Tl Rheinland-Pfdalzische
Technische Universitat

R P Kaiserslautern
Landau

CONVERSION OF DATAFLOW PROCESS NETWORKS TO
PIKEOS APPLICATIONS

Master Thesis

Sarthak Sali

June 5, 2025

University of Kaiserslautern-Landau
Department of Computer Science
67663 Kaiserslautern
Germany

Examiner: Prof. Dr. Klaus Schneider
Msc. Florian Krebs

Eigenstandigkeitserklarung

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema
,,Conversion of Dataflow Process Networks to PikeOS Applications” selbststéan-
dig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollstdndig
angegeben habe und dass ich die Stellen der Arbeit — einschlieflich Tabel-
len und Abbildungen —, die anderen Werken oder dem Internet im Wortlaut
oder dem Sinn nach entnommen sind unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Kaiserslautern, den 5.6.2025

Sarthak Sali

i

Abstract

This thesis investigates the transformation of high-level dataflow net-
works into real-time applications deployable on PikeOS, a real-time op-
erating system designed for safety- and security-critical environments.
Dataflow computation models, such as Kahn Process Networks (KPN)
and Dataflow Process Networks (DPN), offer inherent modularity, de-
terminism, and parallelism—characteristics that make them well-suited
for embedded systems. However, mapping such models onto real-time
operating systems introduces challenges related to resource constraints,
strict timing guarantees, and scheduling determinism.

To address these challenges, this work proposes a systematic approach
for converting dataflow actors into PikeOS-executable components. The
methodology leverages PikeOS features including partitioning, thread
scheduling, and inter-process communication mechanisms such as shared
memory, VM ports, and synchronization primitives (e.g., mutexes and
condition variables). Four distinct actor scheduling strategies are imple-
mented and evaluated using five representative application scenarios.

Experimental results demonstrate that dataflow networks can be exe-
cuted on PikeOS in a predictable and efficient manner, meeting real-time
constraints. This thesis thereby provides a practical framework for imple-
menting abstract dataflow models on a low-level real-time platform. The
findings support the use of PikeOS as a viable execution environment for
developing mixed-criticality embedded systems based on dataflow prin-
ciples.

il

Contents

|List of Figures| 1
3
[List of Tables| 5
(1__Introductionl 7
[1.1 Background and Motivation| 7
(1.2 Problem Statementl o oL 8
1.3 Related Workl 8
[1.4 Research Contributions|. 10
[1.5 Thesis Organization| 10

|2 Background| 11
2.1 Embedded Systems and Real-Time Requirements| 11
2.2 Dataflow Models| L. 12
[2.2.1 Kahn Process Networks (KPN)| 12

2.2.2 Dataflow Process Networksl 14

2.3 CAL Actor Language and XDF' Representation| 15
[2.4 Model-Based Design and Code Generation| 16
[2.4.1 Comparison Between Datatlow Semantics and RTOS Ex- |

| ecution Modell. o 0oL 20
PIT TS = Tod Bt D sl 21

3 Methodology for Dataflow-to-PikeOS Mapping] 23
3.1 Code Conversionl 24
3.1.1 CAL and XDF Input Specifications|. 24

[3.1.2 "Transpiler Design and Generated C Output| 26

3.2 PikeOS System Architecture]. 29
[3.2.1 Actor-to-Thread Mapping| 29

[3.2.2 Partition Layout and Schedulingl 30

3.3 Execution Semantics and Communication Infrastructurel 32
[3.4 Target Applications|., 34
8.4.1 Add Actor Networkl. 34

[3.4.2 Digital Filter] 35

13.4.3 PingPong Actor Network| 35

.44 Audio Networkl, 36

13.4.5 ZigBee Networkl. 37

Contents

(4

Implementation of Scheduling Strategies|

[T

IPC-Based Messaging|

A2

Mutex and Condition Variable Synchronization|

3

Fvent-Based Signaling with Thread Suspension in PikeOs| . . .

7}

Inter-Partition Communication using VM Queuing Ports|

5

Mapping of CAL actors to PikeOS Methods|

5 Evaluation and Results|

b1

Test Setup|.

b.1.1 Raspberry P14|

39
39
44
48
93
o8

63
63
63
64
65
65
66

69

73

vi

List of Figures

2.1 Task Scheduling in an RTOS with Priority-Based Preemption| . 12

2.2 Dataflow Process Networkl 14
2.3 CODEO workpanel| 20
4.1 Time Partitions in PikeOS| 55
4.2 Qports Connection| 56

Listings

3.1 PingPong.call 24
3.2 PingPong.xdff 0 0L 25
3.3 PingPong.d 27
3.4 Thread Initialization| 29
3.5 PingPong Thread| 29
[3.6 Thread to Core Assignment| 30
[3.7 PingPong Partition| 0. 31
[3.8 PingPong Schedule Function|. 32
4.1 CopyA Thread| 40
4.2 TPC Buffer Sendl L 40
4.3 TPC Buffer Receivel 41
4.4 Example Thread Waitingl 41
4.5 Example Actor Logic| 42
4.6 Example Thread Send| 42
4.7 Producer Threadl 42
4.8 CopyA Thread| 43
4.9 CopyB Thread| 43
4.10 PingPong Thread| 43
4.11 Merger Thread| L. 43
412 Mutex and Condition Initialization| 44
4.13 Mutex Initializationl 45
4.14 Waiting on Condition Signal| 45
[4.15 Locking Mutex| 46
4.16 Waiting on Condition| 46
[4.17 Sending Condition Signall 46
418 TInitialization of Buffers 46
4.19 Source Threadl 47
4.20 Delay Thread| o 47
[4.21 Multiplication Thread| 47
422 Addition Threadlo oo 48
423 Sink Threadl o 48
4.24 Shared Memory Butters Initialization| 49
[4.25 Signaling Thread 2|, 49
[4.26 Thread Stopping| 50
[4.27 Thread Waiting| 50
[4.28 Signaling Thread 3| 50
4.29 Thread 3 resuming Thread 1| 50
4.30 HeaderAdd Threadl 51

Listings

4.31 ChipMapper Thread| 51
4.32 QPSK Thread|. o 52
4.33 PulseShape Thread|. 52
4.34 Opnening Port| 54
4.35 Reading from Port| 54
4.36 Writing to Port| o 0o 54
437 Actorl Threadlo 55
4.38 Actor?2 Threadl 56
439 Add Threadl o 57
4.40 Actor3 Threadlo 57
4.41 Sample Thread Logicl. 58
|4.42 PikeOS adaptible Basic Structurel L. 58
443 QPSK.callo 59
[4.44 TPC Bufter - QPSK Thread receiving 99
4.45 Event Signaling - QPSK Thread reading from buffer| 60
[4.46 Mutex Method - QPSK Thread Circular Bufter| 60
[4.47 Inter-Partition - QPSK Thread Qport Read| 60
4.48 QPSK Thread Logid 60
4.49 TPC Buffer - QPSK Thread Send| 61
4.50 Event Signaling - QPSK Thread Writing to Shared Buffer| . . . 61
[4.51 Mutex Method - QPSK Thread Storing in Circular Bufter] . . . 61
[4.52 Inter-Partition - QPSK Thread Writing to Qport| 61

List of Tables

4.1 Time Partitionsl. 55
b.1 Add Array Fxecution Result| 67
0.2 PingPong Execution Result| 67
5.3 Drigital Fulter Execution Result| 67
5.4 Audio Processing Fxecution Result| 67
b.5 ZwigBee Execution Result| 68

1 Introduction

1.1 Background and Motivation

Dataflow networks provide a structured way to model parallel computing by
linking independent processing units, called actors, through channels that carry
data tokens. Each actor runs as soon as its required input data is available,
which makes the system naturally concurrent and avoids the need for a central
controller. This behavior fits well with formal models such as Kahn Process
Networks (KPNs), Dataflow Process Networks (DPNs), Synchronous Dataflow
(SDF), and Cyclo-Static Dataflow (CSDF) |LP95; BLM96|.

Each of these models offers different trade-offs between expressiveness and an-
alyzability. In KPNs, actors communicate through unbounded FIFO channels
using blocking reads, which ensures deterministic behavior regardless of the ex-
ecution order. DPNs build on this by allowing bounded buffers and a form of
controlled nondeterminism, where actor firing order is flexible but still limited
by token availability and buffer size |Lau+94]. These models are particularly
suited for systems that require strong guarantees about data correctness and
execution behavior.

SDF and CSDF further refine the dataflow concept by introducing fixed and
cyclic token production/consumption rates, respectively. SDF assumes a con-
stant number of tokens per actor firing, which enables static scheduling and
buffer allocation at compile time |[Lau+94]. CSDF extends this idea by allow-
ing actors to produce and consume tokens in a repeating pattern, supporting
multi-rate systems such as those found in signal processing and communica-
tions. Even with these rate variations, CSDF maintains compile-time ana-
lyzability, offering greater modeling flexibility while still supporting real-time
execution requirements [BLM96].

These dataflow models work well for real-time and embedded systems because
they make it easier to run parts of a program in parallel (implicit parallelism),
make it clear how data flows between parts (analyzable communication), and
allow the developer to plan the order and timing of execution in advance (static
scheduling). This makes it easier to meet timing guarantees and manage lim-
ited resources like memory or CPU usage.

PikeOS is a real-time operating system designed for safety- and mission-critical
domains such as aerospace, automotive, and industrial systems. It provides
strong separation between components, fault isolation, and both time-based
and priority-based task scheduling |[SYS21b|. These features make it a good

Chapter 1: Introduction

match for executing dataflow applications. However, mapping actor behav-
ior onto PikeOS requires careful planning, including setting up inter-thread
communication, selecting the right scheduling policies, and managing parti-
tioned resources. To maintain the original timing and execution semantics of
a dataflow model, these mappings must be done precisely and consistently.

1.2 Problem Statement

The primary goal of this thesis is to investigate how dataflow networks can be
executed on PikeOS while preserving their original actor semantics and meeting
real-time requirements of embedded systems. This includes identifying which
PikeOS features—such as threads, inter-process communication, shared mem-
ory, and partitioning—are most suitable for representing actors and channels,
as well as evaluating how different scheduling strategies impact responsiveness,
determinism, and resource efficiency.

However, combining dataflow execution models with PikeOS is non-trivial.
Dataflow systems rely on lightweight, token-based communication and are
typically driven by the availability of input data rather than fixed schedules
[ILP95|. In contrast, PikeOS is designed for safety-critical applications and
enforces strict isolation between tasks and partitions|SYS21b|. Its synchro-
nization primitives and scheduling mechanisms are not inherently compatible
with the dynamic, data-driven firing model used in dataflow execution.|ref]

As a result, running dataflow networks in PikeOS requires custom adapta-
tion strategies. These strategies must preserve core dataflow semantics—such
as actor firing rules, token availability, and bounded buffering—while oper-
ating entirely in user space. The challenge lies in designing and evaluating
these mappings in a way that respects both the theoretical execution model of
dataflow and the practical constraints of PikeOS. This thesis addresses that gap
through implementation and measurement using representative actor-based ap-
plications on real embedded hardware.

1.3 Related Work

Real-Time Scheduling of Dataflow Models

Parks and Lee |[PL95| present a foundational real-time scheduling model that
addresses the execution of periodic dataflow tasks using a non-preemptive, rate-
monotonic approach. Unlike traditional preemptive scheduling, their method
reduces runtime overhead by avoiding frequent task switches, making it suitable
for embedded systems with tight timing constraints. The execution model
builds on a multithreaded architecture inspired by dataflow semantics, where
each actor is treated as an independent thread scheduled dynamically based
on its period.

1.3 Related Work

Their work also outlines strategies to improve scheduling feasibility in com-
plex systems. They suggest extending the model using Cyclo-Static Dataflow
(CSDF) to handle actors with multiple execution phases. This allows some
phases to execute without consuming tokens, effectively reducing blocking and
increasing scheduling flexibility. Additionally, actor clustering techniques are
proposed to aggregate fine-grained actors into coarser tasks, minimizing sus-
pension points and simplifying the schedule.

This research aligns with the goals of this thesis, particularly in evaluating
synchronization methods that preserve actor semantics under real-time con-
straints. The proposed non-preemptive strategies offer valuable insights for de-
ploying dataflow applications where deterministic execution and low-overhead
scheduling are critical.

Building on this, Bamakhrama and Stefanov |Bam14] introduced hard real-
time scheduling for Cyclo-Static Dataflow (CSDF), developing techniques such
as deadline factoring and period scaling. Their work demonstrated how peri-
odic task sets can be derived from CSDF graphs and successfully implemented
on FreeRTOS.

Dataflow Execution on RTOS Platforms

Mahmoud [Mah22| presents a structured approach for mapping Dataflow Pro-
cess Networks (DPNs) to FreeRTOS. The work introduces an automated code
generation framework that interprets CAL actor descriptions and translates
them into FreeRTOS-compliant C code. A central contribution is the Try-
to-Fire-or-Sleep scheduling pattern, which allows each DPN actor to operate
as a FreeRTOS task, waking only when input data is available. This ensures
that data-driven semantics are preserved while maintaining compatibility with
RTOS constraints. The study provides insights into the challenges of preserv-
ing actor semantics within safety-critical environments, including issues like
priority inversion and buffer sizing.

Al-Saadi et al. |[AAP17| introduce a hybrid scheduling method that allows
dataflow-based applications and traditional real-time tasks to run together ef-
ficiently on multi-core systems. Their method enhances the partitioned Earli-
est Deadline First (EDF) scheduling by integrating periodic threads and Syn-
chronous Dataflow (SDF) actors into the same scheduling strategy. A key
idea in their work is to convert the timing behavior of SDF actors into classic
real-time task parameters like periods and deadlines. This makes it easier to
manage both data-driven and time-driven components within a single unified
scheduling system.

Pino, Parks, and Lee [PPL94| explore the real-time execution of multiple inde-
pendent Synchronous Dataflow (SDF) graphs within embedded systems, par-
ticularly when nondeterministic communication and user-interactive control
are required. Their work extends the SDF model by introducing peek and poke
actors, which allow decoupled SDF subgraphs to communicate asynchronously
without violating the static scheduling assumptions of each individual graph.

Chapter 1: Introduction

This mechanism proves especially useful when interfacing real-time control
pipelines with user interfaces or display components. The peek/poke actors
act as controlled data sources or sinks for their respective subgraphs and allow
independent control over data update rates and buffer management, without
introducing global dependencies.

The paper also discusses the conditions under which static versus dynamic
scheduling becomes necessary. When actor rates across graphs are fixed and
known, static scheduling is applicable. In contrast, dynamic rate variations re-
quire runtime mechanisms, where rate-monotonic scheduling (RMS) combined
with real-time operating system primitives is proposed as a suitable approach.
The authors also suggest that a hierarchical scheduling framework could be
applied to manage execution of distinct subgraphs in a modular way, reducing
scheduler complexity.

1.4 Research Contributions

The thesis contributes a complete framework for executing actor-based dataflow
networks on PikeOS while preserving their original execution semantics. It
introduces four distinct user-space implementation strategies—IPC buffers,
event-based signaling, mutex-synchronized buffers, and inter-partition com-
munication—and demonstrates how each can be used to represent token-based
actor interactions within PikeOS constraints. These methods are implemented
and evaluated on a real embedded platform. The resulting measurements al-
low a detailed comparison of execution time offering practical insight into the
trade-offs between synchronization mechanisms. This work lays a foundation
for running dataflow applications on PikeOS and provides reusable implemen-
tation templates to support further research and deployment.

1.5 Thesis Organization

The rest of the thesis is organized into five chapters. Chapter 2 reviews foun-
dational concepts behind dataflow models and real-time operating systems.
Chapter 3 describes the process used to convert dataflow applications into
PikeOS-compatible implementations. Chapter 4 details the specific execution
strategies developed and how they were developed. Chapter 5 presents the
performance results and discusses what they mean in terms of system design.
Chapter 6 offers final conclusions and outlines possible directions for future
research.

10

2 Background

This chapter introduces the theoretical and architectural foundations necessary
for understanding the rest of the thesis. It presents an overview of dataflow
models, key characteristics of real-time systems, and a detailed examination of
PikeOS as the operating platform used for mapping dataflow networks.

2.1 Embedded Systems and Real-Time Requirements

Embedded systems are specialized computing platforms designed to perform
dedicated functions, often within larger mechanical or electrical systems. These
systems typically operate under constraints such as limited memory, restricted
power consumption, and stringent timing requirements. A subset of embed-
ded systems—known as real-time embedded systems—must respond to stimuli
within defined timing constraints to ensure correct and safe operation.

These constraints are typically categorized as either hard or soft, depending on
the consequences of a deadline miss. In hard real-time systems, failing to meet
a deadline can lead to system failure or safety hazards, which is unacceptable
in domains such as aerospace, automotive control, and industrial automation.
In contrast, soft real-time systems—such as video streaming, audio processing,
or telecommunications—allow occasional deadline violations, as long as overall
performance remains acceptable.

