
Rheinland-Pfälzische Technische Universität
Kaiserslautern-Landau

MASTER THESIS

Model Translation for Security Analysis and
Formal Verification of Embedded Systems

Author:
Mayur Dattatray Sawant
(Matriculation Number :)

Supervisors:
Prof. Dr. Klaus Schneider
M.Sc. Marvin Häuser

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in Commercial Vehicle Technology

in the

Embedded Systems Group

of the

Department of Computer Science

August 1, 2025

https://rptu.de
https://rptu.de

i

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit mit dem Thema „Model Translation for
Security Analysis and Formal Verification of Embedded Systems“ selbstständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit — einschließlich Tabellen und Abbildungen —, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Kaiserslautern, den 01.08.2025

Mayur Dattatray Sawant

ii

Abstract

Safety-critical embedded systems must satisfy two equally stringent assurances: rigorous formal veri-
fication of their reactive behaviour and comprehensive security checking to safeguard confidential and
authentic data. The synchronous design flow provided by Averest delivers machine-checked proofs
for programs written in the Quartz language. At the same time, the SysML-based TTool contributes
model-centric performance analysis, real-time checking, and automated verification of confidential-
ity and authenticity using ProVerif and UPPAAL. This thesis demonstrates that these complementary
strengths can be combined through a semantics-preserving translation from Quartz to SysML/A-
VATAR.

The work proceeds in three stages. (i) A feasibility study maps Quartz constructs, logical instants,
broadcast signals, guarded actions, onto equivalent SysML elements and identifies the few features
that require controlled approximation. (ii) A prototype translator ingests a Quartz model already
proved correct in Averest and emits an XML file that opens unmodified in TTool. (iii) An evaluation
on representative benchmarks confirms that the translated models execute faithfully in TTool, inherit
the original safety proofs that extend the assurance envelope beyond what either tool provides in
isolation.

The resulting workflow, not only enables engineers to start with deterministic, synchronous speci-
fications and obtain machine-checked safety proofs, but also extends the same design artefact with
attacker models and cryptographic verification. This practical application of a unified path to safety
and security assurance for reactive embedded systems holds great promise for the future.

iii

Zusammenfassung

Sicherheitskritische Embedded-Systeme müssen zwei ebenso strenge Anforderungen erfüllen: eine
rigorose formale Verifikation ihres reaktiven Verhaltens und eine umfassende Sicherheitsprüfung zum
Schutz vertraulicher und authentischer Daten. Der synchrone Entwurfsablauf, den Averest bereitstellt,
liefert maschinengeprüfte Beweise für in der Sprache Quartz geschriebene Programme. Gleichzeitig
bietet das auf SysML basierende TTool modellzentrierte Leistungsanalysen, Echtzeit-Checks und au-
tomatisierte Verifikation von Vertraulichkeit und Authentizität mittels ProVerif und UPPAAL. Diese
Arbeit zeigt, dass sich diese komplementären Stärken durch eine semantikerhaltende Übersetzung
von Quartz nach SysML/AVATAR kombinieren lassen.

Die Arbeit gliedert sich in drei Phasen: (i) Machbarkeitsstudie: Quartz-Konstrukte, logische In-
stanzen, Broadcast-Signale und bewachte Aktionen werden äquivalent in SysML-Elemente überführt;
lediglich wenige Sprachmerkmale erfordern kontrollierte Approximationen. (ii) Prototypischer Über-
setzer: Ein Übersetzungswerkzeug liest ein bereits in Averest korrektheitsgeprüftes Quartz-Modell
ein und erzeugt eine XML-Datei, die unverändert in TTool geladen werden kann. (iii) Evaluation: An
repräsentativen Benchmark-Beispielen wird bestätigt, dass die übersetzten Modelle in TTool fehler-
frei ausgeführt werden und die ursprünglichen Sicherheitsbeweise übernehmen, wodurch der Ver-
trauensbereich über das hinausgeht, was jedes der beiden Werkzeuge einzeln leisten kann.

Der resultierende Workflow ermöglicht es Ingenieurinnen und Ingenieuren, mit deterministischen,
synchronen Spezifikationen zu beginnen und maschinengeprüfte Sicherheitsbeweise zu erhalten. Zu-
dem wird dasselbe Entwurfsartefakt um Angreifermodelle und kryptographische Verifikation erweit-
ert. Diese praktische Anwendung eines einheitlichen Pfads zu Safety- und Security-Assurance für
reaktive Embedded-Systeme bietet vielversprechende Perspektiven für die Zukunft.

iv

Contents

List of Figures vi

Listings vii

List of Abbreviations viii

1 Introduction 1
1.1 General Problem Setting . 2
1.2 Thesis Objectives . 2
1.3 Structure of the Thesis . 2

2 Language Specifications 4
2.1 Quartz: Syntax and Semantics . 4

2.1.1 Core Concepts and Semantic Pitfalls . 5
2.1.2 Concrete Syntax . 10
2.1.3 Formal (Operational) Semantics . 11
2.1.4 Combining Syntax and Semantics . 13
2.1.5 Conclusion . 14

2.2 SysML: Syntax and Semantics . 15
2.2.1 Diagram Frame and Notation Conventions 17
2.2.2 Concrete Graphical Elements of a SysML State-Machine Diagram 18
2.2.3 Transition Firing Semantics . 18
2.2.4 State-Execution Semantics . 20
2.2.5 Sub-Machine Reuse, Parameters, and Block Integration 22
2.2.6 Syntax and Semantics of SysML’s Remaining Diagram Families 23
2.2.7 Conclusion . 24

3 Software Capabilities 26
3.1 Averest . 26

3.1.1 Compilation . 27
3.1.2 Code Generation . 28
3.1.3 Formal Verification . 29
3.1.4 Conclusion . 30

3.2 Ttool . 30
3.2.1 Security Engineering with SysML-Sec and AVATAR 31
3.2.2 Model-Centric Environment . 32
3.2.3 Design-Space Exploration and Performance Simulation 32
3.2.4 Safety and Real-Time Formal Verification 33

v

3.2.5 Automatic Code Generation and Virtual Prototyping 36
3.2.6 Conclusion . 36

4 Translation Feasibility Analysis 38
4.1 Model-of-Computation (MoC) . 38
4.2 Basic Structural Units . 39
4.3 Event and Signal Semantics . 40
4.4 Time-related Constructs . 41
4.5 Control-Flow Statements and Their State-Machine Counterparts 42
4.6 Data-Type Compatibility . 43
4.7 Concurrency, Causality, and Determinism . 44
4.8 Formal Aspects . 46
4.9 Known Gaps and Conclusion . 46

5 Program Architecture and Implementation 48
5.1 Introduction . 48
5.2 Averest NuGet Package and Initial Parsing Phase 48
5.3 EFSM-Level Transformation Utilities . 49
5.4 In-Memory SysML Structure Types . 50
5.5 Requirements Extraction and Filtering Utilities . 51
5.6 Translating the EFSM into a SysML State-Machine 51
5.7 Generating Block-level Attributes and Type Information 53
5.8 Requirement Diagram Synthesis and XML Serialisation 53
5.9 Serialising the Complete Model – “Main XML Generation” 55
5.10 Putting It All Together and Concluding Remarks 58

6 Evaluation 60
6.1 Methodology . 60
6.2 Test Case Selection . 61
6.3 Results . 61

6.3.1 Quartz Specifications . 61
6.3.2 Extended Finite-State Machine . 62
6.3.3 XML output . 63
6.3.4 Observations . 64

6.4 Confirmation . 66

7 Conclusion and Future Work 67

A Code 69

Bibliography 81

Note 83

vi

List of Figures

2.1 Curing Schizophrenia Example R0 [8] . 8
2.2 Curing Schizophrenia Example R1 without goto [8] 9
2.3 Curing Schizophrenia Example R2 [8] . 9
2.4 Guarded Actions of the Surface [8] . 14
2.5 Overview of SysML/UML Interrelationship [9] . 16

3.1 Averest Design Flow [4] . 28
3.2 Overall Approach [6] . 33
3.3 UPPAAL Formal Verification [6] . 35

6.1 EFSM: Robot02 [30] . 63

vii

Listings

2.1 Simple Causality Problems [8] . 6
2.2 Multiply schizophrenic local declaration [8] . 7
3.1 Pragma-based Directives . 31
5.1 SysML Structure . 50
5.2 Requirements Extraction and Filtering Utilities . 51
5.3 Requirement Info . 51
5.4 Filtering Heuristics . 52
5.5 Block-level Attributes . 53
5.6 Requirement Diagram . 54
5.7 Block Diagram Panel . 55
5.8 Block Diagram Component . 55
5.9 State Machine Component . 56
5.10 State Machine Connector . 57
5.11 State Machine Subcomponent . 57
5.12 Final Statements . 58
6.1 Quartz: Robot02 . 62
6.2 Fragment of XML . 63
A.1 Complete Code . 69

viii

List of Abbreviations

EFSM Extended Finite-State Machine
SysML Systems Modeling Language
UML Unified Modeling Language
AVATAR Automated Verification of Real Time Software
DIPLODOCUS Design Space Exloration Based on Formal Description Techniques, Uml and SystemC
MoC Model of Computation
SOS Structural Operational Semantics
LTL Linear Temporal Logic
CTL Computation Tree Logic
AIF Averest Intermediate Format
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
SGA Synchronous Guarded Actions
CGA Control-flow Guarded Actions
DGA Data-flow Guarded Actions
BDD Binary Decision Diagram
GALS Globally Asynchronous, Locally Synchronous
HW Hardware
SW Software
ML Machine Learning
HDL Hardware Description Language
TEPE Temporal Property Expression
GUI Graphical User Interface
XMI Extensible Markup Language Metadata Interchange
CPU Central Processing Unit

1

1 Introduction

The last two decades have seen an unprecedented diffusion of embedded computing: microcontrollers
now regulate the fuel–air ratio of an engine, synchronise renewable energy inverters with the grid, and
maintain wearable medical devices within therapeutic limits. Market analysts estimate that global
revenue for embedded systems will increase from USD 100 billion in 2023 to more than USD 160
billion by 2030, underscoring the strategic role these platforms play in driving innovation across both
consumer and industrial sectors, and as their reach widens, the dependability bar rises correspondingly
[1]. A modern product must be safe, never placing users in danger, even in the presence of software
faults, and simultaneously secure against remote intrusion, data exfiltration, and intellectual property
theft [2].

Guaranteeing both attributes is hard because they stress distinct dimensions of a system’s behaviour.
Safety is usually formulated as constraints on the ordering and timing of events in a reactive sys-
tem, i.e., a system that maintains an ongoing dialogue with its environment. Tools grounded in syn-
chronous languages, such as Esterel, Lustre, or Quartz, tame this complexity by assuming a global
logical clock: every variable has a value at every tick, and causality becomes decidable. The Quartz
language, for instance, can also be translated into guarded actions, symbolically model-checked, and
then compiled into synthesiser-ready VHDL, a workflow implemented in the open-source Averest
framework. [3] [4]

Security assurance, in contrast, adds an adversarial dimension: designers must reason about what
an attacker can observe or generate on communication channels. Model-driven security engineers,
therefore, move toward graphical notations that integrate threat models and cryptographic protocol
primitives, and that link automatically to tools such as ProVerif and UPPAAL. TTool exemplifies this
philosophy. By specialising SysML into the AVATAR and SysML-Sec profiles, it offers design-space
exploration, real-time model checking, and push-button proofs of confidentiality and authenticity, all
in a single tool. [5] [6]

Practitioners are thus caught between two complementary yet mutually exclusive ecosystems. Choos-
ing Averest yields deterministic semantics and strong safety proofs; on the other hand, TTool brings
integrated safety and security analysis, but omits the synchronous foundations and verified code gen-
eration favoured by hardware–software co-design groups. Bridging this methodological gap is there-
fore essential: if a Quartz program already proven safe could be faithfully translated into a SysM-
L/AVATAR model, developers would gain access to TTool’s security machinery without forfeiting
the earlier safety guarantees. This thesis addresses that challenge by analysing the semantic distance
between the two languages and realising a prototype translator.

