als konstant annehmen. Also kann an die FunktiongetC() das PatternKon-
stanter Wert (63) gebunden werden.

Abb. 11: Konstante Wärmekapazität der Raumluft

Die Anbindung des Patterns an eine (oder mehrere) Klassen aus dem Gebäudemodell wird
graphisch durch die fettgedruckten Pfeile dargestellt. Dabei geht jeweils ein Pfeil von einer im
Pattern definierten Klasse zu einem Objekttypen aus einem der bisherigen Modelle. Dadurch

3. Die meisten Formeln, die in dieser Arbeit erwähnt werden, stammen aus [LJK94] und [PDr80] und
werden dort ausführlich beschrieben.

4. Gibt es unterschiedliche Raumtypen, die verschieden berechnet werden sollen, so müssen diese über
den Vererbungsmechanismus im Ausgangsmodell separat modelliert werden.

Ti 1+

Q tl ast takt,()
V C takt()⋅

-------------------------------- Ti+=
 
 
 

^V

V bel. Wert (const)

getV() liefert V zurück

Klasse Konstaner WertRaum

getC(t)

C

2.7 Beispielentwurf

- 20 -

werden die Klassen ausgewählt, für die neue Funktionalität modelliert werden soll. Die Pfeile
auf Variablen- oder Funktionenebene geben jeweils an, welche Instanzenvariablen oder Funk-
tionen korrespondieren. Dabei sind Namensumbenennungen möglich. Wird eine Variable oder
Funktion unmodifiziert aus dem Pattern übernommen, so ist ein entsprechender Pfeil überflüs-
sig und kann weggelassen werden.

Bindungen:
Klassen:
• Klasse -> Raum
Funktionen:
• getV() -> Raum::getC(t)
Initialisierung:
V := 1,007

Als nächstes soll die Berechnung der Wärmemenge (Funktion getQ(t1, t2) des Raumes)
modelliert werden. Diese setzt sich aus der Transmissionswärmemenge und der Strahlungs-
wärmemenge der Heizung zusammen (Qges = QT + QS). Diese Summe kann einfach mit dem
Formel-Pattern gebildet werden, wobei als Formel die Addition zweier Werte eingetragen
wird (siehe PatternFunktion (61) und Abbildung 12).

Abb. 12: Addition der Wärmemengen-Anteile

Die FunktiongetQ(t1, t2)wird implementiert als Summe der Rückgabewerte der (neuen)
FunktionengetQT(t1, t2) und getQS(t1, t2). Die Parameter t1 und t2 werden also aus dem
bereits bestehendem Interface der FunktiongetQ(t1, t2)übernommen:

Bindungen:
Klassen:
• Klasse -> Raum
Funktionen:
• getV() -> Raum::getQ(t1, t2)
• getV1() -> Raum::getQT(t1, t2)
• getV2() -> Raum::getQS(t1, t2)

Als nächstes müssen die beiden Wärmemengen QT und QS modelliert werden. Die Strahlungs-
wärmemenge aller Heizungen ist einfach die Summe der Wärmemengen der einzelnen Hei-

^ (getV1() +
getV2()).

getV() liefert V1+V2
zurück

getV1()
getV2()

Klasse Formel (Addition)Raum

getQ(t1, t2)
getQT(t1, t2)
getQS(t1, t2)

2 Modellierung mit Patterns

- 21 -

zungen eines Raumes. Diese indirekte Summe (der Raum benötigt die Summe von Werten
seiner Heizungen) läßt sich mit dem PatternKomplexe Indirektion (69) berechnen.

Abb. 13: Aufsummieren der einzelnen Wärmekapazitäten

Bindungen:
Klassen:
• Objekt -> Raum
• referenziertes Objekt -> Heizung
Relationen:
• Relation -> partOf (Raum, Heizung)
Funktionen:
• Objekt::getV() -> Raum::getQS(t1, t2)
• referenziertes Objekt::getV() -> Heizung::getQS(t1, t2)

Die Strahlungswärmemenge (Q) einer Heizung berechnet sich nun durch das Integral über

dem Wärmestrom der Heizung im aktuellen Zeitintervall . Solche Inte-

grale können leicht mit einem Puffer (siehe 3.3) berechnet werden. Unter der Annahme, daß
sich der Wärmestrom nicht stark ändert, kann ein einfacher Puffer (z. B. Lineare Pufferung)
verwendet werden. Dazu wird das PatternEinfache Indirektion (67) zur Verbindung der Hei-
zung mit einem linearen Puffer verwendet (Abbildung 14). Die Puffer stammen aus einem
separaten Modell (siehe Kapitel 3.3), so daß der verwendete Puffer sehr einfach (durch die

getV()

Objekt referenziertes Objekt

Vtemp := 0.
foreach rel: Relation do

Vtemp := Vtemp + rel->getV().
od

^Vtemp

getV()

Relation

1…1 n

Komplexe Indirektion

Raum

getQs(t1, t2)

Heizung

getQs(t1, t2)

n

Q t1 t2,() Φ t() td
t1

t2
∫= 

 

2.7 Beispielentwurf

- 22 -

Neubindung der KlasseObjektbeschreibung an einen andern Puffer) ausgetauscht werden
kann.

Abb. 14: Thermische Verbindung zwischen Gebieten

Bindungen:
Klassen:
• Objekt -> Heizung
• Objektbeschreibung -> Linearer Puffer
Relationen:
• Typ -> Wärmepuffer (Heizung, Linearer Puffer)
Funktionen:
• Objekt::getV() -> Heizung::getQS(t1, t2)
• Objekt::setV(t) -> Heizung::setQS(t, Q)
• Objektbeschreibung::getV() -> Linearer Puffer::integrate(t1, t2)
• Objektbeschreibung::setV(t) -> Linearer Puffer::add(t, Q)

Als letztes fehlt zur Heizungssimulation noch der von der Heizung produzierte Wärmestrom.
Dieser soll von einer Gebäudesteuerung oder durch manuelle Eingaben in den Simulator
gesteuert werden. Aus der Sicht des Simulators stellt der Wärmestrom also einen Aktuator

getV()
setV(_V)

Objekt

V Variable

Objektbeschreibung

^Typ->getV().^Typ->setV(_V).

getV()
setV(_V)

Typ

n 1…1

Einfache Indirektion

Heizung

getQs(t1, t2)

Linearer Puffer
1

setQs(t, Q) integrate(t1, t2)
add(t, Q)

Wärmepuffer

Qs

2 Modellierung mit Patterns

- 23 -

(Steuerglied) dar. Mit dem PatternAktuator (55) wird die entsprechende Funktionalität zur
Verfügung gestellt. Abbildung 15 zeigt die Struktur des Patterns.

Abb. 15: PatternAktuator (55)

Bindungen:
Klassen:
• Aktuator -> Heizung
Relationen:
• activeObject -> activeObject (Heizung, ActiveObject)
Funktionen:
• Aktuator::getV() -> Heizung::getQS(t1, t2)
• Aktuator::setV(_V) -> Heizung::setQS(t, Q)

Dasactive Objectdient zur Anbindung der Heizung an die Steuerung. Dadurch ist eine Hei-
zung in der Lage, Events von Simulator zu bearbeiten (siehe dazu auch Kapitel 3.2). Das
active Objekt ist in der Lage, Nachrichten von der Simulator-Steuerung zu empfangen und
entsprechend zu bearbeiten. Um beispielsweise die Leistung einer Heizung zu verändern,
kann die Instanzesvariable Qs der Heizung von der Steuerung direkt gesetzt werden. Diese
Änderung macht es jedoch eventuell erforderlich, daß sofort Neuberechnungen einiger Simu-
lationsgrößen stattfinden müssen. Dazu kann an das Active Object der Heizung eine changed-
Nachricht geschickt werden, die dann die Funktionchanged()der Heizung aufruft. Daraufhin
werden alle abhängigen Simulationsgrößen neu berechnet.

getV()
setV(_V)
changed()

Aktuator

active Object

^_V.^V = _V.

Thread()

activeObject

n 1…1

Aktuator

_VHeizung

Qs

getQs(t1, t2)
setQs(t, Q)

2.7 Beispielentwurf

- 24 -

Was jetzt noch fehlt, ist die Berechnung der Transmissionswärmemenge durch die an einen
Raum angrenzenden Wände. Dazu dient das PatternSimulation thermischer Verbindung (49),
dasan die KlassenRaum undRaumteiler gebunden wird (Abbildung 16).

Abb. 16: PatternSimulation thermischer Verbindung (49)

Bindungen:
Klassen:
• thermische Verbindung -> Raumteiler
• thermische Masse -> Gebiet
Relationen:
• Innenseite -> Abtrennung[0](Gebiet, Heizung)
• Außenseite -> Abtrennung[1](Gebiet, Heizung)

Die MethodecalcQ(t) berechnet jeweils den aktuellen Wärmestrom durch eine Wand. Die
Funktion getQ(t, M) liefert diese dann vorzeichenrichtig an eine thermische Masse zurück.
Um den Wärmestrom durch eine thermische Verbindung berechnen zu können, muß bei der
thermischen Masse die FunktiongetT(t) vorhanden sein. Sie soll die Temperatur zum Zeit-
punkt t zurückliefern. Dazu wird ein weiterer Puffer benötigt. Dieser wird an die Klasse
Gebiet des Gebäudemodells gebunden (PatternEinfache Indirektion (67),vgl. Abbildung 17)
und speichert die berechneten Temperaturen ab. Ist das Gebiet die Umgebung, so wird der
Puffer einfach mit einem konstanten Wert (PatternKonstanter Wert (63)) gefüllt und nicht
weiter aktualisiert (Die Außentemperatur wird als konstant angenommen). Im Falle eines Rau-
mes, wird bei jeder Aktualisierung der Temperatur die FunktionsetT (T) (vgl. Abbildung 10)

R Wärmewiderstand
S Fläche

calcQ(t) berechnet
den Wärmestrom
zum Zeitpunkt t

getQ(t, M) liefert Q
für die Masse M

thermische Verbindung

getT(t) liefert die
Remperatur zum
Zeitpunkt t

thermische Masse

Innenseite

Außenseite

^(Innenseite->getT(t) -
Außenseite->getT(t)) / R.

Qtemp := calcQ(t).
if (M == Außenseite)

Qtemp := -Qtemp;
fi
^Qtemp.

Simulation thermi-
scher Verbindung

Raumteiler
Gebiet

2
Abtrennung

2 Modellierung mit Patterns

- 25 -

aufgerufen. Diese wird mit dem PatternEinfache Indirektion (67) so überschrieben, daß die
aktuelle Temperatur in dem Puffer abgelegt wird.

Abb. 17: Pufferung der Temperaturen

Bindungen:
Klassen:
• Objekt -> Gebiet
• Objektbeschreibung -> Linearer Puffer
Relationen:
• Typ -> Temperaturpuffer (Gebiet, Trapezregel)
Funktionen:
• Objekt::getV() -> Gebiet::getT(t)
• Objekt::setV(t) -> Gebiet::setT(T)
• Objektbeschreibung::getV() -> Linearer Puffer::interpolate(t)
• Objektbeschreibung::setV(t) -> Linearer Puffer::add(Scheduler::takt, T)

Da die aktuelle Zeit, zu der die Temperatur berechnet wurde, eine für alle Simulationsobjekte
globale Variable ist, kann diese vom Scheduler abgefragt und als Parameter an die Funktion
add des Puffers übergeben werden (siehe 2.8.3).

Was jetzt noch fehlt, ist ein Puffer, der die berechneten Wärmeströme zwischenspeichert und
die vom Raum benötigte Wärmemenge daraus berechnet. Das PatternEinfache Indirektion
(67) wird dazu an den Raumteiler und einen Puffer gebunden. Die Bindungen sehen wie folgt
aus:

getV()
setV(_V)

Objekt

V Variable

Objektbeschreibung

^Typ->getV().^Typ->setV(_V).

getV()
setV(_V)

Typ

n 1…1

Einfache Indirektion

Gebiet

getT(t)

Lin. Puffer
1

setT(T) interpolate(t)
add(Scheduler::takt, T)

Temperaturpuffer

2.7 Beispielentwurf

- 26 -

Bindungen:
Klassen:
• Objekt -> Raumteiler
• Objektbeschreibung -> Trapezregel
Relationen:
• Typ -> Gebiete (Gebiet, Raumteiler)
Funktionen:
• Objekt::getV() -> Raumteiler::getQ(t1, t2)
• Objekt::setV(t) -> Raumteiler::setQ(Scheduler::takt, Q)
• Objektbeschreibung::getV() -> Trapezregel::integrate(t1, t2)
• Objektbeschreibung::setV(t) -> Trapezregel::add(t, Q)

Damit ist die Modellierung des Simulators fast fertig. Es fehlt lediglich noch die kontinuierli-
che Simulation der Raumteiler und der Räume. Diese wird dadurch erreicht, daß das Pattern
Kontinuierliche Simulation (53) an die entsprechenden Objekte gebunden wird. Das vollstän-
dige Gesamtmodell ist in Abbildung 18 zu sehen. Die Patterns sind in diesem Bild als Wolken
dargestellt, die über Pfeile an die Objekttypen gebunden sind. Der Simulator konnte durch die
Anwendung von 14 Patterns (davon 8 unterschiedliche) modelliert werden.

Abb. 18: Komplettes Modell mit Patterns

Umgebung

Raumteiler

Wand Tür

2 nAbtrennung

Gebäude

Raum

Gebiet

Puffer

therm.Verb.

Indirketion

Aktuator

therm.Masse

Initialisierung

Indirketion

kont.Sim.

kont.Sim.

Active_Object

kont.Sim.

Konst. Heizung

Funktion

IndirketionPuffer

Aktuator

Puffer
Indirketion

2 Modellierung mit Patterns

- 27 -

Ein einmal angefertigtes Modell kann im Bedarfsfall recht einfach abgewandelt oder verfei-
nert werden. Soll beispielsweise eine Wand aus mehreren Schichten bestehen und der Wärme-
durchgangskoeffizient („k-Wert“) mehrschichtiger Wände berechnet werden, so kann die
Modellierung dahingehend angepaßt werden. Dazu muß eine neue Modell-Klasse „Wand-
schicht“ aufgenommen werden. Jede Wandschicht kennt ihren Wärmewiderstand und ihre
Dicke. Um daraus den Wärmedurchgangswiderstand der gesamten Wand zu berechnen,
genügt es, die einzelnen Schichten mit dem PatternEinfache Indirektion (67) an eine Wand
anzubinden und durch eineFunktion (61) den gewünschten Wert zu berechnen.
Soll zusätzlich noch jede einzelne Wandschicht als eigene thermische Masse betrachtet wer-
den, ist eine kleine Umstrukturierung der bereits gebundenen Patterns notwendig. Der Wär-
meübergang vom Raum auf die erste Wandschicht wird über eine Zwischenschicht modelliert.
Die neue Modell-Klasse „Zwischenschicht“ dient also als thermische Verbindung zwischen
den Klassen „Raum“ und „Wandschicht“. Das PatternSimulation thermischer Verbindung
(49), das vorher an den Raum und die Wand gebunden war, muß jetzt an die Zwischenschicht
gebunden werden. Der Wärmewiderstand solch einer Zwischenschicht hängt von der Beschaf-
fenheit der äußersten Wandschicht ab und kann in Tabellen nachgelesen werden (siehe
[LJK94] auf der Seite 131). Jetzt fehlt nur noch, die einzelnen Wandschichten als thermische
Massen zu betrachten. Dies geschieht durch die Bindung des PatternsSimulation thermischer
Masse (45) an die Modell-Klasse Wandschicht. Zuletzt sorgt dieKontinuierliche Simulation
(53) für eine quasi-kontinuierliche Aktualisierung der Temperatur einer Wandschicht (siehe
Abbildung 19).

Abb. 19: Verfeinerter Ausschnitt aus Abbildung 18

2.8 Bindung der Patterns

Wie im vorigen Beispiel gesehen, besteht die Modellierung eines Simulators hauptsächlich
aus der Bindung von Patterns an bereits bestehende oder neu anzulegende Modellkomponen-

Wandschicht

Zwischenschicht Wand
1 1

n
therm.Masse

Raumteilertherm.Verb.

kont.Sim.

Indirketion
Indirketion

Raum

Schicht

therm.Masse

2.8 Bindung der Patterns

- 28 -

ten. Den Ausgangspunkt bilden ein oder mehrere Objektmodelle, die durch Anbindung an Pat-
terns verfeinert werden. Die einzelnen Objektklassen erhalten dabei die in den Patterns
spezifizierte Funktionalität. Die Bindung eines Patterns an Objekte bzw. Klassen geschieht in
mehreren Ebenen, die im folgenden näher erläutert werden:

2.8.1 Bindung auf Klassenebene

In diesem Schritt wird jeder Klasse, die in dem Pattern vorkommt, eine Klasse aus einem der
bereits bestehenden Objektmodelle zugeordnet. Dies geschieht durch einfaches Auswählen
einer Klasse aus einem der „Eingabe“-Modelle (Gebäude-Modell, Simulator-Modell, etc.,
siehe Abbildung 7 auf Seite 16). Eventuell kann es vorkommen, daß eine benötigte Klasse in
keinem dieser Modelle existiert. Wenn es sich dabei nur um ein selten benötigtes Hilfsobjekt
handelt, so kann an dieser Stelle auch eine neue, „leere“ Klasse angelegt werden, die ihre erste
Funktionalität durch das aktuelle Pattern bekommt. Wird diese neue Klasse jedoch an mehre-
ren Stellen im Simulator benötigt, so ist es eventuell besser, sie in eines der Eingabe-Modelle
aufzunehmen, damit der Sinn der Klasse und ihr Zusammenspiel mit anderen Objekten deut-
lich wird.
Durch die Bindung der Patterns auf Klassenebene werden also alle Objektklassen ausgewählt
bzw. angelegt, die durch das Pattern erweitert werden sollen.