Real-time systems are characterized by their ability to respond predictably
within strict timing constraints. Key properties that underpin such systems
include temporal determinism, ensuring that outputs are consistent for a given
set of inputs; bounded response times, which guarantee that tasks complete
within worst-case execution time (WCET); and fault isolation, which prevents
failures in one subsystem from affecting others, an especially critical feature in
mixed-criticality systems. Additional concerns such as schedulability analysis,
latency predictability, and jitter control further contribute to the reliability
required in safety-sensitive applications. |[BD17]

To enforce these properties in practice, real-time systems are typically deployed
on real-time operating systems (RTOSs) that offer support for task prioriti-
zation, preemption, and deterministic inter-process communication (IPC). A
well-designed RTOS allows high-priority tasks to preempt lower-priority ones,
ensuring deadlines are met under varying workloads. Widely used schedul-
ing strategies include fixed-priority, rate-monotonic, and earliest-deadline-first
(EDF). To address issues like priority inversion, many RTOS kernels imple-

11

Chapter 2: Background

ment priority inheritance or related protocols, allowing timing guarantees to
hold even under contention and shared resource scenarios. |BD17|

High Low
Priority Priority

Sl

Task
Scheduling CPU

Figure 2.1: Task Scheduling in an RTOS with Priority-Based Preemption
|Ele21|

This behavior is illustrated in Figure which shows a conceptual model of
RTOS task scheduling. Tasks are assigned different priority levels, and the
scheduler selects the highest-priority task that is ready to run. The diagram
highlights how the task selector component evaluates the ready tasks and dis-
patches the one with the highest urgency to the CPU. If a higher-priority
task becomes ready during execution, it preempts the currently running lower-
priority task. This dynamic scheduling mechanism forms the core of real-time
responsiveness and ensures that timing constraints are honored under all sys-
tem loads.

2.2 Dataflow Models

2.2.1 Kahn Process Networks (KPN)

Kahn Process Networks (KPNs), introduced by Gilles Kahn in 1974, provide a
foundational model for deterministic, data-driven computation. They describe
systems as a set of independent sequential actors that communicate through
First-In, First-Out (FIFO) channels. Each channel connects one producer and
one consumer, forming a directed acyclic or cyclic network that represents data
dependencies.

In a KPN, each FIFO channel is uniquely connected to one producer and one
consumer. These channels can grow without limit, meaning they can store as
many data tokens as needed. An actor can always write to an output channel
without delay, but it must block and wait when trying to read from an empty
input channel. |[LP95| This design ensures that system behavior is determinis-
tic, meaning the output of the system depends only on its inputs—not on the
timing or order in which actors are executed.

12

2.2 Dataflow Models

Although KPNs are often described in terms of parallel execution, real-world
implementations—especially in embedded or real-time systems—frequently rely
on sequential or event-driven execution models. In such systems, an actor only
begins processing once its inputs are available and its predecessors have com-
pleted their actions. This preserves correctness while simplifying scheduling
and resource management.

Actors in a KPN fire, or execute, when there are enough tokens available on
their input channels. For example, if actor A produces the values 1, 2, 3, and
actor B consumes those values and adds 10 to each, then B will output 11, 12,
13, regardless of the scheduling order in which A and B are executed. This
illustrates the deterministic behavior of KPNs.

KPNs are highly expressive and support dynamic behavior. Unlike more re-
strictive models like Synchronous Dataflow (SDF), KPN actors are not re-
quired to consume or produce a fixed number of tokens per firing. This makes
the model suitable for applications that involve control-flow variation, data-
dependent branching, or recursive operations. [Mir-+14]

One of the fundamental advantages of KPNs is their decoupling of computation
from scheduling. The correctness of execution does not depend on the schedul-
ing order, as long as the semantics of blocking reads and non-blocking writes
are preserved |LP95|. This makes KPNs attractive for modeling distributed or
asynchronous systems.

Despite their theoretical appeal, KPNs face practical limitations. The assump-
tion of unbounded memory is unrealistic in real-world systems like embedded or
real-time applications. In fact, it is generally undecidable whether a KPN will
run correctly using only finite memory. To deal with this, variations of KPNs
have been developed that use bounded buffers along with runtime techniques
like flow control, backpressure, or feedback mechanisms to manage memory
effectively [Yvi+11].

Modern systems that follow KPN principles often include runtime monitor-
ing and adaptive scheduling to optimize resource usage, minimize latency, and
maintain system throughput. Scheduling strategies may vary from conser-
vative, which assumes worst-case scenarios, to adaptive, which dynamically
adjusts based on run-time conditions|Yvi+11].

In the context of this thesis, KPNs form the theoretical groundwork for im-
plementing dataflow models on PikeOS. While PikeOS imposes constraints
like bounded memory and predefined communication interfaces, it still sup-
ports key KPN principles such as blocking reads, non-blocking writes, and
actor-based modularity. These principles influence the scheduling and commu-
nication strategies described in later chapters.

13

Chapter 2: Background

2.2.2 Dataflow Process Networks

Dataflow Process Networks (DPNs), introduced by Lee and Parks [LP95| in
the 1990s, build on the Kahn Process Network (KPN) model by making it more
flexible while keeping key features like deterministic behavior and FIFO-based
communication. Like KPNs, DPNs consist of actors—independent units of
computation—that run in parallel and communicate by sending and receiving
data tokens through one-way FIFO channels. The main difference between
DPNs and KPNs is how actors behave during execution. In KPNs, actors only
block when reading from an empty channel. In DPNs, actors can also block
when trying to write to a full channel. This feature, called backpressure, allows
DPNs to model real systems more realistically, where buffers have limited size
and memory must be carefully managed. [Wig—+00]

In real-time embedded implementations of DPNs, bounded buffer capacities
can significantly influence system correctness and performance. In [Wig+06|
it is highlighted that improper buffer sizing in multi-rate dataflow systems
may lead to deadlocks, throughput degradation, or violation of timing con-
straints. Their work presents analytical techniques to determine the minimal
buffer capacities required to ensure backpressure does not stall progress unnec-
essarily. This is particularly relevant when mapping DPN actors onto real-time
operating systems with strict memory budgets, such as PikeOS, where static
allocation and predictable execution are critical. Integrating such buffer-aware
design strategies can improve both schedulability and resource utilization in
safety-critical systems.

Unlike models that require fixed schedules, DPNs operate in a token-driven
manner. An actor fires only when the required input tokens are available.
After processing, it emits output tokens onto its connected channels. These
FIFO channels maintain ordering guarantees, helping ensure predictable data
propagation even when actors operate asynchronously.

As shown in Figure the dataflow graph consists of multiple actors (A1-A5)
connected via directed FIFO channels. Each actor reads from one or more input
buffers, performs computation, and writes to one or more output buffers.

Figure 2.2: Dataflow Process Network
[[Yvi+11]]

14

2.3 CAL Actor Language and XDF Representation

A major advantage of DPNs is that they do not rely on a global clock. Each
actor executes independently, which simplifies scalability and enables effec-
tive distribution across multicore or networked systems. This asynchronous
structure also fosters modular design, allowing developers to build layered or
hierarchical processing systems without centralized control. [LP95]

While more expressive than models like Synchronous Dataflow (SDF), DPNs
introduce analysis challenges. For instance, it is generally undecidable whether
a given DPN configuration can execute correctly with bounded memory. Prac-
tical solutions involve conservative buffer allocation and runtime checks to
avoid deadlocks and overflows|Yvi+11].

In addition to theoretical benefits, DPNs have been proven effective in real-
world use. Lee and Parks demonstrated their applicability to embedded signal
processing pipelines and streaming media applications. Through strategies like
priority-based scheduling or demand-driven execution, developers can achieve
high throughput with manageable resource usage. |[LP95|

In this thesis, DPNs serve as a flexible model for running dataflow networks on
PikeOS. Their asynchronous and modular design makes them a good match
for real-time systems. Also, their token-based communication works well with
event-driven and message-passing features in PikeOS. Later chapters will ex-
plain how we deal with challenges like limited memory and actor scheduling
by designing custom user-space execution strategies.

2.3 CAL Actor Language and XDF Representation

The CAL Actor Language was developed to address the need for a high-level,
analyzable, and retargetable language for specifying dataflow components in
embedded systems|EJO3|. CAL supports the specification of actors, modular
components that interact via tokens on input and output ports, according
to the principles of data-flow process networks|EJ02|. Each actor in CAL is
defined by a set of ports, internal state variables, and actions. These actions
may read tokens from input ports, update internal state, and produce tokens
on output ports. The semantics of these actions are governed by optional finite-
state machines, allowing actors to exhibit complex control behavior based on
both data and internal history.

One of CAL’s key strengths lies in its ability to model concurrency and de-
terminism without relying on a global clock, as actions are enabled only when
their input tokens and guard conditions are satisfied, allowing asynchronous,
but deterministic, system behavior[EJ02|. This aligns closely with the seman-
tics of DPNs, where execution order does not affect system output as long as
data dependencies are preserved.

CAL’s expressive power supports not only simple stateless processing but also
complex stateful and control-driven actors. Actors can have multiple actions
with selective firing, enabling behaviors such as filtering, accumulation, and

15

Chapter 2: Background

conditional routing—all of which are essential for embedded applications in
signal processing, communication, and control systems.

To describe the complete system architecture and the connections between
actors, the XML Dataflow Format (XDF) is used alongside CAL. XDF serves
as a platform-independent specification of the actor network. It describes:

e The graph topology of actor interconnections,
e The mapping of ports to FIFO channels,
e Additional system-level parameters like buffer sizes and initial tokens.

Together, CAL and XDF provide a clean separation between computation
(actor behavior) and communication (network structure). This abstraction
enables model-based design and analysis prior to implementation. In this the-
sis, CAL and XDF form the foundation for a code generation workflow: actors
are parsed and converted into modular C implementations, and the network
architecture is used to construct communication buffers and scheduling logic.

The resulting C code is then adapted to run on PikeOS, where actor seman-
tics, such as blocking reads, token-driven firing, and deterministic output, are
preserved using appropriate OS mechanisms.

This method illustrates a model-based design strategy in which system behav-
ior is initially modeled at a high level using CAL for actor logic and XDF
to define system connectivity and structure. These models support platform-
independent specification, which can then be systematically refined and trans-
formed into an operational implementation on a real-time operating system

like PikeOS.

2.4 Model-Based Design and Code Generation

Model-Based Design (MBD) is a systematic methodology widely adopted in
the development of embedded systems. It emphasizes the use of high-level exe-
cutable models to describe system functionality, rather than relying on manual
code development from the outset. By abstracting both computation and com-
munication behavior into formal representations, MBD facilitates early valida-
tion, simulation, and iterative refinement of system behavior. Commonly used
in safety-critical domains such as automotive, aecrospace, and industrial control,
MBD allows developers to reason about timing, correctness, and performance
properties before hardware deployment.|[KMO04]

In the context of this thesis, MBD principles are realized through the use of the
CAL actor language and XDF topology files, which together define the behavior
and interconnection of actors in a platform-independent and executable model.
These specifications abstract the computational logic and data dependencies
of the system in a modular and analyzable form, enabling functional reasoning
before considering deployment-specific constraints.

16

2.4 Model-Based Design and Code Generation

To operationalize these high-level models, the thesis employs a custom-built
transpiler that automates the transformation of CAL/XDF specifications into
modular C code. This process exemplifies the core idea of code generation
in Model-Based Design: converting verified models into deployable software
artifacts. Each actor defined in CAL is transformed into a corresponding C
module, complete with its finite-state machine, input/output token logic, and
scheduling structure. The generated C code captures the actor semantics in a
deterministic and repeatable manner.

This auto-generated code is then adapted for execution on PikeOS, a real-
time operating system designed for safety- and security-critical environments.
The adaptation includes instantiating threads using PikeOS APIs, configuring
inter-process communication mechanisms such as IPC buffers, VM ports, and
shared memory, and setting up scheduling windows and thread-core affinities.
These adaptations ensure that the generated actor network can be executed
with the real-time constraints and partitioning guarantees offered by PikeOS.

Thus, the thesis embodies a model-based development flow where high-level
functional models are progressively refined into platform-specific implementa-
tions. By automating the translation from CAL/XDF to C and aligning it
with PikeOS execution models, this work not only accelerates development
but also enhances traceability and ensures semantic consistency from model
to deployment. The approach validates that Model-Based Design and Code
Generation are not just theoretical tools but practical methodologies.

PikeOS Architecture and Execution Model

PikeOS is a real-time operating system (RTOS) developed by SYSGO, targeted
at safety- and security-critical embedded systems. It is built around a separa-
tion kernel that enforces strict spatial and temporal partitioning. This archi-
tecture isolates applications and their resources into resource partitions, each
with controlled access to memory, CPU, and hardware interfaces [SYS21al.
Each partition can contain multiple tasks, and each task may include one or
more threads—the fundamental units of execution|SYS21b|.

Time partitioning is central to PikeOS’s scheduling strategy. The system time-
line is divided into recurring cycles, with each time partition assigned a dedi-
cated slice. During its window, a time partition has exclusive access to CPU
cores. A special partition, Time Partition Zero (TP0), is always eligible for ex-
ecution and is typically reserved for high-priority, safety-critical tasks.|SYS21b|

Within each time partition, PikeOS applies a fixed-priority preemptive sched-
uler. Threads—independent execution paths within a task—are maintained in
ready queues ordered by priority, and the scheduler always chooses the highest-
priority thread for execution. This allows the system to respond quickly to crit-
ical events while ensuring that lower-priority operations do not interfere with
time-sensitive tasks. On SMP (Symmetric Multiprocessing) systems, PikeOS
can distribute threads across cores while maintaining this priority-driven pol-
icy.[SYS21a]

17

Chapter 2: Background

To support multi-threaded or actor-based execution models, PikeOS provides
several communication mechanisms including VM queuing ports, sampling
ports, and shared memory segments. These allow actors (mapped as threads or
tasks) to exchange data in a controlled and time-deterministic manner. When
actors are assigned to different partitions, communication occurs through inter-
partition ports, while intra-partition interactions can use shared buffers with
mutexes or events. [SYS21a|[SYS21b|

In addition, PikeOS supports thread affinity configuration through CPU masks,
enabling each actor-thread to be pinned to a specific processor core [SYS21a].
This feature is critical for performance isolation and evaluating execution time
and CPU load per actor. The system also offers tools such as debug monitors,
execution time statistics, and trace logging to support measurement of schedul-
ing overhead, synchronization delays, and partition timing behavior—key met-
rics in this thesis.

Communication and Synchronization in PikeOS

PikeOS provides a flexible set of communication and synchronization primi-
tives tailored to real-time systems. These mechanisms are essential when im-
plementing coordinated execution among tasks or threads, such as those used
in dataflow-based applications.

The primary IPC mechanism in PikeOS is message passing, which supports
both queuing and sampling semantics:

e Queuing ports operate as bounded FIFO buffers, enabling data to be
exchanged in discrete, ordered messages. These ports support blocking
behavior: when a thread attempts to read from an empty port or write
to a full one, it can be suspended until the condition changes [SYS21b.
This aligns naturally with actor models, where token ordering and back-
pressure are significant considerations.

e Sampling ports, by contrast, hold only the latest written value and
overwrite previous ones with each update. They are non-blocking and
ideal for status polling or system monitoring where historical message
order is not critical. These ports can be configured with validity windows
to detect and discard stale data. [SYS21b|

In addition to these port-based IPC mechanisms, PikeOS also supports IPC
buffers—shared memory regions with system-managed message interfaces. IPC
buffers enable threads to exchange data with support for both blocking and
non-blocking reads and writes. The buffer itself provides a bounded queue-like
interface, and the synchronization behavior (e.g., suspend on full or empty)
is configured based on application needs. IPC buffers are useful when actors
require message-based communication with memory efficiency and fine-grained
control over synchronization semantics.

PikeOS also allows direct access to shared memory buffers, where threads can
write and read from a common memory region without kernel mediation. Al-
though this offers high performance, it requires explicit synchronization to

18

2.4 Model-Based Design and Code Generation

ensure safe and consistent access to data. Without coordination, concurrent
access can lead to data races or inconsistent state.

To safely manage shared buffers and coordinate thread execution, PikeOS pro-
vides a suite of synchronization primitives:

e Mutexes guarantee mutual exclusion, ensuring that only one thread can
access a critical section at a time. This prevents race conditions and al-
lows for the protection of shared buffers or control variables. PikeOS sup-
ports advanced configurations including recursive, robust, and priority-
inheritance modes to avoid priority inversion in real-time scenarios.|SYS21b|

e Condition variables enable threads to suspend execution until a speci-
fied condition is met, such as the arrival of new data. Once the condition
is signaled, the waiting thread is resumed. This is especially valuable in
producer-consumer models where consumers wait for producers to supply

data. [SYS21Db|

e Event signaling enables one thread to asynchronously notify another
that a condition has been met or that data is available. This lightweight
mechanism is well-suited for event-driven architectures, where actors re-
act to triggers instead of polling. [SYS21b|

e Semaphores are used to track resource availability and manage syn-
chronization points across multiple threads [SYS21b|. Both binary and
counting semaphores are supported, and they can be configured for FIFO
or priority-based thread queuing.

Together, these communication and synchronization tools allow dataflow net-
works to be effectively realized on PikeOS. By correctly combining IPC chan-
nels, memory buffers, and real-time-safe synchronization methods, developers
can implement actor systems that uphold timing guarantees, preserve execu-
tion order, and maintain consistency across concurrent threads.