The remainder of the chapter states the precise problem being tackled, enumerates the objectives
pursued, and outlines the thesis’s structure.

Chapter 1. Introduction 2

1.1 General Problem Setting
The challenge can be stated concisely: formally verified safety is available in Averest, while integrated
security analysis is available in TTool; however, to the author’s knowledge, no off-the-shelf workflow
delivers both for the same design artefact.

Specifically, Averest/Quartz provides synchronous semantics, guarded-action compilation, and a BDD-
based model checker, and TTool/AVATAR-Sec embeds confidentiality and authenticity pragmas,
attack-tree modelling, and automated ProVerif calls

Without a translation bridge, designers must either leave synchronous safety proofs to gain security
analysis or refrain from integrated security verification to keep deterministic timing semantics. Bridg-
ing the languages is non-trivial: Quartz’s logical instants, broadcast signals, and causality constraints
have no direct counterpart in SysML, while SysML-Sec’s attacker model and security pragmas have
no equivalent in Quartz. A workable solution must therefore faithfully map constructs, highlight
irreconcilable gaps, and automate the conversion so that proofs on both sides remain traceable.

1.2 Thesis Objectives
The objectives of the thesis are:

• Translation-feasibility study:
Analyse the syntactic categories and semantic domains of Quartz and SysML/AVATAR-Sec,
deriving a formal correspondence where possible and identifying constructs that require ap-
proximation or are fundamentally unsupported.

• Prototype translation tool:
Implement an end-to-end translator that takes a verified Quartz program as input, builds an
intermediate model, and outputs an XML-encoded SysML file conforming to the current TTool
schema, including security-relevant pragmas.

• Empirical evaluation:
Apply the translator to a number of Quartz programs considered as benchmarks, import the
resulting models into TTool, and measure:

– functional equivalence (simulation traces),

– carry-over of safety proofs, and

– remaining mismatches or unsupported constructs will be catalogued to guide future work

These objectives aim to demonstrate that combining Averest and TTool through automated model
translation yields a unified, model-driven flow in which formal verification and security checking
coexist for the same embedded-system design.

1.3 Structure of the Thesis
This thesis is organised into seven chapters. Chapter 2 surveys the two modelling formalisms, Quartz
and SysML, clarifying their syntax, semantics, and the modelling assumptions that will later govern
translation. Chapter 3 reviews the capabilities of the tools built around those languages: Averest

Chapter 1. Introduction 3

for synchronous compilation and safety verification, and TTool for model-centric safety and secu-
rity analysis. Chapter 4 opens the original contribution in this thesis by analysing the feasibility of
translating Quartz into SysML; it formalises semantic correspondences and identifies the gaps that
must be bridged. Chapter 5 describes the architecture and implementation of the resulting translation
framework, detailing its algorithms, software structure, and integration with both toolchains. Chap-
ter 6 evaluates the code on representative examples. Chapter 7 concludes the thesis, summarising the
main findings and outlining avenues for future enhancement and broader integration.

4

2 Language Specifications

2.1 Quartz: Syntax and Semantics
Quartz belongs to the family of synchronous programming languages, whose central postulate, per-
fect synchrony, allows every component of a reactive system to share a single, abstract clock [7].
During one clock tick (often referred to as a reaction), all active statements read their inputs and
compute their outputs instantaneously; physical time advances only when the program executes an
explicit time-consuming construct, such as pause [8]. This deceptively simple concept supports
the language’s deterministic semantics, the tractability of formal reasoning, and the ease with which
Quartz specifications can later be mapped to either hardware or software [8].

A need of Global Logical Clock

Modern embedded systems integrate multicore CPUs, dedicated accelerators and complex I/O, all of
which must respond predictably to an ever-changing physical environment. Traditional event-driven
languages (e.g. VHDL, SystemC) execute processes whenever some signal changes, but physical
time can stall if a burst of simultaneous events continues to trigger zero-delay reactions, leading to
so-called zero-time races [8]. Synchronous languages dissolve this hazard by indexing computation
steps to the logical clock: regardless of internal data dependencies, every synchronous thread reaches
the next pause together, guaranteeing progress and eliminating scheduling nondeterminism [8].

From a verification standpoint, this means a designer can model the entire reactive behaviour as a
finite-state control automaton acting on (possibly) infinite-precision data, an abstract state machine in
Quartz terminology. Such machines are amenable to model checking and theorem proving, activities
that are otherwise intractable for heterogeneous event-driven code. [8]

Key Concepts Behind the Synchronous Mind-Set

Quartz’s execution model rests on four closely related principles that are introduced early in the
specifications [8]:

Perfect synchrony: In Quartz, every statement other than pause is treated as taking zero logical time.
During one clock tick (a “macro step”), all active threads run their instantaneous code in lock-step
and meet again at the next pause. Because nothing inside a tick can interleave, reasoning becomes
cycle-accurate. The programmer, therefore, writes as if the whole system reacts atomically at each
instant, with real time only advancing when a pause is reached.

Determinism by construction: Within a tick, each signal (or variable) is either absent or carries exactly
one value. Multiple writes that would assign conflicting values in the same tick are forbidden, and
the compiler’s causality analysis flags such “write-write” conflicts. This single-assignment discipline
ensures that, for any given set of inputs, the reaction function of a Quartz program is unambiguous.

Chapter 2. Language Specifications 5

Separation of concerns: Quartz makes a clear syntactic and semantic split between control flow and
data flow. The predicates enter, move, and term describe how control moves between locations,
forming a finite-state control automaton. The work performed along each control edge is packaged
as guarded commands (ω, C), which state “when condition ω holds, perform command C”. Keeping
these two views distinct simplifies both formal proofs and subsequent code generation to hardware,
software or data-flow representations.

Extensible synchrony: To model systems that are only locally synchronous, or that must inter-
act with nondeterministic environments, Quartz extends the strict synchronous kernel with dedi-
cated constructs for asynchronous threads and controlled nondeterminism. These additions allow
developers to describe GALS (Globally Asynchronous, Locally Synchronous) architectures or ab-
stract, environment-driven behaviour without compromising the deterministic core semantics outlined
above.

Quartz in the Landscape of Concurrency Models

In [8], it is highlighted that only synchronous languages deliver all three of (i) constant-time reac-
tions, (ii) deterministic semantics, and (iii) a straightforward path to both hardware and software
implementation. Quartz inherits these strengths while overcoming the practical limitations found in
predecessors, such as Esterel (e.g., it supports delayed assignments and explicit choice for nondeter-
minism) [8].

Implications for Syntax and Semantics

Because time and determinism are involved into the execution model, Quartz’s syntax tightly couples
every control construct with a clear semantic rule explained in [8], like a pause marks the only point
where the logical clock advances, thus appearing prominently in the grammar, parallel composition
operators (|| synchronous, ||| asynchronous) encode whether child threads share the same clock
or each runs on its own schedule, and immediate (without next) versus delayed (next) assignments
gives precise control over when data becomes visible without resorting to low-level buffering.

The subsequent sections of this chapter will formalise these constructs, beginning with data types
and expressions and culminating in the Structural Operational Semantics that prove Quartz programs
causality-safe.

2.1.1 Core Concepts and Semantic Pitfalls

Quartz inherits the perfect-synchrony idea from Esterel, yet it must still address two hazards, causality
cycles and schizophrenia, that remain in every synchronous language. We first position Quartz among
the mainstream models of computation, then explain how its semantics are built to avoid those pitfalls.
[8]

Concurrency Landscape

Event-triggered simulation: Hardware-description languages such as VHDL, Verilog and SystemC
wake a process whenever a signal in its sensitivity list changes. The simulator then iterates three
zero-time phases—elaboration, update and event detection—at the current timestamp before time is
allowed to advance. This yields cycle-accurate, deterministic updates, but it can also stall the clock:
an unbounded cascade of “same-time” events (a zero-time race) may keep the kernel inside the current
instant forever, so that physical time never progresses. [8]

Chapter 2. Language Specifications 6

Data-flow process networks: Kahn process networks and CSP-style variants model computation as
actors that consume tokens from unbounded FIFO channels; a firing blocks until the required inputs
are present and then produces new tokens. Because each actor implements a continuous, mono-
tone stream function, the whole network remains functionally deterministic while exposing abundant
streaming parallelism. Practical deployment, however, is fraught with timing issues: fixing a global
latency schedule is difficult, finite-buffer feasibility is generally undecidable, and relaxed run-time
schedulers can introduce nondeterminism that the pure theory forbids. [8]

Synchronous reactive (Quartz): Languages in the Esterel/Lustre/Signal family, and Quartz itself, run
on a single logical clock. Within one tick, every active component reacts atomically: inputs are read,
outputs are produced, and all internal updates occur as if in zero time before the system synchronises
for the next tick. This “perfect synchrony” makes behaviour deterministic, timing-exact and highly
amenable to formal verification. The compiler must nevertheless consider two hazards: causality cy-
cles in the generated equations and multiple re-entries (the “schizophrenia” problem) where a state-
ment is exited and re-entered within the same tick, creating overlapping incarnations of local state.
[8]

Clocked Execution and the Control–Data Split

Inside one logical tick, every active statement executes instantaneously; only pause (and its macro
variants) consumes a tick. Quartz formalises this with three predicates over each statement S [8]:
enterh̄(S) – control enters S, move(S) – control moves inside S and term(S) – S terminates in
this tick.

These predicates form the nodes of a finite-state control automaton, while every data update is pack-
aged as a guarded command (ω, C). Labelling the automaton’s edges with the enabled (ω, C)
yields an abstract state machine whose transitions are purely Boolean, a crucial property used in the
causality checker and model checking. [8]

Semantic Pitfalls

Causality cycles:

A causality problem exists if a statement’s instantaneous actions depend on their own (as-yet-unknown)
result. Simple illustrative modules P16-P19 (Listing 2.1) show that emitting o while guarding on o
leaves the boolean equation system unsolvable, or yields multiple solutions, unless the compiler en-
forces constructiveness.

LISTING 2.1: Simple Causality Problems [8]
1 module P16(event &o) {
2 if(o)
3 if(!o) emit o;
4 }
5 module P17(event &o1,&o2) {
6 if(o1) {
7 emit o2;
8 if(!o2) emit o1;
9 }

10 }
11 module P18(event &o1,&o2) {
12 if(o1) {
13 emit o2;
14 ||

Chapter 2. Language Specifications 7

15 if(!o2) emit o1;
16 }
17 }
18 module P19(event &o1,&o2) {
19 if(o1) {
20 emit o2;
21 ||
22 if(o2) emit o1;
23 }
24 }

Quartz’s compiler therefore performs a ternary (“true/false/→”) simulation of the guard-equation sys-
tem. A program is accepted only if every signal ends the tick with a unique value (true, false, or
absent). The formal algorithm, equivalent to the speed-independence test in asynchronous circuits, is
defined in [8].