2.8.2 Bindung der Funktionen und Instanzenvariablen

Sind alle Klassen ausgewählt, auf die das Pattern angewendet werden soll, so müssen in einem
zweiten Schritt die Instanzenvariablen und die Funktionen, die im Pattern definiert sind, ange-
paßt werden. Ist keine Anpassung notwendig (d.h. eine Instanzenvariable oder Funktion soll
ohne Änderung aus dem Pattern übernommen werden), so braucht an dieser Stelle nichts
unternommen zu werden. Häufig sind jedoch Anpassungen nötig, da die Funktionen im späte-
ren Programm andere Namen haben sollen, als im Pattern vorgegeben. In diesen Fällen kann
der vorgegebene Name geändert werden. Dabei kann der ursprüngliche (im Pattern definierte)

Name durch einen beliebigen, gültigen5 Namen ersetzt werden.
Instanzenvariablen können an bereits im Modell vorgegebene Variablen gebunden oder - falls
keine passenden Variablen im Modell enthalten sind - neu angelegt werden. Im letzteren Fall
wird für die entsprechende Modell-Klasse eine neue Variable mit dem gewünschten Namen
erzeugt und es werden zusätzlich Zugriffsfunktionen auf diese Variable vorgesehen (siehe Pat-
tern Instanzenvariable (58)). Nachdem die Instanzenvariable angelegt wurde, kann sie über
die Zugriffsfunktionen auch von anderen Patterns aus gelesen oder neu gesetzt werden.
Funktionen treten in den Patterns in zwei Formen auf. Entweder wird in dem Pattern nur das
Interface, also die Schnittstelle der Funktion, beschrieben, oder es wird zusätzlich noch die
Implementierung derselben vorgegeben. Ist die Funktion vollständig im Pattern beschrieben
(also Interface und Implementierung), so wird diese Funktion bei der Generierung komplett
erzeugt. Ein vorgegebenes Interface kann mit einer beliebigen Funktions-Implementierung
verknüpft werden. Das PatternKomposition (72) beispielsweise beschreibt, wie eine Opera-
tion auf einer Menge von Objekten ausgeführt werden kann. Angenommen, eine Menge von
Räumen soll aufgefordert werde, sich neu zu berechnen. Dies geschehe durch den Aufruf der

5. „gültige“ Namen für Instanzenvariablen und Funktionen sind alle diejenigen, die auch in der Ziel-Pro-
grammiersprache gültig sind.

2 Modellierung mit Patterns

- 29 -

Funktioncalculate() der Klasse Raum. Eine KlasseHausbeinhaltet Verweise auf alle Räume,
die den Funktionsaufruf voncalculate() erhalten sollen. Konsequenterweise wird also die Pat-
tern-KlasseMenge an die Modell-KlasseHausgebunden. Die KlasseKomponente wird dann
mit dem Raum identifiziert. Für eineMenge wird im Pattern die Funktionoperation() kom-
plett vorgegeben. Bei der Bindung dieser Funktion an die KlasseHaus findet also nur eine
Umbenennung statt, so daß im späteren Programm diese Methode unter dem Namencalcu-
late() aufgerufen werden kann. Für einen Raum ist nur das Interface deroperate()Funktion
vorgegeben. Also wird nur vermerkt, daß der Raum (nach einer Umbenennung) eine Funktion
mit dem Namencalculate() haben muß. Die eigentliche Funktionalität dieser Methode kann
durch ein anderes Pattern spezifiziert werden. In diesem anderen Pattern muß dann eine Funk-
tion komplett spezifiziert sein, die sich durch Umbenennung an diecalculate() Methode bin-
den läßt.
Durch diese Aufspaltung der Methoden in Interface und Implementation können also mehrere
Pattern zusammenarbeiten. Ein Pattern gibt die Struktur einer Funktion vor, und ein anderes
implementiert dann die eigentliche Funktionalität.

2.8.3 Parameteranpassung

In einigen Fällen kann es vorkommen, daß die Parameter einer Funktion, wie sie im Pattern
vorgesehen sind, nicht mit denen übereinstimmen, die im späteren Modell benötigt werden.
Dabei kann sowohl vorkommen, daß mehr Parameter als vorgegeben benötigt werden, als
auch, daß Parameter weggelassen werden können (siehe folgende Beispiele).

Abb. 20: Parameter hinzufügen

In Abbildung 20 soll für die Klasse Umgebung die FunktiongetT modelliert werden. Sie soll
die konstante Außentemperatur zurückliefern. Dazu wird das PatternKonstanter Wert (63) an
die Klasse Umgebung gebunden. Ohne eine Parameteranpassung würde eine neue, parameter-
lose Funktion erzeugt werden. In diesem Fall soll aber die durch die OberklasseGebiet bereits
vorgegebene FunktiongetT(t) überladen werden. Daher ist es zusätzlich zu der Umbenennung
der Funktion getK aus dem Pattern notwendig, einen neuen Parametert einzuführen. Dieser
wird dann in der Funktion selbst nicht berücksichtigt und dient nur zur Anpassung des Metho-
dennamens. Wird im Pattern nur das Interface einer Funktion vorgegeben und dieses soll an
eine bereits bestehende Klassenmethode angepaßt werden, so sind eventuell komplexere Para-
meteranpassungen nötig. Dann kann es nämlich vorkommen, daß der zusätzliche Parameter
nicht einfach ignoriert werden kann, sondern es wird ein sinnvoller Wert von dieser Funktion

Gebiet

getT(t)

Umgebung

^K

K bel. Wert (const)

getK() liefert V zurück

Klasse Konstaner Wert

2.9 Implementierung der Patterns

- 30 -

erwartet. In diesem Fall kann angegeben werden, welcher Wert als Parameter übergeben wer-
den soll. Möglich sind dabei Konstanten, Instanzenvariablen des aufrufenden Objektes, Funk-
tionsparameter der aufrufenden Methode oder ein Verweis auf die aufrufende Instanz.

Abb. 21: Zusätzliche Aufrufparameter einführen

In dem Beispiel in Abbildung 21 soll die FunktiongetV() des referenzierten Objektes auf die
FunktiongetQ(t, M) der Wand abgebildet werden. Als Parameter erwartet diese Methode den
aktuellen Zeitpunkt der Berechnung und einen Zeiger auf das aufrufende Objekt (vgl. 2.7).
Zur Bindung der FunktiongetV() an die FunktiongetT(t) des Raumes wurde bereits der Para-
meter t neu eingeführt. Dieser kann zum Aufruf vongetQ(t, M) benutzt werden. Zusätzlich
wird ein Zeiger auf den aktuellen Raum mit übergeben.

2.9 Implementierung der Patterns

Unter dem Begriff Implementierung wird im folgenden der Weg verstanden, wie man von den
eher abstrakten Patterns zu einem konkreten Programm kommt. Prinzipiell gibt es mehrere
Wege, die gebundenen Patterns in Quelltext zu verwandeln. Entweder wird für jede Funktion
des Patterns spezieller Code generiert, oder es werden die Patterns selbst als eigenständige
Klassen generiert und über Vererbung oder Delegation mit dem restlichen Modell verknüpft.

Für jeden beim Software-Entwurf im Modell benutzten Objekttyp wird im Programm eine
eigene Klasse benötigt. Diese Modell-Klassen müssen zusätzlich zu ihrer Grundfunktionalität
(z.B. Initialisierungsmethoden oder Ein-/Ausgabe) noch die Funktionalität erhalten, die sie bei
der Modellierung durch die Bindung an Patterns zugewiesen bekommen haben. Die folgenden
drei Abschnitte beschäftigen sich mit Möglichkeiten, diese Funktionalität zu implementieren.

Raum

getT(t)

Wand

getQ(t, M)

getV()

Objekt referenziertes Objekt

Vtemp := 0.
foreach rel: Relation do

Vtemp := Vtemp + rel->getV().
od
^Vtemp

getV()

Relation

n 1…1

Komplexe Indirektion

…
…
rel->getQ(t, self).
…

2 Modellierung mit Patterns

- 31 -

2.9.1 Implementierung durch Delegation

Die Implementierung der Patterns über Delegation wird unter anderem in [Sou95] beschrie-
ben. Jedes Pattern wird dabei im Programm durch eine eigene Klasse repräsentiert. Die Bin-
dungen der Patterns an die Modellierungs-Objekte (in diesem Fall also an das Gebäude-
Modell) erfolgen über Relationen. Der Vorteil dieser Implementierungstechnik ist, daß im fer-
tigen Programm die Patterns und das Objektmodell nach wie vor getrennt vorliegen und
dadurch unterscheidbar bleiben, und es kann auch sehr einfach erkannt werden, welches
Objekt durch welches Pattern beeinflußt wird.
Bei dieser Implementierung der Patterns werden sämtliche Funktionsaufrufe an die entspre-
chenden Funktionen der Pattern-Klassen weitergeleitet. Dies ist in Abbildung 22 am Beispiel
des PatternsKomposition (72) verdeutlicht.

Abb. 22: Pattern-Implementierung durch Delegation

Mit dem Kompositions-Pattern können mehrere Objekte in einer baumartig strukturierten
Menge gruppiert werden. In diesem Beispiel wurden mehrere Wandabschnitte zu einem
Raumteiler zusammengefaßt. Der Aufruf der Methodecalculate() eines Raumteilers soll an
alle Wandteile dieses Raumteilers weitergeleitet werden.
In der Implementierung wird das Kompositions-Pattern durch die zwei KlassenComposite
undCompositeContainer repräsentiert. Die Wände und Raumteiler sind über die 1:1 Relation
comp mit diesen Klassen verbunden (Die Klasse Raumteiler agiert als Kontainer-Klasse, wird
also mit Objekten aus der Klasse CompositeContainer verbunden). Die Funktioncalculate()
eines Raumteilerelementes (RTE) ist nun so implementiert, daß sie die Funktionoperation()
der Pattern-Klassen aufruft. Dieoperation() Methode eines CompositeContainers sorgt nun
dafür, daß für sämtliche Objekte in dem Kontainer die jeweiligeoperation() Funktion aufgeru-
fen wird. Für ein Composite-Objekt ruftoperation() einfach die Funktioncalculate() der
Klasse RTE auf. Für die Blätter des Kontainer-Baumes (in diesem Fall also für die Klasse
Wandteil) muß die Methodecalculate() also überladen werden, um die gewünschte Funktio-
nalität zu erreichen.
Wird jetzt calculate() bei einem Raumteiler aufgerufen, so wird der Aufruf an die Pattern-
Klasse CompositeContainer weitergeleitet. Dort wird für alle Elemente, die sich in dem Con-

Elemente

operation()

Composite

operation()
add(E)
remove(E)

Composite
Container

n

calculate()

RTE

calculate()

Wandteil

calculate()
add(E)
remove(E)

Raumteiler

1 1
comp

^comp->operation()

Pattern Komposition

^RTE->calculate()

foreach e:Elemente
e->operation()

2.9 Implementierung der Patterns

- 32 -

tainer befinden, die Methodeoperation() aufgerufen. Gelangt der Algorithmus an ein Blatt der
Baumstruktur (also an ein Objekt der Klasse Composite), so wird wieder der Rückschritt von
den Pattern-Klassen zu den ursprünglichen Modell-Klassen vorgenommen und die dort (für
eine Wand) überladene Methodecalculate() aufgerufen.
Die Vorteile dieses Verfahrens, die Patterns als eigenständige Klassen zu implementieren, sind
hauptsächlich die gute Strukturierung des Programmes (jedes Pattern kann eindeutig den
Modell-Klassen zugeordnet werden) und die Einfachheit der Implementierung (die Pattern-
Klassen können fest vorgegeben werden, und es sind nur kleine Anpassungen an die Modell-
Klassen notwendig). Sämtliche Funktionalität der Patterns ist bei diesem Ansatz in den Pat-
tern-Klassen implementiert. Nur die Anpassung der Modell-Klassen an die Patterns muß noch
(durch Überladen der entsprechenden Methoden) implementiert werden.
Ein Nachteil ist jedoch die komplizierte Aufrufhierarchie der Methoden. Es muß genau
geplant werden, welche Methoden bei welchen Klassen überladen werden können oder müs-
sen. Außerdem sind die Pattern-Klassen naturgemäß sehr allgemein gehalten. Da eventuell
Objekte derselben Pattern-Klasse ihre Funktionalität für unterschiedliche Modell-Objekte zur
Verfügung stellen müssen, können Optimierungen für spezielle Modell-Klassen nicht durch-
geführt werden.

2.9.2 Implementierung durch Vererbung

Eine ähnliche Implementierungsmethode der Patterns funktioniert mit Hilfe des Vererbungs-
mechanismus. Dabei sind die Patterns im Programm auch als eigenständige Klassen vorgege-
ben, werden jedoch nicht über Relationen, sondern über Vererbung an die Modell-Klassen
gebunden.

Abb. 23: Pattern-Implementierung durch Delegation

Wie in Abbildung 23 dargestellt, erben die Klassen Wandteil und Raumteiler ihre Funktionali-
tät von den entsprechenden Pattern-Klassen. Dadurch wird die Aufruf-Hierarchie der Methode
operation() wesentlich einfacher. Die Klasse Wandteil überläd nach wie vor diese Funktion,
damit sie die gewünschte Aufgabe durchführt.

Elemente

operation()

Composite

operation()
add(E)
remove(E)

Composite
Container

n operation()

Wandteil

operation()
add(E)
remove(E)

Raumteiler

Pattern Komposition

foreach e:Elemente
e->operation()

2 Modellierung mit Patterns

- 33 -

Nachteilig bei dieser Implementierungs-Methode ist, daß die im Pattern vorgegebenen Funk-
tionen nicht umbenannt werden können. Dadurch wird der Quelltext der Modell-Klassen unle-
serlich. Ein zweites Problem ist, daß bei diesem Ansatz sehr leicht Mehrfach-Vererbung
auftreten kann. Diese ist in Smalltalk nicht vorhanden und bereitet auch in anderen Program-
miersprachen wie C++ Probleme.
Generell muß bei dieser Implementierungs-Methode sehr darauf geachtet werden, welche
Objekte von welchen anderen Objekten Eigenschaften erben. Bestehen im ursprünglichen
Modell bereits Vererbungs-Hierarchien (was ja auch durchaus sinnvoll zur Beschreibung die-
ser Modelle ist), so können durch die Patterns Mehrfachvererbung oder im Extremfall sogar
zyklische Vererbungen eingeführt werden. Ob diese Implementierungstechnik eingesetzt wer-
den kann, muß also im Einzelfall genau überdacht werden.

2.9.3 Implementierung durch spezielle Generatoren

Die weitaus flexibelste Methode Patterns zu implementieren besteht darin, für jedes Pattern
speziell auf die Modell-Klassen angepaßten Code zu generieren. Ein Ansatz wie das gesche-

hen kann wird in [BFV96] beschrieben6. Verwendet man spezielle Generatoren, so tauchen
die Patterns nicht mehr (unbedingt) als eigenständige Klassen im Programm-Code auf, son-
dern sind vielmehr in die Modell-Klassen eingebettet. Dadurch geht der direkte Zusammen-
hang zwischen den Patterns und den an sie gebundenen Modell-Klassen etwas verloren, dafür
werden eine große Flexibilität und Optimierungsmöglichkeiten gewonnen.
So kann dasselbe Pattern für unterschiedliche Modell-Klassen auf verschiedene Arten imple-
mentiert werden, um Geschwindigkeits-Optimierungen durchzuführen oder einfach nur besser
an das Modell angepaßten Code zu erhalten.
Die Aufruf-Hierarchie der Methoden bleibt bei diesem Ansatz übersichtlich und einfach.
Nachteilig ist nur, daß bei mehrfacher Verwendung desselben Pattern jedesmal wieder der-
selbe (oder zumindest ähnlicher) Code im Programm steht. Dies führt zu größeren Program-
men und dadurch höheren Speicherplatzverbrauch.
Voraussetzung für eine sinnvolle Anwendung dieses Implementierungs-Ansatzes ist ein Pro-
gramm-Generator, der die Modellierung in ein fertiges Programm übersetzen kann. Der Gene-
rator kopiert dazu bereits im Pattern vorgegebenen Programm-Code und führt dabei
Anpassungen an die jeweilige Modell-Klasse durch.

Jede der drei hier vorgestellten Implementierungstechniken für Pattern hat ihre Vor- und
Nachteile auf konzeptioneller oder Code-Ebene. Ein „intelligenter“ Generator könnte im Ein-
zelfall entscheiden, welche Methode angewendet werden soll. Dabei kann je nach Program-
miersprache, Pattern und benutztem Modell eine andere Technik verwendet werden.

6. In dieser Arbeit wird ein Werkzeug beschrieben, mit dem die Patterns aus [GHJ95] instanziieren kann.
Dabei wird allerdings jedes Pattern für sich alleine betrachtet und der erzeugte Code muß von Hand zu
dem Gesamtprogramm zusammenkopiert werden.

3.1 Simulationsmethoden

- 34 -

Kapitel 3 Simulation

3.1 Simulationsmethoden

Es gibt eine Vielzahl von Einsatzgebieten für Simulatoren. Je nach dem, was mit Hilfe eines
Simulators untersucht werden soll, eignet sich die eine oder andere Simulationsmethode bes-
ser, um die zu Grunde liegenden physikalischen Größen zu untersuchen. Die folgende Abbil-
dung ist aus [MaM89] entnommen und zeigt eine Klassifikation unterschiedlicher
Simulationsmethoden.