Developer Ecosystem

PikeOS development is supported by CODEO IDE, which allows users to
graphically configure partitions, IPC ports, thread affinities, and scheduling
timelines. This toolchain is critical for defining the static structure needed to
replicate dataflow actor graphs on embedded platforms.

19

Chapter 2: Background

Figure 2.3: CODEO workpanel

2.4.1 Comparison Between Dataflow Semantics and RTOS
Execution Model

Dataflow models and real-time operating systems (RTOS) represent funda-
mentally different approaches to execution. In dataflow systems, computa-
tion is inherently driven by the availability of input data: actors execute—or
"fire"—when they have sufficient tokens on their input channels. This model
emphasizes concurrency and asynchronicity, making it suitable for scalable and
predictable designs, especially when actor dependencies are clearly defined.

In contrast, RTOS platforms like PikeOS use a time- or priority-driven schedul-
ing mechanism. Threads are scheduled based on time windows, fixed priorities,
or interrupt events—not necessarily based on input readiness [SYS21b|. This
mismatch implies that actor logic, which expects to fire on token availabil-
ity, must be adapted carefully when mapped to RT'OS-managed threads and
partitions.

This divergence creates several design and synchronization challenges. For
example, while an actor should remain idle until its inputs are present, a thread
might still be scheduled by the RTOS even when no computation is ready. This
can lead to unnecessary CPU use or incorrect firing behavior. Furthermore,
the strict memory partitioning enforced by PikeOS limits shared memory use,
requiring explicit mechanisms for communication and synchronization between
actors|[SYS21b] .

Bridging these models requires thoughtful adaptation. Actor behavior must
be implemented using constructs like blocking reads, event signaling, or con-
ditional execution. Since typical dataflow models assume unbounded FIFO
channels, the RTOS equivalents—bounded buffers or message queues—must
be used in a way that preserves ordering and flow semantics.

This thesis explores multiple strategies to implement these adaptations, includ-

20

2.4 Model-Based Design and Code Generation

ing event signaling, mutex-based synchronization, inter-partition communica-
tion, and IPC buffering. Understanding the divergence between data-driven
and time-driven paradigms is essential to appreciate why such variations are
necessary, and how they influence execution correctness, timing, and resource
efficiency in a real-time environment like PikeOS.

2.4.2 Execution Semantics: Bounded Buffers and Determinism

Determinism in dataflow models means that for a given set of input tokens, the
system always produces the same output tokens, regardless of the order or tim-
ing of actor execution. This behavior is especially important in safety-critical
systems, where reproducibility and predictability are required for certification
and debugging.

Bounded buffering refers to the use of finite-sized FIFO queues between ac-
tors. While traditional dataflow models like KPNs assume unbounded FIFOs,
real-world RTOS platforms impose strict memory constraints. Therefore, it is
essential to manage communication using bounded buffers to prevent overflow
and avoid runtime memory violations. Bounded buffering also helps ensure
that worst-case memory usage can be analyzed ahead of time—critical for
hard real-time systems.

Preserving these semantics during implementation means ensuring that actors
only fire when input tokens are available, and output tokens are only written if
there is space in the destination buffer. These assumptions must be maintained
across different mapping strategies—whether using IPC, mutexes, or inter-
partition messages.

21

3 Methodology for
Dataflow-to-PikeOS Mapping

This chapter presents a comprehensive methodology for transforming high-
level actor-based dataflow networks—described using CAL and XDF—into
executable applications on the PikeOS real-time operating system. The goal
is to preserve the functional semantics and execution behavior of the original
dataflow model while adapting it to the resource constraints and execution
model enforced by PikeOS.

The process begins with the code conversion pipeline, which parses CAL actor
specifications and an XDF network file to capture both actor behavior and
network topology. A custom-built transpiler is then used to generate modular
C code, preserving actor semantics through state-based schedulers, explicit
token-handling logic, and consistent naming conventions. This generated code
forms the functional core of each actor and serves as the basis for system-level
integration.

The second part of the methodology focuses on PikeOS system architecture
and integration. FEach CAL actor is mapped to a dedicated PikeOS thread, in-
stantiated using the pdext_thr_create() API and configured with real-time
attributes such as stack size, priority, and CPU affinity. The deployment model
can range from a single-partition setup—where all threads share memory and
synchronize using internal IPC—to a multi-partition configuration, where each
actor resides in a separate PikeOS partition with VM port-based communica-
tion. Thread-to-core bindings and time partition mappings are also discussed,
enabling deterministic execution across isolated runtime environments.

Next, the chapter explores the execution semantics required to maintain dataflow
correctness within PikeOS. Each actor’s scheduler explicitly checks for input
token availability and output buffer space before firing, ensuring that token-
based determinism is preserved. Several communication strategies—including
IPC buffers, shared memory with mutexes and condition variables, and event
signaling—are evaluated to enforce blocking behavior and token ordering.

Finally, the methodology is validated using a diverse set of target applications,
including an Add Array computation, a FIR-style digital filter, a PingPong
synchronization network, and a ZigBee transmitter pipeline. These exam-
ples cover a range of actor topologies and communication patterns, serving as
benchmarks to evaluate the feasibility, correctness, and performance of execut-
ing dataflow models on PikeOS under real-time constraints.

23

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

3.1 Code Conversion

This section describes the end-to-end process for transforming a high-level
dataflow model—defined using the CAL actor language and XDF network
specification—into executable C code that can be integrated with PikeOS.
The conversion involves two primary stages: parsing the .cal and .xdf source
specifications, and generating C code using a custom-built transpiler. The final
output is manually adapted for PikeOS integration using threads, partition
management, and inter-process communication mechanisms.

3.1.1 CAL and XDF Input Specifications

As explained in section [2.3] the CAL actor language is used to describe the
behavior of individual actors in a dataflow network. A .cal file typically con-
tains declarations for ports, token rates, action definitions, and a finite-state
machine (FSM) governing the control flow. Each actor reacts to the availabil-
ity of input tokens, fires conditional actions, and emits output tokens based on
internal logic and state.

Each actor defines:

e Ports: Declared using I and 0, they represent input/output interfaces
for data tokens.

e Actions: These contain guarded computations that consume inputs and
produce outputs.

e Finite State Machine: A state machine using named states and tran-
sitions that controls action scheduling and actor progression.

e Token declarations: Associated with actions to specify token consump-
tion and production.

Below is an example of a CAL actor definition for a simple PingPong actor.

package cal;
actor PingPong () int I ==> int O:
uint counter := 0;

ppl: action I:[val]l ==> 0:[vall

do
println("PingPong [ppl] :" + val);
counter := counter + 1;

end

pp2: action I:[val] ==> 0:[-val]

do
println("PingPong [pp2] :" + val);
counter := counter + 1;

end

24

~

10

3.1 Code Conversion

schedule fsm a_ppl:

a_ppl(ppl) --> a_pp2;
a_pp2(pp2) --> a_ppl;
end

end

Listing 3.1: PingPong.cal

This actor includes:
e Ports for data communication using I and 0 declarations.

e Actions representing conditional computations; these consume inputs,
process data, and produce outputs.

e FSM (Finite-State Machine) logic using enums or internal state variables
to decide which action to fire next.

e Token declarations, which annotate actions with required input/output
token counts and types.

This PingPong.cal actor includes an input port I and an output port 0, and
uses an F'SM with states a_ppl and a_pp2. Two actions, ppl and pp2, are
triggered based on the current state and the availability of input/output tokens.

Complementing this, the XDF (XML Dataflow Format) network specification
(e.g., Example.xdf) defines the global topology of the dataflow network. It
instantiates actor nodes and connects them using named ports, thus forming
the executable graph. Below is a real example excerpt of a valid XDF file:

<?xml version="1.0" encoding="UTF-8"7> <XDF name="Example"> <
Instance id="Prod"> <Class name="cal.Producer"/> </Instance>
<Instance id="CopyTokenA"> <Class name="cal.CopyTokens"/> <
Parameter name="name"> <Expr kind="Literal" literal-kind="
String" value="first"/> </Parameter> </Instance> <Instance id
="CopyTokenB"> <Class name="cal.CopyTokens"/> <Parameter name
="name"> <Expr kind="Literal" literal-kind="String" value="
second"/> </Parameter> </Instance> <Instance id="PingPong"> <
Class name="cal.PingPong"/> </Instance> <Instance id="Merger"
> <Class name="cal.Merger"/> </Instance>

php-template

Copy

Edit

<Connection dst="CopyTokenA" dst-port="I" src="Prod" src-port="0"
/>

<Connection dst="CopyTokenB" dst-port="I" src="CopyTokenA" src-
port="0"/>

<Connection dst="PingPong" dst-port="I" src="Prod" src-port="0"/>

<Connection dst="Merger" dst-port="I1" src="CopyTokenB" src-port=
"o"/>

<Connection dst="Merger" dst-port="I2" src="PingPong" src-port="0

ll/>

25

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

11| </XDF >

Listing 3.2: PingPong.xdf

This XML file defines:
e Actor instances (Instance id) created from .cal classes.
e Parameters for specific actor configurations.

e Explicit connections that describe how tokens flow from one actor’s out-
put port to another’s input port.

Together, the .cal and .xdf files provide a complete formal specification of the
actor behaviors and network structure, forming the basis for transpilation into
a C-based implementation.

3.1.2 Transpiler Design and Generated C Output

The transpiler processes the .cal and .xdf files to generate modular C code
that mirrors the semantics of the original dataflow model. It begins by parsing
each actor to extract its FSM logic, ports, actions, and state variables. It also
reconstructs the network structure from the .xdf file to manage inter-actor
communication and buffer allocations.

Each CAL actor’s semantics—specifically, firing rules based on token availabil-
ity and FSM-based control—are retained in the generated C code via explicit
scheduler functions that check token buffers before invoking action logic. For
example, consider the transpiler-generated implementation of the PingPong
actor, which captures the alternating behavior of firing two actions: one that
forwards a token and another that inverts it.

The transpiler emits a dedicated C source file for each actor, and its structure
typically includes:

e The actor’s internal state is encapsulated in a pingpong_t struct, which
holds state variables such as the finite-state machine (FSM) state (a_pp1,
a_pp2) and a counter.

e An initialization function like pingpong_initialize(), which sets the
initial FSM state (e.g., a_ppl) and optionally initializes variables like
counters.

e Two action functions, pp1 () and pp2(), implement the core logic: they
read an input token, apply a transformation (val or -val), write the
result to the output port, and increment an internal counter.

e The pingpong_schedule() function acts as the scheduler and FSM con-
troller. It checks for token availability using size_s32() and free_s32()
and alternates between ppl and pp2 actions based on the current state.

26

3.1 Code Conversion

This FSM-style scheduling enables ping-pong style alternating behavior,
mimicking CAL actor semantics with explicit action selection and token
flow control.

-

//#define PRINT_FIRINGS

3| // FSH

4| typedef enum pingpong_fsm {
5 a_ppl,

6 a_pp2,

71} pingpong_fsm_t;

9| static void ppl(pingpong_t *_g) {
10 int val = read_sSQ(_g—>I);
11 printf ("PingPong [ppl 1 :"+val) printf("\n");

13 _g->counter = _g->counter+1;

14 write_s32(_g->0, val);

15}

16| static void pp2(pingpong_t *_g) {

17 int val = read_s32(_g->I);

18 printf ("PingPong [pp2] :"+val) printf("\n");

_g->counter = _g->counter+1;
write_s32(_g->0, -val);
}

SR

N

void pingpong_schedule (pingpong_t* _g) {
#ifdef PRINT_FIRINGS

NN NN NN NN N
o C

6 unsigned firings = O0;

7| #endif

8 for (5;) {

9 if (_g->state == a_ppl) {

30 if ((size_s32(_g->I) >= 1)) {

31 if ((true)) {

32 if ((free_s32(_g->0) >= 1)) {
33 ppl(_g);

34| #ifdef PRINT_FIRINGS

35 ++firings;

36| #endif

37 _g->state = a_pp2;
38 }

39 else {

10 break;

11 }

42 }

13 else {

14 break;

45 }

16 }

17 else {

48 break;

19 }

50 }

51 else if (_g->state == a_pp2) {

52 if ((size_s32(_g->I) >= 1)) {
53 if ((true)) {

27

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

if ((free_s32(_g->0) >= 1)) {
pp2(_g);

s|#ifdef PRINT_FIRINGS

++firings;
#endif
_g->state = a_ppl;
}
else {
break;
}
}
else {
break;
}
}
else {
break;
}
}
}
#ifdef PRINT_FIRINGS

printf ("%s fired ’%d times.\n", actor_name, firings);
| #endif

}

void pingpong_initialize(pingpong_t *_g) { _g->state

}

a_ppl;

Listing 3.3: PingPong.c

Ports between actors are connected via shared FIFO buffer pointers, as defined
in the .xdf file. For instance, a connection from PingPong.O to another actor’s
input port will cause the transpiler to generate corresponding shared buffer
declarations and bindings.

The FIFO buffers are implemented as statically allocated circular arrays, sup-
porting functions like read_s32(), write_s32(), size_s32(), and free_s32(Q),
which offer predictable and deterministic access patterns.

The naming conventions used across generated code are consistent and modu-
lar:

e Action functions: actorname_actionname ()
e Scheduler: actorname_schedule()
e Initialization: actorname_initialize()

This layout ensures the behavior of each actor is preserved faithfully while
enabling straightforward adaptation to PikeOS constructs. However, PikeOS-
specific concerns such as thread declarations, partitioning, and IPC endpoint
setup must still be performed manually, which is addressed in the following
section.

28

3.2 PikeOS System Architecture

3.2 PikeOS System Architecture

This section builds upon the code conversion workflow detailed in section[3.1] by
explaining how the generated C code is systematically mapped to the PikeOS
runtime environment. This section details how can those modules be deployed
within PikeOS through thread creation, partitioning, communication binding,
and other PikeOS features. These system-level design steps are necessary to
ensure that dataflow applications not only compile and run, but also execute
correctly and predictably under PikeOS’s real-time constraints.

3.2.1 Actor-to-Thread Mapping

Once the actor logic has been transpiled into C code, the next step involves
associating each actor with a dedicated PikeOS thread. In PikeOS, threads
are the fundamental units of execution, managed and scheduled by the kernel.
Each thread is responsible for executing the scheduling loop of a specific actor,
checking whether the input buffers contain enough tokens to fire, and invoking
the corresponding action logic. Before a thread is created, PikeOS requires
that a thread attribute structure (p4ext_thr_attr_t) be properly initialized.
This is done using the pdext_thr_attr_init() function, which sets default
values for thread attributes such as stack size, priority, and time partition.
Initializing this structure is essential to ensure safe and predictable thread
behavior. After initialization, specific attributes can be configured based on
system requirements, such as setting the stack size to 8192 bytes and assign-
ing thread priority (e.g., tattr.prio = 1) before passing the structure to the
thread creation API.

p4ext_thr_attr_t tattr;
p4ext_thr_attr_init (&tattr);

3l tattr.stacksize = 8192;

tattr.prio = 1;

Listing 3.4: Thread Initialization

To instantiate threads for each actor instance defined in the XDF file, PikeOS
provides the pdext_thr_create() API, which allows fine-grained control over
thread attributes. This function accepts several parameters: a pointer to store
the thread ID, a pointer to the thread attribute structure (p4ext_thr_attr_t),
a name for the thread, a function pointer to the actor’s entry function, and
optionally, a list of arguments. For example:

p4ext_thr_create (&pingpong_tid, &tattr, "PingPong",
pingpong_thread, 0);

Listing 3.5: PingPong Thread

This call creates a thread named "PingPong" that starts execution in the
PingPong_thread() function, with no arguments. The created thread ID is
stored in pingpong_tid, which can later be used for operations like signaling,

29

N}

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

synchronization, or affinity configuration. Each CAL actor in the network is
mapped one-to-one with a thread to maintain modularity and simplify trace-
ability. The created thread executes the PingPong_thread() function, which
repeatedly mimics pingpong_schedule() to emulate actor firing based on to-
ken availability. To enforce core affinity—a key optimization for real-time
systems—PikeOS also supports binding threads to specific CPU cores. This
can be achieved using:

P4_cpumask_t mask = 0xl; // Bind to core 0
p4_thread_set_affinity(pingpong_tid, mask);

Listing 3.6: Thread to Core Assignment

3.2.2 Partition Layout and Scheduling

PikeOS is built around a separation kernel that enables the isolation of soft-
ware components into distinct resource partitions. Resource partitions are
one of the foundational security mechanisms in PikeOS. They act as contain-
ers that define the memory, CPU access, and hardware interfaces available to
the threads running within them. Each application runs in a logically and
physically isolated partition and remains unaware of other partitions unless
explicit communication channels are configured. A partition can be restarted
or reloaded without impacting other partitions, making the system modular
and fault-resilient. All resource partitions are created by the kernel at boot
time and are limited by the system-defined constant P4_NUM_RESPART.

The PikeOS microkernel schedules threads using a fixed-priority preemptive
scheduling policy within each time partition window. Each thread is assigned
a priority, and the kernel always selects the highest-priority thread that is
ready to run. This guarantees deterministic and responsive behavior, which is
essential in real-time applications.