Schizophrenia:

A statement is schizophrenic when it is left and re-entered within the same tick, so multiple incarna-
tions of its local variables coexist. The classic loop in Listing 2.2 emits four mutually contradictory
signals (y000, y100, y110, y111) because the initial iteration of the innermost loop executes the
switch before any aborts occur, with all signals x1, x2, and x3 present, hence y111 is emitted;
the presence of x3 triggers a weak abort, restarting the loop and upon re-execution, only x1 and x2
are present, leading to emission of y110; x2 triggers a weak abort, restarting again with a new scope
where only x1 is present, resulting in y100, and finally, x1 causes another abort, and the restarted
loop runs with none of x1, x2, or x3 present, so y000 is emitted.

LISTING 2.2: Multiply schizophrenic local declaration [8]
1 module Gonthier02(event &y111,&y110,&y101,&y100,
2 &y011,&y010,&y001,&y000) {
3 loop {
4 event x1;
5 weak abort
6 {
7 ell1:pause;
8 emit x1;
9 }

10 ||
11 loop {
12 event x2;
13 weak abort
14 {
15 ell2:pause;
16 emit x2;
17 }
18 ||
19 loop {
20 event x3;
21 weak abort
22 {
23 ell3:pause;
24 emit x3;
25 }
26 ||
27 loop {

Chapter 2. Language Specifications 8

28 switch
29 (!x1 & !x2 & !x3) do emit y000;
30 (!x1 & !x2 & x3) do emit y001;
31 (!x1 & x2 & !x3) do emit y010;
32 (!x1 & x2 & x3) do emit y011;
33 (x1 & !x2 & !x3) do emit y100;
34 (x1 & !x2 & x3) do emit y101;
35 (x1 & x2 & !x3) do emit y110;
36 (x1 & x2 & x3) do emit y111;
37 else nothing;
38 ell0:pause;
39 }
40 when(x3);
41 }
42 when(x2);
43 }
44 when(x1);
45 }
46 }

Quartz cures schizophrenia by [8]:

1. Surface/depth splitting: the compiler separates enter actions from steady-state actions, dupli-
cating the “surface” for each possible reincarnation (examples R0–R2 in Figures 2.1- 2.3)

2. Variable renaming: each incarnation gets a unique name; worst-case blow-up is quadratic but
rarely met in practice

3. Static checks: the rename map is computed before guarded-action generation, keeping later
causality analysis tractable

FIGURE 2.1: Curing Schizophrenia Example R0 [8]

Chapter 2. Language Specifications 9

FIGURE 2.2: Curing Schizophrenia Example R1 without goto [8]

FIGURE 2.3: Curing Schizophrenia Example R2 [8]

Quartz’s Guarantees

Quartz provides guarantees such as determinism: the equation-system semantics plus constructive
causality ensure one unique logical outcome per tick, bounded re-entry: surface/depth expansion turns
any schizophrenic loop into a finite unfolding; the resulting guarded-action set is still finite-state, and
proof-friendliness: because control and data are factored, both causality checking and higher-order
logic embeddings can reuse the same predicates (enterh̄, move, term) as lemmas. [8]

Chapter 2. Language Specifications 10

With the conceptual ground cleared, the following section formalises how Quartz looks: its type
system, expression language and statement grammar. There, we will see how each syntactic form
directly connects to the semantics outlined above.

2.1.2 Concrete Syntax

In Quartz’s surface grammar, each construct is mapped one-to-one to the semantics. Because the
language is statically typed and clock-driven, its syntax is organised around four themes: data types,
expressions, statements (including the module interface), and the formal grammar. The following
explanation traces them in that order.

Data Types

The compiler infers a uniquely determined minimal type for every expression at compile time. Def-
inition 2.1 ([8]) enumerates the available atomic types: bool, bounded and unbounded bit-vectors
bv[n] / bv, and bounded or unbounded integers nat<n>, int<n>, nat, int, followed by the
composite constructors array(ε,n) and tuples ε * ϑ [8].

This sharp distinction between atomic and composite values is more than cosmetic. Only variables
of atomic type can participate in write-conflict checks or causality equations; the compiler considers
writes to different fields of a composite variable (for example, separate elements of an array) to be
independent, which allows safe parallel updates in one clock tick. Bounded numeric types also serve
as compile-time evidence that overflow is either impossible or detectable, and they directly inform
the ternary causality analysis presented earlier. [8]

Expressions and Operators

Literals encompass Booleans (true, false), decimal or bit-vector numerals (1010b, 7u, 2AFx),
and tuple/array aggregates. Operator precedence is fixed and provided in Table 2.1 ([8]), ranging
from tuple construction at the top down to logical equivalence at the bottom, where each operator is
formally assigned its typing rule and result bit-width.

Quartz draws a pragmatic distinction between static expressions, which are fully evaluable during
compilation, and dynamic ones that depend on run-time variables. It is explained with the canon-
ical example in [8] that a static term such as 3*7-14 collapses to the constant 7 (type int<8>),
whereas x*y-z remains dynamic even though its bit-width can already be inferred. Static evaluation
is performed before type checking so that the constant’s minimal type becomes visible to later rules.

Semantically, every well-typed expression ϖ denotes a value !ϖ"ϱ in the set associated with its type,
where ϱ is the current assignment of program variables [8].

Statements, Interfaces, and Modules

All executable code resides inside a module declaration that lists its typed ports and local variables.
The lexical tokens that begin a module header are (module, implements, {, }). [8]

Atomic statements: These contain the instantaneous actions available to a programmer, immedi-
ate or delayed assignments (x = ϖ;, next(x) = ϖ;), Boolean signal emission (emit x;), and
control-flow markers such as pause, halt, or the await family. Even the delayed form next(x)
= ϖ; executes in zero logical time; it simply stores ϖ for assignment at the next tick. These in-
stantaneous actions constitute the “micro-steps” that the operational semantics will bundle into one
synchronous reaction. [8]

Chapter 2. Language Specifications 11

Compound statements: Structures such as sequential composition, synchronous (||) and asynchronous
(|||) parallelism, conditionals, loops, and pre-emption constructs (abort, suspend, loop ...
each) are built from the atomic core. Operator precedence ensures that, for example, S1;S2 ||
S3 parses as S1; {S2 || S3} without relying on parentheses. The pause boundary embed-
ded in many of these constructs is the syntactic cue that time has advanced; while other statement
execution is perceived as instantaneous within a tick. [8]

A complete module declaration combines ports, local variables, and a body statement. The imple-
ments clause optionally relates a behavioural module to a property-only specification module, laying
the foundation for later proof obligations [8].

Syntactic Choices and Their Semantic Consequences

Syntax and semantics in Quartz are tied so closely that each surface decision brings a predictable
behaviour [8]:

• Immediate versus delayed assignments select whether data observation precedes or follows
control movement in a tick, and therefore which guarded-command set the compiler generates.

• Distinct parallel operators (|| deterministic, ||| nondeterministic) make the programmer’s
intent explicit and dictate how the enter / move / term predicates compose.

• Explicit bit-widths let the type checker detect overflow hazards early and feed accurate range
information to the causality solver.

In short, the grammar is not just a parsing convenience; it is the first line of defence in preserving
Quartz’s deterministic, causality-free semantics.

2.1.3 Formal (Operational) Semantics

Quartz’s informal intuition, “everything between two pause s happens in zero logical time”, is made
mathematically precise through a Structural Operational Semantics (SOS). [8]

Why an SOS?

Plotkin-style SOS rules let one describe the step-wise effect of every syntactic construct without
appealing to a particular implementation strategy. By treating a complete program state as a tuple <
E, ς, S >, environment E, incarnation map ς, residual statement S, each rule derives the next state
plus meta-information such as delayed actions and an instantaneity flag. This micro-step view aligns
with the synchronous mindset: several micro steps may occur within one tick, but the SOS labels the
last one of a tick as non-instantaneous, thereby specifying a macro step or reaction. [8]

Control–Data Separation

The semantics splits neatly into control and data. For every statement S, three predicates are defined
recursively [8]: enterh̄ (S) tells when control can start executing S, move(S) captures internal
progress, term (S) holds when S finishes this tick.

Because these predicates are pure Boolean formulas over location variables, they encode a finite-
state automaton that ignores data entirely. Data effects are instead recorded as guarded commands
(ω, C), where guard ω is a Boolean condition and command C a data assignment or assertion.
Attaching the enabled guarded commands to the edges of the control automaton yields the abstract
state machine. [8]

Chapter 2. Language Specifications 12

SOS Transition Rules (Micro Steps)

According to the transition rules written in [8], the premise ensures the immediate assignment is
consistent with the current environment; the conclusion emits no delayed actions (↑) and marks the
step as instantaneous (true). Similar rules collect delayed assignments, check assume/assert,
and treat pause as a non-instantaneous action.

Compound rules assemble these atomics: sequence rules concatenate residual statements, if/else
chooses the branch whose guard evaluates to true, and statements that are parallel must and can
be executed are unions of the corresponding sets. Crucially, instantaneity is propagated upward: a
sequence is instantaneous only when both sub-statements are instantaneous. [8]

Three-Valued Instantaneity and Causality

During rule evaluation, the semantics operate in a three-valued logic → < 0 < 1 that distinguishes
between unknown and definite false/true. Three-valued logic is defined ↓,↔,¬; the SOS uses
these operators to propagate partial knowledge until a fixed point is reached. If, after convergence,
some signal is still →, the program exhibits a causality cycle and is rejected. Because the lattice is
finite, fix-point iteration terminates for all well-typed programs. [8]

Symbolic SOS and the MacroStep Interpreter

Algorithm MacroStep shows how an interpreter alternates: (i) environment approximation, adding
default values for signals left untouched in the current tick, and (ii) parallel execution analysis using
the transition rules until a stable environment is found. Only then does the interpreter apply delayed
actions to form the state of the next tick. The algorithm’s structure also clarifies why delayed as-
signments never influence the semantics of the current reaction: they are stored, not executed, in the
Dprv register, waiting for the subsequent invocation. [8]

Computing Control Predicates Symbolically

enterh̄ is written in pure propositional terms (Definition 4.5 in [8]; analogous definitions exist for
move and term. Lemma 4.10 in [8] then proves fundamental invariants such as enterh̄(S) →
next(in S) and move(S) → in(S), facts later reused to verify compiler transformations. A
start-signal variant (Definition 4.9 in [8]) permits restarting statements in a loop context and is needed
for equating the SOS with hardware circuits.

Guarded Actions and Surface/Depth Split

After control flow is symbolic, the next task is to derive guarded actions for code generation. Defini-
tion 4.14 ([8]) computes the surface actions, that is, the effects that occur upon entering a statement,
while a dual definition collects depth actions executed after the first micro step.

This surface/depth dichotomy is essential for curing the schizophrenia problem identified earlier:
duplicating the surface of a loop (and renaming local variables by their incarnation index ς) ensures
that each variable appears at most once per reaction without altering the control predicates. [8]

Machine-Checked Semantics

All definitions are written “by primitive recursion over statements”, which helped to embed Quartz
directly into the HOL theorem prover. The embedding has already delivered proofs of compiler cor-
rectness and surface/depth equivalence (see Lemmas 8.4–8.6 in [8]). This mechanisation underlines
that the SOS is not merely descriptive; it is executable and formally trustworthy.

Chapter 2. Language Specifications 13

2.1.4 Combining Syntax and Semantics

At this point, the language’s surface grammar and its structural–operational semantics (SOS) can be
read side-by-side: for every Quartz phrase, the grammar prescribes a concrete form, while the SOS
assigns that form an exact meaning.