Abb. 24: Klassifikation von Simulationsmethoden

Bei der kontinuierlichen Simulation wird davon ausgegangen, daß sich der Zustand des
Systems kontinuierlich im Laufe der Zeit ändert. Das bedeutet, daß alle Simulationsgrößen
jederzeit neuberechnet werden müssen.
Im Gegensatz dazu finden bei der diskreten Simulation Änderungen der Simulationsgrößen
nur zu bestimmten, diskreten Zeitpunkten statt. Die Änderung einer Simulationsgröße wird
durch ein Ereignis (Event) hervorgerufen. Diese Events sind bei der ereignisorientierten Simu-
lation atomar, daß heißt, sie finden zu einem bestimmten Zeitpunkt statt und „verbrauchen“
keine eigene Zeit. So ein Ereignis könnte zum Beispiel sein: „Tür 2 wird um 12:15 Uhr geöff-
net“. Direkt nach 12:15 Uhr ist die Tür dann offen und kann entsprechend behandelt werden.
Da sämtliche Ereignisse atomar sind, braucht die Zeit zwischen zwei aufeinander folgenden
Events nicht betrachtet zu werden (während dieser Zeit kann ja keine Zustandänderung statt-

Simulation

kontinuierlich diskret

zeitgesteuert ereignisorientiert

quasi- ereignis-
gesteuert

aktivitäts-
orientiert

prozeß-
orientiert

transaktions-
orientiertkontinuierlich

3 Simulation

- 35 -

finden). Ein ereignisgesteuerter Simulator bearbeitet also immer den Event, der als nächstes
gerechnet werden soll. Löst die Bearbeitung dieses Events weitere Events aus (beispielsweise
kann das Öffnen einer Tür die Auslösung der Alarmanlage zur Folge haben), so werden diese
in die Liste aller noch ausstehender Events einsortiert. Ist ein Event abgearbeitet, so wird die
Simulationsuhr einfach auf den nächsten Event vorgestellt und dieser wird dann als nächstes
bearbeitet. Die einzelnen Ausprägungen der ereignisorientierten Simulation (ereignis-, aktivi-
täts-, prozeß- oder transaktionsgesteuert) unterscheiden sich darin, wie die einzelnen Events
aussehen und unter welchen Bedingungen sie den Zustand des Systems manipulieren. Näheres
dazu steht in [MaM89].
Der Simulationsvorgang für den Gebäude-Simulator ist prinzipiell kontinuierlicher Art da
kontinuierlichen Simulationsgrößen wie „Raumtemperatur“ oder „Luftfeuchtigkeit“ auftreten.
Bei Digitalrechnern ist eine solche kontinuierliche Berechnung allerdings nicht möglich. Da
jeder Computerbefehl zu einem diskreten Zeitpunkt stattfindet, können die Simulationsgrößen
auch nur zu diskreten Zeitpunkten aktualisiert werden. Zur Aktualisierung wird jeweils die
Änderung der Simulationsgröße seit der letzten Berechnung bestimmt. Werden diese Zeitin-
tervalle genügend klein gewählt, kann eine gute Approximation an den realen Verlauf erreicht
werden.
Diese Art der Simulation heißt quasi-kontinuierlich. Prinzipiell werden dabei die Simulations-
objekte zu diskreten Zeitpunkten berechnet, allerdings werden sie häufig genug aktualisiert, so
daß jederzeit eine brauchbare Annäherung an den realen Wert zur Verfügung steht. Abhängig-
keiten zwischen einzelnen Simulationsgrößen müssen teilweise vereinfacht werden, um sie
berechnen zu können.
Beispielsweise hängt die Raumtemperatur von der Wärmemenge ab, die in den Raum ein-
strömt. Die Transmissionswärmemenge, die durch eine Wand fließt, ist umgekehrt aber abhän-

gig von den Temperaturen der angrenzenden Räume7. Um solche zweiseitigen
Abhängigkeiten berechnen zu können, muß eine der beiden Berechnungsformeln vereinfacht
werden. So kann zum Beispiel zur Berechnung der Transmission durch eine Wand angenom-
men werden, daß sich die Temperaturen der angrenzenden Räume unabhängig von der Trans-
missionswärme verändert haben. Durch diesen Trick kann zu diskreten Zeitpunkten die
aktuelle Transmissionswärmemenge auf Grund von den letzten bekannten Raumtemperaturen
berechnet werden. Ebenso wird zu (eventuell unterschiedlichen) Zeitpunkten die Raumtempe-
ratur auf Grund der im letzten Zeitintervall berechneten Wärmemenge aktualisiert. Könnte
man bei dieser Art der Berechnung die Zeitintervalle, zu denen Neuberechnungen stattfinden,
unendlich klein machen, so wären die berechneten Ergebnisse immer korrekt. Die Hoffnung
ist nun, daß solcherlei Vereinfachungen auch schon bei „hinreichend kleinen“ Zeitintervallen
Ergebnisse innerhalb gewisser Toleranzgrenzen liefern. Bei der Raumtemperatur ist es wahr-
scheinlich überflüssig, die Ergebnisse im Milligrad-Bereich genau zu berechnen.
Welches Zeitintervall „hinreichend klein“ für eine bestimmte Simulationsgröße ist, hängt sehr
stark von den Simulationsobjekten selbst ab. Eine häufige Neuberechnung der Simulations-
größen führt zu einem erheblichen Rechenaufwand, liefert dafür aber genauere Ergebnisse.

7. Es gilt für die Raumtemperatur und , siehe PatternsSimula-

tion thermischer Masse (45) undSimulation thermischer Verbindung (49).

Ti 1+ Ti
Q t()

v c t()⋅
------------------- td

tl ast

takt

∫+= Q t() ∆T t()
R

----------------=

3.2 Simulator-Modell

- 36 -

Bei zu großen Berechnungsintervallen kann daß System leicht ins Schwingen geraten und fal-
sche Ergebnisse liefern. Um das zu verhindern, können Schranken vorgegeben werden, wie
groß ein Berechnungsintervall maximal werden darf.
Wird Hardware in den Simulator integriert, so muß die Simulation zusätzlich synchron zur
Echtzeit ablaufen. Bei einer reinen Software-Simulation kann auch in komprimierter Echtzeit
gerechnet werden. Durch das hier verwendete eventbasierte Scheduling können diese beiden
Bedingungen eingehalten werden.
Ein eigener Programmteil, der Scheduler, kümmert sich darum, daß alle Berechnungen zum
richtigen Zeitpunkt stattfinden. Dazu wird, ähnlich wie bei der ereignisorientierten Simulation,
eine Event-Liste verwaltet. Das Ereignis, daß eine Simulationsgröße neu berechnet werden
muß, ist ein besonderer Event, der zum richtigen Zeitpunkt beim Simulationsobjekt eintreffen
muß. Durch die Verwendung von Event-Listen können also kontinuierliche Simulationsgrö-
ßen angenähert und auch atomare Ereignisse berücksichtigt werden.

3.2 Simulator-Modell

Die eigentliche Funktionalität des „Simulierens“, das heißt, der quasi-kontinuierlichen
Berechnung der einzelnen Simulationsgrößen, wird durch ein gesondertes Modell ausge-
drückt. Dieses Simulator-Modell ist prinzipiell unabhängig von einem bestimmten Simulator
(zum Beispiel einem Simulator für Gebäude) und kann so sehr flexibel eingesetzt werden. Das
Simulator-Modell besteht aus 6 Klassen mit bereits fertig vorgegebenen Funktionen (siehe
[Hei96] und Abbildung 25).

Abb. 25: Simulator-Modell

SimulatorKernel

Event

SimTime Scheduler

SimObjectThread

ActiveObject

3 Simulation

- 37 -

Um diese Funktionen für einen speziellen Simulator nutzen zu können, werden einige Klassen
aus diesem Modell mit entsprechenden Patterns (Kontinuierliche Simulation (53)und Aktua-
tor (55)) referenziert und dadurch mit in das Applikationsmodell des zu entwerfenden Simula-
tors aufgenommen. Zusätzlich wird automatisch ein Scheduler (also eine Instanz der Klasse
Scheduler) erzeugt, der sich um die Zuteilung von Rechenzeiten an die Simulationsobjekte
kümmert. Der Scheduler hat die Aufgabe, die einzelnen Simulationsobjekte zu bestimmten
Zeitpunkten aufzufordern, sich selbst (das heißt ihre Simulationsgrößen) neu zu berechnen,
und er kümmert sich zudem um die Einhaltung der Echtzeit, das heißt, er überprüft Deadlines
und kann Prioritäten für unterschiedliche Ereignisse berücksichtigen. Aus der Sicht der Simu-
lationsobjekte braucht die genaue Arbeitsweise des Schedulers also gar nicht bekannt zu sein -
sie stellen nur ihre Berechnungsformeln zur Verfügung und diese werden dann vom Scheduler
aufgerufen. Mit dem PatternKontinuierliche Simulation (53) kann dafür gesorgt werden, daß
in regelmäßigen Abständen ein Simulationsobjekt zur Neuberechnung aufgefordert wird.
Die Kommunikation der Simulationsobjekte untereinander und auch die Kommunikation mit
dem Scheduler funktionieren über Events. Ein Event ist eine Nachricht, die zwischen zwei
Objekten verschickt wird und die in einem bestimmten Zeitintervall beim Zielobjekt ankom-
men muß. Der Inhalt einer solchen Nachricht kann zum Beispiel sein, eine Simulationsgröße
neu zu berechnen. Der Scheduler ist dafür verantwortlich, daß alle Events pünktlich bei ihren
Zielobjekten ankommen. Kann diese Zeitplanung nicht eingehalten werden (dadurch, daß die
vorgesehenen Ankunftszeiten zu knapp bemessen sind oder daß zu viele Events gleichzeitig
verschickt werden sollen), so gibt der Scheduler eine Fehlermeldung aus und kann in Spezial-
fällen eine Fehlerbehandlung starten (eventuell können einige Events gelöscht oder verzögert
werden). Für die Echtzeitfähigkeit des Simulators ist also der Scheduler (relativ unabhängig
von den Simulationsobjekten) verantwortlich. Er steuert die einzelnen Berechnungen so, daß
sie zum angeforderten Zeitpunkt stattfinden. Wird zu einem Zeitpunkt keine Berechnung
gefordert, so wartet der Scheduler solange, bis das nächste Event eintrifft oder versendet wer-
den soll.
In Abbildung 26 ist die Funktionsweise des Schedulers skizziert. Der Scheduler verwaltet eine
sortierte Liste aller Events, die versendet werden müssen. Jeweils das Event, das zum frühe-
sten Zeitpunkt eintreffen soll, steht in dieser Warteschlange ganz oben. Solange die vorgese-
hene Ankunftszeit dieses Events noch nicht erreicht ist, wartet der Scheduler entsprechend
lange. Dazu wird ein Timer gestellt und nach Ablauf des Timers wird das oberste Event in der
Warteschlange verschickt. Wird der Scheduler aufgefordert, ein neues Event zu verschicken,
so wird der Wartezustand unterbrochen, das neue Event in die Warteschlange einsortiert und

3.2 Simulator-Modell

- 38 -

der Timer neu gestartet. Dadurch wird jeweils das Event mit der frühesten Ankunftszeit zuerst
versendet (shortest deadline first).

Abb. 26: Zustandsdiagramm des Schedulers

3.2.1 Events

Ein Event wird versendet, indem eine Instanz der Klasse Event angelegt wird. Beim Anlegen
dieses Objektes werden alle relevanten Daten angegeben. Dazu zählen der Absender und das
Zielobjekt, der Typ des Events und zusätzliche übergebbare Daten, sowie Timestamp und
Deadline, also die Zeitpunkte, zu denen das Event ankommen soll und bis wann es vollständig
bearbeitet sein muß. Um solch ein Event empfangen zu können, muß das Simulationsobjekt
Funktionalität aus der Klasse ActiveObject erben. Dieses führt eventuell zu der Notwendig-
keit, Mehrfachvererbung zu benutzen. Da jedoch Mehrfachvererbung in Smalltalk problema-
tisch ist, wird hier ein anderer Weg gegangen. Für jedes Objekt, das Events senden und
empfangen will, wird eine Instanz der Klasse ActiveObject angelegt, die dann vom
Ursprungs-Objekt referenziert wird. Sämtliche simulationsrelevanten Befehle werden an die-
ses Objekt delegiert.
Bei der Modellierung eines Gebäude-Simulators muß keine besondere Rücksicht auf die
Struktur oder Implementierung des Schedulers oder der ActiveObjects genommen zu werden.
Um beispielsweise die Temperatur eines Raumes alle 10 Sekunden neu zu berechnen, kann
einfach das PatternKontinuierliche Simulation (53) an den Raum gebunden werden. Dadurch
wird für jeden Raum ein ActiveObject angelegt, das dafür sorgt, daß die Funktion zur Berech-
nung der Raumtemperatur rechtzeitig aufgerufen wird. Die Periodendauer wird bei der Instan-
ziierung der einzelnen Objekte eingetragen und kann bei Bedarf auch dynamisch angepaßt

werden8. Um die quasi-kontinuierliche Simulation durchzuführen, wird ein neuer Thread
angelegt, der auf das Eintreffen eines Events zur Neuberechnung der Temperatur wartet. Trif ft

8. Die Periodendauer wird als Instanzenvariable bei den Simulationsobjekten angelegt (siehe Pattern
Kontinuierliche Simulation (53)). Diese kann (zum Beispiel durch dasAktuator (55) Pattern) beein-
flußt werden. Außerdem kann durch das Versenden eines entsprechenden Events das Simulationsob-
jekt unabhängig von seiner Periodendauer aufgefordert werden, sich neu zu berechnen.

Warte

SortiereVerschicke
Warteschlange

Füge Event in
Warteschlange ein

Event

Timeout

Event

!Timeout &
!Event

Starte Timer

3 Simulation

- 39 -

dieses Event ein, so wird die entsprechende Berechnungsformel beim Raum aufgerufen. Zur
Neuberechnung der Raumtemperatur kann es notwendig sein, die Werte von abhängigen
Simulationsobjekten wie zum Beispiel von Wänden oder Heizkörpern abzufragen. Dieses
kann direkt durch Prozeduraufrufe bei den abhängigen Objekten geschehen. Müssen bei den
abhängigen Simulationsobjekten vorher noch aufwendige Berechnungen durchgeführt wer-
den, so ist es sinnvoller, diese unabhängig durchzuführen und die Abfrage der berechneten
Werte durch schnelle Funktionsaufrufe (eventuell gekoppelt mit einer Zwischenpufferung)
durchzuführen, damit keine Deadline-Verletzungen auftreten. Um die Berechnung der abhän-
gigen Simulationswerte kümmern sich die entsprechenden Simulationsobjekte selbst. Wäh-
rend der Berechnung der Simulationsgrößen kann der Scheduler (quasi-)parallel dazu
weiterarbeiten, da er in einem separaten Prozeß läuft. Abbildung 27 zeigt noch einmal die
Aufrufhierarchie zur Event-Verarbeitung.

Abb. 27: Aufrufreihenfolge bei der Berechnung von Simulationsgrößen

3.2.2 Steuerung des Simulators

Bisher wurde noch nicht behandelt, wie der Simulator überhaupt vom Benutzer gesteuert wer-
den kann und wie Simulationsgrößen für einen Benutzer visualisiert werden können.
Die Steuerung des Simulators ist prinzipiell von der Modellierung desselben unabhängig. Für
den Simulators ist es unwichtig, ob und wie die berechneten Simulationsgrößen angezeigt
werden oder durch welche Aktionen er stimuliert wird.

Um den Wert einer Simulationsgröße abzufragen, genügt es, bei den Simulationsobjekten eine
entsprechende Methode aufzurufen. Ebenso kann der Simulator durch das Setzen von Simula-
tionsgrößen stimuliert werden. Die Simulatorsteuerung und -anzeige kann also „von außen“
das eigentliche Simulations-Modell beeinflussen, ohne daß dieses bemerkt, wodurch es beein-
flußt wird. Das Simulations-Modell kann also zunächst vollkommen unabhängig von seiner
Steuerung entworfen werden. Die Steuerung wird erst zum Schluß an das Modell angepaßt.

Simulations-
objekt

Active
Object Scheduler

abhängiges
Simulations-

Event: berechne Wert

Fkt.-Aufruf

Wert Abfragen

Rückgabewert

Event: nächste Berchnung

in 10 Sekunden

objekt
(Raum)(Wand)

Rücksprung

anderes Event

der Scheduler
läuft parallel
zur Berechnung
weiter.

3.3 Pufferung

- 40 -

Die Modellierung einer Simulator-Steuerung kann sogar auf die einfache Konfigurierung vor-

gefertigter Visualisierungs- und Eingabe-Komponenten reduziert werden9. Diese Komponen-
ten werden einfach mit den Simulationsobjekten verknüpft und arbeiten dann anschließend
eigenständig und unabhängig von der Berechnung.

3.3 Pufferung

Durch die quasi-kontinuierliche Simulation werden Simulationsgrößen, die sich eigentlich
kontinuierlich verändern, nur noch zu diskreten Zeitpunkten berechnet. Um die dadurch ent-
stehenden Rechenfehler so klein wie möglich zu halten, muß die korrekte zeitliche Änderung
dieser Größen so genau wie möglich (bzw. so genau wie nötig) approximiert werden.
Dazu werden die berechneten Werte der Simulationsgrößen mit ihren Berechnungszeitpunkten
zwischengespeichert. Ein spezielles Puffer-Objekt kann dann automatisch Zwischenwerte
interpolieren oder Integrale bilden. Je nach dem, wie genau ein Wertverlauf angenähert wer-
den muß eignen sich unterschiedliche Puffer zur Interpolation bzw. Integration. Im einfachsten
Fall reicht es, sich den zuletzt berechneten Wert zu merken. Aber auch aufwendigere Verfah-
ren wie die Integration mit der Simpson-Regel sind eventuell notwendig.

9. Eine Bibliothek solcher Anzeige- und Eingabekomponenten wurde bereits in der AG „VLSI Entwurf
und Architektur“ der Universität Kaiserslautern von Daniel Bolender implementiert.

3 Simulation

- 41 -

Um eine einfache Austauschbarkeit zwischen verschiedenen Puffern zu erhalten, sind mehrere
Puffer und die dazugehörigen Berechnungsmethoden in einem eigenen Modell zusammenge-
faßt (siehe Abbildung 28).