While time and resource partitions can be mapped one-to-one, PikeOS provides
a more flexible model. Time partitions and resource partitions are independent
constructs:

e Multiple resource partitions can be assigned to a single time partition.

e Different threads from the same resource partition can belong to different
time partitions.

e The duration of each time window is defined externally and not inherent
to the time partition itself.

This flexibility allows fine-grained control over CPU allocation and scheduling
behavior, making PikeOS suitable for mixed-criticality systems where compo-
nents with different timing requirements must coexist.

30

3.2 PikeOS System Architecture

Deployment Models Used in This Thesis

This thesis evaluates two deployment strategies to run actor networks on
PikeOS:

Single Partition Deployment: All actor threads are hosted in a single re-
source partition. This approach simplifies memory sharing and intra-thread
communication, making it suitable for development and preliminary evalu-
ation. Thread synchronization and data transfer use PikeOS internal IPC
primitives such as p4_ipc_buf_send() and p4_ipc_buf_recv().

Multi-Partition Deployment: Each actor is deployed in a dedicated re-
source partition. This model enforces spatial isolation and is appropriate for
safety-critical or certifiable systems. Communication between partitions is
achieved using VM Queuing Ports (vm_gport_write() and vm_gport_read()),
and each resource partition is assigned a time partition with scheduled execu-
tion windows.

While this model is highly flexible and supports strong isolation, assigning each
actor to a dedicated partition introduces trade-offs:

e Increased overhead in terms of partition management.
e Higher configuration complexity.

e Use of inter-partition communication primitives (e.g., VM Queuing Ports)
instead of lightweight internal buffers.

By combining spatial isolation via resource partitions and temporal isolation
via time partitions, PikeOS provides a robust platform for executing actor-
based dataflow systems with real-time constraints.

In practice, the association between a resource partition and a time partition is
defined statically in the PikeOS XML configuration. Each partition is assigned
a TimePartitionID, which links it to a defined time window in the scheduling
table. For example, the PingPong actor in this thesis is mapped to a dedicated
resource partition with PARTID=5, and is explicitly assigned to TimeParti-
tionID=4 as shown below:

<ParameterValue name="PARTNAME" value="PingPong"/>
<ParameterValue name="PARTID" value="5"/>
<VmitConfigurationTable>
<VmitConfiguration condition="true">
<Partition Abilities="VM_AB_CACHE_CHANGE VM_AB_TRACE
VM_AB_ULOCK_SHARED"
CpuMask="8"
Identifier="$ (PARTID)"
MaxChildTaskCount="1"
MaxFDCount="32"
MaxPrio="62"
MultiPartitionHMTableID="0"
Name="$ (PARTNAME) "
SchedChangeAction="VM_SCHED_CHANGE_IGNORE"
StartupMode="VM_PART_MODE_COLD_START"

31

W N

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

TimePartitionID="4">
<FileAccessTable>
<ComponentReference ref="Pingpong Native Process"/>
</FileAccessTable>
</Partition>
</VmitConfiguration>
</VmitConfigurationTable >

Listing 3.7: PingPong Partition

This configuration ensures that the PingPong partition operates exclusively
during its allocated time window managed by TimePartitionID=A4.

3.3 Execution Semantics and Communication
Infrastructure

The execution semantics of a dataflow network are central to preserving its
correctness when mapped onto a real-time operating system like PikeOS. In
classical dataflow models such as Kahn Process Networks (KPN) and Dataflow
Process Networks (DPN), actors are triggered not by external events or timers
but by the availability of tokens on their input channels. This token-driven ex-
ecution is inherently deterministic and must be carefully emulated in PikeOS,
which operates using threads and partitions.

Actor Firing and Token Availability

In CAL semantics, actors are fireable only when the required number of input
tokens is available, and space exists on the output ports for token production.
This ensures determinism and prevents uncoordinated or unsafe execution.

In the transpiled C implementation, this logic is preserved in each actor’s
scheduler function. The scheduler checks input token availability and output
buffer capacity before firing the corresponding action.

Example from pingpong_schedule():

if ((size_s32(_g->I) >= 1) && (free_s32(_g->0) >= 1)) {
pri(_g); // perform computation and write output
_g->state = a_pp2;

}

Listing 3.8: PingPong Schedule Function

This condition checks two key aspects:

e size_s32(_g->I): Returns the number of available input tokens (inte-
gers in this case). If this value is 1, the actor has enough data to process.

o free_s32(_g->0): Returns the number of free slots in the output FIFO
buffer. This ensures space is available before writing output tokens,
thereby enforcing bounded buffer semantics and avoiding overflows.

32

3.3 Execution Semantics and Communication Infrastructure

When both conditions are satisfied, the corresponding action (like pp1()) is in-
voked to perform computation and produce tokens via functions like write_s32().

This approach ensures:
e Data-driven execution: Actors do not execute speculatively.
e Determinism: Output is solely determined by input tokens and state.
e Safe memory use: Bounded buffer constraints are respected at all times.

These checks are inserted into all transpiled actor schedulers, allowing the
system to maintain behavior that mirrors the original dataflow semantics.

PiksOS Communication Infrastructure for Enforcing Execution Se-
mantics

The specific method used for inter-actor communication depends on the de-
ployment model: intra-partition (single partition) or inter-partition (multi-
partition). Both models preserve FIFO token order and bounded buffer se-
mantics using PikeOS APIs.

Intra-Partition Execution:

All actor threads reside in a common address space and execute in a shared
resource partition.

e Internal IPC Buffers (p4_ipc_buf_send() / p4_ipc_buf_recv()):
These implement FIFO semantics. If a buffer is empty, the receiver
blocks; if it’s full, the sender blocks. This precisely models actor fireabil-
ity based on token readiness and output space.

e Mutexes and Condition Variables (p4_mutex, p4_cond_wait() / p4_cond
_signal()):
Used with statically allocated shared circular buffers. Mutexes protect
critical regions, while conditions enforce producer-consumer coordination
(e.g., waking a waiting thread once data is ready).

e Event Signaling: In this synchronization strategy, actor threads commu-
nicate using statically defined volatile buffers for data exchange. Events
(p4_ev_signal() / p4d_ev_wait()) are used to synchronize execution:
the producer writes to the shared buffer and signals the consumer thread,
which waits until the event is received before reading.

All mechanisms above preserve execution determinism and token order, and
simulate bounded, blocking FIFO semantics required by dataflow models.

Inter-Partition Execution:

In safety-critical or mixed-criticality systems, each actor is deployed in its own
resource partition. Key methods include:

33

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

e VM Queuing Ports (vm_gport_write() / vm_gport_read()): These
act as unidirectional, bounded FIFO channels between partitions. They
guarantee ordering and causality. The vm_gport_read () call blocks until
data arrives, emulating the data-dependent firing of actors.

e Statically Configured Buffers: Each queuing port is configured with a
maximum queue size and message size. This reflects real-time bounded
memory constraints and allows safe and analyzable execution under PikeOS
kernel control.

While multi-partition deployments introduce slightly more overhead and con-
figuration complexity (e.g., through XML scheduling tables and port defini-
tions), they allow dataflow systems to operate securely and predictably in
isolated environments

3.4 Target Applications

Below explained dataflow network applications are used for experiments in this
thesis.

3.4.1 Add Actor Network

The Add Array example demonstrates a simple linear dataflow network where
two source actors produce input data arrays, which are then element-wise
summed by an Add actor. The result is sent to a Sink actor that prints the
output. This example is particularly suited for evaluating scheduling and data
synchronization since it contains multiple independent producers feeding into
a single computation unit followed by a terminal consumer.

Actors and Network Structure

e actorl and actor2 are source nodes defined in actorl.cal and actor2.cal.
Each generates a stream of tokens from static arrays SRC1 and SRC2
respectively.

e The add actor, defined in add.cal, consumes one token from each input
port and produces a single output token representing their sum.

e The actor3 acts as a sink, printing the computed result to the console.

The dataflow connectivity is declared in TopAddArray.zdf as follows:

actorl.sourcel — add.inputl
actor2.source2 — add.input2
add.output — actor3.result

34

3.4 Target Applications

3.4.2 Digital Filter

The Digital Filter example models a low-level finite impulse response (FIR)
filter using a chain of elementary actor components. The network demonstrates
typical DSP (digital signal processing) behavior and involves multiple types of
actors including data sources, multipliers, delays, adders, scalers, and sinks.
This example provides an opportunity to evaluate correctness, precision, and
the effect of token delay and data transformation across multiple stages.

Actors and Network Structure

e source: Defined in source.cal, this actor generates the input stream to be
filtered.

e mul: Multiplies incoming values with predefined coefficients. Imple-
mented in mul.cal.

e delay: Introduces single-cycle delays between successive stages, imple-
mented in delay.cal, to emulate register chains in filter pipelines.

e rshiftc: Performs constant right-shift operations for scaling. Defined in
rshiftc. cal.

e scale: Multiplies input samples by elements of a predefined array scalel],
implemented in the scale.cal.

e sink: Prints the filtered output to the console, implemented in sink.cal.

The overall filter topology is declared in FIR_lowlevel.zdf. The actor connec-
tions form a structured dataflow graph implementing the FIR behavior:

source.out — mul.inl

mul.out — delay.in — add.inl
add.out — rshiftc.in — scale.in
scale.out — sink.in

3.4.3 PingPong Actor Network

The PingPong example illustrates a branching and merging dataflow pattern
where a single stream of tokens is duplicated, transformed differently along two
paths, and finally merged. This example is well-suited for demonstrating event
ordering, synchronization between parallel paths, and alternating control flow
within an actor.

Actors and Network Structure

e producer: Defined in producer.cal, this actor generates a stream of integer
tokens. It acts as the sole data source in the network, driving the system’s
input signal.

35

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

e copytokenA and copytokenB: These are two instances of the actor defined

in CopyTokens.cal. The first copy sends tokens directly to the merger,
while the second forwards tokens to the PingPong actor, duplicating the
source stream for parallel processing.

pingpong: Implemented in PingPong actor, this actor uses an internal
FSM to switch between two actions: ppl and pp2. It emits either the
input token or its negation depending on its current state, effectively
modeling a toggling computation pattern.

merger: Defined in Merger.cal, PingPong is terminal actor receives one in-
put from CopyTokens and another from PingPong. It prints both values
to the console, allowing visual inspection of the toggling effect introduced
by the PingPong actor.

The overall filter topology is declared in . The actor connections form a struc-
tured dataflow graph implementing the FIR behavior:

Producer.output — CopyTokens.input
CopyTokens.outputl — PingPong.input
CopyTokens.output2 — Merger.inputl
PingPong.output — Merger.input2

3.4.4 Audio Network

The audio processing network models a real-time playback chain for digital
audio streams. This actor network captures the end-to-end transformation
from reading audio file bytes to decoding, filtering, and playing audio signals. It
is particularly suited for evaluating continuous data consumption, multi-stage
signal processing, and synchronization strategies in time-sensitive multimedia
applications.

e Source: Implemented in Source.cal, this actor acts as the file reader

for the WAV audio stream. It reads fixed-size byte blocks from a file
and emits them via its output port 0. It distinguishes between full reads
(readNBytes) and partial reads at the end of the file (readEnd0fFile),
and manages loop iterations and file rewinding. The state machine tran-
sitions include ReadInit, ReadFile, SendData, and ReadFileDone. Data
is emitted token-by-token using sendData.launch actions.

WavParser: Defined in WavParser.cal, this actor parses the 44-byte
WAV file header to extract audio parameters such as SampleRate, Sample-
SizeInBits, Channels, and ChunkSize. It outputs these parameters on
dedicated ports and then streams the audio data byte-by-byte. The FSM
switches from state H (header read) to D (data streaming), with priorities
set to ensure header processing precedes data emission.

e MetaRemover: Implemented in MetaRemouver.cal, this actor removes

36

3.4 Target Applications

application-specific metadata blocks such as “afsp”. It identifies and dis-
cards unwanted chunks while updating the chunk size accordingly. Valid
data is emitted via DataOut. It operates in FSM states PH, B, and S,
applying block-level and byte-level filtering and handling “data” chunk
detection to resume valid data forwarding.

e Echo: Defined in Echo.cal, this actor applies an echo effect to the audio
stream. It uses a circular buffer to delay past samples and combines
them with the current input sample. The actor supports both 8-bit
and 16-bit samples, dynamically adjusting based on parsed format. The
delay is configured during the forwardHeader phase, and samples are
processed in processData_8 or processData_16. Remaining samples
from the buffer are flushed via sendRemaining_ * actions. The actor
resets internal counters after each chunk is processed.

e Player: Implemented in Player.cal, this actor consumes processed audio
data and sends it to the audio output device. It receives stream param-
eters and buffers audio samples using audio_receive, then plays them
using audio_play once the buffer is full or the chunk is complete. The
FSM consists of states such as FillBuffer, PlayB, Play, and Kill, with
condition checks like checkMaxBuffer ensuring buffer safety. It termi-
nates the stream using audio_close.

The network connections defined in WavEchoPlayer.zdf establish the sequen-
tial data path:

Source.0 — WavParser.In

WavParser.Data — MetaRemover.Dataln
MetaRemover.DataOut — Echo.Dataln

Echo.Datalut — Player.Data

WavParser.SampleRate — Echo.SampleRateIn —
Player.SampleRate

WavParser.SampleSizeInBits —
Echo.SampleSizeInBitsIn — Player.SampleSizelnBits
WavParser.Channels — Echo.ChannelsIn —
Player.Channels

WavParser.ChunkSize — MetaRemover.ChunkSizeIn —
Echo.ChunkSizeIn — Player.ChunkSize

3.4.5 ZigBee Network

The ZigBee transmitter network models the physical layer signal processing
chain of a ZigBee system. This actor network captures the transformation
of raw byte data into modulated and pulse-shaped symbols ready for trans-
mission. It is particularly suited for evaluating high-throughput streaming,
pipelined execution, and resource-aware communication patterns.

37

Chapter 3: Methodology for Dataflow-to-PikeOS Mapping

Actors and Network Structure

e HeaderAdd: Implemented in HeaderAdd.cal, this actor marks the entry

point of the pipeline. It generates the outgoing byte stream by prefixing
a fixed header, inserting the total payload length, and then forwarding
the payload read from an input source. It operates using a finite-state
machine with three states: s_idle, s_header, and s_payload, enabling
it to sequentially emit structured ZigBee-compliant data frames. It has
two output ports: one for data bytes and one for len, which encodes the
expected symbol length for later processing stages.

chipmapper: Defined in ChipMapper.cal, this actor performs DSSS (Di-
rect Sequence Spread Spectrum) spreading. Each input byte is split into
two 4-bit nibbles, each of which is mapped to a 32-bit chip code using
a lookup table (Chip map table). It emits two 32-bit values per byte,
thus increasing redundancy for noise resilience.

gpskmod: Described in QPSKMod.cal, this actor modulates the chip
stream using QPSK. For every input chip (32 bits), it outputs 32 signed
8-bit symbols based on a QPSK symbol map (q7 _map). This modulation
ensures that the signal conforms to IEEE 802.15.4 PHY constraints by
producing continuous-valued waveform symbols.

pulseshape: Implemented in PulseShape.cal, this actor applies a digital
pulse shaping filter to the modulated symbols. It uses symmetric FIR
coefficients and overlapping symbol memory to compute filtered wave-
form values for transmission. It handles tail padding and cycle count
printing for diagnostics. Its behavior is controlled by a state machine
with s_start and s_idle states and emits no output; it simulates final
emission via throw_away () for evaluation.

The network connections defined in Top ZigBee tx.zdf establish the sequen-
tial data path:

HeaderAdd.data — ChipMapper.data
ChipMapper.chip0 — QPSKMod.chip
ChipMapper.chipl — QPSKMod.chip
QPSKMod.symb — PulseShape.symb
HeaderAdd.len — PulseShape.len

38

4 Implementation of Scheduling
Strategies

This chapter explores the scheduling and synchronization strategies developed
to execute dataflow actor networks on PikeOS. The goal is to faithfully preserve
the semantics of the dataflow model while mapping actors onto real-time exe-
cution primitives provided by the PikeOS microkernel. Each method described
in this chapter represents a unique design trade-off between concurrency, de-
terminism, synchronization overhead, and resource isolation.

Four scheduling strategies are presented: message-passing using IPC buffers,
synchronization using mutexes and condition variables, inter-partition commu-
nication via queuing ports, and event-based execution using signal-triggered
thread control. Each approach is designed to support the core dataflow ex-
ecution pattern—actors remain dormant until input data becomes available,
perform stateless computation, and emit tokens to downstream consumers.

The implementations differ in how actors are activated, how they communi-
cate, how data consistency is ensured, and how execution order is managed.
Threads may be grouped in a single partition or spread across multiple ones,
and thread-to-core affinity is leveraged to control execution parallelism and re-
duce interference. The methods also vary in their adherence to the sequential-
read property, which affects whether static scheduling techniques (KPN) can
be used or if runtime dynamic scheduling (DPN) becomes necessary.