From Types to Values

Choosing a data type at the initial stage of programming is important. Definition 2.1 in [8] lists
atomic and composite types and explains that each denotes a set of mathematical values, bool = {
true, false }, bv[n] = {0 . . . 2n↗1}, and so on. The SOS therefore evaluates an expression
!ϖ"ϱ only when its free identifiers are mapped to elements of those sets in the current environment
ϱ. Static expressions, which the grammar restricts to variable-free terms and sizeOf operators,
collapse to constants at compile time; the constant’s minimal type becomes available to every later
typing and causality rule. In this way, the syntax-level notion of statically evaluable directly feeds the
semantics: once an expression is static, no runtime rule can ever observe an unknown (→) value for
it. [8]

Control Predicates driven by Grammar

Compound statements are grammatically depicted in Table 3.2 ([8]), yet each also carries a semantic
contract encoded by the predicates enterh̄, move, and term. Lemma 4.10 in [8], proved in HOL,
relates those predicates by facts such as move(S) → in(S) ↓ next(in S). The syntax, there-
fore, tells us where to write a semicolon or a parallel bar; the semantics tells us when control may
cross it. Recursive definitions for move under SOS reaction rules illustrate the point: the rule for
a sequential composition explicitly mentions the grammar’s “semicolon” alternative and shows that
move(S1; S2) is possible only when S1 either moves or terminates and passes control to S2. [8]

Guarded Commands set from Surface / Depth

Once control movement is symbolic, data updates are isolated by surface and depth functions. Fig-
ure 2.4 constructs the surface action set ActSurf↘(φ, S) using nothing more than the syntax
tree of S; every atomic assignment in the source text becomes a pair (ω, C) whose guard ω ac-
cumulates the syntactic path conditions that reach that assignment. The complementary depth state-
ment removes those start-time actions, preserving only the residual behaviour; Lemma 8.4 in [8]
proves that Depth(S) shares the same control predicates as S, while Lemma 8.5 in [8] shows that
Surface↘0(S); Depth(S) is behaviourally equivalent to S. In other words, the grammar de-
termines what text is surface (e.g., the left-hand side of an immediate assignment), and the semantics
guarantees that duplicating that text for every loop incarnation cannot change the program’s observ-
able behaviour, which is a crucial step in curing schizophrenia. [8]

Chapter 2. Language Specifications 14

FIGURE 2.4: Guarded Actions of the Surface [8]

Equation Systems and Constructiveness

After surface/depth splitting, both control and data are mere Boolean-valued equations. It has already
been explained that each location variable ↼ receives an initial equation and a transition equation of
the form next(↼) = !↼; together, these equations demonstrate the determinism of the control flow
for every legal Quartz program. The same translation produces equations for data variables, which the
compiler feeds into a ternary (true/false/→) solver. A program is constructive precisely when
that solver eliminates all → values; the syntax therefore restricts which programs are even considered,
while the semantics rejects the non-constructive remainder. [8]

Static Well-Formedness Rules that Enforce Semantic Safety

Two families of syntactic checks shield the semantics from undefined cases [8]:

• Type lifting and subtyping: It is allowed, where safe, for an expression’s type to be promoted
so that the subtraction 4 - 2u is accepted even though the literals originate as int<5> and
nat<3>. Without those grammar-level concessions, many otherwise sensible programs would
be semantically untypable.

• Variable direction and storage: Every declaration must label a variable as input, output,
inout, or local, and as event or memorized; the grammar forbids writes to an input
port or reads from an output port, so the SOS never confronts an illegal access pattern.

2.1.5 Conclusion

Quartz’s language design shows how a minimal concrete syntax can be merged with a fully mech-
anised operational semantics so that every program accepted by the parser already satisfies strong

Chapter 2. Language Specifications 15

semantic guarantees. The type rules ensure that each variable belongs to a well-defined value set
and that static expressions are evaluated to constants at compile time. There are syntactically well-
formed statements, the three control predicates enterh̄, move, term define a finite-state automaton
whose edges carry guarded commands; a fix-point iteration over a three-valued logic eliminates all
“unknown” values, so an accepted program is automatically deterministic and constructive. Sur-
face/depth splitting and incarnation-indexing finally tame the schizophrenia problem without altering
the original code’s meaning. [8]

Although this section has focused on the core syntax and semantics, the reference manual also il-
lustrates several extensions that are currently under active development. First, delayed assignments
have been generalised to cover quantitative time annotations, enabling static schedulability analyses
that go beyond the single-tick abstraction. Second, missing Esterel features, such as micro-step vari-
ables and inout ports, are slated for either inclusion or systematic source-to-source transformations,
as already outlined for variable reincarnation. Finally, ongoing work on asynchronous and data-
flow extensions promises to bridge Quartz’s deterministic core with globally asynchronous, locally
synchronous (GALS) architectures, while preserving the formal backbone that makes verification
practical. [8]

These developments suggest a vibrant hereafter in which the language remains small enough for
mechanical reasoning yet broad enough to serve as a single executable specification, from high-level
functional models down to synthesised circuits and code.

2.2 SysML: Syntax and Semantics
The Systems Modeling Language (SysML) can be defined as “a general-purpose, graphical modeling
language for specifying, analyzing, designing, and verifying complex systems that may include hard-
ware, software, data, procedures, and facilities [9].” In contrast to its parent language, UML, which
was created for software-centric object-oriented design, SysML was conceived to support the needs
of systems engineering across multiple disciplines [9]. Its diagrams, therefore, span four equally
weighted pillars[9]:

• Structure – Block Definition and Internal Block Diagrams describe composition, interfaces,
and allocation of functionality

• Behaviour – Activity, Sequence, and Behaviour State-Machine diagrams capture control and
data flow at every abstraction level

• Requirements – a first-class Requirements diagram enables traceability from stakeholder state-
ments to design artefacts

• Parametrics – Parametric diagrams embed constraint equations that support performance and
trade-study analyses

Chapter 2. Language Specifications 16

FIGURE 2.5: Overview of SysML/UML Interrelationship [9]

SysML achieves this economy by re-profiling UML rather than inventing a new metamodel from
scratch. The language definition begins with a subset called UML4SysML, as shown in Figure 2.5,
and then adds or tailors metaclasses as needed by systems engineering practice. For instance, Block,
ValueType, and Requirement are added; Class, Component, and other purely software notions are
excluded or aliased. There is a list of more than thirty UML metaclasses—among them UseCase,
Deployment, and ProtocolStateMachine—that SysML explicitly excludes because their capabilities
fall outside the system scope or are duplicative. [9]

The scope of SysML therefore extends from the earliest concept exploration, where Requirements dia-
grams capture stakeholder needs, through logical and physical architecture (Block and Internal Block
Diagrams), down to detailed behaviour specification and performance analysis. Yet the language
remains intentionally neutral about implementation: it does not prescribe a development process, a
simulation kernel, or a code-generation flow. This neutrality is codified in the conformance clause,
which states that “tool vendors may support any subset of diagram kinds, provided they preserve the
normative abstract syntax and semantics of the supported elements.” [9]

Finally, the specification highlights three guiding design principles [9]:

1. Leverage UML where possible – reuse UML semantics to protect existing modelling invest-
ments.

2. Simplify where necessary – remove software-specific or rarely used UML features so that sys-
tem engineers face a leaner language surface.

3. Extend judiciously – add only those constructs (e.g., requirements, parametrics) that fill clear
gaps for multidisciplinary system work.

Chapter 2. Language Specifications 17

These principles explain why, for example, SysML keeps behaviour state machines but omits protocol
state machines: the former already express both modal behaviour and interaction arrangements with-
out the extra semantic overhead of the latter. Similar reasoning drives the exclusion of deployment
and timing diagrams, which are replaced by allocation tables and parametric constraints that better
suit cross-domain analyses. [9]

In summary, SysML positions itself as a concise yet comprehensive dialect of UML, purpose-built
to bridge mechanical, electrical, software, and human-centric aspects of a system within a single,
tool-processable model. Its carefully curated set of diagrams, supported by a common, UML com-
patible metamodel, provides the foundation on which specialised chapters (such as the state-machine
semantics detailed next) build their precise notations and execution rules. [9]

2.2.1 Diagram Frame and Notation Conventions

Unlike UML, every SysML diagram is legally required to sit inside an explicit rectangular frame.
Annexe A in [9] explains that the frame “designates a model element that is the default namespace
for the model elements enclosed in the frame”; in the case of a state-machine diagram, that designated
element is, of course, a StateMachine [9]. The rule carries two important consequences [9]:

• All unqualified names that appear inside the drawing are automatically interpreted in the context
of the owning state machine, eliminating ambiguity about where a port, variable, or signal
belongs.

• If the figure is reused inside another block, for example, embedded as a sub-machine, the outer
block must qualify the reused names only when they would otherwise clash with its own.

The heading of the frame sits in a “name-tag” with the top-left corner clipped. The syntax is pre-
scribed as stm [block] <BlockName> [<DiagramName>] for state machines, where stm
is the official abbreviation for the diagram kind. The bracketed block keyword records the metaclass
(or an applied stereotype) of the designated element; it appears only if there could be confusion, for
instance, when several diagrams share the same block or when a stereotype like «stateMachine»
has been applied. The optional final field distinguishes multiple diagrams owned by the same element,
a convenience when, for example, one wishes to keep nominal and failure modes separate. [9]

A diagram description comment may be anchored to the frame to capture version, completion status,
and references. This metadata, though ignored by the abstract syntax, is invaluable for requirements
traceability and tool-based quality checks. The frame’s border may host modelling elements that are
logically “on” the owning state machine but visually distinct from its interior. For state machines,
the most common border elements are entry and exit points; other diagram kinds place block ports,
activity parameters, or interaction gates in the same privileged position. [9]

Inside the frame, graphical elements must conform to the concrete syntax. Table 13.1 in [9] lists the
admissible nodes, simple states, composite states, pseudostates, history markers, termination, and so
on. While Tables 13.2 and 13.3 in [9] list the paths (transitions, connection-point references), as well
as the auxiliary call-outs. Because these tables are normative, a diagram that mixes notation from
another section of the specification (for example, activity edges) would be non-conformant; tools are
expected to enforce that restriction. [9]

Finally, SysML introduces «diagramUsage» stereotypes to name specialised usages, such as Con-
textDiagram and ModeChart, which remain syntactically state-machine diagrams. The stereotype

Chapter 2. Language Specifications 18

appears immediately above the stm keyword in the header; its presence lets a tool apply additional
consistency checks without altering the underlying semantics of the state machine. [9]

2.2.2 Concrete Graphical Elements of a SysML State-Machine Diagram

The SysML specification anchors every element that can appear inside a state machine frame in three
normative tables, as discussed above. Together they define a closed vocabulary of shapes and labels
that a compliant tool must recognise and that a modeller may rely on.