Abb. 28: Klassendiagramm der Puffer

Sämtliche Puffer haben dieselbe Funktionsschnittstelle. Es können neue Werte in den Puffer
aufgenommen werden, der Puffer kann gelöscht werden, und man kann Integrale über einem
Intervall oder Funktionswerte an bestimmten Punkten berechnen. Unterschiedlich sind die
Puffer nur in ihrer Implementierung. Hauptsächlich unterscheiden sie sich in ihrer Genauig-
keit und der Berechnungsgeschwindigkeit. Einfachere Algorithmen sind schneller als aufwen-
dige, die dafür in der Regel genauere Ergebnisse liefern. Durch die Aufstellung eines eigenen
Puffer-Modells (im Gegensatz zur Kapselung der Puffer in ein spezielles Pattern) kann sehr
leicht mit unterschiedlichen Puffern experimentiert werden. Sogar unterschiedliche Puffer für
Objekte derselben Klasse sind möglich.

Pufferung

add(x, y)
remove(x)
clear()
compress()
interpolate(x)
integrate(x1, x2)

Puffer

ylast

Konstanter
Puffer

xi
yi
xi+1
yi+1

Linearer
Puffer

xlast
Wertepaare

Komplexer
Puffer

Trapezregel Simpson-Regel Sonstige

4.1 Zusammenfassung

- 42 -

Kapitel 4 Ausblick

4.1 Zusammenfassung

Die Modellierung eines Gebäude-Simulators erfordert eine flexible, ausdrucksstarke aber den-
noch einfach benutzbare Entwurfsmethode. Patterns scheinen hier ein geeignetes Mittel zu
sein, um Entwerfern, die sich nicht im Bereich der Simulation auskennen, Methoden an die
Hand zu geben, mit denen ein Simulator entwickelt werden kann.
Einem Entwerfer werden dazu bereits vorgefertigte Modelle bereitgestellt, die jeweils einen
kleinen Ausschnitt aus dem Gebäude-Simulator beschreiben. Zu diesen Modellen gehört das
Gebäude-Modell, das den prinzipiellen Aufbau eines Gebäudes und den Zusammenhang zwi-
schen den einzelnen Gebäude-Teilen beschreibt, das Simulator-Modell, in dem der Kern eines
Simulators zur quasi-kontinuierlichen Simulation vorgegeben ist, sowie möglicherweise wei-
tere Modelle (z.B. zur Pufferung, vgl. 3.3). Diese Modelle beschreiben recht allgemein jeweils
einen Teil des Gesamtsystems. Durch spezielle Patterns können nun einzelne Teile dieser
Modelle zusammengebracht und mit zusätzlicher Funktionalität versehen werden.
Jedes Pattern beschreibt die Lösung eines Problems, das bei der Gebäude-Simulation auftreten
kann. Durch die Bindung der Patterns an einzelne Modell-Klassen werden diese um die ent-
sprechende Funktionalität erweitert. Am Ende kommt dabei ein komplexes Applikationsmo-
dell heraus, das den Simulator darstellt. Durch geeignete Generatoren kann aus diesem Modell
ein fertiges Programmpaket erzeugt werden. Dazu muß nur die Funktionalität der einzelnen
Patterns auf geeignete Weise in Programm-Fragmente umgesetzt werden (siehe 2.9).
Was nach dieser Modellierung auf Klassen-Ebene noch fehlt, ist eine konkrete Instanziierung
der Klassen, um einzelne Objekte zu erhalten, die simuliert werden sollen. Dieser Instanziie-
rungs-Schritt kann (größtenteils) automatisch erfolgen, wenn die einzelnen Objekte bereits in
einem an das Gebäude-Modell angepaßten Format vorliegen. Es ist geplant, die zu simulieren-

den Häuser in der CAD-Software Speedikon10 einzugeben. Ein geeigneter Transformator
kann die in Speedikon vorliegenden Daten an das Gebäude-Modell anpassen. Da das Applika-
tionsmodell auf das Gebäude-Modell aufsetzt, kann so also automatisch ein Großteil der zur
Simulation benötigten Daten gewonnen werden. Der gesamte Entwurfsprozeß ist in Abbil-
dung 29 zusammengefaßt.

10.Speedikon ist ein eingetragenes Warenzeichen der Firma IEZ AG.

4 Ausblick

- 43 -

Abb. 29: Entwurfsprozeß mit Patterns

4.2 Vor- und Nachteile des patternbasierten Entwurfs

Durch die Patterns erhält man eine sehr flexible und ausdrucksstarke Modellierungsmöglich-
keit. Da jedes Pattern eine Problemlösung für einen Teilbereich des zu modellierenden
Systems liefert, kann das Modell Schritt für Schritt durch sukzessives Anwenden der Patterns
aufgebaut werden. Vorteilhaft an den Patterns ist dabei, daß sie neben der Problemlösung auch
ausführlich die Problemsituation beschreiben, bei denen sie verwendet werden können. Das
erleichtert den Umgang mit Patterns und ermöglicht auch Nichtspezialisten auf dem Gebiet
der Gebäudesimulation, einen Simulator zu erstellen.
Sind die Patterns einem Entwerfer bekannt, so können sie gut als Entwurfsvokabular benutzt
werden. Dies erleichtert die Kommunikation zwischen mehreren Entwerfern. Durch einfache
Angabe eines Pattern-Namens wird bereits eine bestimmte Problem-Situation beschrieben und
ein Lösungsvorschlag gemacht.
Ein weiterer Vorteil der Modellierung mit Patterns ist, daß andere Modelle und Ideen verwen-
det werden können. So können separat vom Gebäude-Simulator bereits Modelle aufgestellt
werden, die den Aufgabenbereich charakterisieren. Das Gebäude-Modell ist beispielsweise
solch ein Modell. In ihm ist beschrieben, wie ein Haus aufgebaut ist und welche Eigenschaften
es hat. Dieses Modell kann in vielen Bereichen zum Einsatz kommen. Beispielsweise kann
eine Steuerung oder ein CAD-Programm genauso auf das Gebäude-Modell aufbauen wie der
Gebäude-Simulator. Daher ist es sinnvoll, solcherlei Modelle separat zu modellieren und dann
für das aktuelle Anwendungsprojekt adäquat zu verwenden. Der hier vorgeschlagene Model-
lierungsansatz kann verschiedene Modelle integrieren und fügt durch die Patterns zusätzliche
Funktionalität hinzu.

Pattern
Katalog

Entwurf

Applikations-
Modell

Instanziierung

Speedikon

Quell-
Text

…
…
…
…

…

Patterns

Lexikon

Gebäude-
Modell

Simulator-
Modell

weitere
Modelle

Tranformation

4.3 Weitere Arbeiten

- 44 -

Da die Patterns problemorientiert arbeiten, eignen sie sich auch sehr gut zur Dokumentation
des erstellten Modells. Durch einen speziellen Generator könnte aus einem Applikationsmo-
dell automatisch eine Dokumentation erstellt werden, in der beschrieben wird, wie die einzel-
nen Teilprobleme beim Entwurf gelöst wurden.
Voraussetzung für einen guten Entwurf mit Patterns sind natürlich gute Patterns. Die Patterns
müssen einerseits so flexibel sein, daß sie an mehreren Stellen eingesetzt werden können, und
andererseits muß jedes Pattern auch konkret genug sein, damit aus ihnen automatisch Code
generiert werden kann. Dazu kommt noch, daß genug Patterns vorhanden sein müssen, um
eine durchgängige Modellierung mit Patterns zu ermöglichen. Zu viele Patterns wiederum
verkomplizieren den Simulator-Entwurf, da länger nach einem anwendbaren Pattern gesucht
werden muß.
Um die Modellierung mit Patterns einfach und übersichtlich zu gestalten, sollte sie von ent-
sprechenden Werkzeugen unterstützt werden. Ein spezieller Editor könnte die Auswahl der
benötigten Patterns erleichtern, und mit ihm könnten auch die Patterns an Modellklassen
gebunden werden. Zusätzlich sind mit dem Editor Konsitenzüberprüfungen möglich.
Auf jeden Fall muß die Modellierung in computer-lesbarer Form vorliegen, um eine automati-
sche Codegenerierung zu ermöglichen.

4.3 Weitere Arbeiten

Der im Anhang A vorgestellte Pattern-Katalog ist sicherlich nicht vollständig. Er kann zur
Modellierung einfacher Simulatoren herangezogen werden, muß aber beim Entwurf konkreter
Gebäudesimulatoren noch angepaßt und erweitert werden. Derzeit wird im Rahmen einer Pro-
jektarbeit überprüft, wie praktikabel der hier vorgestellte Modellierungsansatz ist und ob die
vorgestellten Patterns ausreichen, um einen einfachen Gebäudesimulator zu generieren.

Weiterhin ist die Verwendung der Patterns, vor allem unter dem Gesichtspunkt derautomati-
schenGenerierung eines Programmes, nur mit Hilfe geeigneter Werkzeuge möglich. Was fehlt
ist also eine passende Repräsentation der Patterns in einem Computerprogramm, das die Bin-
dung der Patterns an Modellklassen, wie in Kapitel 2.8 beschrieben, erlaubt. Auf dieses
Modellierungs-Programm muß dann ein Generator aufgesetzt werden, der anhand der vorge-
nommenen Pattern-Bindungen und aufgrund entsprechenden Hintergrundwissens in der Lage
ist, einen Gebäude-Simulator zu generieren.
Ein solcher Generator wird momentan in einer Diplomarbeit entwickelt. Dazu werden die Pat-
terns selbst und die Bindungen der Patterns weiter formalisiert. Der Generator liest eine for-
male Beschreibung der Pattern-Bindungen ein und generiert daraus, zusammen mit den
Eingabemodellen, den fertigen Simulatorcode. Der Generator selbst ist dabei generisch aufge-
baut, so daß er Code für unterschiedlichste Patterns generieren kann und leicht erweiterbar ist.

Ein längerfristiges Ziel ist es, eine integrierte Entwicklungsumgebung zu erstellen, mit der
Modelle und Patternbindungen eingegeben werden können, um anschließend daraus einen
Gebäudesimulator zu generieren.

A.1 Simulations-Patterns

- 45 -

Anhang A Pattern Katalog

Im folgenden werden Patterns zur Modellierung eines Gebäude-Simulators vorgestellt. Der
Katalog ist in seiner jetzigen Form sicherlich nicht vollständig und muß bei Bedarf noch
erweitert und angepaßt werden.
Der Katalog ist in zwei Teile aufgeteilt: Kapitel A.1 beinhaltet Patterns, die sich speziell mit
der Simulation beschäftigen. Im anschließenden Kapitel werden dann allgemeinere Patterns
beschrieben, die sich um das Zusammenspiel der einzelnen Komponenten eines Frameworks
kümmern.

A.1 Simulations-Patterns

Simulations-Patterns kümmern sich zum einen um die korrekte Berechnung der einzelnen
Simulationsgrößen (Kapitel A.1.1) und zum anderen um Probleme des Scheduling (A.1.2).
Bei der Modellierung eines Simulators sollte sich zunächst um die Modellierung der Simulati-
onsobjekte (also um die Berechnungsformeln und um das Zusammenspiel unterschiedlicher
Objekte) gekümmert werden. Die zeitliche Abfolge, wann welches Objekt berechnet werden
soll, kann in einem zweiten Schritt einfach hinzumodelliert werden.

A.1.1 Berechnungsformeln

Die folgenden Patterns beschäftigen sich hauptsächlich mit der thermischen Simulation. Ähn-
liche Patterns für andere Simulationsgrößen (Luftdruck, Luftfeuchtigkeit, Licht, etc.) können
aber sehr leicht neu in den Katalog aufgenommen werden.

Simulation thermischer Masse

• Zweck
Dieses Pattern dient dazu, die Temperatur einer thermischen Masse in Abhängigkeit von
auf die Masse einwirkenden Wärmemengen zu berechnen. Als thermische Masse kann die
Luft in einem Raum angesehen werden, ebensogut können aber auch Wände oder Zwi-

A.1.1 Berechnungsformeln

- 46 -

schendecken als Wärmemasse betrachtet werden. Die spezifischen Eigenschaften einer
Masse sind ihr Volumen und ihre Wärmekapazität. Die Wärmekapazität ist abhängig von
der Temperatur der thermischen Masse, wird aber in der Regel als konstant angesehen.
Auf eine thermische Masse wirken Wärmemengen ein. Diese entstehen entweder durch
Heizkörper, durch direkte Sonneneinstrahlung oder durch Transmission von angrenzenden
Gebieten (Wärmeaustausch).

• Motivation
Um die Temperatur an einer (beliebigen) Stelle eines Gebäudes zu messen, muß diese als
thermische Masse agieren. Bei diesem Pattern wird angenommen, daß die Temperatur
überall innerhalb der thermischen Masse gleich hoch ist (die Wärmeleitung innerhalb der
Masse ist also unendlich groß). Typischerweise werden die Räume des Gebäudes als ther-
mische Masse aufgefaßt. Aber auch Wände oder Decken und Fußböden können als eine
eigene thermische Masse betrachtet werden. Ausschlaggebend für eine thermische Masse
ist, daß diese eine gewisse Wärmemenge speichert und (eventuell) an umliegende Bereiche
abgibt. Der Wärmeaustausch zwischen den einzelnen Massen geschieht entweder direkt
(siehe PatternThermischer Austausch (51)) oder über eine Zwischenschicht (PatternSimu-
lation thermischer Verbindung (49)) und muß extra modelliert werden.
Das folgende Bild zeigt, wie ein Teil des Simulators für ein einfaches Haus modelliert wer-
den kann:

Bei dieser Modellierung werden Räume und Wände als thermische Masse aufgefaßt. Ein
Wärmeaustausch zwischen diesen findet über Zwischenschichten statt, die jeweils eine
Wand mit einem Raum verbinden. Dies entspricht einer Luftschicht, die sich vor den Wän-
den befindet und in der der größte Teil des Wärmeüberganges stattfindet. Zusätzlich zum
Wärmeaustausch über Wände tauschen die Räume auch direkt, zum Beispiel über Zwi-
schentüren, Wärmemengen aus.

Simulation
thermische Masse

Zwischen-
SchichtRaum Wand

1

n

1 n n 1

Thermische
Verbindung

Simulation
thermische Masse

VerbindungVerbindungThermischer
Austausch

A.1 Simulations-Patterns

- 47 -

Da die Art der Relationen zwischen den Objekten Raum, Wand und Zwischenschicht von
Gebäudemodell zu Gebäudemodell verschieden sein kann, muß diese explizit über ein
Verbindungspattern (siehe A.2.3) modelliert werden.

• Anwendbarkeit
Dieses Pattern kann an eine beliebige thermische Masse gebunden werden. Typische Mög-
lichkeiten sind Räume und dickere Wände oder Decken. Aber auch eine Nachtspeicherhei-
zung kann man als thermische Masse auffassen. Wichtige Eigenschaft einer thermischen
Masse ist, daß sie eine gewisse Wärmemenge speichern kann. Die Speicherfähigkeit ist
abhängig von der spezifischen Wärmekapazität des Materials (oder Gases), aus dem die
Masse besteht, und ihrem Volumen. Zusätzlich zu diesen Kennwerten muß bekannt (bzw.
berechenbar) sein, welche Wärmemenge in die thermische Masse einfließt.

• Struktur
Dieses Pattern beinhaltet nur Funktionalität für eine Klasse, nämlich die thermische Masse
selbst. Die Berechnungsformel zur inkrementellen Berechnung der Temperatur lautet

 mit Q(tlast, tact) = Wärmemenge, die im Zeitintervall

 in die thermische Masse eingeflossen ist, V = Volumen der Masse, c(tlast, tact) =

durchschnittliche spezifische Wärmekapazität im Intervall . Durch die Anbin-

dung dieses Patterns an ein Objekt, das als thermische Masse agieren soll, kann die jewei-
lige Temperaturänderung in Abhängigkeit der beeinflussenden Wärmemenge und der
spezifischen Wärmekapazität (Materialkonstante) berechnet werden.

• Mitwirkende Objekte

Klassen:
thermische Masse: Die Masse, für die die Temperatur simuliert werden soll. Als

Kennwerte der thermischen Masse muß das Volumen und die spezifische Wärme-
kapazität bekannt sein. Typische Beispiele für eine thermische Masse sind ein
Raum oder auch dickere Wandschichten.

Tact Tlast

Q tlast tact,()
V c tlast tact,()⋅
--------------------------------------+=

tlast tact,()

tlast tact,()

Simulation thermischer
MasseT Temperatur

tlastZeitpunkt der letzten
Berechnung

V Volumen der Masse

calcT(tact) Berechnung
der Temperatur

getC(t1, t2)spezifische
Wärmekapazität

getQ(t1, t2)Wärmemenge

thermische Masse

| c |
tlast := tact.
c := getC(tlast, tact).
setT(getQ(tlast, tact)/ (V * c) + T).

A.1.1 Berechnungsformeln

- 48 -

Instanzenvariablen / Konstanten:
T Beinhaltet die jeweils zuletzt berechnete Temperatur.
tlast Zeitpunkt, an dem die Temperatur T zuletzt berechnet wurde.

V Volumen der thermischen Masse (konstant)

Funktionen:
calcT(tact) Funktion zur Berechnung der Temperatur. Als Übergabeparameter

wird die aktuelle Zeit übergeben.
getC(T) Liefert die spezifische Wärmekapazität der thermischen Masse zurück.

Die Wärmekapazität ist abhängig von der aktuellen Temperatur; sie wird jedoch
meist als konstant angenommen. Die Berechnungsformel für die Wärmekapazität
muß explizit über ein weiteres Pattern (Konstanter Wert (63) oderFunktion (61))
angegeben werden.

getQ(t1, t2) Die Temperatur in einer Masse wird durch die Wärmemenge beein-
flußt, die in sie einströmt. Um also die Temperaturänderung im letzten Zeitinter-
vall berechnen zu können, muß die Wärmemenge ermittelt werden, die im
Intervall (tlast, tact) auf die thermische Masse eingewirkt ist. Wie die Berechnung

dieser Wärmemenge aussieht, muß durch andere Patterns modelliert werden.