In addition to the execution models themselves, Section 4.5 focuses on a key
aspect of system fidelity: preserving the original computation logic of CAL
actors. Regardless of the synchronization method chosen, each actor’s trans-
formation logic is kept structurally intact, with input acquisition, computation,
and output delivery mapped onto PikeOS APIs in a modular fashion. This en-
sures that functional behavior remains unchanged, even as communication and
synchronization mechanisms differ.

4.1 IPC-Based Messaging

This scheduling strategy implements actor communication using PikeOS’s intra-
partition inter-thread messaging primitives, specifically the Virtual Machine
Interface (VMI) functions p4_ipc_buf_send () and p4_ipc_buf_recv(). These
blocking functions ensure strict FIFO ordering and are thus well-suited to
actor-based dataflow models that rely on deterministic and reactive semantics.

39

N

Chapter 4: Implementation of Scheduling Strategies

In this approach, each actor is mapped to a dedicated thread, and all actor
threads are hosted in a single PikeOS resource partition. This simplifies mem-
ory protection and enables efficient message-passing without requiring XML-
defined inter-partition ports. Actors are executed in a token-driven manner:
they block on input until data arrives, perform stateless computation, and
forward results via p4_ipc_buf_send() to downstream actors.

Communication Model and Message Passing

Inter-thread communication using p4_ipc_buf_send () and p4_ipc_buf_recv()
requires specifying the unique identifier (UID) of the sender or receiver thread.
Thread UIDs are critical because they tell the kernel exactly which thread
should receive the message. These UIDs are structured values that encapsulate
both the partition ID and the thread ID, allowing precise targeting of threads
in multi-threaded, partitioned systems.

To construct a valid destination UID for an intra-partition thread, the macro
P4_UID_THREAD(p4_my_uid(), tid_target) is used. Here’s how it works in
detail:

e p4_my_uid() is a PikeOS macro that returns the UID of the currently
executing resource partition. This ensures that the sender constructs the
destination UID using its own partition as the base. This is essential for
maintaining modularity and avoiding hardcoded global identifiers.

e tid_target is the thread identifier (TID) of the actor thread that should
receive the message. It is typically declared as a global or local variable
of type P4_thr_t and is assigned when the thread is created using the
p4ext_thr_create() API. For example:

P4_thr_t copyA_tid;
p4ext_thr_create (kcopyA_tid, &tattr, "CopyA", copyA_thread, 0);

Listing 4.1: CopyA Thread

In this example, copyA_tid holds the thread ID assigned to the CopyA actor
during creation. Once initialized, it can be used as the tid_target parameter
in the UID construction macro.

e P4_UID_THREAD(p4_my_uid(), tid_target) combines the current par-
tition’s UID with the target thread’s ID to compute a fully qualified UID
that is correctly scoped within the partition.

This constructed UID is then used in the p4_ipc_buf_send () function to send
messages to the appropriate thread:

p4_ipc_buf_send (P4_UID_THREAD (p4_my_uid (), copyA_tid),
P4 _TIMEOUT_INFINITE, &value, sizeof (int));

Listing 4.2: IPC Buffer Send

In this context, P4A_TIMEOUT_INFINITE plays a key role: it instructs the kernel
to let the sending thread wait indefinitely if the destination buffer is currently

40

4.1 IPC-Based Messaging

full. This wait reflects backpressure, where a producer cannot proceed until
the consumer has read previous data and freed space in the FIFO queue. This
behavior is essential for bounded buffer semantics and directly mirrors the
blocking write mechanism found in bounded dataflow models, helping prevent
buffer overflows and maintaining execution synchronization between producers
and consumers.

On the receiving side, the actor thread uses the corresponding receive API,
p4_ipc_buf_recv(), to wait until input data becomes available:

P4_uid_t sender = P4_UID_ALL;

P4_size_t size = sizeof (int);

int value;

p4_ipc_buf_recv(&sender, P4_TIMEOUT_INFINITE, &value, &size);

Listing 4.3: IPC Buffer Receive

This function takes four parameters: a pointer to a P4_uid_t variable to store
the UID of the sending thread (initialized with P4A_UID_ALL to accept input from
any thread), a timeout value (P4_TIMEQUT_INFINITE to block indefinitely), a
pointer to the message buffer (value), and a pointer to a variable (size) that
initially indicates the expected message size and is updated with the actual
size upon reception.

Just like the send function, this use of P4_TIMEQUT_INFINITE ensures the con-
sumer waits for input data and enforces strict token availability: the receiving
actor does not proceed unless a token is present, thereby replicating the core
data-driven execution of dataflow actors. Furthermore, capturing the sender’s
UID enables scenarios where a consumer must differentiate between multiple
upstream sources.

Execution Lifecycle and Actor Logic

In the IPC buffer-based scheduling model, each actor thread executes a deter-
ministic loop that reflects the core semantics of dataflow execution: produce a
token, perform computation, then suspend until new input arrives.

e Wait for Input Token: Each actor thread begins by blocking on its
input channel using p4_ipc_buf_recv(). This ensures the thread re-
mains suspended until a token is available, preserving the data-driven
execution model. The input is received from any upstream sender using
the wildcard UID P4_UID_ALL, and the exact sender is recorded in the
sender variable.

P4_uid_t sender = P4_UID_ALL;

P4_size_t size = sizeof (int);

int input;

p4_ipc_buf_recv(&sender, P4_TIMEQUT_INFINITE, &input, &size);

Listing 4.4: Example Thread Waiting

e Execute Actor Logic: Once the input token is available, the actor
performs its computation. This logic is deterministic and typically state-

41

Chapter 4: Implementation of Scheduling Strategies

less, ensuring consistent results for identical inputs. For example, an
actor that doubles its input value performs the transformation as:

int output = input * 2;

Listing 4.5: Example Actor Logic

This logic is encapsulated in the actor’s action function (e.g., pp1(_g) in
pingpong_schedule()) and is typically derived from CAL code during trans-
lation.

e Send Output Token: After computing the result, the actor sends the
output token to the next thread using p4_ipc_buf_send(). The re-

ceiver’s UID is constructed dynamically using P4_UID_THREAD (p4_my_uid (),

next_tid), ensuring the message is routed within the current partition.
The call blocks if the output buffer is full, preserving FIFO semantics
and enabling backpressure.

p4_ipc_buf_send (P4_UID_THREAD (p4_my_uid (), next_tid),
P4_TIMEOUT_INFINITE, &output, sizeof (output));

Listing 4.6: Example Thread Send

This blocking receive call emulates the dataflow firing rule: an actor becomes
fireable only when the required input tokens are available. The inclusion of
P4_TIMEQUT_INFINITE ensures the thread remains suspended until this condi-
tion is satisfied, thereby preserving deterministic and reactive execution.

This control structure ensures that each actor processes exactly one token per
firing, supporting repeatable and analyzable runtime behavior. The simplicity
of this loop structure mirrors the operational semantics of dataflow languages
and enables easy mapping from high-level models to thread-level implementa-
tions.

Example Execution Flow

To demonstrate the IPC buffer-based synchronization method, consider Ping-
Pong pipeline with the following threads: Producer, CopyA, CopyB,
PingPong, and Merger. Each thread exchanges data via p4_ipc_buf_send()
and p4_ipc_buf_recv().

Producer Thread: This thread generates integer values and sends each to
both CopyA and PingPong threads via IPC buffers.

int value = count++;

p4_ipc_buf_send (P4_UID_THREAD (me, copyA_tid), P4_TIMEOUT_INFINITE
, &value, sizeof (int));

p4_ipc_buf_send (P4_UID_THREAD (me, pingpong_tid),
P4 _TIMEOUT_INFINITE, &value, sizeof (int));

Listing 4.7: Producer Thread

CopyA Thread: Receives values from Producer, logs them, and forwards
them to CopyB.

42

N

[

4.1 IPC-Based Messaging

p4_ipc_buf_recv(&sender, P4 _TIMEOUT_INFINITE, &value, &size);
p4_ipc_buf_send (P4_UID_THREAD (me, copyB_tid), P4_TIMEQUT_INFINITE
, &value, sizeof (int));

Listing 4.8: CopyA Thread

CopyB Thread: Accepts tokens from CopyA and passes them to Merger.

p4_ipc_buf_recv(&sender, P4_TIMEQUT_INFINITE, &value, &size);
p4_ipc_buf_send (P4_UID_THREAD (me, merger_tid),
P4 _TIMEOUT_INFINITE, &value, sizeof (int));;

Listing 4.9: CopyB Thread

PingPong Thread: Receives values directly from Producer and alternates
sign on each token using a state variable. It sends the result to Merger.

int result = (state == 0) ? value : -value;

state = 1 - state;

p4_ipc_buf_send (P4_UID_THREAD (me, merger_tid),
P4 _TIMEOUT_INFINITE, &result, sizeof (int));

Listing 4.10: PingPong Thread

Merger Thread: Collects one token from CopyB and one from PingPong. It
determines the source based on sender UID and logs the results.

rc = p4_ipc_buf_recv (&senderl, P4_TIMEOUT_INFINITE, &vall, &size)

rc = p4_ipc_buf_recv(&sender2, P4 _TIMEOUT_INFINITE, &val2, &size)
int v_pingpong = (senderl == uid_pingpong) 7 vall : val2;
int v_copyB = (senderl == uid_pingpong) 7 val2 : vall;

Listing 4.11: Merger Thread

This flow exemplifies pure message-passing semantics: each actor blocks until
a token is available, processes it, and forwards the result. There is no shared
memory or locking involved, and all communication is point-to-point.

Scheduling Semantics and Sequential-Read Property

A critical feature of this method is its strict adherence to the sequential-read
property, essential for static scheduling in dataflow systems. Actors read from
input FIFOs in a fixed, declared sequence and never switch read order or
dynamically inspect multiple channels. Because the reads are blocking and
unguarded, each actor activates precisely when its input is ready.

This behavior corresponds directly to the Kahn Process Network (KPN) model.
Actors consume one token per firing and produce a deterministic output. There
is no possibility of firing out-of-order, reading multiple ports nondeterministi-
cally,or entering a race condition. The system ensures that each actor’s behav-
ior is entirely determined by its inputs and defined logic.

43

N R

Chapter 4: Implementation of Scheduling Strategies

4.2 Mutex and Condition Variable Synchronization

This method implements dataflow execution by synchronizing actor threads
using PikeOS primitives designed specifically for mutual exclusion and con-
dition signaling. Each actor is encapsulated as a dedicated thread, ensuring
thread-level modularity and isolation of execution logic. Thread coordination
is achieved using p4_mutex_t, which guarantees safe and exclusive access to
shared memory regions, and p4_cond_t, which acts as a signaling mechanism
to notify dependent threads when a particular buffer state (e.g., data availabil-
ity) has changed.

This model mirrors the firing semantics of classical dataflow networks where
an actor executes only when sufficient input tokens are available—by ensuring
that threads are suspended until the correct execution conditions are met. As a
result, the system maintains strict execution determinism, avoids unnecessary
polling or busy-waiting, and minimizes resource contention.

Shared Buffer Communication and Memory Scope

The mutex-condition method relies on statically allocated shared buffers to
enable communication between actor threads. In contrast to the IPC-based
model, where tokens are passed via value-copy through the kernel, this strategy
enables direct memory sharing within the same address space. Communication
channels are modeled as circular FIFO queues, where producers write tokens
to the buffer and consumers read them out.

All interactions with shared buffers are enclosed within mutex-protected crit-
ical sections to prevent race conditions, while condition variables are used
to wake up blocked threads once new data is produced or consumed. This
synchronization model not only ensures data consistency and correct exe-
cution order but also supports bounded buffer behavior. The blocking na-
ture of the model is controlled using the P4_TIMEQOUT_INFINITE parameter
in p4_mutex_lock() and p4_cond_wait (), ensuring that threads wait indef-
initely until the required condition is fulfilled—effectively mimicking token
availability checks in classical dataflow semantics.

As in the IPC-based method, each actor is mapped to a dedicated PikeOS
thread created using p4ext_thr_create (). Before thread creation, a p4dext_thr
_attr_t structure is initialized using p4ext_thr_attr_init (), and attributes
such as priority, stack size, and CPU affinity are configured.

In this example, shared memory buffers are used to connect actor threads in a
simple dataflow structure (actorl — actor2 — actor3). Communication occurs
through fixed-size arrays, each guarded by a global mutex and synchronized
using dedicated condition variables.

#define NUM_SAMPLES 5
static int static_input [NUM_SAMPLES] = {1, 2, 3, 4, 5};
static int index_src = 0;

5/ volatile int data_actorl_to_actor2 = 0;

44

6

9

w N e

4.2 Mutex and Condition Variable Synchronization

volatile int data_actor2_to_actor3 = 0;

P4_mutex_t data_mutex;
P4_cond_t cond_actorl, cond_actor2, cond_actor3;

Listing 4.12: Mutex and Condition Initialization

Here, data_actorl_to_actor2 and data_actor2_to_actor3 serve as commu-
nication channels between adjacent stages. The shared data_mutex ensures
mutual exclusion during buffer access, while the cond_actorl, cond_actor2,
and cond_actor3 condition variables coordinate execution among threads.

Synchronization primitives from PikeOS are used to manage coordination be-
tween actors, and their usage is clearly demonstrated in this pipeline.

e The function p4_mutex_lock(P4_mutex_t *mutex, P4_timeout_t tim
eout) is used to acquire the mutex before accessing any shared buffer,
ensuring exclusive access to the data region. For example, Actorl oper-
ates on a static input array and passes one value at a time to the next
actor in the chain.

p4_mutex_lock (&data_mutex, P4_TIMEOUT_INFINITE) ;
data_actorl_to_actor2 = static_input[index_src++];

Listing 4.13: Mutex Initialization

To ensure safe access to the shared buffer data_actori_to_actor2, Actorl
locks the mutex before writing.

In this function call, &data_mutex is a pointer to the shared mutex object
that guards access to all shared communication buffers. The second param-
eter, PA_TIMEQUT_INFINITE, instructs PikeOS to block the calling thread in-
definitely until the mutex becomes available. This behavior is essential in a
dataflow system, where actors should wait for exclusive access before producing
tokens to ensure consistent and deterministic execution.

e Once the data is written, p4_cond_signal (P4_cond_t *cond) is used to
notify the waiting consumer thread (Actor2) that new data is available:

p4_cond_signal (&cond_actor2); // Notify Actor2
p4_cond_wait (&cond_actorl, &data_mutex, P4_TIMEOUT_INFINITE);
p4_mutex_unlock (&¥data_mutex) ;

Listing 4.14: Waiting on Condition Signal

Here, &actor2 cond is the condition variable associated with Actor2’s readi-
ness. This unblocks Actor2, allowing it to process the new token. After com-
pletion of its action, Actorl finally releases the mutex using:

o After Actorl completes writing to the shared buffer and signals Actor2
using p4_cond _signal(&actor2 cond); the execution seamlessly transi-
tions to Actor2, which begins by locking the same mutex to gain exclusive
access to the shared memory region:

45

N

Chapter 4: Implementation of Scheduling Strategies

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;

Listing 4.15: Locking Mutex

e Once the mutex is acquired, Actor2 prepares to wait for input data by
calling:

p4_cond_wait (&cond_actor2, &data_mutex, P4_TIMEOUT_INFINITE);
data_actor2_to_actor3 = data_actorl_to_actor2 * 2;

Listing 4.16: Waiting on Condition

This call tells PikeOS to atomically release the mutex and suspend the thread
until cond_actor? is signaled by Actorl. This wait ensures that Actor2 will
only proceed once data from the previous stage is ready, preserving FIFO
and token availability semantics. Upon resumption, PikeOS automatically
reacquires the mutex before Actor2 proceeds.

After waking up, Actor2 reads the incoming value from the shared buffer,
applies a transformation in this example doubling the value, and writes the
result to the next stage buffer.

e Actor2 then signals Actor3 that the result is ready for consumption, this
condition signal notifies the next stage in the pipeline. Finally, Actor2
releases the mutex to allow Actor3 to safely access shared memory:

p4_cond_signal (&cond_actor3);
p4_mutex_unlock (&4data_mutex) ;

Listing 4.17: Sending Condition Signal

Example Execution Flow

To illustrate the mutex and condition variable synchronization model, consider
a digital filter pipeline implemented using PikeOS threads: Source,
Delay, Mul, Add, and Sink. Each actor operates on data from the previous
stage, synchronizing execution with p4_mutex and p4_cond primitives.