The nodes catalogued in Table 13.1 in [9] encompass the full range of behavioural aspects inherited
from UML. At the simplest end lie simple states, rectangles that may carry up to three behaviour
compartments, entry, do, and exit, each naming an activity that runs on the corresponding lifecycle
hook. A simple state can be promoted to a composite state merely by drawing an internal border;
that border denotes at least one region and therefore the possibility of orthogonal (concurrent) sub-
configuration. SysML treats composites and their regions as ordinary UML4SysML::State and
UML4SysML::Region instances, so no extra stereotype adornment is required. [9]

More specialised vertices appear as pseudostates. An initial pseudostate (black-filled circle) marks
the default entry vertex; choice and junction diamonds resolve alternative flows; shallow (H) and
deep (H*) history icons re-establish a previously active configuration when re-entering a compos-
ite. Entry and exit points, drawn either inside a composite or on the diagram frame itself, for-
malise cross-border transitions. At the same time, a terminate cross (a filled circle with an “X”)
indicates that the encompassing state machine has finished its work. Every one of these symbols
maps to UML4SysML::PseudoState in the metamodel, with the kind attribute identifying its
exact flavour. [9]

The node list concludes with the final state and the sub-machine state, whose compartment references
another state-machine block; the latter is crucial for behavioural reuse and is still an instance of
UML4SysML::State, distinguished only by its embedded machine name. [9]

Paths connect those nodes. The principal path is, of course, a transition: a solid arrow whose la-
bel follows the canonical trigger [guard] / effect syntax. The transition object is
UML4SysML::Transition, and its firing semantics, trigger event occurs, guard evaluates to true,
then run effect, remain precisely those of the UML run-to-completion engine. Two auxiliary paths,
both instances of UML4SysML::ConnectionPointReference, provide alternative routes into
or out of a composite via named entry or exit points; they appear as dashed arrows attached to the rel-
evant border markers and are the preferred way to keep large diagrams legible when cross-hierarchy
transitions proliferate. [9]

Call-out symbols can be recorded that allow a state machine to be referenced from other diagram
types, such as Block Definition Diagrams, Interactions, Associations, or as the principal of an Ad-
junctProperty. These references never add new runtime semantics but ensure that every syntactic
occurrence of the machine, whether as a block on a BDD or as a stereotype tag in a parametric
diagram, resolves to the same UML4SysML::StateMachine definition. [9]

2.2.3 Transition Firing Semantics

In SysML state machines, a transition fires exactly once per run-to-completion step and only when
three enabling conditions hold simultaneously [9]:

Chapter 2. Language Specifications 19

• Source state active – the vertex from which the arrow originates must be part of the current
configuration; this can be an ordinary state, a history pseudostate, or an entry/exit point on the
frame.

• Trigger satisfied – at least one event in the machine’s event pool matches the transition’s trigger
(or no event is required for a completion transition, i.e., one whose label omits the trigger field).

• Guard true – the Boolean guard expression evaluates to true in the current variable environ-
ment.

These three predicates constitute the “enabled” relation defined for UML4SysML::Transition
and make the path eligible for selection during the current micro-step. [9]

Run-to-Completion Cycle

SysML inherits UML’s run-to-completion execution model: once an event has been chosen from the
pool, the interpreter selects a maximal, non-conflicting set of enabled transitions (one per orthogonal
region) and executes them atomically. No new event is examined, and no state entry/do/exit code is
interleaved, until the configuration becomes stable again. This guarantees single-threaded determin-
ism at the granularity of one external stimulus, even in the presence of orthogonal regions inside a
composite state. [9]

Prioritisation and Conflict Resolution

When more than one transition is enabled from the same active vertex, SysML adopts UML’s hierar-
chical priority rule [9]:

• Inner-most (lowest-level) vertices are examined first.

• If several paths share the same source, completion transitions (those without a trigger) take
precedence over event-triggered ones.

• If ambiguity persists, it is resolved by tool-defined tie-breaking, but the specification encour-
ages modellers to avoid such designs.

Execution Sequence of a Fired Transition

Once selected, a transition executes the following deterministic sequence [9]:

• Exit chain: starting with the source vertex, every state up to, but excluding, the least common
ancestor with the target is exited. Each exit invokes its exit behaviour (if present) in LIFO
order.

• Effect behaviour: the effect expression attached to the transition label runs. It may raise
further events; these are queued for the next run-to-completion step.

• Entry chain: states on the path from the ancestor down to the target are entered; their entry
activities run FIFO, and if the target is composite, its default initial pseudostate is traversed
automatically, possibly cascading through additional entry actions.

The concrete syntax trigger [guard] / effect shown in [9] corresponds one-to-one
with this semantic sequence.

Special Forms of Transition

Special forms are explained in [9] as:

Chapter 2. Language Specifications 20

• Internal transitions (labelled on the state icon rather than as an arrow) omit the exit/entry chain
entirely; only their effect executes.

• Deferred events: a state may list events that should not trigger outgoing transitions while it is
active; instead, they remain in the pool until the machine leaves that state.

• Time events and change events are handled like ordinary triggers except that the interpreter
adds the corresponding events (at the specified timeout or when the Boolean changes to true)
to the pool automatically.

Semantics of Choice, Junction and History

Pseudostates are governed by additional firing rules as described in [9]:

• A choice vertex re-evaluates its outgoing guards at firing time, selecting exactly one true
branch; if more than one evaluates to true, priority follows the order defined in the model
repository.

• A junction vertex requires all guards along a chain of junctions to be satisfied before a single
compound transition is formed.

• Shallow (H) and deep (H*) history vertices store the last active sub-configuration; when a tran-
sition targets a history, it fires immediately into that remembered configuration instead of the
composite’s default initial pseudostate.

Each of these constructs is still a Transition in the metamodel, guaranteeing that the general
three-condition enabling rule applies.

Determinism and Analysability

Because only one configuration change can occur per event, and guards are side-effect-free Boolean
expressions, SysML state machines are input-deterministic. This deterministic firing semantics is
central to the translation strategy developed in this thesis. Every Quartz-guarded action becomes a
transition whose guard is the Quartz predicate ω, ensuring that the resulting SysML model preserves
the original module’s synchronous, deterministic reaction semantics while remaining analyzable with
standard UML/SysML verification tools. [9]

2.2.4 State-Execution Semantics

A SysML state machine records an object’s locus of control as a configuration of active states; that
configuration evolves only at the boundaries of a run-to-completion step, thereby guaranteeing that
no state entry, exit or do-activity can overlap in time with the evaluation of guards or the dispatching
of events. [9]

Lifecycle of a Simple State

When control first flows into a simple state, the interpreter performs, in deterministic order, the fol-
lowing actions ([9]):

• Entry behaviour: the entry / ... activity executes exactly once.

• DoActivity: the do / ... behaviour may start and, if it is continuous, it remains eligible for
execution between event cycles; a discrete do-activity yields control back to the interpreter as
soon as it finishes.

Chapter 2. Language Specifications 21

• Internal transitions: triggers listed inside the state icon may fire without exiting the state; each
occurrence suspends any currently running do-activity, runs the transition’s effect, and then
potentially resumes the do-activity.

• Exit behaviour: immediately before leaving the state via a fired external transition, the exit
/ ... activity runs once and must complete before the transition’s own effect (if any)
begins.

The specification emphasises that deferred events, identified by the defer keyword, remain in the
event pool while the state is active; they are not lost but will be reconsidered once the machine
transitions to another state that does not defer them. [9]

Composite States, Concurrency and Recursion

A composite state encloses one or more regions. Upon entry, an initial pseudostate in each region
determines which sub-state becomes active; if several regions exist, they all start concurrently, es-
tablishing an orthogonal configuration. While the composite is active, events are dispatched to every
region, and a transition in one region does not affect the others unless it leaves the composite as a
whole. Should a transition target the composite itself, the entire active sub-configuration is exited in
depth, first order, before the composite’s own entry behaviour runs again. This rule ensures that
hierarchical composition remains semantically transparent: the presence or absence of a hierarchy
border does not alter the run-to-completion guarantees. [9]

A sub-machine state behaves like a composite whose single region is filled by the referenced state-
machine diagram. Parameter binding and result propagation use ordinary association links to the
owning block; thus, the execution semantics are identical to those of an in-line composite, but reuse
is achieved without diagram duplication. [9]

History Pseudostates

SysML provides two flavours of history pseudostate for restoring a previously active sub-configuration
when re-entering a composite state as described in [9]:

• Shallow history (H): remembers only the direct child state active the last time the composite
was exited. When a transition targets the shallow history icon, the interpreter re-enters that one
child and then follows its default path (usually its own initial pseudostate). Nested composites
are not reinstated; they start anew from their initial state.

• Deep history (H*): records the entire nested configuration (including all orthogonal regions)
below the composite. Re-entry, therefore, reproduces exactly the control situation that existed
at the moment of last exit. If no history exists, because the composite has never been left before,
the target falls back to the region’s initial pseudostate(s).

In both cases, execution of entry/exit behaviours respects the normal ordering rules: the stored
states’ entry actions are rerun upon restoration, whereas the outer composite’s entry does not
repeat because the composite itself never ceased to be active during a history-targeted transition. [9]

Completion, Final and Terminate Semantics

A completion transition, one whose label omits a trigger, fires automatically after all entry activ-
ities, immediately scheduled do-activities, and internal transitions have finished, provided its guard
holds. When the configuration reaches a final state inside a composite region, the interpreter exits

Chapter 2. Language Specifications 22

that region and evaluates any completion or external transitions at the parent level. Reaching a termi-
nal pseudostate (circle-cross) ends the entire state machine: no further events are processed and all
do-activities are aborted, signalling that the owning block has finished its behaviour. [9]

Determinism and Tool Implications

Because entry and exit actions must complete before any subsequent transition can fire, and because
do-activities suspend during run-to-completion processing, no two state behaviours race for shared
resources within a single logical step. This matches the determinism requirement we enforced ear-
lier for Quartz guarded reactions. Equally important, the formal definition of history ensures that
restoring a configuration is functionally idempotent; re-entering twice yields the same control state.
This invariant simplifies equivalence proofs between the hierarchical SysML model and its flattened,
guarded-command representation derived from Quartz. [9]

2.2.5 Sub-Machine Reuse, Parameters, and Block Integration

SysML purposefully links behavioural descriptions to the structural fabric of a model so that a piece of
behaviour, for instance, a controller mode chart, can be reused, parameterised, and integrated just like
any other block. [9] introduces the mechanism behind this linkage: the sub-machine state. Whereas a
composite state encloses its nested vertices in-line, a sub-machine state merely references an external
state machine, thereby turning the vertex into a call-out to a separately defined behaviour package.
The referenced machine may live in the same owning block, in another block, or a common library,
making the construct SysML’s analogue of a reusable function or subroutine. [9]

Binding Actual Parameters with AdjunctProperty

To connect a caller to those formal parameters, SysML borrows the UML call behaviour action idea
but implements it declaratively. The modeller places an AdjunctProperty on the calling block or
on the sub-machine state itself; its refinement or bindingPath attribute identifies the structural
feature that supplies the actual argument. Semantically, the property establishes a bidirectional link:
the state machine can read and, if marked non-read-only, write the bound property while it is active.
Multiple adjunct bindings may coexist, supporting the common pattern where one state machine
instance controls several physical channels distinguished only by parameter values. [9]

Connectors and Associations

Because a «stateMachine» is a block, its ports can participate in connectors on the owning
block’s Internal-Block Diagram. Entry and exit events emitted by the sub-machine instance thus
propagate through ordinary SysML signal ports, giving the integration the same “look and feel”
as wiring hardware parts together. Associations defined on a Block Definition Diagram may link
the state-machine block to value-type parameters, such as calibration constants, or context objects,
like error logs. These associations have no runtime effect beyond what the behaviour itself models,
thereby preserving run-to-completion determinism. [9]

Semantic Equivalence to In-Line Composite States

Despite the indirection, the execution semantics of a sub-machine state are identical to those of an
in-line composite with a single region containing the referenced vertices. Entry into the state triggers
the entry behaviour of the sub-machine’s top-level state, history semantics (shallow or deep) apply
exactly as defined within that referenced machine, and exit performs the corresponding exit actions
before control returns to the caller. The only observable difference is the presence of parameter