• Zusammenarbeit
Dieses Pattern hängt hauptsächlich von einer sinnvollen Berechnung der Wärmemenge ab,
die in die thermische Masse einfließt. Üblicherweise setzt sich die Wärmemenge aus drei
Komponenten zusammen: der Transmissionswärmemenge (Wärmedurchgang durch
Wände etc.), der Strahlungswärmemenge von Heizkörpern oder Sonneneinstrahlung und
dem Wärmeaustausch. Sämtliche Wärmemengen, die auf eine thermische Masse einwir-
ken, müssen separat modelliert werden.

• Konsequenz
Zur Anwendung des Patterns müssen das Volumen und die spezifische Wärmekapazität der
thermischen Masse bekannt sein. Nach der Bindung dieses Patterns an eine Modell-Klasse
muß vor allem noch modelliert werden, woher welche Wärmemengen in die Masse einflie-
ßen. Dazu werden in der Regel die entsprechenden abhängigen Objekte über eines der Pat-
tern Einfache Indirektion (67) oderKomplexe Indirektion (69) an die thermische Masse
gebunden (Ein Raum als thermische Masse kann beispielsweise die Klassen „Wand“, Tür“,
„Fenster“ und „Heizkörper“ als Wärmequellen haben).

• Beispielimplementierung und Benutzung
Siehe Abbildung 10 auf Seite 18.

• Verwandte Patterns
Thermischer Austausch (51) zur Berechnung des direkten Wärmeaustausches.

A.1 Simulations-Patterns

- 49 -

Simulation thermischer Verbindung

• Zweck
Eine thermische Verbindung ist ein Trennelement zwischen zwei thermischen Massen, die
Wärme untereinander austauschen. Dieses Pattern dient dazu, den Wärmestrom zwischen
den zwei thermischen Massen zu berechnen.

• Motivation
Im einfachsten Fall kann eine Wand als Trennelement zweier Räume aufgefaßt werden.
Haben beide Räume unterschiedliche Temperaturen, so fließt zwischen ihnen ein Wärme-
strom. Dieser Wärmestrom ist abhängig vom Wärmewiderstand der thermischen Verbin-

dung und der Temperaturdifferenz der beiden angrenzenden Massen ().

Dieses Pattern stellt zwei Funktionen zur Verfügung: eine zur Berechnung des aktuellen
Wärmestroms und eine zur vorzeichenrichtigen Abfrage desselben von einer thermischen
Masse aus.

• Anwendbarkeit
Bei jeder thermischen Verbindung. Der Wärmewiderstand der Verbindung muß bekannt
oder zumindest berechenbar sein.

• Struktur
Eine thermische Verbindung verbindet zwei thermische Massen miteinander. Durch eine
thermische Verbindung fließt, abhängig von der Temperaturdifferenz der beiden thermi-
schen Massen, ein Wärmestrom. Dieser Wärmestrom berechnet sich durch die Formel

, wobei R den Wärmewiderstand1 der thermischen Verbindung beschreibt. Der

Wärmewiderstand einer thermischen Verbindung ist in der Regel konstant und wird entwe-
der bei der Instanziierung der Klassen eingegeben oder durch eine Formel berechnet (Pat-
ternFunktion (61)). Zusätzlich zu der Berechnungsformel für den Wärmestrom stellt dieses
Pattern eine Funktion zur Abfrage desselben bereit. Dies ist notwendig, damit eine vorzei-
chenrichtige Verarbeitung des Wärmestroms möglich ist. Dazu wird als zusätzlicher Para-

1. Je nach Art der Verbindung wird der Wärmewiderstand unterschiedlich berechnet. Folgende vier Fälle
sind möglich:

i) Widerstand eines homogenen Wärmefeldes: mit δ = Schichtdicke,λ = Wärmeleitfä-

higkeit (Materialkonstante) und S = Schnittfläche
ii) Wärmeübergangswiderstand für den Übergang an der Oberfläche eines festen Stoffes auf ein Fluid

(z.B. Gas, Wasser, Dampf): mit dem Wärmeübergangskoeffizientenα.

iii) Der Wärmedurchgangswiderstand beschreibt den Übergang von einem Fluid durch eine Wand auf

ein anderes Fluid. Er berechnet sich durch mit dem Wärmedurchgangzkoeffizienten

 (αi = Wärmeübergangskoeffizienden der Fluids).

iv) Für die Wandung eines geraden Rohres mit kreisförmigen Querschnitt (Außendurchmesser d2,

Innendurchmesser d1) gilt: .

Q T∆
R
-------=

Q T∆
R

-------=

RW
δ

λ S⋅
-----------=

RU
1

α S⋅
-----------=

Rd
1

k S⋅
----------=

k 1
α1
------ RW S 1

α2
------+⋅+=

R
d2 d1⁄()ln

2π λ⋅
---------------------------=

A.1.1 Berechnungsformeln

- 50 -

meter die thermische Masse an die FunktiongetQ übergeben, die momentan als Innenseite
agiert.
Die beiden Relationen Innenseite und Außenseite beschreiben die Nachbarschaft der ther-
mischen Verbindung zu ihren thermischen Massen. Sie können im Modell auch zu einer
zweistelligen, geordneten Relation zusammengefaßt werden.

• Mitwirkende Objekte

Klassen:
thermische Verbindung: Beschreibt die Verbindung zweier thermischer Massen.

Die Verbindung selbst besteht aus einem festen Trennmaterial, so daß durch die
angegebene Formel der Wärmedurchgang durch dieses Material berechnet wird.

thermische Masse: Die beiden thermischen Massen, die durch die Verbindung
miteinander verbunden werden.

Instanzenvariablen / Konstanten:
R Der Wärmedurchgangswiderstand der Verbindung. Er ist während einer Simula-

tion normalerweise konstant und setzt sich bei mehrschichtigen Wänden aus der
Summe der Wärmewiderstände der einzelnen Schichten und den beiden Wärme-
übergängen von den Randschichten in die benachbarte thermische Masse zusam-
men.

S Die Größe der Schnittfläche der thermischen Verbindung.

Funktionen:
thermische Verbindung::calcQ(t) Dient zur Berechnung des Wärmestromes durch die

Verbindung zum Zeitpunkt t.
thermische Verbindung::getQ(t, M) Liefert den Wärmestrom zum Zeitpunkt t

zurück, wobei die thermische Masse M als Innenseite angenommen wird.
thermische Masse::getT(t) Gibt die Temperatur der thermischen Masse zum

Zeitpunkt t zurück.

R Wärmewiderstand
S Fläche

calcQ(t) berechnet
den Wärmestrom
zum Zeitpunkt t

getQ(t, M) liefert Q
für die Masse M

thermische Verbindung

getT(t) liefert die
Remperatur zum
Zeitpunkt t

thermische Masse

Innenseite

Außenseite

^(Innenseite->getT(t) -
Außenseite->getT(t)) / R.

Qtemp := calcQ(t).
if (M == Außenseite)

Qtemp := -Qtemp;
fi
^Qtemp.

Simulation thermi-
scher Verbindung

A.1 Simulations-Patterns

- 51 -

• Zusammenarbeit
Eine thermische Verbindung verbindet immer genau zwei Massen miteinander. Ist eine
thermische Masse mit mehreren anderen Massen verbunden, so muß jede dieser Nachbar-
schaften durch ein separates Objekt vom Typ thermische Verbindung ausgedrückt werden.
Um beispielsweise die Beziehung zwischen Räumen (= thermische Masse) und Wänden
auszudrücken, lohnt es sich, einen neuen Objekttypen „Raumteilerelement“ einzuführen.
Ein Raumteilerelement verbindet immer genau zwei Räume miteinander und kann so als
thermische Verbindung aufgefaßt werden. Das komplexere Gebilde einer Wand würde in
diesem Fall dann mehrere Raumteilerelemente aggregieren (siehe Abbildung 30).

Abb.30: Eine Wand wird zusammengesetzt aus mehreren Raumteilerelementen

• Konsequenz
Um dieses Pattern anwenden zu können, muß der Wärmewiderstand der Verbindung
bekannt beziehungsweise berechenbar sein. Dieser muß bei der Initialisierung des Verbin-
dungs-Objektes in die Instanzenvariable R eingetragen werden.
Zusätzlich muß es möglich sein, die Temperatur einer thermischen Masse zu einem Zeit-
punkt t abzufragen. Um dieses zu bewerkstelligen, müssen sämtliche oder zumindest die
letzten Temperaturen der thermischen Massen zwischengepuffert werden. Ein weiterer Puf-
fer ist eventuell notwendig, um die zuletzt berechneten Wärmeströme aufzunehmen, damit
bei Bedarf daraus die Wärmemenge (= Integral über den Wärmestromverlauf) in einem
Zeitintervall berechnet werden kann. Siehe dazu auch das Beispiel in Kapitel 2.7.

• Verwandte Patterns
Simulation thermischer Masse (45) zur Berechnung der Temperatur einer Masse in Abhän-
gigkeit des Wärmestromes.
Das PatternThermischer Austausch (51) beschreibt die direkte Mischung zweier Gase.

Thermischer Austausch

• Zweck
Häufig tauschen sich verschiedene Gase direkt miteinander aus, es findet also kein Wärme-
übergang statt, sondern eine direkte Vermischung der beiden (Luft-)Massen. Dies geschieht
zum Beispiel durch ein offenes Fenster in einem Raum, durch das sich die Luft im Raum
mit der Außenluft vermischt. Dieses Pattern stellt die nötigen Funktionen zur Verfügung,
um die aus der Vermischung resultierenden Temperaturen zu berechnen.

therm.Masse therm.Verb.

Raum Raumteilerelement

Wand

2 nAbtrennung
n

A.1.1 Berechnungsformeln

- 52 -

• Motivation
Durch ein offenes Fenster oder eine offene Tür strömt Luft, so daß sich die Luftmassen zu
beiden Seiten des Fensters vermischen. Dadurch gleichen sich die Temperaturen der beiden
Luftmassen allmählich aus. Die resultierende Temperatur ist abhängig vom Volumen der
ausgetauschten Luftmengen und den Luftdrücken.

• Anwendbarkeit
Das Pattern wird angewendet, um die aus der Vermischung zweier Gase entstehende Tem-
peraturveränderung zu berechnen. Die angegebene Berechnungsformel liefert exakte
Ergebnisse für gleichatomige Gase und kann als gute Annäherung für verschiedenatomige
Gase benutzt werden.

• Struktur
Zwei thermische Massen sind mit einer Relation verbunden, die die Nachbarschaft aus-
drückt. Um zu berechnen, wie sich die Temperatur einer Gasmenge verändert, wenn eine
andere Menge sich mit ihr vermischt, wird die Funktionkonvektion(V, G) bereitgestellt. Als
Übergabeparameter erhält sie das Volumen der ausgetauschten Gasmenge und einen Zeiger
auf das einströmende Gas. Das Volumen und der Druck der Masse, in die das zweite Gas
einströmt, muß auch bekannt sein. Die Berechnungsformel für die Vermischung zweier

Gase lautet: . Sie kann auch für die Vermischung von mehr als zwei

Gasen erweitert werden.

• Mitwirkende Objekte

Klassen:
thermische Masse: Objekte dieser Klasse repräsentieren die Gase, die sich vermi-

schen.

Instanzenvariablen / Konstanten:

thermische Masse::V Volumen des Gases in m3.
thermische Masse::p Gasdruck in Pascal.

T
p1V1 p2V2+

p1V1

T1

p2V2

T2
------------+

--------------------------------=

n

1

Nachbar

thermischer Austausch

temp1 := p * V.
temp2 := G->getV() * _V.
T := (temp1 + temp2) /

((temp1 / T) +
(temp2 / G->getT())).

thermische Masse

konvektion (_V, G)

V Volumen
p Druck
T Temperatur

A.1 Simulations-Patterns

- 53 -

thermische Masse::T Temperatur in Grad Celsius.

Funktionen:
thermische Masse::konvektion(_V, G) Dient zur Anpassung der Temperatur, wenn

ein Volumen _V des Gases G in das aktuelle Gas einströmt.

• Zusammenarbeit
Die thermischen Massen sind über die 1:n RelationNachbar miteinander verbunden.

• Verwandte Patterns
Simulation thermischer Verbindung (49) zur Berechnung des thermischen Austausches
durch ein Zwischenmedium (Wand etc.).

A.1.2 Scheduling

Die folgenden Patterns beschäftigen sich mit dem Problem des Scheduling, also mit dem Auf-
ruf bestimmter Funktionen zu einem festen Zeitpunkt und in der gewünschten Reihenfolge.
Die Funktionsweise des Scheduler ist in Kapitel 3.2 und in [Hei96] beschrieben.

Kontinuierliche Simulation

• Zweck
Dieses Pattern sorgt dafür, daß das Simulationsobjekt, an das es gebunden wird, kontinuier-
lich zur Berechnung seiner Simulationsgröße aufgefordert wird. Durch die Bindung des
Patterns wird auch ein Event-Typ erzeugt, mit dem das Simulationsobjekt jederzeit (also
auch außerhalb der periodischen Berechnungen) aufgefordert werden kann, seine Simulati-
onsgröße zu aktualisieren.

• Motivation
Die Modellierung der Berechnungsformeln einer Simulationsgröße alleine reicht nicht aus,
um einem Simulator „Leben einzuhauchen“. Das Simulationsobjekt muß auch in bestimm-
ten Abständen aufgefordert werden, seine Berechnungen durchzuführen. Bei den meisten
Objekten ist dies sinnvoll, wenn sie sich in regelmäßigen Abständen neu berechnen, um
jederzeit eine gute Annäherung an die nachgeahmte physikalische Größe zu haben. Die
Periodendauer ist je nach Simulationsobjekt unterschiedlich und kann sich auch während
der Simulation noch ändern. Bei der Raumtemperatur beispielsweise reicht es aus, wenn sie
jede Minute neu berechnet wird. Öffnet jedoch jemand die Tür zu diesem Raum, kann sich
die Temperatur sehr rasch ändern. Das macht dann eine häufigere Berechnung (z.B. alle 5
Sekunden) notwendig.
Um eine kontinuierliche Berechnung durchführen zu können, muß das Simulationsobjekt
eine Anbindung an den Scheduler haben. Diese Kopplung geschieht überActive Objects
(vgl. 3.2). Durch dieses Pattern wird das Simulationsobjekt mit einem Active Object ver-
bunden (falls das nicht bereits durch ein anderes Pattern geschehen ist). In diesem Active
Object wird ein neuer Thread (= unabhängig von der restlichen Simulation laufender Pro-
zeß) erzeugt. Dieser Thread wird aufgerufen, wenn er über den Scheduler ein entsprechen-

A.1.2 Scheduling

- 54 -

des Event zugesendet bekommt. Daraufhin veranlaßt er die Neuberechnung der
Simulationsgröße (durch den Aufruf der Metodecalculate() beim Simulationsobjekt).
Anschließend verschickt der Thread einfach ein Event an sich selbst und gibt darin an, daß
es erst zu einem späteren Zeitpunkt (nämlich genau zum Beginn der nächsten Periode)
ankommen soll. Dadurch treffen dann zu den entsprechenden Zeitpunkten Events mit der
Aufforderung zur Neuberechnung an.

• Anwendbarkeit
Das Pattern kann prinzipiell an jede Klasse gebunden werden. Beachtet werden muß aller-
dings, daß eine zu häufige Berechnung einer Simulationsgröße zu einem erheblichen
Rechenaufwand führen kann, so daß im Extremfall die Echtzeitfähigkeit des Simulators
nicht aufrecht erhalten werden kann. Andererseits führt eine zu langsame Berechnung zu
mathematischen Ungenauigkeiten, die das Ergebnis der Simulation verfälschen können.

• Struktur
Durch die Bindung des Patterns Kontinuierliche Simulation an eine Klasse wird diese mit
einem Active Object verbunden. Die Simulations-Klasse braucht von dieser Ankopplung
nichts zu wissen, da die Kommunikation nur in der anderen Richtung stattfindet: das Active
Object ruft in periodischen Zeitabständen die Methodecalculate() des Simulationsobjektes
auf. Zusätzlich zu der Anbindung an ein Active Object wird in diesem noch ein neuer
Thread erzeugt, und es wird ein neuer Typ von Events vorgesehen, der die Simulationsob-
jekte zum Rechnen auffordern soll.

Der Thread reagiert auf das Eintreffen eines calculate-Events. Daraufhin ruft er eine
Methode zur Neuberechnung der Simulationsgröße (calculate()) auf. Zuletzt schickt er
einen neuen calculate-Event an sich selbst, der erst zur nächsten Periode eintreffen soll.

• Mitwirkende Objekte

Klassen:
Simulationsobjekt: Das Objekt, deren Simulationsgröße quasi-kontinuierlich neu

berechnet werden soll.
ActiveObject: Die entsprechende Klasse aus dem Simulator-Modell.

calculate()

Simulationsobjekt ActiveObject

Thread()

SimObj

n 1…1

Kontinuierliche
Simulation

tlast letzte Berechnung
delta_t Zeitintervall

if (Event = calculateEvent)
SimObj->calculate();
tnext = tlast+delta_t;
if (takt == tnext)

new Event(this, this, calculateEvent,
tnext);
tlast = tnext;

A.1 Simulations-Patterns

- 55 -

Instanzenvariablen / Konstanten:
ActiveObject::tlast Zeitpunkt der letzten Berechnung (genauer: des letzten Peri-

odenanfanges)
ActiveObject::delta_t Dauer einer Periode. Kann im Bedarfsfall an die momentane

Situation angepaßt werden (z.B. kürzere Periode nach Öffnen eines Fensters).