Initialization

Mutexes and condition variables along with shared buffers are initialized as
shared synchronization primitives:

int SRC[NUM_SAMPLES] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

p4_mutex_init (&data_mutex, P4_MUTEX_PRIO);
p4_cond_init (&source_cond, O0);

5| p4_cond_init (&delay_cond, O0);

p4_cond_init (&mul_cond, O0);
p4_cond_init (&add_cond, 0);
p4_cond_init (&sink_cond, 0);

volatile int data_source_to_delay[ARRAY_SIZE] = {0};
volatile int data_delay_to_mul [ARRAY_SIZE] = {0};
volatile int data_mul_to_add[ARRAY_SIZE] = {0};

46

4.2 Mutex and Condition Variable Synchronization

Listing 4.18: Initialization of Buffers

Source Thread

This thread generates input samples cyclically and sends them to the Delay
stage. It uses p4_mutex_lock() to protect access to the shared buffer and
signals the next thread using p4_cond_signal():

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;
data_source_to_delay[0] = SRC[source_index++ 7 NUM_SAMPLES];
p4_cond_signal (&delay_cond) ;

p4_cond_wait (&source_cond, &data_mutex, P4_TIMEOUT_INFINITE);

5| pA_mutex_unlock (&data_mutex) ;

Listing 4.19: Source Thread

Delay Thread

This thread waits for input from the Source using p4_cond_wait (), shifts the
buffer contents, and signals the Mul thread:

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;
p4_cond_wait (&delay_cond, &data_mutex, P4_TIMEOUT_INFINITE);

data_delay_to_mul [0] = data_source_to_delay[0];

for (int i = ARRAY_SIZE - 2; i >= 0; --i) {
data_source_to_delay[i + 1] = data_source_to_delayl[i];
data_delay_to_mul[i + 1] = data_source_to_delay[i + 1];
}

p4_cond_signal (¥mul_cond) ;
p4_mutex_unlock (&¥data_mutex) ;

Listing 4.20: Delay Thread

Multiplication Thread

This thread multiplies the values with fixed FIR coefficients and passes the
result to the Add stage:

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;
p4_cond_wait (&mul_cond, &data_mutex, P4_TIMEOUT_INFINITE);

for (int i = 0; i < ARRAY_SIZE; ++i) {
data_mul_to_add[i] = data_delay_to_mul[i] * coeff[i]; \\coeff

[1] defined at startup
}

p4_cond_signal (¥add_cond) ;
p4_mutex_unlock (&¥data_mutex) ;

Listing 4.21: Multiplication Thread

Addidtion Thread

47

Chapter 4: Implementation of Scheduling Strategies

The Add thread computes the sum of the multiplied values and forwards the
result to the Sink stage:

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;
p4_cond_wait (¥add_cond, &data_mutex, P4_TIMEOUT_INFINITE);

add_result = O0;

5| for (int i = 0; i < ARRAY_SIZE; ++i) {

add_result += data_mul_to_add[i];
}

p4_cond_signal (&sink_cond);
p4_mutex_unlock (&data_mutex) ;

Listing 4.22: Addition Thread

Sink Thread

The Sink thread receives the final filtered output from the Add stage and
applies normalization by right-shifting the result and adding an offset to fit
it within an 8-bit range. This ensures the output stays within valid bounds.
Once complete, the Sink signals the Source to begin the next processing cycle.

p4_mutex_lock (&4data_mutex, P4_TIMEOUT_INFINITE) ;
p4_cond_wait (&sink_cond, &data_mutex, P4_TIMEOUT_INFINITE);

int output = (add_result >> 8) + 128;

5/if (output < 0) output = 0;
ijlelse if (output > 255) output = 255;

p4_cond_signal (&source_cond) ;
p4_mutex_unlock (&4data_mutex) ;

Listing 4.23: Sink Thread

Dataflow Semantics and Sequential Read

The sequential-read attribute is not automatically enforced by this approach.
Runtime choices are predicated on data availability since actors often check
condition variables or buffer fill levels (count_X == 0) before continuing. This
means that actors can violate strict sequential-read semantics by reading inputs
in a different order than the one that has been stated.

Consequently, the DPN model is in line with this approach. Actor scheduling
is not based on a statically analyzable firing sequence, but rather on runtime
state. Flexibility is increased by this dynamic behavior, but compile-time
analysis may be limited and runtime tests are necessary.

4.3 Event-Based Signaling with Thread Suspension
in PikeOS

This method implements dataflow execution by synchronizing actor threads us-
ing PikeOS primitives tailored for direct signaling and explicit thread control.

48

4.3 Event-Based Signaling with Thread Suspension in PikeOS

Each actor is represented as an independent thread, maintaining modularity
and enabling fine-grained scheduling of computational stages. Synchronization
is achieved through p4_ev_signal () to notify the next actor, p4_ev_wait () to
suspend execution until a signal is received, and p4_thread_stop() / p4_threa
d_resume () to enforce cooperative execution flow.

This model captures the semantics of data-driven execution by explicitly trig-
gering each actor only when its input is ready. Rather than relying on mutexes
and condition variables for shared resource protection, event signaling uses
direct thread-to-thread activation without locking, enabling lightweight coor-
dination in linear actor pipelines. This direct event-based signaling creates
a clear and predictable execution chain, closely resembling the token-passing
model of actor-oriented dataflow networks. It ensures that actors fire in a strict
sequence, avoids race conditions, and minimizes scheduling overhead.

Synchronization Model and Signaling Flow

Just like mutex-condition method, shared memory buffers are used to connect
actor threads. In this example, three actor threads are connected in a simple
dataflow structure (Actorl — Actor2 — Actor3). Communication is achieved
through shared scalar variables, each acting as a token buffer between stages.
Rather than relying on mutexes and condition variables, this implementation
uses PikeOS event signaling primitives for coordination.

volatile int data_actorl_to_actor2 = 0;
volatile int data_actor2_to_actor3 = 0;

P4_thr_t tid_actorl = P4EXT_THR_NUM_INVALID;

5| P4_thr_t tid_actor2 = P4EXT_THR_NUM_INVALID;

P4_thr_t tid_actor3 = P4EXT_THR_NUM_INVALID;

Listing 4.24: Shared Memory Buffers Initialization

Here,data_actorl_to_actor2 and data_actor2_to_actor3 represent the data
flow channels. Each stage produces or consumes exactly one token per cycle,
and each actor runs as a dedicated PikeOS thread.

e Actorl (Source) begins execution by taking input from a static array
and storing it into the shared buffer for Actor2. After storing the value,
Actorl signals Actor2

int source_datal] = {1, 2, 3, 4, 5};
data_actorl_to_actor2 = source_datalil;

;| p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_actor2));

Listing 4.25: Signaling Thread 2

p4_ev_signal() is used to notify the next actor that data is available. The
target thread’s UID is dynamically computed by combining the current pro-
cess UID (p4_my_uid()) and the destination thread ID (tid_actor2). This
ensures that signals are correctly routed even in multi-threaded or partitioned
systems, and is the same UID resolution mechanism used in IPC buffer-based
communication.

49

Chapter 4: Implementation of Scheduling Strategies

e Actorl then stops itself using:

1| p4_thread_stop (P4_THREAD_MYSELF) ;

Listing 4.26: Thread Stopping

This suspends Actorl until explicitly resumed by Actor3 at the end of the
pipeline.

e Actor2 waits until signaled by Actorl using:

1| p4_ev_wait (P4_TIMEQUT_INFINITE, P4_EV_CONSUME_ONE, NULL);

Listing 4.27: Thread Waiting

This function blocks the thread until it receives a signal. The parameter
P4_TIMEOUT_INFINITE causes the thread to block indefinitely until an event is
received, mimicking dataflow-style blocking semantics. FIFO behavior is en-
forced using P4_EV_CONSUME_ONE, it indicates that only one signal should be
consumed.

o After waking up, Actor2 reads the value from data_actorl_to_actor2,
doubles it, and stores the result in the next buffer. Actor2 then signals

Actor3.
int temp = data_actorl_to_actor2 x 2;
data_actor2_to_actor3 = temp;

p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_actor3));

Listing 4.28: Signaling Thread 3

This directly activates Actor3, which is waiting to consume the transformed
token.

e Actor3 waits for the event from Actor2 using below wait function. Once
signaled, it consumes the final value and prints it. Finally, it resumes
Actorl to begin the next iteration of the cycle

p4_ev_wait(P4_TIMEOUT_INFINITE, P4_EV_CONSUME_ONE, NULL);
vm_cprintf ("Result: %d\n", data_actor2_to_actor3);

3| p4_thread_resume (tid_actorl);

Listing 4.29: Thread 3 resuming Thread 1

This structure completes one iteration of token production, transformation,
and consumption in strict sequence, closely resembling the semantics of classic
actor-oriented dataflow models.

Example Execution Flow

To illustrate the event-based signaling mechanism using a concrete applica-
tion, consider the ZigBee pipeline (3.4.5|) consisting of four actors: HeaderAdd,
ChipMapper, QPSKMod, and PulseShape.

50

4.3 Event-Based Signaling with Thread Suspension in PikeOS

HeaderAdd Actor

This actor starts the transmission chain by pushing ZigBee header and payload
bytes into a shared chip buffer. After writing each byte, it signals the ChipMap-
per and stops itself. Once all bytes are sent, it signals the PulseShape actor
with the total length for shaping.

1
2| volatile int header_bytes [HEADER_LEN] = {0, 0, 0, O, 167};
sl volatile int payload_bytes [PAYLOAD_LEN] = {0xAB};

5| static void headerAdd_thread(void) {

6 int cycle = 0;

7 while (cycle < MAX_CYCLES) {

8 P4_uint64_t start = p4_get_ts();
9 int hidx = 0, pidx = O0;

11 while (hidx < HEADER_LEN) A{

12 int byte = header_bytes[hidx++];

13 chip_buf [0] = byte;

14 p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_chip));
15 p4_thread_stop (P4_THREAD_MYSELF) ;

16 T

17

18 while (pidx < PAYLOAD_LEN) {

19 int byte = payload_bytes[pidx++];
20 chip_buf [0] = byte;

21 p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_chip));
22 p4_thread_stop (P4_THREAD_MYSELF) ;
23 }

24

25 cycle++;

26 P4_uint64_t end = p4_get_ts();

27 t_header.ts_start += (end - start);
28 T

20| }

Listing 4.30: HeaderAdd Thread

ChipMapper Actor

This actor waits for a byte from HeaderAdd, splits it into two 4-bit nibbles,
and maps each to a 32-bit chip using a lookup table. It then forwards both
chips to QPSKMaod.

i|static void chipMapper_thread(void) {

2 static const P4_uint32_t table[16] = {

3 0x744ac39b, 0x44ac39b7, 0x4ac39b74, 0xac39b744,
4 0xc39b744a, 0x39b744ac, 0x9b744ac3, 0xb744ac39,
5 0xdee06931, 0xee06931d, 0xe06931de, 0x06931dee,
6 0x6931dee0, 0x931dee06, 0x31dee069, 0x1dee0693
7 g

8 p4_ev_mask (P4 _UID_ALL);

9 while (1) {

10 p4_ev_wait (P4_TIMEOUT_INFINITE, P4_EV_CONSUME_ONE, NULL);
11 P4_uint64_t start = p4_get_ts();

51

Chapter 4: Implementation of Scheduling Strategies

13 int b = chip_buf [0];
14 chip_buf [0] = table[b & OxF];
15 chip_buf [1] = table[(b >> 4) & OxF];

17 p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_mod));
18 // p4_thread_resume(tid_header);

19 P4_uint64_t end = p4_get_ts();

20 t_chip.ts_start += (end - start);

2

Listing 4.31: ChipMapper Thread

Here, p4_ev_wait () ensures that ChipMapper waits until signaled. After com-
puting, it signals the QPSKMod thread using p4_ev_signal().

QPSKMod Actor

This actor receives the chip pair and maps each bit to a BPSK symbol (127 or
-128). It appends the symbols to a shared buffer and signals the PulseShape
actor.

1| static void qpskMod_thread(void) {
2 p4_ev_mask (P4_UID_ALL);

3 while (1) {

4 p4_ev_wait (P4_TIMEOUT_INFINITE, P4_EV_CONSUME_ONE, NULL);
5 P4_uint64_t start = pd_get_ts();

7 for (int ¢ = 0; ¢ < 2; ++c) {

8 P4_uint32_t chip = chip_buf [c];

9 for (int i = 0; i < 32; ++i) {

10 symb_buf [symbol_count++] = (chip >> i) & 1 7 127
-128;

12 T
14 p4_ev_signal (P4_UID_THREAD (p4_my_uid (), tid_shape));

15 P4_uint64_t end = p4_get_ts();
16 t_mod.ts_start += (end - start);

Listing 4.32: QPSK Thread

The QPSKMod actor processes every chip and produces a burst of 64 symbols,
signaling PulseShape when ready.

PulseShape Actor

This actor applies a 5-tap FIR filter to the symbol stream. It uses the length
provided by HeaderAdd to determine how many symbols to process, then stores
the filtered output for evaluation. After all cycles, it prints timing statistics
and halts execution.

1| p4_ev_wait (P4_TIMEOUT_INFINITE, P4_EV_CONSUME_ONE, NULL);
ol for (int i = 0; i + 1 < sc; i += 2) {

52

4.4 Inter-Partition Communication using VM Queuing Ports

int s1 = symb_buf[i], s2 = symb_buf[i+1];
final_samples[sample_index++] = mul8(FILT[0], s1);
// ... (14 more multiplications across filter taps)
symb_mem = s2;

}

p4_thread_resume (tid_header) ;

Listing 4.33: PulseShape Thread

This execution pattern ensures that actors fire exactly once per token arrival
and only when their dependencies are satisfied.

The buffers are accessed directly without mutexes. Each buffer is written
by a single producer and read by a single consumer, preserving correctness
through design. The sequence of reads and writes is tightly coupled with event
synchronization, so access conflicts are structurally avoided.

Dataflow Semantics and Sequential Read

This method does not satisfy the sequential-read property, since actor threads
do not declare a fixed order of reading and instead react to external events.
Actors wait for a merged event mask (as set via p4_ev_mask(P4_UID_ALL)),
and their read logic is inherently dependent on which signal arrived first. This
means the actor must demultiplex events at runtime and cannot statically
determine which channel will be read next.

Thus, this approach aligns with the Dynamic Process Network (DPN) model,
where scheduling cannot be purely static. Run-time mechanisms (such as event
checks or FIFO fills) are necessary to decide which actor fires next.

4.4 Inter-Partition Communication using VM
Queuing Ports

This method implements dataflow execution using PikeOS VM queuing ports
(QPorts) for point-to-point communication between distributed actor parti-
tions. Each actor is implemented as a native PikeOS application and mapped
to an individual resource partition. Inter-actor communication is explicitly
handled via statically defined port names. Data tokens are passed sequen-
tially, and actors synchronize implicitly via blocking semantics provided by
PikeOS VM services.

Communication Semantics

Each actor in this model follows a standardized loop that maps well to the
structure of a dataflow application:

e At the start of each actor’s execution, required QPorts are opened using
vm_gport_open(). The name specifies port name and must be unique.
Flags are use to configure port as VM_PORT_DESTINATION for receiving
data from previous actor or VM_PORT_SQURCE for sending the processed
data to next actor in the pipeline. A vm_port_desc_t variable, to which

53

Chapter 4: Implementation of Scheduling Strategies

pd is a reference, will store the initialized port descriptor upon successful
call and will later be reused for all read/write operations on that port.

rc = vm_qport_open(const char *name, P4_uint32_t flags,
vm_port_desc_t *pd);

Listing 4.34: Opnening Port

e Once QPorts are initialized, actors communicate through blocking read
and write operations using VM services. The function vm_gport_read()
reads incoming data from the port descriptor pd, stores it into the
buffer pointed to by buff, and writes the number of received bytes into
msg_size. The buff_size must be sufficient to hold the expected mes-
sage, and the timeout is generally set to P4_TIMEOUT_INFINITE to ensure
that the actor waits until input is available. This operation ensures that
execution is strictly data-driven.

P4_e_t vm_qport_read(vm_port_desc_t *pd, void *buff, P4_size_t
buff_size, P4_timeout_t timeout, P4_size_t *msg_size);

Listing 4.35: Reading from Port

o After computation, the actor forwards its result using vm_gport_write(),
which also uses the same pd to identify the target port. It takes a pointer
to the message data (buff), the message size (msg_size), and a timeout
for blocking behavior. This guarantees that data is sent only when the
receiving actor is ready, preserving FIFO order and enforcing tightly
coupled synchronization between actors.

P4_e_t vm_qport_write(vm_port_desc_t *pd, const void *buff,
P4_size_t msg_size, P4_timeout_t timeout);

Listing 4.36: Writing to Port

Example Execution Flow

To demonstrate the VM queuing port-based synchronization method, consider
the four-stage actor pipeline, Add Array with the following partitions:
Actorl, Actor2, Add, and Actor3. Each actor operates as a standalone appli-
cation, communicates via statically defined VM QPorts, and executes its role
based on blocking reads and writes.

Time Partitioning and Scheduling

Each actor is scheduled in a separate time partition, as configured in the VMIT
scheduling window. The partition layout ensures a predictable execution of the
actors in the following order:

The time partition scheduling diagram confirms the start and duration of each
actor’s execution, and each partition is uniquely tied to a single actor instance.