Chapter 2. Language Specifications 23

bindings, whose current values form part of the interpreter’s environment when evaluating guards and
actions. [9]

2.2.6 Syntax and Semantics of SysML’s Remaining Diagram Families

While the preceding sections explored behavioural state machines in depth, a complete understanding
of SysML’s language core also demands familiarity with its three other diagram pillars, structure,
requirements, and parametrics, because they share the same frame conventions yet introduce their
own modelling vocabularies and execution meanings. The specification devotes separate clauses to
each of these families. However, they all follow the same pattern: a concise, concrete notation table,
an explicit mapping to UML4SysMLmetaclasses, and a narrative semantics that defines how instances
of those metaclasses behave at run time or analysis time. [9]

Block Definition Diagrams (BDD)

A BDD uses the frame header bdd [package] ... or bdd [block] ... to declare its
default namespace. Inside, the block rectangle is the primary classifier; its compartments list value
properties, part properties, flow ports, and operation signatures. Inheritance is drawn with the hollow-
triangle generalisation arrow, while composition is expressed by a black-diamond-headed association
whose multiplicity text sits at the composite end. Semantically, a block defines a type, not an instance;
every part property declared within the owning block represents a role that a runtime instance of the
block will occupy. The specification states that “all value properties are instantiated once for every
block instance,” establishing a one-to-one mapping between structural syntax and object-level state.
Aggregation depth is unbounded but must be acyclic, a constraint enforced in the abstract syntax and
checked by tools at model-validation time. [9]

Internal Block Diagrams (IBD)

An IBD is framed with the heading ibd [block] ThisBlock, indicating that it displays a sin-
gle instance of ThisBlock along with its internal structure. Each part property appears as a nested
rectangle with name: Type [mult], optionally expanded to reveal its own ports. Connectors,
solid lines, bind compatible ports; arrowheads on flow ports indicate item direction, and binding con-
nectors on value properties (depicted as thick black lines) impose an equality constraint between the
joined variables. Execution semantics follow instance semantics: at runtime, each connector repre-
sents a communication path that obeys the flow-direction rules declared on the connected ports. While
binding connectors propagate value changes instantaneously and bidirectionally, unless constrained
by stereotypes such as «multiRate». [9]

Parametric Diagrams

Parametric diagrams reuse the IBD frame (ibd) but specialise the interior for analytical relationships.
The centrepiece is the constraint block, a block stereotyped «constraint» whose body contains
an equation or inequality, written in the expression compartment. When a constraint block is in-
stantiated in an ibd-style diagram, the resulting constraint property is shown as an ellipse annotated
«constraint». Its binding connectors attach the constraint’s parameters (also value properties) to
value properties elsewhere in the system hierarchy. Semantically, the entire diagram becomes a set of
simultaneous equations that a solver must satisfy; the specification notes that binding connectors are
“purely declarative and impose no simulation causality,” meaning that any variable may be consid-
ered dependent or independent depending on the analysis context. Constraint evaluation is therefore
outside run-to-completion execution and instead part of an analysis execution defined by the tool. [9]

Chapter 2. Language Specifications 24

Requirement Diagrams

Requirement diagrams adopt the frame header req [package] The requirement stereo-
type extends Block with mandatory attributes id and text, plus optional risk, priority, and
verifier [9]. The diagram introduces five standard relationships, each with concrete line notation
and formal semantics described in [9]:

• deriveReqt: a derivation dependency asserting that the source requirement was refined into the
target.

• satisfy: a trace from a design element (often a block or parametric model) to the requirement(s)
it fulfils.

• verify: a dependency linking a test case, analysis, or simulation to the requirement it demon-
strates.

• refine: a broader transformation relation, typically mapping behavioural or parametric artefacts
back to high-level textual statements.

• trace: a non-semantic link for bookkeeping, required to be acyclic but otherwise unconstrained.

The semantics clause specifies that satisfy and verify relations must form an acyclic covering
of every leaf requirement, a rule that tools enforce via static analysis of the dependency graph. [9]

Allocation Tables and Cross-Diagram Semantics

Although it is not a separate diagram kind, allocation appears as a table or as dependency arrows
(allocate) overlaying any other diagram. Its abstract syntax extends Dependency with kind
= allocate; the semantic clause mandates that allocated elements belong to distinct concerns, for
example, allocating a behaviour to a hardware block. This cross-cutting relationship completes the
language’s goal of end-to-end traceability. [9]

Through these structured notations, SysML ensures that every artefact —structural, behavioural, ana-
lytical, or textual —has a precise graphical syntax, a normative metaclass mapping, and an execution
or evaluation meaning that is tool-agnostic yet formally defined. Together with the behavioural state-
machine rules discussed earlier, they provide system engineers with a single, coherent language capa-
ble of capturing requirements, architecture, behaviour, and quantitative constraints within a rigorously
specified model.

2.2.7 Conclusion

SysML positions itself as a lean yet comprehensive dialect of UML, expressly tailored to multidis-
ciplinary systems engineering. Language’s remit as specifying, analysing, designing, and verifying
systems that span hardware, software, people, and facilities is defined, while pruning UML constructs
that serve purely software concerns. Across all diagram types, the specification imposes a uniform
framing convention. Every diagram resides inside a headered rectangle whose clipped-corner tag
identifies the diagram type, the owning model element, and optionally a user-defined name. This rule
makes the frame’s element the default namespace for every unqualified symbol on the canvas, thereby
eliminating ambiguity and enabling rigorous cross-diagram traceability. [9]

The structural pillar, Block Definition and Internal-Block Diagrams, offers a precise, object-oriented
syntax whose semantics is instance-based: each block instance owns exactly the value- and part-
properties declared in its classifier, and each connector represents a concrete interaction path governed

Chapter 2. Language Specifications 25

by port flow direction or binding equality. The behavioural pillar retains UML’s run-to-completion
semantics for state machines, ensuring that a transition fires only when its source is active, its trigger
occurs, and its guard is true, after which a deterministic exit–effect–entry sequence produces a new
stable configuration. Hierarchical composition, orthogonal regions, and shallow/deep history extend
this semantics without introducing race conditions. [9]

Complementing behaviour, parametric diagrams transform constraint blocks into first-class model
elements: their value-property parameters, connected by binding connectors, form analysable equa-
tion systems whose solution space supports trade studies and verification without affecting execution
order in behavioural diagrams. At the top level, requirement diagrams formalise stakeholder intent
in stereotype-extended blocks and tie that intent to design artefacts through semantically typed rela-
tions, such as deriveReqt, satisfy, verify, and refine, whose acyclic covering of leaf requirements is a
mandated well-formedness rule. [9]

Taken together, these provisions provide SysML with a single, coherent core of concrete syntax tied
directly to precise, tool-checkable semantics. Blocks define what exists, behaviours say how those
things evolve in time, parametrics constrain quantitative properties, and requirements ensure that
every design decision remains traceable to its original rationale.

26

3 Software Capabilities

Formal-methods toolchains rarely cover the full spectrum of concerns that arise in the design of mod-
ern cyber-physical systems. Averest offers a rigorous path from the synchronous language Quartz to
verified VHDL, C and SystemC, but its proof machinery is confined to functional safety and temporal
correctness. TTool, on the other hand, prioritises safety and security by enriching SysML with the
AVATAR and SysML-Sec profiles. However, it begins with graphical models rather than the textual,
clock-synchronous programs favoured by hardware designers. The central objective of this thesis is
therefore to bridge the two frameworks: by translating Quartz into an equivalent SysML represen-
tation, we can retain Averest’s compilation and model-checking strengths while unlocking TTool’s
push-button security analysis and rapid design-space exploration. [10] [11]

The present chapter prepares for that integration. It first surveys Averest, showing how its compila-
tion pipeline, guarded-action semantics and symbolic verifier together guarantee functional correct-
ness from source text to generated code. It then turns to TTool, detailing how multi-profile SysML
modelling, early performance simulation, embedded safety proof and automated security verification
converge in a single, model-centric environment. With these capabilities laid out, the remainder of
the thesis will demonstrate how a systematic Quartz-to-SysML translation allows designers to carry
a verified synchronous model into TTool, apply confidentiality and authenticity checks, and still rely
on Averest’s synthesis back-end for implementation. In other words, the chapter explains what each
tool contributes individually and what new assurances become attainable once the two are connected
through a standard intermediate notation.

3.1 Averest
Averest is an integrated framework for the model-based design of reactive embedded systems. Cen-
tred on the Esterel-inspired synchronous language Quartz, it offers a seamless tool flow in which a
designer can write a high-level behavioural specification, compile it into a symbolic transition system,
subject that system to machine-checked temporal-logic verification, and finally refine the very exact
representation into synthesiser-ready VHDL/Verilog or execution-grade C / SystemC code. The Aver-
est Intermediate Format (AIF), across all stages —compilation, optimisation, verification, and code
generation — therefore operates on an identical semantic object, guaranteeing that proved properties
remain valid in the executable artefact. Originally developed by the Embedded Systems Group at
the RPTU in Kaiserslautern, the toolbox has since been applied to domains ranging from robotics
and automotive control to cyber-physical systems research, demonstrating that formal methods can
be incorporated into ordinary industrial workflows. [10][3]

Chapter 3. Software Capabilities 27

3.1.1 Compilation

Compilation is the entry point of the Averest tool flow: it takes a high-level synchronous program
written in Quartz and converts it into a symbolic transition system expressed in the Averest Inter-
mediate Format (AIF). Everything that follows, including optimisation, code generation, and model
checking, works exclusively on AIF, so understanding what happens in this first phase is crucial for
appreciating the rest of the toolbox. [3]

Source-level analysis and elaboration

A Quartz design is structured as a hierarchy of modules. The front-end (namespace Averest.Quartz)
parses the concrete syntax into an abstract syntax tree, whose top node is a QModule. Statements
such as concurrency (S1 || S2), pre-emption (abort/suspend), and control flow are represented by
specialised QStatement subclasses. [12]

After translating the Quartz source into the Averest Intermediate Format (AIF), a single, flat set of
synchronous guarded actions, the Averest.Quartz.Compiler expands (inlines) every module call, even
those nested inside abort or suspend blocks, so that no hierarchy remains. With this IR in hand,
the compiler performs the synchronous–language–specific semantic analyses: type and storage-mode
analysis distinguishes between memorised variables (which retain their previous value) and event
variables (which reset to a default value when absent). This classification determines each signal’s
reaction-to-absence semantics, and Constructive causality analysis checks that the instantaneous data-
dependency graph in every reaction step is acyclic, ensuring a unique execution order even though
all guarded actions are assumed to execute in zero time. Only AIF programs that pass these checks
proceed to the subsequent synthesis stages. The result of elaboration is a normalised control/data-flow
tree in which all control operators have been expanded into basic guards and assignments, ready for
symbolic encoding. [3]

Translation to synchronous guarded actions

The core compilation step is a systematic rewrite of the elaborated tree into a set of synchronous
guarded actions (SGAs). An SGA has the form ω ≃ ε where the Boolean guard ω is evaluated in
the current reaction and the action ε (an assignment) is executed immediately if the guard is true.
Two variants are generated: Control-flow guarded actions (CGA) encode the evolution of the logical
program counter (pause labels, abort triggers, etc.), and Data-flow guarded actions (DGA) encode the
value updates of variables, distinguishing between immediate and delayed assignments. [13]