Funktionen:
Simulationsobjekt::calculate() Methode zur Neuberechnung der Simulationsgrö-

ßen.
ActiveObject::Thread() Der Thread (= zeitlich unabhängiger Programmteil),

der sich um die Kontinuität kümmert.

• Zusammenarbeit
Hauptsächlich kümmert sich der Scheduler darum, daß die Neuberechnung der Simulati-
onsgrößen immer zum richtigen Zeitpunkt angestoßen wird. Dazu wird dem Active Object
ein Event geschickt. Bei Ankunft dieses Events fordert das Active Object sein Simulations-
objekt auf, sich neu zu berechnen. Anschließend schickt es sich selbst ein neues Event, das
aber erst zu einem späteren Zeitpunkt wieder eintreffen soll. Der Scheduler merkt sich die-
ses Event und schickt es an das ActiveObject zurück, sobald der entsprechende Zeitpunkt
gekommen ist.

• Konsequenz
Prinzipiell kann dieses Pattern an jede Modell-Klasse gebunden werden. Da es jedoch
einen gewissen Overhead mit sich führt (für das Active Object muß ja ein eigener Thread
angelegt werden), sollte es sparsam eingesetzt werden. Jedes Simulationsobjekt braucht nur
mit maximal einem ActiveObject verbunden zu werden. Der Thread des ActiveObjects
kann auch durchaus mehrere unterschiedliche Events verarbeiten.

• Verwandte Patterns
Mit dem PatternAktuator (55) kann ein Simulationsobjekt zu einer einmaligen (asynchro-
nen) Berechnung seiner Simulationsgrößen aufgefordert werden.

Aktuator

• Zweck
Ein Aktuator ist aus Sicht des Simulators eine Stellgröße, die von außen gesetzt wird. Diese
Größe kann dann zur Berechnung weiterer Simulationswerte herangezogen werden. Durch
dieses Pattern wird einem Simulationsobjekt prinzipiell die Möglichkeit gegeben, von
außerhalb der Simulation (Simulator-Steuerung oder Hardware-In-The-Loop) verändert zu
werden.

• Motivation
Die Heizleistung eines Radiators ist ein typisches Beispiel, bei dem ein Aktuator verwendet
werden kann. Die Heizleistung ist normalerweise ein fester Wert, der sich ändert, wenn ein
Benutzer das Heizungsventil öffnet oder schließt. Diese Benutzereingabe verläuft prinzipi-
ell asynchron zur eigentlichen Simulation.

A.1.2 Scheduling

- 56 -

Um eine Simulationsgröße derart beeinflussen zu können, muß eine Verbindung zwischen
dem Simulationsobjekt und dem Scheduler hergestellt werden. Dann kann über entspre-
chende Events jederzeit - asynchron zur Simulation - der Zustand des Simulationsobjektes
abgefragt werden.

• Anwendbarkeit
Dieses Pattern braucht nur eingesetzt zu werden, wenn Änderungen der Simulationsgröße
zu einem bestimmten Zeitpunkt stattfinden sollen. Um ein Simulationsobjekt sofort zu
ändern, kann auch direkt die entsprechende Instanzenvariable modifiziert werden (über die
Zugriffsfunktionen). Um jedoch Aktionen für die Zukunft einzuplanen (Beispiel: um 7:00
Uhr soll die Heizung eingeschaltet werden), muß das Objekt, das angesprochen werden soll
(in diesem Fall also die Heizung), in der Lage sein, Events zu empfangen. Dann kann näm-
lich ein Event verschickt werden, das genau in einem vorherbestimmten Zeitintervall beim
Ziel eintrifft. Mit diesem Pattern wird die Fähigkeit modelliert, Events empfangen zu kön-
nen.

• Struktur
Um ein Event empfangen zu können, muß ein Objekt vom Typ Active Object sein. Zur Ver-
meidung der Mehrfachvererbung, wird mit diesem Pattern für ein Simulationsobjekt extra
ein ActiveObject angelegt und über Delegations-Mechanismen angesprochen. Das Active
Object legt einen Thread an, der auf das Eintreffen von Events wartet. Trif ft ein solches
Event ein, wird eine Funktion beim Simulationsobjekt aufgerufen. Diese kann eine
Zugriffsfunktion auf eine Instanzenvariable sein, kann aber auch genau so gut eine andere
Funktionalität besitzen (beispielsweise zur Neuberechnung einer Simulationsgröße auffor-
dern).

• Mitwirkende Objekte

Klassen:
SimulationsObjekt: Die Modell-Klasse, die Events zu bestimmten Zeitpunkten emp-

fangen können soll.
ActiveObject: Die Klasse ActiveObject ist bereits im Simulator Modell vorge-

geben (siehe 3.2). Durch dieses Pattern wird nur ein Thread des Active Objects um
die Funktionalität erweitert, auf ein spezielles Event zu reagieren.

Funktion(data)

Simulationsobjekt ActiveObject

Thread()

SimObj

n 1…1

Aktuator

…
if (Event = setEvent)

SimObj->Funktion(EventData)
…

A.2 Framework-Patterns

- 57 -

Funktionen:
ActiveObject::Thread() Diese Methode wird unabhängig vom übrigen Programm-

fluß ausgeführt und wartet kontinuierlich auf das Eintreffen eines Events. Beim
Eintreffen eines Events wird eine dem Event-Typ entsprechende Aktion beim
Simulationsobjekt ausgelöst, und anschließend wird wieder auf neue Events
gewartet.

SimulationsObjekt::Funktion(data) Die Funktion, die ausgeführt werden soll,
wenn ein Event eintrifft. Als Übergabeparameter können die im Event mitgegebe-
nen Daten dienen.

• Zusammenarbeit
Jedes Simulationsobjekt braucht nur mit einem Active Object verbunden zu sein. Ist eine
Modell-Klasse bereits mit einem Active Object verbunden, so wird durch dieses Pattern
einfach nur der Thread dieses Objektes erweitert. Die Kommunikation verläuft immer aus-
gehend von einem Event über das Active Object zum eigentlichen Simulationsobjekt.
Dieses braucht sich ansonsten nicht weiter um das Active Object zu kümmern.

• Konsequenz
Prinzipiell kann dieses Pattern an jede Modell-Klasse gebunden werden. Da es jedoch
einen gewissen Overhead mit sich führt (für das Active Object muß ja ein eigener Thread
angelegt werden), sollte es sparsam eingesetzt werden. Jedes Simulationsobjekt braucht nur
mit maximal einem ActiveObjekt verbunden zu werden. Der Thread des Active Objects
kann auch durchaus mehrere unterschiedliche Events verarbeiten.

• Verwandte Patterns
Kontinuierliche Simulation (53)

A.2 Framework-Patterns

Die folgenden Patterns können zur Modellierung beliebiger Frameworks herangezogen wer-
den. Die impliziten Patterns in Kapitel A.2.1 können von einem Generator automatisch ver-
wendet werden. Dadurch erhält selbst ein ansonsten „leeres“ Framework (d.h. eines, das außer
Instanzenvariablen und Relationen noch keine Funktionalität hat) bereits eine gewisse Grund-
funktionalität. Dadurch, daß diese Funktionalität einheitlich für alle Klassen generiert wird,
erleichtert sich der Umgang mit dem Framework. Zur Verfeinerung der einzelnen Modell-
Klassen dienen die Patterns in Kapitel A.2.2. Im folgenden Kapitel werden Methoden vorge-
stellt, wie man Relationen zwischen Klassen verfolgen kann. Zum Schluß werden noch Struk-
turierungsmethoden der Modell-Klassen vorgestellt.

A.2.1 Implizite Patterns

Die Patterns in diesem Abschnitt können von einem Generator automatisch angewendet wer-
den, um eine einheitliche Zugriffsschnittstelle auf alle Objekte des Gesamtmodells zu erhal-
ten. Bei der Modellierung eines Frameworks kann daher davon ausgegangen werden, daß die
folgenden Patterns bereits auf jede Modell-Klasse angewendet worden sind.

A.2.1 Implizite Patterns

- 58 -

Instanzenvariable

• Zweck
Dient zur automatischen Kapselung von Instanzenvariablen. Für sämtliche Instanzenvaria-
blen, für die durch andere Patterns noch keine Zugriffsfunktionen erstellt wurden, werden
entsprechende Zugriffsmethoden erzeugt. Der Zugriff auf eine Instanzenvariable, ausge-
hend von einem Objekt einer anderen Klasse, sollte nur über diese Funktionen geschehen.

• Bekannt unter
Attribut

• Motivation
Jedes Objekt sollte bei einem objektorientierten Programm nur direkten Zugriff auf seine
eigenen, lokalen Daten haben. Auf Daten anderer Objekte wird über Zugriffsfunktionen
operiert. Durch diese Indirektion ist es möglich, zusätzliche Sicherheitsabfragen (zum Bei-
spiel Bereichsüberschreitungen oder Schutzverletzungen) in die jeweiligen Zugriffsfunk-
tionen einzubauen, um somit die Daten eines Objektes konsistent zu halten. Wenn auf
sämtliche Instanzenvariablen über eigene Funktionen zugegriffen werden kann und dar-
überhinaus die Namenskonvention dieser Funktionen gleichbleibend ist, so kann auf einfa-
che Art und Weise der Zustand jedes Objektes gelesen und verändert werden.

• Anwendbarkeit
Dieses Pattern wird vom Generator implizit angewendet. Es braucht daher nicht explizit an
Objekte gebunden zu werden. Im generierten Programm kann davon ausgegangen werden,
daß für sämtliche Instanzenvariablen Zugriffsfunktionen vorhanden sind.

• Struktur
Die Struktur des Patterns ist sehr einfach. Jede Instanzenvariable erhält eine Lesefunktion
und eine Schreibfunktion. Die Lesefunktion heißt dabei genau so, wie die Variable im
Modell selbst, erhält nur den zusätzliche Präfixget; bei der Schreibfunktion (Präfixset)
wird ein zusätzlicher Parameter übergeben.

• Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, für die Zugriffsfunktionen generiert werden.

Instanzenvariablen / Konstanten:
V Die entsprechende Variable. Um Namenskonflikte zu vermeiden, kann sie im

Quelltext umbenannt werden (z.B. _V).

^V.

V Instanzenvariable

getV() liefert V zurück
setV(_V) setzt V auf neuen

Wert

Klasse Instanzenvariable

V := _V.

A.2 Framework-Patterns

- 59 -

Funktionen:
getV() Methode, um den Wert der Variablen abzufragen.
setV(_V) Methode zum Setzen der Instanzenvariable.

• Konsequenz
Der Zugriff auf Instanzenvariablen von außerhalb eines Objektes sollte nur über die
Zugriffsfunktionen geschehen.

• Implementierung/Bindung
Die Instanziierung dieses Patterns erfolgt automatisch durch den Generator.

• Verwandte Patterns
Funktion (61) zur Modellierung einer neuen Funktion. Instanzenvariablen sind „nach
außen“ hin nur über ihre Zugriffsfunktionen sichtbar. Es ist also auch möglich, über die
Nachbildung dieser Zugriffsfunktionen eine Instanzenvariable nachzubilden oder ihr
zusätzliche Funktionalität zu geben.

Relation

• Zweck
Dieses Pattern generiert automatisch Zugriffsmethoden für Relationen. Für eine zweiseitgie
Relation werden Funktionen zum Verbinden zweier Objekte und zum Auflösen einer beste-
henden Verbindung angelegt. Dabei werden immer beide Richtungen berücksichtigt; ver-
bindet man also Objekt A mit einem Objekt B, so kann auch von B aus auf A zugegriffen
werden.

• Motivation
Zum einen dient dieses Pattern zur Datenkapselung. Auf den Instanzenvariablen, die die
Relation bilden, soll nur über Zugriffsfunktionen operiert werden. Zum anderen wird dafür
gesorgt, daß die Relationen auf beiden Seiten immer konsistent sind.
Besteht beispielsweise eine Relation zwischen einem Raum und dessen Wänden, so wer-
den für den Raum die FunktionenconWand() unddcoWand() zum Verbinden einer Wand
mit einem Raum generiert (die Präfixecon und dco stehen für connect bzw. disconnect).
Gleichzeitig wird eine Zugriffsfunktion (getWände()) angelegt, um alle mit einem Raum
verbundenen Wände zu erhalten.

Wände

conWand(W)
dcoWand(W)
getWände()

Raum
n m

Räume

conRaum(R)
dcoRaum(R)
getRäume()

Wand

A.2.1 Implizite Patterns

- 60 -

Hat man in obigen Beispiel eine Wand W1 und einem Raum R1, so können diese mit dem
Aufruf R1.conWand(W1) miteinander verbunden werden. Dasselbe hätteW1.conRaum(R1)
bewirkt. Mit der FunktionWände()wird die Menge von Wänden zurückgegeben, die mit
dem aktuellen Raum verbunden sind. Bei einer 1:1 oder n:1 Relation wird jeweils nur eine
Wand zurückgegeben.

• Anwendbarkeit
Das Pattern wird vom Generator automatisch für jede Relation verwendet. Eine explizite
Anwendung ist nicht nötig.

• Struktur
Für jede Relation zwischen zwei Objekten werden auf beiden Seiten connect und discon-
nect Methoden angelegt. Können von einem Objekt aus mehrere andere Objekte referen-
ziert werden (ein Raum wird zum Beispiel von mehreren Wänden umgeben), so werden
alle diese Objekte in einer Menge gespeichert. Handelt es sich dagegen um eine 1:1 Rela-
tion, so kanndas refenzierte Objekt auch in einer effizienteren Form (z.B. als Zeiger) abge-
legt werden.
Wird bei einer Klasse die connect-Methode aufgerufen, so wird in dieser Klasse die ent-
sprechende Referenz eingetragen und gleichzeitig eine connectIntern-Methode beim refe-
renzierten Objekt aufgerufen. Diese interne Methode sorgt dafür, daß alle Referenzen
jeweils auf beiden Seiten der Relation eingetragen werden.

In der Abbildung sind aus Platzgründen nur die connect-Methoden aufgeführt. Die discon-
nect-Methoden funktionieren aber analog.

• Mitwirkende Objekte

Klassen:
Klasse_A: Beliebige Klasse, die eine 1:n Relation zu einer anderen Klasse hat.
Klasse_B: Die Klasse B soll in diesem Beispiel eine 1:1 Relation zur Klasse A haben.

Instanzenvariablen / Konstanten:
Klasse_A::Bs Menge aller referenzierten Objekte der Klasse B
Klasse_B::A Zeiger auf das referenzierte A-Objekt

Bs

Klasse_A
1 n

Relation

A

conA(_A)
dcoA(_A)
getA()
conInternA(_A)
dcoInternA(_A)

Klasse_B

A := _A
B->conInternB(this)

A := _ABs.add(_B)

Bs.add(_B)
B->conInternA(this)

conB(_B)
dcoB(_B)
getBs()
conInternB(_B)
dcoInternB(_B)

^Bs ^A

A.2 Framework-Patterns

- 61 -

Funktionen:
Klasse_A::conB(_B) Verbindet ein Objekt der Klasse A mit einem der Klasse B (und

umgekehrt)
Klasse_A::dcoB(_B) Löst eine vorhandene Verbindung wieder auf.
Klasse_A::Bs() Methode zum Abfragen aller referenzierten Objekte.
Klasse_A::conInternB(_B) Diese Methode verbindet nur einseitig ein B-Objekt mit

einem Objekt der Klasse A. Sie wird von der Methode KlasseB::conA(_A) aufge-
rufen und sollte ansonsten nicht direkt verwendet werden.

Klasse_A::dcoInternB(_B) Zum einseitigen lösen einer Verbindung.
Die entsprechenden Methoden der Klasse B besitzen dieselbe Funktionalität.

• Zusammenarbeit
Beim Ein- oder Austragen einer Relation wird jeweils die entsprechende interne Methode
der anderen Klasse aufgerufen, damit die Relationen auf beiden Seiten konsistent sind.

• Verwandte Patterns
Um eine Relation zu verfolgen und Methoden bei den referenzierten Objekten aufzurufen,
können die PatternsEinfache Indirektion (67) undKomplexe Indirektion (69) benutzt wer-
den.

A.2.2 Klassen

Die Patterns in diesem Abschnitt dienen zur Verfeinerung einzelner Klassen. Statt sich um das
Zusammenspiel zwischen Klassen zu kümmern, fokussieren sie hauptsächlich die Funktiona-
lität einzelner Klassen.

Funktion

• Zweck
Bei der Modellierung werden häufiger Berechnungsformeln benötigt, die nicht durch ein
Pattern ausgedrückt werden können. Um diese Formeln ausdrücken zu können, kann in die-
ses Pattern die entsprechende Funktion eingesetzt werden.

• Motivation
Angenommen, es sind im Gebäudemodell die Maße (Breite, Höhe und Tiefe) für einen
Raum eingetragen. Um die Temperatur dieses Raumes zu berechnen, wird jedoch das Volu-

A.2.2 Klassen

- 62 -

men (= Breite * Höhe * Tiefe) benötigt. Diese Berechnungsformel kann einfach über dieses
Pattern an den Raum gebunden werden.

• Anwendbarkeit
Jederzeit, wenn eine zusätzliche Berechnungsformel oder ein Prozeduraufruf, der nicht
durch andere Patterns abgedeckt werden kann, benötigt wird. Zur Anwendung dieses Pat-
terns muß derQuellcode, der generiert werden soll, eingegeben werden. Die Benutzung
dieses Patterns ist also von der Ziel-Programmiersprache abhängig und erfordert Kennt-
nisse dieser Sprache. Daher sollte dieses Pattern möglichst spärlich eingesetzt werden.
Alternativ wäre auch denkbar, den Quelltext der Formel aus einer allgemeinen Beschrei-
bungssprache heraus zu generieren. In diesem Fall könnte bei der Benutzung des Patterns
die gewünschte Formel in einer speziellen Sprache eingegeben werden und bei der Gene-
rierung dann in entsprechenden Quelltext transformiert werden. Dadurch wird das Modell
unabhängig von der Ziel-Programmiersprache.