Qport connections are like below:

o4

N S

N

4.4 Inter-Partition Communication using VM Queuing Ports

Time Partition | Actor | Start Time | Duration (ticks)
1 Actorl 0 1
2 Actor2 1 1
3 Add 2 1
4 Actor3 3 1
Table 4.1: Time Partitions
VMIT
Scheduling el
O Actor1 | O service | U Actor2| O Add O Actor3
B %, SCHED_BOOT
0 1 2 3 4
I " ; ;
Windows
Scheme: SCHED_BOOT ~ WindowTable: 0 ~ | Create
Identifier Start Duration SwitchOu... TimeParti.. Flags Delete
0 0 1 0 1
1 1 1 0 2
2 2 1 0 3
3 3 1 0 4

Overview | VMIT | Scheduling | Channels | SharedMemory | Romimage | Source

Figure 4.1: Time Partitions in PikeOS

e Actorl — Add: ActorlOut (source port) is connected to AddInFromAc-
torl (destination port).

o Actor2 — Add: Actor20ut is connected to AddInFromActor2.
e Actor2 — Add: Actor20ut is connected to AddInFromActor2.
Actorl Thread

This actor is responsible for generating the first input stream. It loops over an
internal array SRC1[] of 10 integers and transmits each value sequentially using
vm_gport_write(). The required port with name "ActorlOut" is already
opened. The write operation is blocking and uses the P4_TIMEQUT_INFINITE
flag to ensure that the thread waits until the receiving actor (Add) is ready to
receive the token.

static const int SRC1[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
vm_qport_open("Actor10ut", VM_PORT_SOURCE, &data_out);

for (int i = 0; i < SIZE; ++i) {
int val = SRC1[i];

rc = vm_qgport_write (&data_out, &val, sizeof (val),
P4 _TIMEOUT_INFINITE);
ASSERT (rc == P4_E_0K, "Send failed

95

Chapter 4: Implementation of Scheduling Strategies

————— - P e -

O Actor1 S|
O service S|
O Actor2 =]

O Add =

@ AddInFromActor1
@ AddInFromActor2

B

O Actor1

Actor10ut @
ActorlUsageOut @
Actor1StartOut @

U service =]

O Actor2 =]

Actor20ut @

(OActor3s 3
Actor2UsageOut © Actor3

e ——— @ Actor3_In
© Add e @ ActoriUsageln
AddOut @ @ Actor2Usageln
AddUsageOut @ @ AddUsageln
—_— \ﬂﬂ @ Actor1StartOut
O Actor3 =] — 4
@ a & =

Figure 4.2: Qports Connection

p4_sleep (1) ;

Listing 4.37: Actorl Thread

Actor2 Thread

Parallel to Actorl, Actor2 sends a second input stream of integers from a similar
static array SRC2[]. The structure and logic of Actor2 are almost identical to
Actorl, except it communicates on a different port.

static const int SRC2[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
vm_qport_open("Actor20ut", VM_PORT_SOURCE, &data_out);

for (int i = 0; i < SIZE; ++i) {
int val = SRC2[i];

rc = vm_gport_write (&data_out, &val, sizeof (val),
P4 _TIMEOUT_INFINITE);
ASSERT (rc == P4_E_0K, "Send failed
T g
p4_sleep (1) ;
}

Listing 4.38: Actor2 Thread

Both source actors push tokens independently and asynchronously, but the
synchronization with Add occurs via blocking reads.

Add Thread

The Add actor reads values from both Actorl and Actor2 using two separate
QPorts. The reads are blocking and enforce a strict order: Add waits until
both inputs are available before computing the result. It then performs the

56

4.4 Inter-Partition Communication using VM Queuing Ports

addition and sends the result to Actor3.

for (int i = 0; i < SIZE; ++i) {
int a = 0, b = 0;
rc = vm_gport_read(&inl, &a, sizeof(a), P4_TIMEOUT_INFINITE,
&msg_size) ;
ASSERT (rc == P4_E_OK && msg_size == sizeof(a), "Read from
Actorl failed

u);
rc = vm_gport_read(&in2, &b, sizeof(b), P4_TIMEOUT_INFINITE,
&msg_size);
ASSERT (rc == P4_E_OK && msg_size == sizeof(b), "Read from
Actor2 failed
T g

int result = a + b;
vm_cprintf ("Add received %d and %d, result: %d
" a, b, result);

rc = vm_qgport_write (&out, &result, sizeof (result),
P4 _TIMEOUT_INFINITE);
ASSERT (rc == P4_E_OK, "Write to Actor3 failed
T g
}

Listing 4.39: Add Thread

The Add actor ensures data consistency and performs a stateless transforma-
tion (addition), making it suitable for streaming and pipeline designs.

Actor3 Thread

Actor3 is the final consumer in the network. It receives each result from the
Add actor using a blocking read and prints it to the console. It performs no
computation, only logging.

for (int i = 0; i < SIZE; ++i) {

int result = 0;
rc = vm_gport_read(&inport, &result, sizeof (result),
P4 _TIMEOUT_INFINITE, &msg_size);
ASSERT (rc == P4_E_OK && msg_size == sizeof (result), "Actor3

read failed
")
vm_cprintf ("Actor3 received result from Add: %d
" result);

Listing 4.40: Actor3 Thread

In the QPort-based communication model, the sequential-read attribute is im-
plicitly enforced through the use of blocking vm_gport_read() calls. Each
actor blocks on its input port(s) until a message becomes available, ensuring
that it does not proceed unless valid input tokens have arrived. This preserves
the causality and determinism expected in a data-driven system. However,

o7

w N

N

Chapter 4: Implementation of Scheduling Strategies

strict enforcement of input ordering depends on how reads are structured in
the actor logic. If an actor reads from multiple ports sequentially (as in the
Add actor), it inherently respects the defined input order. But if conditional
logic or dynamic polling were introduced, deviations from the expected firing
sequence could occur.

Unlike dataflow models where firing rules are statically analyzable, the QPort
mechanism delegates control to the runtime via blocking reads. This aligns
with the Dataflow Process Network (DPN) model, where actors fire based on
runtime data availability rather than a statically defined schedule

4.5 Mapping of CAL actors to PikeOS Methods

Preserving computation logic when adapting code for PikeOS means ensuring
that the essential data transformations and algorithmic steps from the original
implementation remain functionally unchanged in the real-time environment.
This includes not only maintaining the mathematical operations and ordering
of transformations, but also managing how variables are declared, accessed,
and updated across threads.

At the core, this involves isolating the part of the original code responsible for
computations—such as mathematical operations, data conversions, or signal
processing—and porting it directly into the PikeOS thread function. This
logic should remain intact in both sequence and structure to preserve intended
behavior.

For example, consider a simple C actor that reads an input, computes the
square, and writes the output:

int input = read_input();
int output = input * input;
write_output (output) ;

Listing 4.41: Sample Thread Logic

When converting this logic into a PikeOS-compatible thread—regardless of the
method used (e.g., IPC, event, mutex, or inter-partition)—this basic structure
remains the same. It typically involves three stages:

// Step 1: Input acquisition
int input = acquire_input(); // e.g., read from buffer, event-
triggered wvar, IPC queue, or partition port

// Step 2: Computation or transformation
int result = input * input;

// Step 3: Result output
deliver_result (result); // e.g., write to output buffer, trigger
next thread, or send to another partition

Listing 4.42: PikeOS adaptible Basic Structure

o8

4.5 Mapping of CAL actors to PikeOS Methods

The way variables are managed—whether declared locally, shared globally, or
protected using synchronization mechanisms—depends on the specific PikeOS
method used. However, the computational block is always preserved intact.
The transformation logic, such as result = input * input, is retained ex-
actly, ensuring that the functional correctness of the actor remains the same
after porting.

This modular structure allows any actor logic from a CAL description to be
predictably mapped to PikeOS threading models without changing the under-
lying algorithm.

To further illustrate this, consider the original CAL implementation of the
QPSKMod actor in Zigbee network, which performs bit-level mapping of an
incoming 32-bit chip to signed 8-bit QPSKMod symbols. This logic is captured
in the following CAL-style C code:

static char q7_map(int bit){
return 255*%bit-128;
}

static void actionl (gpskmod_t *_g) {
unsigned int c_in = read_u32(_g->chip);
char symb_0[32];
for(int n = 0; n <= 31; n++){
symb_O0[n] = q7_map((c_in >> n) & 1);
}
for (int i = 0; i < 32; ++i) {
write_s8(_g->symb, symb_O0[i]);
}

Listing 4.43: QPSK.cal

This transformation logic can be generalized into a reusable method that sup-
ports conversion into any PikeOS thread synchronization model. Regardless
of whether the method is based on IPC buffer, event signaling, mutex coordi-
nation, or inter-partition ports, the steps for porting the QPSKMod actor are
consistent:

1. Extract the Core Computation: Identify the transformation logic inside
the CAL actor—in this case, reading a 32-bit chip and converting each
bit to a signed 8-bit QPSK symbol using 265 * bit - 128.

2. Define Input Handling: Replace read_u32(_g->chip) with the appro-
priate mechanism for the chosen method. Below are examples for each
synchronization strategy:

e [PC: In this method, the chip is received from another thread via
a blocking message queue, ensuring synchronization and isolation
of communication:

1| P4_uid_t sender = P4_UID_ALL;
2| P4_uint32_t chip;

59

Chapter 4: Implementation of Scheduling Strategies

3| P4_size_t size = sizeof (chip);
|| p4_ipc_buf_recv (&sender, P4_TIMEOUT_INFINITE, &chip, &size);

Listing 4.44: IPC Buffer - QPSK Thread receiving

e Event based: The chip is read from a shared volatile buffer once
an event has triggered the thread to resume, ensuring serialized
communication between stages:

1| // Assumes ewent was recetved and thread resumed
P4_uint32_t chip = chip_buflcl; // chip_buf must be declared
volatile

[}

Listing 4.45: Event Signaling - QPSK Thread reading from buffer

e Mutex based: A shared circular buffer is accessed within a mutex-
protected region to prevent concurrent modifications by other threads:

1| p4_mutex_lock (&mutex, P4_TIMEOUT_INFINITE) ;
2| P4_uint32_t chip = buffer_chipl[head_chip];

3l head_chip = (head_chip + 1) % CHIP_BUF_SIZE;
4| count_chip--;

5| pA_mutex_unlock (&mutex) ;

Listing 4.46: Mutex Method - QPSK Thread Circular Buffer

e Inter-Partition: The full chip array is received and iterated through:

1|P4_uint32_t chips [NUM_CHIPS];

2| P4_size_t msg_size;

3| vm_gqport_read (&in, chips, sizeof (chips), P4_TIMEOUT_INFINITE
, &msg_size);

1| P4_uint32_t chip = chips[current_index];

Listing 4.47: Inter-Partition - QPSK Thread Qport Read

3. Preserve Bitwise Transformation: Retain the inner loop that shifts and
masks each bit:

1| for (int i = 0; i < 32; ++i) {
int bit = (chip >> i) & 1;

int val = 255 *x bit - 128;

// store or send wval

50}

W

Listing 4.48: QPSK Thread Logic

4. Write Output Appropriately: After computing the QPSK symbols from
the chip, the output must be written in a way compatible with the syn-
chronization model.

e [PC: In this setup, each QPSK symbol is individually sent to the
next thread through a blocking IPC buffer. This guarantees reli-
able delivery and synchronization between producer and consumer
threads without needing additional mutexes or condition variables:

60

4.5 Mapping of CAL actors to PikeOS Methods

for (int i = 0; i < 32; i++) {

int bit = (chip >> i) & 1;

int val = 255 * bit - 128;

p4_ipc_buf_send (P4_UID_THREAD (p4_my_uid (), next_tid),
P4_TIMEOUT_INFINITE, &val, sizeof(val));

N

5 }

Listing 4.49: IPC Buffer - QPSK Thread Send

e Event: The transformed symbols are written to a shared volatile
buffer, and an event signal is sent to activate the next processing
stage.

for (int i = 0; i < 32; i++) {
int bit = (chip >> i) & 1;
symb_buf [symbol_count++] = bit ? 127 : -128;

}
p4_ev_signal (P4_UID_THREAD (p4_my_uid (), next_tid));

oo W

Listing 4.50: Event Signaling - QPSK Thread Writing to Shared Buffer

e Mutex: Symbols are stored in a circular buffer guarded by a mutex.
This ensures thread-safe access in systems with multiple concurrent
readers or writers.

1| p4_mutex_lock (&mutex, P4_TIMEOUT_INFINITE) ;

ol for (int i = 0; i < 32; i++) {

3 int bit = (chip >> i) & 1;

| int val = 255 *x bit - 128;

5 buffer_symb[(head_symb + count_symb) % SYMB_BUF_SIZE] =
val;

6 count_symb++;

7|}

8| p4_cond_broadcast (&cond_any) ;

9| p4_mutex_unlock (&mutex) ;

Listing 4.51: Mutex Method - QPSK Thread Storing in Circular Buffer

e Inter-Partition: When threads are separated across partitions, QPSK
symbols are first accumulated into a local array. Once all symbols
are ready, they are sent as a block via a VM queuing port to the
next actor which is in a different partition:

P4_uint8_t symbols [32];

for (int i = 0; i < 32; i++) {

3 int bit = (chip >> i) & 1;
symbols[i] = (bit ? 127 : -128);

N

51}
6| vm_gqport_write (&out, symbols, sizeof (symbols),
P4_TIMEOUT_INFINITE) ;

Listing 4.52: Inter-Partition - QPSK Thread Writing to Qport

61

Chapter 4: Implementation of Scheduling Strategies

By following these steps, the transformation logic from a CAL actor can be
cleanly and correctly ported to any PikeOS execution model without altering
its semantics. This preserves the behavior of the original actor while adapting it
to the synchronization and scheduling discipline of the target PikeOS method.

62

5 Evaluation and Results

This chapter provides an overview of the performance evaluation conducted for
four synchronization methods used in PikeOS: IPC, event signaling, mutex-
based synchronization, and inter-partition communication. The goal of this
evaluation is to understand how each method performs when applied to real-
time dataflow applications.

The experiments were carried out on a Raspberry Pi 4 Model B using all four
cores of the processor. Execution time was measured across 1000 iterations for
each method using built-in timestamp functions, and results were collected via
serial output. The evaluation setup was designed to ensure fair and consistent
measurement conditions for each synchronization strategy.

5.1 Test Setup

This section describes the experimental environment used to evaluate the syn-
chronization strategies in PikeOS. It outlines the hardware platform, boot-
loader, and measurement setup that together provide the foundation for con-
sistent and repeatable real-time execution. Key components include the Rasp-
berry Pi 4 Model B, the Barebox bootloader, and tools for capturing execution
time and system behavior.

5.1.1 Raspberry Pi 4

The evaluation was performed on a Raspberry Pi 4 Model B, a compact and
affordable single-board computer widely used in embedded systems research
and prototyping. It is powered by a quad-core ARM Cortex-A72 processor
running at 1.5 GHz and comes with various RAM options; for this evaluation,
the 4 GB variant was used. The board features USB 3.0 ports, Gigabit Ether-
net, dual-band Wi-Fi, Bluetooth, and dual micro HDMI outputs.

Its 40-pin GPIO header, broad peripheral support, and strong community
backing make the Raspberry Pi 4 an excellent platform for deploying and eval-
uating real-time operating systems like PikeOS. The multi-core capabilities of
the target board, combined with PikeOS’s support for CPU affinity, allowed
threads to be pinned to dedicated cores, enabling consistent and isolated per-
formance benchmarking.

63

Chapter 5: Evaluation and Results

To capture runtime output and debugging information, a USB-to-TTL serial
adapter was used to create a UART connection between the Raspberry Pi and
a host PC. This adapter included three essential lines—GND (ground), RXD
(receive), and TXD (transmit)—which were connected to the GPIO header as
follows:

e GND — Pin 6 (Ground)
e RXD — Pin 8 (GPIO14, UARTO_TXD)
e TXD — Pin 10 (GPIO15, UARTO_RXD)

This UARTO interface served as the primary communication channel for PikeOS
logging output. It enabled direct transmission of vm_cprintf () messages to
the host terminal with low latency and minimal overhead. Using this dedicated
serial connection avoided the buffering delays and non-determinism associated
with USB or network-based logging, ensuring accurate and reproducible per-
formance monitoring.

5.1.2 Barebox Bootloader

To boot the PikeOS applications on the Raspberry Pi 4, the system uses Bare-
box, a modern and flexible bootloader specifically designed for embedded plat-
forms. Barebox serves a critical role in system initialization: it configures
low-level hardware, loads the operating system kernel or ELF binaries into
memory, and hands over execution control to the real-time system|Pro24].

Barebox is particularly well-suited for real-time and safety-critical environ-
ments due to its modular architecture, scriptable shell, and support for multi-
ple hardware platforms including ARM, x86, MIPS, and RISC-V [Pro24].

In this evaluation setup, Barebox was used to load PikeOS ELF files directly
into memory without requiring additional boot stages. This minimal and de-
terministic boot process ensured that the timing measurements began under
consistent system conditions. Barebox was also configured to parse device
trees and initialize essential peripherals such as UART interfaces, enabling
early-stage logging and runtime output.

It allows for repeatable experiments and precise control over startup behavior,
which is essential for evaluating synchronization methods in a real-time system
context.

Before PikeOS can be executed on a Raspberry Pi 4, a series of boot stages
must be completed, starting from the GPU-initiated firmware up to the final
PikeOS payload. This multi-stage boot process relies on a specific set of files
placed on the SD card, each serving a distinct purpose in initializing the hard-
ware, loading Barebox, and eventually handing control to PikeOS. Below is an
overview of the essential components involved in this boot sequence |Pro24|:

e bootcode.bin: The first-stage bootloader executed by the GPU. It ini-
tializes the RAM and loads the next stage from the SD card. This file is
mandatory for all Raspberry Pi boot sequences.