Because guards and actions refer only to the current or next logical instant, the collection of SGAs can
be interpreted as a symbolic transition relation and lends itself to BDD or SAT encodings. Guarded
actions, therefore, provide just enough structure for both software generation and hardware synthesis
while abstracting away the rich syntax of the source language. [13] [3]

Averest Intermediate Format (AIF)

The SGAs are serialised into an XML dialect called AIF, implemented by the namespaces Aver-
est.Systems.Aif (AIFSystem, AIFModule, etc.). Each <aif:module> element lists its CGAs and
DGAs, its port interface, and an ↽-automaton encoding of every temporal-logic assertion embed-
ded in the source. Because AIF is declarative and side-effect–free it supports: Separate compilation:
individual modules can be compiled once and later linked symbolically at system-assembly time,
Property-preserving transformation: optimisation passes merely rewrite AIF documents; they do not

Chapter 3. Software Capabilities 28

translate to a different representation, so the link between model and proof is never lost, and Tool in-
teroperability: both the Beryl model checker and the Topaz code generators read the same AIF files,
which eliminates front-end duplication. [10] [12]

Conceptually, compilation therefore freezes the high-level model in a canonical form, so that all
subsequent activities —verification, synthesis, and simulation — operate on an identical semantic ob-
ject. The design-flow diagrams in Figure 3.1 for synchronous models make the two-step architecture
(Quartz → AIF → targets) explicit and motivate it from an embedded-systems perspective. [14]

FIGURE 3.1: Averest Design Flow [4]

In summary, the compilation phase transforms a rich synchronous language into a guarded-action
transition system expressed in AIF. By performing causality checks, flattening pre-emptive control,
and encoding temporal assertions early, the Averest compiler lays a mathematically precise foundation
on which both the model checker and the code generators can work without having to understand
Quartz syntax. This “single-representation philosophy” is what allows Averest to guarantee that every
subsequent optimisation, verification run, or synthesis step is sound regarding the exact behaviour the
designer specified in the source.

3.1.2 Code Generation

Once a Quartz design has been compiled into an AIF transition system, Averest’s code-generation
stage translates that symbolic description into concrete artefacts that can run on a microprocessor
or be synthesised onto a chip. Conceptually, this step is performed by the Topaz backend together
with a small family of AIF-to-AIF transformation passes that normalise the model before emission.
Whereas compilation freezes the semantics, code generation is about refinement: it schedules the syn-
chronous guarded actions in real-time, resolves bit-widths, inserts interface glue, and finally prints a
target-language source that is behaviorally equivalent to the original specification. The Averest doc-
umentation and teaching materials describe various transformations and code generation that directly
leverage the AIF produced by Ruby and feed the rest of the tool flow. [10] [15]

The transformation chain begins with the structural optimisation of the AIF graph. Mutually exclusive
guards are connected; combinational loops introduced by earlier clock-refinement steps are broken
by introducing temporary registers; and unused signals are pruned so that the eventual HDL netlist
or software state machine is free of dead logic. These rewrites are all property-preserving because
they operate on the exact declarative representation over which formal verification was carried out.

Chapter 3. Software Capabilities 29

In effect, every rewrite is a semantics-preserving AIF → AIF mapping, so the model checker’s proof
obligations remain valid after each optimisation pass. [15]

When the graph is in this canonical shape, the Topaz generator emits code. For hardware, it produces
synthesiser-ready VHDL or Verilog, in which each guarded action becomes a synchronous process
that triggers on the global clock. The control-flow guards compile into a state register and a case
statement, while the data-flow guards become conditional signal assignments. For software, it emits
an imperative “tick function” in languages such as ISO C, F#, Java or SystemC: the function evaluates
every guard, updates memorised variables, and returns when the logical instant is complete. A decade
of tool papers list the supported targets as “ISO C, LEGO C, SystemC, Java, Standard ML, Verilog
and VHDL”, underscoring the back-end’s role as a unified HW/SW path. [4] [15]

The back-end, finally, appends a trace-replay harness to each generated file, allowing the counter-
examples produced by the Beryl model-checker to be simulated against the concrete code. This
post-processing step closes the loop between verification and implementation: designers can, without
leaving their IDE, walk a failing temporal-logic trace in the actual C or VHDL code. [4] [15]

In summary, Averest’s code-generation stage embodies the tool set’s “single-representation philoso-
phy”. By starting from the verified AIF, transforming it only through semantics-preserving rewrites,
and delegating the final print-out to Topaz, the framework guarantees that every line of C or every
synthesised flip-flop implements exactly the behaviour that was proved correct in the preceding veri-
fication phase.

3.1.3 Formal Verification

The Averest tool chain treats verification not as a bolt-on analysis but as the semantic centre of gravity
around which every other activity revolves. As soon as the compiler has encoded a Quartz program
into the guarded-action transition system contained in an AIF document, that same AIF instance
is handed to Beryl, Averest’s entirely symbolic model checker. Because the transition relation is
preserved exactly, the checker works on the very object that will later be optimised and synthesised,
eliminating the usual “front-end mismatch” risk that plagues post-hoc verification frameworks. [16]

At the specification level, the designer expresses expected behaviour in standard branching and linear
temporal logics, such as CTL, LTL, and even µ-calculus, as ordinary assume/assert clauses woven
into the Quartz source. During compilation, these formulas are translated into ↽-automata, whose
states and transitions are stored alongside the system’s guarded actions within AIF. The result is a
single, self-contained artefact that describes both the model and the properties to be checked. The
verification phase, therefore, requires no additional translation and inherits all static checks (type
consistency, causality, clock discipline) already performed by the compiler. [4] [16]

Beryl itself supports several complementary engines. A BDD-based global algorithm explores the
reachable state space symbolically and can prove inductive invariants and CTL fix-point properties
outright; a SAT/SMT-based bounded engine discharges deep LTL obligations by k-step unrolling
and can be configured to switch transparently to k-induction once the completeness threshold has
been crossed. For designs whose data path is unbounded (e.g. integer counters), Beryl adds abstract
interpretation layers that conservatively fold the infinite lattice back into a finite BDD domain. These
engines are not mutually exclusive: the framework allows the user to combine global, local, bounded,
and unbounded modes in a single run, so that each property is proved using the cheapest method that
suffices. [16]

Chapter 3. Software Capabilities 30

Whenever a specification fails, Beryl extracts the shortest counter-example trace and writes it back
into the AIF file. Because the simulator and waveform viewer understand the same format, the en-
gineer can accurately replay the violating execution cycle, inspect signal histories, and iterate on the
design without ever converting between representations. Conversely, once every property has been
discharged, the unchanged, already-verified AIF instance flows straight into the Topaz code genera-
tor; code generation is therefore refinement rather than recompilation, which means the proofs remain
valid by construction. [16]

Averest’s verification stage thus realises the classic “correctness-by-construction” ideal: properties are
stated in the source language, embedded in the intermediate representation, analysed symbolically in
Beryl, and finally preserved as the model is transformed into concrete software or hardware.

3.1.4 Conclusion

Taken together, the three primary stages of the Averest toolbox —compilation, code generation, and
formal verification —form a tightly closed semantic loop in which every artefact can be traced back,
without loss of information, to the Quartz program that the designer originally wrote. The com-
piler translates that program into the guarded-action transition system of AIF and, in the same step,
embeds the temporal-logic assertions that will later constitute the proof obligations. Verification op-
erates directly on this very AIF instance; it neither requires an auxiliary front-end nor duplicates
earlier elaboration work, so the risk of front-end divergence is eliminated by construction. Once the
model checker has discharged the properties (or delivered counter-example traces for debugging),
the unchanged, already verified AIF becomes the input to the Topaz backends. Code generation is,
therefore, properly a refinement rather than a translation. Every optimisation or scheduling decision
is expressed as a semantics-preserving transformation of the exact intermediate representation, and
the final C or HDL inherits correctness from the proof that was carried out before any implementation
details were introduced.

This single-representation philosophy, where verification is conducted on an abstraction that is only
loosely related to what finally ships. In Averest, model, proof, optimisation and implementation are
all facets of one artefact, continuously maintained from source text to running system. For a formal-
methods-centred design flow, especially one aimed at reactive and safety-critical applications, Unity
offers the essential guarantee that the executable system enacts exactly the behaviour that was proved.

3.2 Ttool
Where Averest begins with a textual synchronous program and reasons forward to an implementation,
TTool starts with a graphical system model and layers increasingly specialised semantics onto a single
SysML artefact. Its central idea is that one diagram set, expressed in standard SysML but governed
by domain-specific profiles, can serve every engineering concern, from early architecture exploration
to cryptographic proof and cycle-accurate prototyping. The tool therefore packages several profiles
under one roof: DIPLODOCUS for high-level hardware–software partitioning, AVATAR for detailed
real-time behaviour, SysML-Sec for security, and legacy TURTLE for backwards compatibility. Each
profile exposes the analysis engines most appropriate to its viewpoint: SystemC simulation for per-
formance, UPPAAL or CADP for safety, and ProVerif for security. However, all operate on the same
model, so that results remain traceable across profile boundaries. [17]

Chapter 3. Software Capabilities 31

3.2.1 Security Engineering with SysML-Sec and AVATAR

The core AVATAR profile was designed for real-time functional design; it provided signals, state-
machine behaviour, and timing annotations, but lacked an explicit security layer. A closer analysis
revealed several structural gaps: (i) there was no construct for pre-shared keys, (ii) cryptographic
algorithms had to be re-modelled from scratch in every design, (iii) the point-to-point channel seman-
tics prevented any realistic eaves-dropping scenario, (iv) an attacker had to be hand-crafted for each
project, and (v) neither requirement diagrams nor the temporal-property language (TEPE) provided
a place to declare confidentiality or authenticity goals. These limitations, documented in the early
AVATAR security studies, made rigorous secrecy or authenticity proofs practically impossible. [17]

The SysML-Sec extension layer closes each of those gaps while retaining the familiar SysML nota-
tion. First, it introduces pragma-based directives that are written in block-diagram notes:

LISTING 3.1: Pragma-based Directives
1 # InitialCommonKnowledge BlockA.key BlockB.key
2 # Confidentiality BlockX.secret
3 # Authenticity Sender.s1.m Receiver.s2.m

The InitialCommonKnowledge pragma records data that exists in several blocks before the first
clock tick, a prerequisite for modelling pre-installed keys. Confidentiality and Authenticity pragmas
attach the two most common security objectives directly to attributes and message exchanges. Sec-
ond, a built-in cryptographic library block exposes canonical operations (sencrypt, sdecrypt, MAC,
verifyMAC, . . .), so designers write encryption and MAC calls as ordinary state-machine actions in-
stead of re-inventing protocol logic. Third, every block automatically acquires two broadcast signals,
chout and chin, bound to a public asynchronous bus; messages sent over that bus are, by default,
visible to the environment, thereby modelling the full Dolev–Yao attacker assumed by formal crypto
analysis. [17] [18]

Security work now follows an iterative model-driven flow. At the requirements stage, the engineer
stereotypes SysML requirements with a security domain (confidentiality, authenticity, privacy, . . .)
and links them to attack-tree nodes captured in parametric diagrams; these links drive traceability
throughout the process [19] [20]. During design, the confidentiality and authenticity pragmas, to-
gether with the cryptographic calls, annotate the same block diagram. A single menu command
triggers an automatic transformation of the AVATAR model into ⇀-calculus plus ProVerif queries;
TTool supplies the standard Dolev–Yao intruder and launches ProVerif. Proof results—success, fail-
ure, or an explicit attack trace—are re-imported and visualised on the original state machines, so the
modeller can navigate directly to the point where a secret leaks or a forged message is accepted. [17]