• Struktur
Die Struktur des Patterns ist sehr einfach. Es wird für die Klasse, an die das Pattern gebun-
den wird, eine neue Funktion erzeugt, die die geforderten Berechnungen ausführt.

• Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, für die die Funktion angelegt werden soll.

Funktionen:
Funktion() Die Funktion, die erzeugt werden soll. Bei der Bindung des Patterns muß

der Quelltext eingegeben werden.

• Konsequenz
Bei der Bindung des Patterns muß die gewünschte Funktion imQuelltext der Ziel-Program-
miersprache eingegeben werden. Dadurch wird das Pattern von der Programmiersprache

H Höhe
B Breite
T Tiefe

getV() Volumen
des Raumes

Raum

^(H * B * T).

Funktion

Funktion()

Klasse

Beliebige Funktion
im Quelltext

Funktion

A.2 Framework-Patterns

- 63 -

abhängig. Ein Generator kopiert während der Generierung den eingegebenen Quelltext ein-
fach an die entsprechende Stelle im Programm hinein.

• Verwandte Patterns
Tabelle (65) um Funktionswerte aus einer Tabelle auszulesen oder zu interpolieren.
Konstanter Wert (63) zur Modellierung einer Konstante.

Konstanter Wert

• Zweck
Liefert einen konstanten Wert zurück. Dieser Wert ist für alle Objekte einer Klasse gleich.

• Motivation
Viele Algorithmen hängen von Konstanten ab, die sich zwar von Anwendung zu Anwen-
dung ändern, während einer Anwendung jedoch konstant bleiben,
Legt man bei der Simulation beispielsweise ein vereinfachtes Wettermodell zugrunde, so
ändert sich die Außentemperatur während eines Simulationslaufes nicht.

• Anwendbarkeit
Überall dort, wo mit konstanten Werten gerechnet wird. Kann es vorkommen, daß sich der
Wert während einer Simulation ändert, so sollte eine Variable benutzt werden (Pattern
Instanzenvariable (58)).

• Struktur
Die Struktur des Patterns ist sehr einfach. Das Pattern wurde nur in den Pattern-Katalog
aufgenommen, um eine durchgängige Modellierung mit Patterns zu ermöglichen.

^T

T Temperatur (const)

getT() liefert T zurück

Außentemperatur

^K

K bel. Wert (const)

getK() liefert V zurück

Klasse Konstanter Wert

A.2.2 Klassen

- 64 -

• Mitwirkende Objekte

Klassen:
Klasse: Die Klasse, für die der konstante Wert gelten soll. Die Klasse muß bereits

existieren.

Instanzenvariablen / Konstanten:
K Die verwendete Konstante. Für den Wert der Kostante wird kein zusätzlicher Spei-

cherplatz benötigt; vielmehr wird der Wert direkt in den Programmtext hineinko-
piert.

Funktionen:
getK() Methode, um den Wert der Konstanten abzufragen. Um eine transparente

Datenkapselung zu erhalten, sollte nur mit dieser Funktion auf die Konstante
zugegriffen werden.

• Konsequenz
Ist ein Wert als konstant festgelegt, so kann er nachträglich nicht geändert werden. Eine
Änderung erfordert in der Regel die Neugenerierung des gesamten Programmes.

• Implementierung/Bindung
Klasse -> beliebige, bereits existierende Klasse.
K -> beliebiger Variablenname, der Wert wird direkt eingesetzt.
getK() -> beliebige Funktion. Die Funktion wird vollständig angelegt (Struktur und

Implementierung).
Quelltext:

Klasse
…
getK

"Liefert konstanten Wert zurück"
"generiert aus Pattern: Konstanter Wert"
^K

• Beispielimplementierung und Benutzung
Bei der Einfachheit des Patterns sollte die Beschreibung unter Struktur und Motivation aus-
reichen.

• Verwandte Patterns
Tabelle (65)- Werte aus einer Tabelle auslesen.
Funktion (61)- (Beliebige) Funktionen berechnen.
Instanzenvariable (58)- Um Speicherplatz für eine Variable zu reservieren und

Zugriffsfunktion bereitstellen.

A.2 Framework-Patterns

- 65 -

Tabelle

• Zweck
Eine Tabelle bietet die Möglichkeit, zu gegebenen Eingabewerten vorher abgespeicherte
Ausgabewerte zurückzuliefern. Bei numerischen Tabelleneinträgen besteht auch die Mög-
lichkeit, Werte zu interpolieren.

• Motivation
Viele physikalische Größen wie Materialkennwerte sind in der Regel nur schwer zu berech-
nen. Daher werden Meßreihen aufgestellt, wie sich diese Kennwerte bei unterschiedlichen
Randbedingungen verändern. Die Dichte von Luft ist beispielsweise von ihrer Temperatur
abhängig. Um die Dichte bei einer beliebigen Temperatur anzunähern, kann eine Meßreihe
aufgestellt (oder berechnet) werden, in der Dichtewerte bei einzelnen Temperaturen ver-
merkt sind. Durch Interpolation dieser Werte kann die gesuchte Dichte dann ermittelt wer-
den.

Die Dichte der Luft bei 25°C ergibt sich bei linearer Interpolation zu 1,16 kg/m3 (aus der
Tabelle können die Werteν1 = 20,ν2 = 40,ρ1 = 1,18,ρ2 = 1,11 abgelesen werden. Mit die-

sen Eckdaten ergibt sich , also

).

• Anwendbarkeit
Dieses Pattern kann zum Auslesen und Interpolieren numerischer Tabellen benutzt werden.
Diese Tabellen können fest vorgegeben sein oder auch während des Programmlaufes ver-
ändert werden.

• Struktur
Eine Tabelle wird durch ein eigenes Objekt repräsentiert. Dieses speichert die Tabellenein-

träge in einem sortierten Dictionary ab2. Zur Interpolation wird dieses Dictionary durch-
sucht, um das kleinste Intervall zu finden, in dem der zu interpolierende Wert liegt. Danach
wird linear interpoliert.

2. Ein Dictionary ist eine Menge von Wertepaaren der Form (Schlüssel, Wert).

Tabelle 1: Dichte von Luft in Abhängigkeit der Temperatur

ν [°C] -40 -20 0 20 40 60 80 100 120

ρ [kg/m3] 1,49 1,37 1,27 1,18 1,11 1,04 0,99 0,93 0,88

ρ ϑ() ρ1

ρ2 ρ1–()
ϑ2 ϑ1–()

------------------------- ϑ ϑ1–()⋅+=

r 25°C() 1 16kg,≈ m
3⁄

A.2.2 Klassen

- 66 -

Eine Tabelle wird über die Relationtable an einen Objekttyp angebunden. Für diesen wird
auch lokal eine interpolate() Methode zur Verfügung gestellt, die die entsprechende
Methode bei dem Tabellen-Objekt aufruft.

• Mitwirkende Objekte

Klassen:
Objekt: Für diese Klasse soll eine Tabelle zur Verfügung stehen.
Tabelle: Stellt die eigentliche Tabellen-Funktionalität zur Verfügung.

Instanzenvariablen / Konstanten:
Tabelle::Tab Ein sortiertes Dictonary, das die Tabelleneinträge beinhaltet.

Funktionen:
Objekt::interpolate(x) Diese Funktion dient zum vereinfachten Zugriff auf die Tabelle

und ruft die gleichnamige Methode bei der Tabelle auf.
Tabelle::interpolate(x)Zum linearen Interpolieren des y-Wertes an der übergebenen x-

Position.
Tabelle::add(x, y) Diese Funktion dient zum Hinzufügen von Wertepaaren in die

Tabelle. Dabei sollte die Tabelle aus Geschwindigkeitsgründen sortiert gehalten
werden. Aus Platzmangel wurde die Implementation dieser Funktion nicht in der
Graphik des Patterns aufgeführt.

Tabelle::remove(x, y)Löscht ein Wertepaar aus der Tabelle.

• Zusammenarbeit
Die Klasse Tabelle speichert selbst alle Informationen, die zum Auslesen von Werten nötig
sind. Dadurch beschränkt sich die Zusammenarbeit zwischen einer Tabelle und einem
Objekt, das die Tabelle benutzen will, auf das simple Aufrufen von Funktionen.

• Konsequenz
Um die Funktionalität einer Tabelle zu erweitern (beispielsweise eine genauere Interpolati-
onsmethode), kann ein eigenes Modell aufgestellt werden, in dem mehrere Tabellen-Typen
beschrieben sind. Bei der Bindung dieses Patterns kann dann der Objekttyp Tabelle an die
gewünschte Tabelle aus dem Modell gebunden werden.

interpolate(x)

Objekt

TabTabelleneinträge

Tabelle

suche Einträge x1, x2
in Tab mit x∈[x1, x2]

^ (y1 + (y2 - y1) *
(x - x1) / (x2 - x1))^table->interpolate(x).

interpolate(x)
add(x, y)
remove (x, y)

table

1…1 1…1

Tabelle

A.2 Framework-Patterns

- 67 -

• Verwandte Patterns
Mit dem PatternFunktion (61) kann eine Tabelle auch nachmodelliert werden.

A.2.3 Relationen

In diesem Abschnitt sind Patterns zusammengestellt, die es erlauben, Relationen zu verfolgen
und Methoden bei referenzierten Objekten aufzurufen.

Einfache Indirektion

• Zweck
Dieses Pattern dient hauptsächlich zur näheren Beschreibung einer Gruppe von Objekten.
Jedes Objekt kann individuelle Eigenschaften (Attribute) haben und hat darüber hinaus
eventuell auch noch andere, die es mit anderen Objekten teilt. Diese gemeinsamen Eigen-
schaften werden dann vom eigentlichen Objekt ausgelagert und in einer eigenen Klasse
beschrieben. Zugriffsmethoden beim ursprünglichen Objekt sorgen für einen transparenten
Zugriff auf die ausgelagerten Attribute.

• Bekannt unter
Item Description (siehe [Coa92], Seite 153)
Dieses Pattern kann auch als Spezialisierung desBridge Patterns ([GHJ95], Seite 151) auf-
gefaßt werden.

• Motivation
Häufig ist es sinnvoll, Gruppen von Objekten zusammenzufassen. Zum Beispiel werden in
einem Gebäude viele Wände vom gleichen Typ gebaut. Diese Wände bestehen alle aus den
gleichen Materialien (Stein, Putz, Dämmstoff, etc.) und haben den gleichen Schichtaufbau,
allerdings hat jede Wand eine individuell unterschiedliche Größe. Es ist also sinnvoll, ver-
schiedene Wände gleichen Typs zusammenzufassen und die gemeinsamen Attribute inner-
halb dieser neuen Klasse abzulegen. Graphisch läßt sich das folgerndermaßen ausdrücken:

A Fläche

setMaterialien(_Mat))
getMaterialien()
setR(_R)
getR()

Wand

M Materialien
R Wärmewiderstand

WandTyp

^Typ->getR(). ^R.

setMaterialien(_Mat)
getMaterialien()
setR(_R)
getR()

Typ

n 1…1

A.2.3 Relationen

- 68 -

• Anwendbarkeit
Das Pattern ist anwendbar, wenn mehrere Objekte einige Attributwerte gemeinsam haben.
Ebenso kann es angewendet werden, wenn Objekte in einer Beziehung zueinander stehen
(d.h. mit einer Relation verbunden sind) und ein einfacher Datenaustausch entlang dieser
Relation gewünscht ist (Stichwort:Datenvererbung). Dabei kann theoretisch auch ein
zyklischer oder rekursiver Datenaustausch auftreten. In diesem Fall muß noch für geeig-
nete Abbruchmechanismen gesorgt werden.
Die Zugriffsfunktionen des Wandtyps werden vom Generator automatisch erzeugt (siehe
PatternInstanzenvariable (58)). Durch die einfache Indirektion werden nur Methoden für
die Wand implementiert, um auf die ausgelagerten Attribute des Wandtyps zuzugreifen.
Diese Methoden rufen die entsprechenden Zugriffsfunktionen des Wandtyps auf.

• Struktur
Das Pattern beruht darauf, daß es zu den individuell unterschiedlichen Objekten (hier in der
KlasseObjekt zusammengefaßt) eine weitere KlasseObjektbeschreibung gibt.
Diese beiden Klassen sind mit einer 1:1 Relation (Typ) verknüpft. Die Zugriffsfuktionen
der gemeinsamen Attribute (also Instanzenvariablen) werden bei den Objekten nachgebil-
det, so daß auf diese Attribute genau wie auf lokale Attribute zugegriffen werden kann. Die
einzelnen Objekte merken also gar nicht, wenn auf eine gemeinsame Instanzenvariable
zugegriffen wird. Beim Ändern einer Objektbeschreibung ist besondere Vorsicht geboten
(siehe Punkt Konsequenz).

• Mitwirkende Objekte

Klassen:
Objekt: Die ursprüngliche Klasse, für die eine Beschreibung vorliegt, die meh-

rere Instanzen dieser Klasse teilen.
Objektbeschreibung: Die Beschreibung der ursprünglichen Objekte. Hier werden die

Instanzenvariablen abgelegt, die von mehreren Objekten gemeinsam benutzt wer-
den. Dies kann auch eine neue Klasse sein.

Instanzenvariablen / Konstanten:
V Das beschreibende Attribut.

…lokale Attribute…

getV()
setV(_V)

Objekt

V Variable

Objektbeschreibung

^Typ->getV().^Typ->setV(_V).

getV()
setV(_V)

Typ

n 1…1

Einfache Indirektion

A.2 Framework-Patterns

- 69 -

Funktionen:
getV(), setV(_V) Zugriffsfunktionen auf die Variable V. setV() verändert eine

Instanz der Objektbeschreibung, was bedeutet, daß dadurch eventuell mehrere
Objekte betroffen sind.

• Zusammenarbeit
Die Zugriffsfunktionen auf Attribute der Klasse Objekt sind so benannt, daß es keinen
Unterschied macht, ob auf ein lokales oder ein gemeinsames Attribut zugegriffen wird.
Funktionsaufrufe, die gemeinsame Attribute betreffen, werden einfach an die Objektbe-
schreibung weitergeleitet.
Die Objektbeschreibung ihrerseits braucht keine Kenntnis davon zu haben, für welche
Objekte sie als Beschreibung dient.

• Konsequenz
Benutzen mehrere Objekte dieselben Attributwerte (das heißt, die Objekte sind vom selben
Typ), so können die Attribute in eine eigene Klasse ausgelagert werden. Dadurch brauchen
diese Attribute nicht bei jedem Objekt desselben Typs abgespeichert zu werden; Redundan-
zen in der Datenbasis werden also vermieden. Vorsicht ist jedoch beim Ändern dieser
gemeinsamen Attribute geboten: bei einer Änderung wird immer die gesamte Objektbe-
schreibung geändert, was Auswirkungen auf andere Objekte desselben Typs hat. Beim
Schreiben auf ein gemeinsames Attribut muß also immer bedacht werden, was damit
erreicht werden soll. Soll die Objektbeschreibung an sich geändert werden (zum Beispiel
weil alle Außenwände eine zusätzliche Isolierung bekommen), so kann dieses direkt
geschehen. Ändert sich hingegen nur ein Objekt (eine Außenwand wird verstärkt) so muß
zunächst für dieses Objekt die Objektbeschreibung kopiert werden und kann dann erst
abgeändert werden.
Zusätzliche Vorsicht ist bei der Instanziierung der Objekte geboten. Es muß dafür gesorgt
werden, daß alle Objekte mit der richtigen Objektbeschreibung verbunden werden. Eventu-
ell kann es auch sinnvoll sein, mehrere gleiche Objektbeschreibungen zu haben. Dadurch
können gleichartige Objekte in Clustern zusammengefaßt werden, und die Änderung einer
Clusterbeschreibung wirkt sich dann nur auf diesen aus.

• Verwandte Patterns
Komplexe Indirektion (69) - Verfolgen einer 1:n Relation.

Komplexe Indirektion

• Zweck
Oftmals haben einzelne Objekte Beziehungen zu mehreren anderen Objekten einer Klasse.
Dieses Pattern ermöglicht den Zugriff auf einzelne Attribute der referenzierten Objekte und
verrechnet diese zu einem Gesamtwert (Summe, Durchschnitt, etc.).

• Motivation
1:n Relationen treten an vielen Stellen eines Modells auf. Zum Beispiel grenzen an einen
Raum mehrere Wände. Zur Simulation der Temperatur in einem Raum muß die Gesamt-

A.2.3 Relationen

- 70 -

wärmemenge ermittelt werden, die in (bzw. aus) dem Raum fließt. Diese Gesamtwärme-
menge ist einfach die Summe der Wärmemengen, die durch die einzelnen Wände fließen.
Mit Hilfe der komplexen Indirektion können für alle Wände eines Raumes diese Wärme-
mengen berechnet werden (durch den Aufruf einer entsprechenden Funktion), und
anschließend werden die erhaltenen Werte aufsummiert.

Die FunktiongetQ() des Raumes (s. Abbildung) sorgt dabei für die Abfrage der einzelnen
Wärmemengen der referenzierten Wände und summiert diese Werte auf.
Die FunktiongetQ() der Wand wird in diesem Pattern nicht näher beschrieben, da es in der
Verantwortung der Wände steht, wie sie ihre Wärmemengen ermitteln (durch Berech-
nungsformeln, Instanzenvariablen o.ä.).

• Anwendbarkeit
Das Pattern kann zur Verfolgung beliebiger 1:n Relationen herangezogen werden. Mögli-
che Varianten zur Berechnung des resultierenden Wertes sindSumme, Produkt, Mittelwert,
Standardabweichung undVarianz.