64

5.2 Results

o startd.elf: This firmware handles the second stage of the boot process.
It continues hardware initialization, sets up the video and peripheral
interfaces, and prepares to load Barebox.

e fixup4.dat: Works in tandem with start4.elf to apply firmware patches
specific to the Raspberry Pi 4 hardware revision. It ensures the hardware
environment is correctly configured.

e barebox-raspberry-pi.img and barebox-dt-2nd.img: These are the actual
bootloader binaries. The former is the initial Barebox image that takes
over from the GPU boot stages, and the latter may serve to load a
secondary device tree or support multi-stage booting

e bem2711-rpi-4-b.dtb: A Device Tree Blob (DTB) file that defines the
hardware layout of the Raspberry Pi 4. Barebox uses this information
to discover and initialize components like UARTS, timers, and memory.

e config.txt: A configuration file read by the GPU firmware. It contains
directives that instruct the firmware to skip Linux and instead boot Bare-
box as the primary loader.

e boot.txt / boot.scr: Boot scripts used by Barebox. The boot.txt file
is a human-readable version, while boot.scr is the compiled script that
Barebox executes to load PikeOS images.

e barebox.env: An environment file that holds default variables for the
Barebox shell. These can define default boot targets, image paths, or
hardware-specific options.

e simple-pikeos-pure.bin and simple-pikeos-rpi4-elf: These are the actual
PikeOS payloads. The ELF file contains metadata and debug symbols,
while the BIN version is a stripped-down image ready for execution.

Each of these files contributes to a well-structured and deterministic boot se-
quence. This file structure ensures that PikeOS starts in a known, controlled
state—a prerequisite for consistent timing analysis and reliable performance
evaluation.

5.2 Results

5.2.1 Captured Timing Semantics

This section describes the methodology used to capture execution time during
the evaluation of synchronization strategies in PikeOS. In this setup, timing
information was collected using the p4_get_ts() function, a platform-specific
utility provided by PikeOS that retrieves the CPU’s timestamp counter. The
p4_get_ts() function either directly accesses the CPU’s hardware counter
or, if not available, falls back to the system clock. On supported platforms
like the Raspberry Pi 4, this function avoids a system call entirely (if the

65

Chapter 5: Evaluation and Results

P4_FEATURE_TS feature is defined), offering low-latency access to timing in-
formation [SYS21la|. Otherwise, it uses an internal syscall wrapper. This
design ensures precise, minimal-overhead timestamp acquisition suitable for
high-resolution profiling.

The raw values returned by p4_get_ts() represent timestamp counts in CPU-
specific clock ticks. To convert these into standard time units, a constant
TS_FREQ_RPI4 = 54000000ULL corresponding to the Raspberry Pi 4’s times-
tamp frequency-was used [Ras22|. This allowed the tick-based values to be
converted into nanoseconds, enabling consistent interpretation and compari-
son across iterations. The timing data was printed using vm_cprintf () to the
UART serial interface, ensuring low-overhead logging that does not interfere
with real-time behavior.

This consistent measurement framework ensured comparability across the four
evaluated methods.

5.2.2 Result Table

The following tables summarize the total execution times (in milliseconds)
for four dataflow applications—Add Array, PingPong, Digital Filter, and Au-
dio Processing—evaluated across four synchronization strategies: IPC Buffer
Communication, Event Signaling, Mutex-Based Synchronization, and Inter-
Partition Communication. Each result corresponds to execution over 1000
iterations.

The data show a consistent trend: IPC Buffer Communication and Event Sig-
naling outperform the other two methods across all applications. This is largely
due to their lower synchronization overhead and efficient intra-partition exe-
cution. In contrast, mutex-based synchronization introduces additional delays
due to lock contention and thread blocking, while inter-partition communica-
tion is inherently slower because it requires context switching across partitions
and higher inter-process communication latency.

e In the Add Array application (table, IPC Bulffers achieved the fastest
execution time (5.34 ms), while Inter-Partition Communication was the
slowest (12.36 ms).

e In PingPong (table, Event Signaling slightly outperformed IPC Buffers
(6.17 ms vs. 6.47 ms), showing that lightweight signaling primitives are
especially efficient when thread interactions are frequent and short-lived.
In this case, the PingPong threads continuously exchange data in a one-
to-one pattern, and the low overhead of event signaling reduces latency
more effectively than message-based communication.

e For the Digital Filter (table , the timing gap between the best (14.43
ms for IPC) and worst (29.54 ms for inter-partition) approaches was over

66

5.2 Results

15 ms, highlighting the significant cost of partition-level communication

and synchronization.

e In the Audio Processing use case (table , Event Signaling and IPC
Buffers again delivered comparable results (21 ms), whereas Mutex-
based approaches introduced higher latency (23 ms), likely due to locking

contention.
Synchronization Method | Execution Time (ms)
IPC Buffer Communication 5.341148
Event Signaling 8.519518
Mutex-Based Synchronization 8.702944
Inter-Partition Communication 12.36752

Table 5.1: Add Array Ezecution Result

Synchronization Method | Execution Time (ms)
IPC Buffer Communication 6.179314
Event Signaling 13.33537
Mutex-Based Synchronization 12.716444
Inter-Partition Communication 18.142678

Table 5.2: PingPong Execution Result

Synchronization Method | Execution Time (ms)
IPC Buffer Communication 14.43774
Event Signaling 17.017055
Mutex-Based Synchronization 26.716444
Inter-Partition Communication 29.542164

Table 5.3: Digital Filter Execution Result

Synchronization Method Execution Time (ms)
IPC Buffer Communication 20.437200
Event Signaling 21.983521
Mutex-Based Synchronization 23.615390
Inter-Partition Communication 24.927840

Table 5.4: Audio Processing Execution Result

The following table summarizes the total execution time recorded for the Zig-
Bee transmitter application, where the system was evaluated using one input
header bytes. This application shows the same trend. IPC Buffers and Event
Signaling give the best results, both finishing in under one millisecond. Event
Signaling is the fastest at just 0.06 ms.

67

Chapter 5: Evaluation and Results

Synchronization Method

Execution Time (ms)

IPC Buffer Communication 1.381028
Event Signaling 0.0061981
Mutex-Based Synchronization 0.274944
Inter-Partition Communication 1.632481

Table 5.5: ZigBee Frecution Result

68

6 Conclusion and Future Work

This thesis presented the design and evaluation of four distinct synchronization
strategies for executing actor-based dataflow applications on the PikeOS real-
time operating system. The goal was to implement each method in a way
that preserves the semantics of dataflow networks: namely, strict token-based
communication, deterministic firing sequences, and, where applicable, memory
or partition isolation.

The four methods implemented were:
e [PC Buffer Communication
e Event Signaling
e Mutex and Condition Variable Synchronization
e Inter-Partition Communication

As shown in Subsection all methods were implemented across five rep-
resentative dataflow applications: Add Array, PingPong, Digital Filter, Audio
Pipeline, and a ZigBee Transmitter. Each application was executed over 1,000
iterations, and the execution times were measured using p4_get_ts() to en-
sure precision.

Summary of Findings:

e [PC Buffer Communication in table ??7 consistently demonstrated the
lowest execution time across most applications. Its ability to decouple
producer-consumer communication within the same address space makes
it highly efficient. For instance, it recorded 5.34 ms in Add Array (table
and 6.18 ms in PingPong (table up to 2-3x faster than the
slowest method.

e Event Signaling emerged as the best option for small-payload or control-
flow-heavy scenarios, such as the ZigBee Transmitter and PingPong,
where it achieved the fastest result of 0.006 ms (see table 5.5), far
outperforming the other methods. However, for more compute-heavy
workloads, it ranked slightly behind IPC buffers.

e Mutex and Condition Variable Synchronization provided a robust and
thread-safe implementation style with clear sequential-read semantics.
Although it introduces lock/unlock overhead, it still performed better
than inter-partition methods in all examples.

69

Chapter 6: Conclusion and Future Work

e Inter-Partition Communication had the highest execution time in ev-
ery benchmark. Despite its advantages for spatial isolation and mixed-
criticality systems, its performance overhead is significant—reaching up
to 3% slower than the best-performing methods.

The result from subsection [5.2.2] confirm that the choice of synchronization
strategy has a substantial impact on system performance and should be tai-
lored to application needs. When latency and throughput are priorities, IPC
buffers or event signaling should be favored. For fault isolation or criticality
separation, inter-partition communication may be necessary despite its over-
head.

Mixed-Criticality Considerations:

In real-time embedded systems, such as automotive or avionics applications,
it is common to encounter mixed-criticality workloads, where different actors
have different levels of timing and safety requirements. For example, safety-
critical control functions may require strict partitioning and deadline guar-
antees, while lower-criticality components (e.g., diagnostics or logging) may
tolerate delay.

To address this, a promising direction is to combine synchronization strategies
across system partitions. For example:

e Use IPC Buffers within partitions where actors share the same criticality
level to minimize latency.

o Use Inter-Partition Communication to isolate actors of different critical-
ities and ensure system-level fault containment.

e Apply Mutexes and Condition Variables where shared-memory coordi-
nation is required between critical actors in the same partition.

e Use Event Signaling to quickly pass off control or send low-latency tokens
in real-time chains.

This hybrid approach enables designers to optimize both performance and
safety, aligning with the demands of mixed-criticality systems on PikeOS.

Future work may include:

While execution time profiling using timestamp-based methods (see subsection
5.2.1)) was successful, CPU load metrics could not be conclusively validated due
to inconsistent readings. Improving CPU usage analysis remains an important
area for future investigation.

e Enhancing PikeOS instrumentation for accurate CPU utilization moni-
toring.

e Scalability analysis under high actor density: Investigate how each syn-
chronization strategy performs as the number of actors increases signif-
icantly. While the current benchmarks use relatively small networks,
real-world applications may involve dozens of interacting components.

70

Chapter 6: Conclusion and Future Work

This would help assess contention, context-switch overhead, and queue
saturation behavior at scale.

Overall, this thesis provides a practical and quantitative foundation for select-
ing synchronization strategies when deploying actor-based dataflow applica-
tions on PikeOS. It highlights not only which method is fastest, but also when
and why to choose specific strategies depending on criticality, modularity, and
system architecture.

71

Bibliography

[AAP17]

[Bam14|

[BD17]

[BLMO6]

[EJ02

[EJ03]

|Ele21|

[KM04]

[Lau+94|

[LPY5]

[Mah22|

[Mir+14]

Hazem Ismail Ali, Benny Akesson, and Luis Miguel Pinho. “Com-
bining dataflow applications and real-time task sets on multi-core
platforms”. In: Proceedings of the 20th International Workshop on
Software and Compilers for Embedded Systems. 2017, pp. 60-63.
Mohamed Ahmed Mohamed Bamakhrama. “On hard real-time schedul-
ing of cyclo-static dataflow and its application in system-level de-
sign”. PhD thesis. Leiden University, 2014.

Alan Burns and Robert I Davis. “A survey of research into mixed
criticality systems”. In: ACM Computing Surveys (CSUR) 50.6
(2017), pp. 1-37.

Shuvra S Bhattacharyya, Rainer Leupers, and Heinrich Meyr. “The
Cyclo-Static Dataflow Model”. In: Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing.
Vol. 6. IEEE. 1996, pp. 3255-3258.

Johan Eker and Jérn W Janneck. “Embedded system components
using the CAL actor language”. In: University of California, Berke-
ley (2002).

Johan Eker and Jorn W. Janneck. The CAL Actor Language. https|:
//ptolemy.berkeley.edu/projects/embedded/caltrop/language.
htmll Accessed: 2025-05-23. 2003.

ElectricalFundablog. RTOS (Real Time Operating System) - Types,
Kernel, How it Works, Uses. Accessed: 2025-05-21. 2021.

Bruce H. Krogh and Bruce H. Meyer. “Model-Based Design of Em-
bedded Systems”. In: Proceedings of the Seventh IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC). IEEE, 2004, pp. 2-9.

Rudy Lauwereins, Michael Engels, Rik Ade, and Jean Peperstraete.
“Dataflow process networks: Semantics and implementation”. In:
IEEFE Proceedings Computers and Digital Techniques 141.5 (1994),
pp. 282-295.

Edward A Lee and Thomas M Parks. “Dataflow process networks”.
In: Proceedings of the IEEE 83.5 (1995), pp. 773-801.

Hatim Mohammed Arhoumah Mahmoud. Mapping Dataflow Pro-
cess Networks on Real-time Operating Systems. Bachelor Thesis.
Supervised by Prof. Dr. Klaus Schneider and Dr.-Ing. Omair Rafique.
Kaiserslautern, Germany, 2022.

Usman Mazhar Mirza, Mehmet Ali Arslan, Gustav Cedersjo, Sar-
dar Muhammad Sulaman, and Jorn W Janneck. “Mapping and

73

https://ptolemy.berkeley.edu/projects/embedded/caltrop/language.html
https://ptolemy.berkeley.edu/projects/embedded/caltrop/language.html
https://ptolemy.berkeley.edu/projects/embedded/caltrop/language.html

Bibliography

scheduling of dataflow graphs—a systematic map”. In: 2014 48th
Asilomar Conference on Signals, Systems and Computers. IEEE.
2014, pp. 1843-1847.

[PLI5] Thomas M Parks and Edward A Lee. “Non-preemptive real-time
scheduling of dataflow systems”. In: 1995 International Conference
on Acoustics, Speech, and Signal Processing. Vol. 5. IEEE. 1995,
pp. 3235-3238.

[PPL94] José Luis Pino, Thomas M Parks, and Edward A Lee. “Mapping
multiple independent synchronous dataflow graphs onto heteroge-
neous multiprocessors”. In: Proceedings of 1994 28th Asilomar Con-
ference on Signals, Systems and Computers. Vol. 2. IEEE. 1994,
pp. 1063-1068.

[Pro24] Barebox Project. Bareboxr Documentation. Accessed: 2025-05-21.
2024. URL: https://www.barebox.org/doc/latest/index.html.

[Ras22] Raspberry Pi Community. System Timer Frequency on Raspberry
Pi 4. Accessed: 2025-05-21. 2022. URL: https://forums.raspberrypi.
com/viewtopic.php?t=320519.

[SYS21a] SYSGO GmbH. PikeOS Kernel Reference Manual. Accessed 2024-
05-21. SYSGO GmbH. 2021.

[SYS21b] SYSGO GmbH. PikeOS User Manual. Accessed 2024-05-21. SYSGO
GmbH. 2021.

[Wig+06] Maarten Wiggers, Marco Bekooij, Pierre Jansen, and Gerard Smit.
“Efficient computation of buffer capacities for multi-rate real-time
systems with back-pressure”. In: Proceedings of the 4th interna-
tional conference on Hardware/software codesign and system syn-
thests. 2006, pp. 10-15.

[Yvi+11] Hervé Yviquel, Emmanuel Casseau, Matthieu Wipliez, and Mick-
aél Raulet. “Efficient multicore scheduling of dataflow process net-
works”. In: 2011 IEEE Workshop on Signal Processing Systems
(SiPS). IEEE. 2011, pp. 198-203.

74

https://www.barebox.org/doc/latest/index.html
https://forums.raspberrypi.com/viewtopic.php?t=320519
https://forums.raspberrypi.com/viewtopic.php?t=320519

	Eigenständigkeitserklärung
	Contents
	List of Figures
	Listings
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Related Work
	1.4 Research Contributions
	1.5 Thesis Organization

	2 Background
	2.1 Embedded Systems and Real-Time Requirements
	2.2 Dataflow Models
	2.2.1 Kahn Process Networks (KPN)
	2.2.2 Dataflow Process Networks

	2.3 CAL Actor Language and XDF Representation
	2.4 Model-Based Design and Code Generation
	2.4.1 Comparison Between Dataflow Semantics and RTOS Execution Model
	2.4.2 Execution Semantics: Bounded Buffers and Determinism

	3 Methodology for Dataflow-to-PikeOS Mapping
	3.1 Code Conversion
	3.1.1 CAL and XDF Input Specifications
	3.1.2 Transpiler Design and Generated C Output

	3.2 PikeOS System Architecture
	3.2.1 Actor-to-Thread Mapping
	3.2.2 Partition Layout and Scheduling

	3.3 Execution Semantics and Communication Infrastructure
	3.4 Target Applications
	3.4.1 Add Actor Network
	Actors and Network Structure

	3.4.2 Digital Filter
	Actors and Network Structure

	3.4.3 PingPong Actor Network
	Actors and Network Structure

	3.4.4 Audio Network
	3.4.5 ZigBee Network
	Actors and Network Structure

	4 Implementation of Scheduling Strategies
	4.1 IPC-Based Messaging
	4.2 Mutex and Condition Variable Synchronization
	4.3 Event-Based Signaling with Thread Suspension in PikeOS
	4.4 Inter-Partition Communication using VM Queuing Ports
	4.5 Mapping of CAL actors to PikeOS Methods

	5 Evaluation and Results
	5.1 Test Setup
	5.1.1 Raspberry Pi 4
	5.1.2 Barebox Bootloader

	5.2 Results
	5.2.1 Captured Timing Semantics
	5.2.2 Result Table

	6 Conclusion and Future Work
	Bibliography