• Struktur
Dieses Pattern ist sehr einfach aufgebaut. Ein Objekt referenziert mehrere Objekte einer
anderen (oder auch derselben) Klasse. Bei diesem Objekt wird eine Funktion zur Verfü-
gung gestellt, mit der bei allen referenzierten Objekten eine bestimmte Methode aufgerufen
werden kann. Hat diese Methode einen Rückgabewert, so können die erhaltenen Werte zu
einem Gesamtwert verrechnet werden. Welche Berechnungsformel dabei zum Einsatz
kommt, wird bei der Bindung des Patterns festgelegt. Möglich sind dabei Formeln wie
Summe, Durchschnitt, Produkt oder Standardabweichung.

getQ()

Raum Wand

Qtemp := 0.
foreach w: Wände do

Qtemp := Qtemp + w->getQ().
od
^Qtemp

getQ()

Wände

n 1…1

A.2 Framework-Patterns

- 71 -

Die Methode, die bei den referenzierten Objekten aufgerufen wird, muß separat modelliert
werden.

• Mitwirkende Objekte

Klassen:
Objekt: Das „Ursprungsobjekt“ von dem aus die 1:n Relation verfolgt

werden soll.
referenzierteObjekte:Die referenzierten Objekte. Werden diese beiden Klassen an die-

selbe Modell-Klasse gebunden, so muß darauf geachtet werden, daß keine Zyklen
bei der Referenzierung auftreten.

Funktionen:
Objekt::getV() Diese Methode wird aufgerufen, um alle verbundenen

Objekte zu durchlaufen.
referenzierteObjekt::getV()Bei jedem referenzierten Objekt wird die Funktion getV()

aufgerufen. Diese muß an geeigneter Stelle genauer spezifiziert werden.

• Zusammenarbeit
Die Relation zwischen den beiden Objekttypen wird nur in einer Richtung verfolgt. Die
Objekte werden in einer beliebigen Reihenfolge - je nach Implementierung der Relation
durch das PatternRelation (59) - durchlaufen.

• Konsequenz
Vorsicht ist geboten, falls zyklische Referenzierungen auftreten können. Dann muß für
Abbruchkriterien gesorgt werden, damit keine Endlos-Schleifen auftreten.

• Verwandte Patterns
Einfache Indirektion (67) - Verfolgen einer 1:1 Relation.

getV()

Objekt referenzierteObjekte

Vtemp := 0.
foreach rel: Relation do

Vtemp := Vtemp + rel->getV().
„oder andere Berechnungsformel“

od
^Vtemp

getV()

Relation

n1…1

Komplexe Indirektion

A.2.4 Strukturierungen

- 72 -

A.2.4 Strukturierungen

Diese Patterns fassen unterschiedliche Modell-Klassen zusammen und gruppieren sie in
bestimmte Strukturen.

Komposition

• Zweck
Gruppiert unterschiedliche Objekte in einer Baumstruktur.

• Bekannt unter
Composite [GHJ95] und in leicht abgewandelter Form als
Rekursive Aggregation [RBP91].

• Motivation
Häufig treten in Applikationen heterogene Mengen auf. Dabei sollte auf die einzelnen
Objekte in der Menge mit gleichen Methoden zugegriffen werden. Jedes Objekt der Menge
kann dann diese Methoden unterschiedlich abarbeiten (Polymorphie).
Zum Beispiel wird der Wärmedurchgang durch Wände und geschlossene Türen gleich
berechnet. Ist eine Tür hingegen offen, so treten zusätzlich noch andere Effekte auf (Aus-
tausch von Luftmassen). Der Wärmedurchgang durch eine Tür muß also gesondert berech-
net werden. Einen Raum, der von Wänden und Türen umgeben ist, interessiert nur das
Ergebnis der Wärmedurchgangsberechnung; die genauen Berechnungsformeln sollten nur
der Wand bzw. der Tür bekannt sein. Um diese Situation in den Griff zu bekommen, kann
man eine abstrakte Klasse Raumteilerelement (RTE) definieren. Diese Klasse stellt eine
Funktionsschnittstelle zur Berechnung des Wärmedurchgangs zur Verfügung. Die Klassen
Wand undTür sind von der KlasseRTE abgeleitet und implementieren die entsprechenden
Berechnungsformeln.

A.2 Framework-Patterns

- 73 -

Um jetzt eine Menge von Wänden und Türen zusammenfassen zu können, braucht man
eine weitere KlasseRaumteiler. Ein Raumteiler ist selbst wieder einRTE und aggregiert
zusätzlich mehrere Raumteilerelemente (siehe folgendes Bild).

Wird ein Raumteiler aufgefordert, einen Wärmedurchgang zu berechnen, so leitet er diese
Aufforderung weiter (d.h. er ruft die entsprechenden Funktionen seiner aggregierten Teile
auf) und liefert die Summe dieser Teilergebnisse zurück. Zur Verrechnung der Teilergeb-
nisse können auch andere Formeln verwendet werden (z.B Produkt, Mittelwert, etc.).
Jetzt ist ein Raum nicht mehr von mehreren unterschiedlichen Objekten umgeben. Jedes
Objekt, das den Raum abgrenzt, reagiert auf dieselben Nachrichten. Insbesondere können
jetzt auch Wände und Türen beliebig hierarchisch geschachtelt sein (siehe das Objektdia-
gramm in der nächsten Abbildung).

getQ()

RTE

getQ()

Raumteiler

getQ()

Tür

getQ()

Wand

n
Raum istUmgebenVon

Elemente

Q := 0.
foreach e:Elemente do

Q := Q + e->getQ()
od
^Q.

A.2.4 Strukturierungen

- 74 -

• Anwendbarkeit
Das Pattern wird angewendet, um Unterschiede zwischen einzelnen Objekten einer hetero-
genen Menge zu vereinheitlichen. Alle Objekte einer solchen Menge können gleichartig
angesprochen werden.

• Struktur
Das Pattern beruht darauf, daß es zu den individuell unterschiedlichen Objekten (hier in der
KlasseObjekt zusammengefaßt) eine weitere KlasseObjektbeschreibung gibt.
Diese beiden Klassen sind mit einer 1:1 Relation verknüpft. Die Zugriffsfuktionen der
gemeinsamen Attribute (also Instanzenvariablen) werden bei den Objekten nachgebildet,
so daß auf diese Attribute genau wie auf lokale Attribute zugegriffen werden kann. Die ein-
zelnen Objekte merken also gar nicht, wenn auf eine gemeinsame Instanzenvariable zuge-
griffen wird.

Grundriß

Tür 1

Nordwand Raum

Raumteiler
Nordwand

Wand Tür Wand

Wand 1 Tür 1 Wand 1

Wand 1 Wand2

Raumteiler
…

…

Operation()

Komponente

Operation()
add(E)
remove(E)
getChildren()

Menge
Elemente

n

foreach rel: Relation do
r->Operation().

od.

Komposition

A.2 Framework-Patterns

- 75 -

Die MethodeMenge::Operation() kann mehrere unterschiedliche Ausprägungen haben.
Neben dem Aufrufen von Prozeduren können auch Funktionen mir Rückgabewerten aufge-
rufen und die erhaltenen Werte anschließend verrechnet werden. Mögliche Berechnungen
sind Summe, Produkt, Mittelwert, Standardabweichung und Varianz (vergleiche Pattern
Komplexe Indirektion (69)).

• Mitwirkende Objekte

Klassen:
Komponente: Diese abstrakte Klasse dient als Oberklasse für alle Objekte, die in der

Menge aufgenommen werden sollen. Im wesentlichen stellt sie die Methodeope-
ration() zur Verfügung, die für alle Objekte einer konkreten Menge aufgerufen
werden kann.

Menge: In einer Menge können mehrere Objekte der KlasseKomponente
abgelegt werden. Dies können zum einem weitere Mengen sein oder es handelt
sich um Blätter der Baumstruktur.

Funktionen:
Komponente::Operation() Abstrakte Methode, die bei allen Objekten der Menge vor-

handen ist. Sie muß überladen werden, um den Objekten die gewünschte Funktio-
nalität zu geben.

Menge::Operation() Bei einer Menge wurde die FunktionOperation() bereits
so überladen, daß automatisch die jeweiligenOperate() Funktionen aller Objekte
in der Menge aufgerufen werden.

Menge::add(E) Nimmt ein neues Objekt in eine Menge auf. Dies kann
auch wiederum eine weitere Menge sein.

Menge::remove(E) Löscht ein Objekt aus einer Menge.
Menge::getChildren() Liefert alledirekten Kinder einer Menge. Handelt es sich

dabei um weitere Mengen, so muß für diese wiederum diegetChildren() Funktion
aufgerufenwerden, umalle Kinder der Menge zu erhalten.

• Zusammenarbeit
Die Instanzen der Klasse Objekt arbeiten auf den gemeinsamen Attributen so, als ob sie
lokal wären. Die Zugriffsfunktionen sind derart definiert, daß keine lokalen Attribute ver-
ändert oder gelesen werden, sondern es wird der Zugriff an die Objektbeschreibung weiter-
geleitet.

• Konsequenz
Die Anwendung des Patterns hat sowohl Konsequenzen für den (schreibenden) Zugriff auf
gemeinsame Attribute, als auch für die Instanziierung.
Beim Schreiben eines gemeinsamen Attributes muß immer bedacht werden, daß eventuell
andere Objekte auch noch denselben Attributwert haben. Das Schreiben eines Attributes
beeinflußt also immer eine ganze Gruppe von Objekten.
Bei der Instanziierung der Objekte muß darauf geachtet werden, daß die passenden Objekt-
beschreibungen auch immer richtig mit den Objekten verknüpft werden.

• Verwandte Patterns
Iterator (76) zum Iterieren über eine Menge.

A.2.4 Strukturierungen

- 76 -

Iterator

• Zweck
Dieses Pattern dient zur schrittweisen Verfolgung der Objekte in einer Menge. Die Reihen-
folge, in der die Objekte abgearbeitet werden, kann dabei in einem speziellen Iterator fest-
gelegt werden.

• Bekannt unter
Iterator aus [GHJ95].

• Motivation
Häufig müssen Objekte einer Menge in einer bestimmten Reihenfolge verfolgt werden.
Würde man die Reihenfolge der Objekte in der Menge bei dem Mengen-Objekt vorgeben,
so wird das Interface dieser Menge sehr schnell recht komplex und unübersichtlich. Statt
dessen kann man eine neue (abstrakte) KlasseIterator einführen, die sich um die schritt-
weise Abarbeitung der Objekte kümmert. Ein spezieller Iterator kümmert sich um die
gewünschte Reihenfolge. So können für ein und dieselbe Menge mehrere Iteratoren existie-
ren, die die Elemente der Menge in unterschiedlichen Reihenfolgen abarbeiten. Um die
Elemente eines Arrays zu verfolgen, kann folgendes modelliert werden:

• Anwendbarkeit
Das Pattern lohnt sich überall dort zu verwenden, wo in unterschiedlichen Reihenfolgen
auf Objekte einer Menge zugegriffen werden soll. Wird eine Menge immer in derselben
Reihenfolge durchlaufen, so kann dafür auch eine einfache Funktion bei der Menge selbst
zur Verfügung gestellt werden. Wenn die Menge durch eine 1:n Relation repräsentiert wird,
kann sie alternativ auch mit dem PatternKomplexe Indirektion (69) durchlaufen werden.

• Struktur
Das Pattern besteht aus einer Klasse, die die Menge repräsentiert, und einer abstrakten Ite-
rator-Klasse. Da die Iterations-Reihenfolge erst im konkreten Iterator festgelegt werden
soll, muß solch ein konkreter Iterator von der Iterator-Klasse dieses Pattern abgeleitet und
an anderer Stelle separat modelliert werden. Auch die konkrete Implementation der Menge
wird mit diesem Pattern nicht beschrieben, da sie prinzipiell vom Iterator unabhängig sein
sollte.
Beim Anlegen eines neuen Iterators muß die Menge, über die iteriert werden soll, bereits
vollständig bekannt sein. Daher stellt die KlasseMenge eine FunktioncreateIterator() zur

add(E)
remove(E)
elements()

Array

first()
next()
currentItem()
isDone()

ArrayIterator

Index
1 1

list
Index:=0

Index:=Index+1

^list->elements()
->at(Index)

A.2 Framework-Patterns

- 77 -

Verfügung, die einen neuen Iterator anlegt. Dem Konstruktor des Iterators wird dabei die
aktuelle Menge als Parameter übergeben.

• Mitwirkende Objekte

Klassen:
Menge: Die Menge, über die iteriert werden soll.
Iterator: Kapselt die eigentliche Iteration und liefert Schritt für Schritt das

jeweils nächste Element der Menge zurück (über die Funktionennext() undcur-
rentItem()).

Funktionen:
Menge::createIterator() Legt einen neuen Iterator über der aktuellen Menge an.
Iterator::first() Setzt den Iterator auf das erste Element der Menge zurück.
Iterator::next() Liefert das jeweils nächste Element der Menge.
Iterator::currentItem() Gibt das aktuelle Element aus der Menge zurück.
Iterator::isDone() Gibt an, ob alle Elemente der Menge durchlaufen worden

sind.

• Zusammenarbeit
Der Iterator merkt sich jeweils das aktuelle Element der Menge und kann das jeweils nach-
folgende Element berechnen.

• Konsequenz
Durch die spezielle Iterator-Klasse wird das Interface einer Menge vereinfacht. Die Auf-
gabe das jeweils nächste Element der Menge zu berechnen, wird dem Iterator überlassen.
Dadurch ist es möglich, eine Menge mit mehreren verschiedenen Iteratoren in unterschied-
lichen Reihenfolgen zu durchlaufen.

• Verwandte Patterns
Komplexe Indirektion (69) zum einfachen Durchlaufen einer 1:n Relation.

createIterator()

Menge

first()
next()
currentItem()
isDone()

Iterator

1 1
list

^new Iterator(this)

Komposition

A.2.4 Strukturierungen

- 78 -

- 79 -

Anhang B Literaturverzeichnis

[ACL96] Alencar, P.S.C.; Cowan, D. D.; Lichtner, K. J.; Lucena, C. J. P., Nova, L. C. M.:
„Tool Support for Design Patterns“, University of Waterloo, Waterloo, 1996
(http://csg.uwaterloo.ca/~stafford/ADV/theroy.html)

[AIS77] Alexander, C.; Ishikawa, S.; Silverstein, M.: „A Pattern Language“, Oxford
University Press, 1977

[Boo90] Booch, G.: „Object-Oriented Design with Applications“, Redwood City, CA:
Benjamin-Cummings, 1990

[BFV96] Budinsky, F.J.; Finnie, M. A.; Vlissides, J.M.; Yu, P.S.: „Automatic code
generation from design patterns“, IBM Systemn Journal, Vol. 35, No. 2, 1996
(http://www.almaden.ibm.com/journal/sj/budin/budinsky.html)

[Che94] Chen, D.J.; Chen, D.T.K.: „An experimental study of using reusable software
design frameworks to archieve software reuse“, Journal Of Object-Oriented
Programming, 7(2), 1994, Seiten 56-67

[Che76] Chen, P. P.: „The entity-relationship model: Toward a unified view of data”. In
„ACM Transactions on Database Systems, Vol. 1”, Seiten 9-36, 1976.

[Coa92] Coad, P.: „Object-Oriented Patterns“, Communications of the ACM, Vol. 35,
No. 9, 1992, Seiten 152-158.

[Geu95] Geuer, E.: „Prototypische Implementierung einer flexiblen, generierbaren
Simulationsumgebung“, Diplomarbeit, Universität Kaiserslautern, 1995

[GHJ95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: „Design Patterns“, Addison-
Wesley, 1995

[Hei96] Heister, F.: „Simulator-Kernel-Dokumentation“, Interne Arbeit der AG „VLSI
Entwurf und Architektur“, Universität Kaiserslautern, 1996

- 80 -

[KrP88] Krasner, G. E.; Pope, S. T.: „A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80“, Journal of Object-Oriented
Programming, 1(3), August/September 1988, Seiten 26-49

[LJK94] Lutz, P.; Jenisch, R.; Klopfer, H.; Freymuth, H.; Krampf, L.; Petzold, K.:
„Lehrbuch der Bauphysik“, Teubner Verlag, Stuttgart, 1994

[MaM89] Mattern, F.; Mehl, H.: „Diskrete Simulation - Prinzipien und Probleme der
Effizienzsteigerung durch Parallelisierung“, Informatik Spektrum ‘89, Seiten
198-210, 1989

[Nee87] Neelamkavil, F.: „Computer Simulation and Modelling“, John Wiley & Sons
Ltd., Großbritannien, 1987

[Pre95] Pree, W.: „Design Patterns for Object-Oriented Software Development“, ACM
Press, Addison-Wesley, 1995

[PDr80] Puschmann, Drath: „Technische Wärmelehre“, 25. Auflage, Darmstadt,
Fikentscher, 1980

[RBP91] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.: „Object-
Oriented Modeling and Design“, Prentice Hall, Englewood Cliffs, N.J., 1991

[Sah96] Sahler, A.: „Analyse und Realisierung einer Notation zur Erstellung von
Gebäudemodellen“, Diplomarbeit, Universität Kaiserslautern, 1996

[SFB94] Sonderforschungsbereich 501, Finanzierungsantrag 1995-1996-1997
„Entwicklung großer Systeme mit generischen Methoden“, Universität
Kaiserslautern, 1994

[SFB96] Altmeyer, J.; Schürmann, B.; Schütze, M.; Zimmermann, G.: „Generator-Based
Reuse of Common Models“, Bericht 3/1996 im Sonderforschungsbereich 501,
Universität Kaiserslautern, 1996

[Sou95] Soukup, J.: „Pattern Languages of Program Design; Chapter 20: Implementing
Patterns“, Addison-Wesley, 1995
(http://www.codefarms.com/papers/patterns.html)

[SSA94] Schütze, M.; Schürmann, B.; Altmeyer, J.: „Generating Abstract Datatypes
with Remote Acceess Capabilities“, Proceedings EDAF 1994, Porto Alegre,
1994

[Vis95] „Visual Works 2.5 Cookbook“, ParcPlace-Digitalk Inc., Sunnyvale, CA, 1995