If a proof fails, TTool offers a counter-measure wizard that suggests or inserts encryption, MAC
verification, or the designation of a private bus segment. The updated model can be re-checked
immediately, and its performance impact can be quantified via the usual SystemC simulation back-
end. Because the entire cycle—requirements capture, threat analysis, formal proof, counter-measure
insertion, performance assessment—operates on the same SysML artefact, security properties remain
traceable and valid to the generated C code or HDL that TTool eventually produces. In this way,
SysML-Sec elevates AVATAR from a purely functional modelling language to a unified environment
for co-engineering safety, real-time behaviour and formal cryptographic security. [19]

Chapter 3. Software Capabilities 32

3.2.2 Model-Centric Environment

TTool’s most distinctive architectural choice is to treat the model, rather than any particular formal-
ism or implementation technology, as the primary artefact. A single graphical repository, encoded in
XMI but manipulated through the familiar SysML/UML notation, can be instantiated under several
specialised “profiles”, each tailored to a different phase of an embedded-system workflow. At the
partitioning stage, the DIPLODOCUS profile offers coarse, non-deterministic operators and Y-Chart
views, enabling engineers to explore alternative hardware/software splits and evaluate power or la-
tency long before RTL is available. When attention shifts to real-time software design, the model
is re-opened under the AVATAR profile, which adds state-machine semantics, timing constructs
and TEPE property diagrams while retaining all previously captured requirements. For projects
that demand a dedicated security layer, the same diagrams are enriched by the SysML-Sec exten-
sions—confidentiality pragmas, attack graphs, ProVerif integration—without ever forking the repos-
itory. Legacy designs created with the TURTLE profile are also loadable. However, TURTLE is now
deprecated; its analysis and deployment views can be translated forward to AVATAR, illustrating the
toolkit’s commitment to upward compatibility. [21] [22]

Because all profiles are hosted in a single executable and GUI, switching viewpoints is a menu action,
not a file conversion. The underlying transformation engine maintains stable diagram identifiers,
ensuring that requirements traceability, simulation traces, and verification results are preserved intact
from one profile to the next. In practical terms, this means that a function first sketched as a high-
level DIPLODOCUS task can later acquire timed transitions in AVATAR, be annotated with security
pragmas in SysML-Sec, and finally generate C, SystemC or VHDL, all without recreating diagrams
or losing proof obligations. The tool’s homepage lists this multi-profile capability alongside safety,
security and performance verification as the core rationale for “a free and open-source environment
for modelling embedded systems”. [11] [22]

The consequence for engineering practice is a truly model-centric development cycle: profile changes
expose new analysis services (design-space exploration, symbolic model checking, cryptographic
proof, code synthesis) while preserving a single source of truth. TTool thus demonstrates that rich,
domain-specific semantics can be layered onto standard SysML/UML without fragmenting the design
artefacts—a prerequisite for rigorous, end-to-end assurance in complex cyber-physical systems. [21]

3.2.3 Design-Space Exploration and Performance Simulation

In the early phases of an embedded-system project, the central question is which combination of
processors, memories, and buses can meet the latency, power, and cost targets of a given workload?
The DIPLODOCUS profile, integrated into TTool, was created precisely to answer that question,
while the design remains moldable. Its name, DesIgn sPace expLOration based on formal DescrIption
teChniques, UML and SystemC, already hints at the method: a UML/SysML model is first captured
at a very high level of abstraction, automatically translated into SystemC, and then executed to obtain
quantitative metrics that guide the architect towards an optimal hardware/software partition. [23] [11]

The approach adopts the classical Y-chart design heuristic. One branch of the “Y” is the application
model: functional tasks are described as non-deterministic data-flow blocks linked by abstract chan-
nels whose only semantics is token count. The opposite branch is an architectural template that lists
CPUs, DSPs, hardware accelerators and shared buses but leaves their exact parameters open. [23]

The DIPLODOCUS workflow generalises the Y-chart idea into an iterative, multi-level process: ap-
plication, architecture and mapping views form the partitioning level; results feed forward to software

Chapter 3. Software Capabilities 33

design (AVATAR) and, in parallel, to a hardware model. At each stage, simulation and formal veri-
fication can trigger a reconsideration of earlier partitioning choices, producing a feedback loop that
converges on an implementation meeting performance, safety and other constraints (see Figure 3.2).

FIGURE 3.2: Overall Approach [6]

During simulation, the automatically generated code traces every task arrival, start, completion, FIFO
read/write, cache miss or bus arbitration event. TTool converts the raw trace into both numeri-
cal reports—end-to-end latency distributions, mean power consumption, buffer-depth statistics—and
graphical artefacts such as UML sequence diagrams that visualise the temporal interplay of tasks on
their mapped processors. Results are kept within the same project, allowing the modeller to juxtapose,
for example, the latency histogram of a two-core ARM design with the energy bar chart of a four-core
heterogeneous one and decide whether the extra headroom justifies the increased silicon area. The
original conference paper introducing the environment highlights this integration of automatic Sys-
temC generation, metric extraction and visualisation as the key enabler for early, quantitative trade-off
studies. [24] [23]

What distinguishes DIPLODOCUS from many other system-level simulators is that its abstraction
deliberately hides algorithmic detail. A task consumes “n” abstract computation units; a channel
transmits “k” data tokens; a processor executes “m” units per cycle at “p” milliwatts per unit. Because
those parameters are symbolic, the same functional model can be reused when silicon measurements
tighten the estimates, yet the structure of the model (tasks and channels) remains stable. This means
that the effort invested in design-space exploration is not thrown away but carried forward into the
AVATAR and SysML-Sec profiles used later for real-time scheduling and security proof. [24]

Hence, through DIPLODOCUS TTool offers an industrial-strength, model-centric path from early
architecture exploration to detailed performance validation, all without leaving the SysML canvas
and without rewriting a single line of functional code. By enabling the fast evaluation of architectural
alternatives long before RTL or firmware exists, it substantially reduces the risk of discovering, too
late, that a chosen platform cannot meet its real-time or energy budget. [24]

3.2.4 Safety and Real-Time Formal Verification

TTool does not delegate assurance to an external, optional phase; the editor itself is a front-end to
several model-checking engines that can be invoked at any stage of the design. As soon as a SysML
design passes a syntactic check, the user can open the Verification window and choose between two

Chapter 3. Software Capabilities 34

complementary back-ends. The first is the native AVATAR model-checker, an explicit-state engine
implemented within TTool. It constructs a reachability graph on demand and can prove or refute
deadlock freedom, reinitializability, state reachability, liveness, and general CTL safety properties.
Properties are written either as CTL formulae in a dedicated pink «Safety property» note or, more
casually, by right-clicking on any state and marking it for reachability/liveness checking. A single
button launches the verification; if a property fails, the tool colours the offending state red and attaches
a counter-example trace that the user can replay step-by-step inside the original state-machine dia-
gram. The user manual documents the CTL syntax, the optimisation flags that tame state-explosion,
and the automatic generation of AUT/Dot graphs for external visualisation. [25]

For properties that hinge on quantitative time, the designer switches to the UPPAAL back-end. TTool
translates the AVATAR or DIPLODOCUS model into a network of timed automata, preserving guard
conditions, clocks and synchronisation semantics. In DIPLODOCUS, this export can be executed
pre-mapping so that schedulability and task liveness are proved even before the architecture is fixed;
in AVATAR, it verifies the timed behaviour of the concrete software design. Reachability (“Is state S
ever possible?”) and universal liveness (“Is state S eventually inevitable?”) are specified by a simple
right-click on the operator concerned. At the same time, deadlock-freedom is a single tick box in the
verification dialogue. TTool then calls the UPPAAL verifier, captures the outcome, and paints each
marked state green or red in the original diagram, thereby avoiding the cognitive switch to an external
tool language. [24] [21]

Chapter 3. Software Capabilities 35

FIGURE 3.3: UPPAAL Formal Verification [6]

Figure 3.3 captures the TTool dialogue that drives UPPAAL verification. In the upper part of the
window, goals can be selected, such as absence of deadlock, reachability or liveness; pressing Start
launches the checker. The lower console pane then streams the results; each query is echoed, along
with UPPAAL’s verdict (“property is satisfied” or an error trace if it fails), allowing the user to confirm
proofs or inspect counter-examples without leaving the modelling environment.

Although less often highlighted, TTool can also export to CADP for bisimulation and branching-time
analysis; the mechanism is analogous, involving automatic translation, remote invocation, and the
graphical return of counter-examples, and shows the same commitment to keeping the verification
loop within the modelling canvas. Across all engines, the guiding principle is that the SysML model
is the sole source of truth: verification never edits an auxiliary copy, and every proof result is stored
back into the same XMI file. Consequently, safety obligations established in the early architecture
model persist into the detailed, timed, and even security-annotated versions of the design, providing
the engineer with continuous and continuously checkable evidence that the system remains free of
deadlocks, meets its deadline contracts, and satisfies any CTL property stated in the requirements.
[21]

Chapter 3. Software Capabilities 36

3.2.5 Automatic Code Generation and Virtual Prototyping

The last step in the TTool flow converts a verified SysML model into an executable prototype, elim-
inating the need for the designer to write a single line of implementation code manually. When the
Generate command is issued, the back-end traverses each AVATAR (or DIPLODOCUS) block and
emits a pair of translation units, <block>.c and <block>.h, that encode the block’s state machine as a
POSIX thread; the scheduler for those threads, the time manager and every flavour of synchronous or
asynchronous channel are provided by a lightweight “AVATAR runtime” library of roughly two thou-
sand lines of C. A main.c file is generated alongside and contains a declarative deployment table, one
line per thread, specifying its target core, priority, and the intended scheduling policy. The designer
may, at modelling time, attach fragments of hand-crafted C to particular actions; those fragments
are spliced verbatim into the generated code, so algorithmic detail can be introduced precisely where
simulation and model checking are no longer required. [21]

Compilation takes two routes. On a desktop workstation, the generated sources are linked with
pthread and executed immediately, providing an early functional prototype that preserves the temporal
granularity of the AVATAR clocks. For cycle-accurate studies, the same sources are cross-compiled
together with the MutekH real-time kernel and loaded into the SoCLib virtual platform. SoCLib is a
SystemC library that offers instruction-set simulators for ARM, MIPS, PowerPC, and a catalogue of
on-chip buses and peripherals. It can run at transaction-level for speed or at bit-precise accuracy when
timing fidelity is paramount. The processor, cache and interconnect models embed hardware coun-
ters and spy modules, so cache-miss statistics, bus latencies or lock-contention times appear in TTool
as additional sequence-diagram annotations that overlay the functional trace; in effect, the model is
“re-animated” with cycle-level numbers while retaining the clarity of SysML semantics. [6] [11] [21]

Hardware-oriented projects go one step further. If a block has been flagged as an HW-accelerator in
the deployment diagram, its behavioural description is translated into SystemC processes that com-
ply with the SoCLib component interface; the surrounding platform therefore sees a homogeneous
array of CPUs and hardware IPs driven by the same AVATAR runtime. Recent extensions even mix
SystemC-AMS leaf components with digital SoCLib modules, allowing analogue peripherals (such
as sensors and RF front-ends) to co-simulate with the software stack in a single time-synchronised
kernel. The outcome is a virtual prototype that combines binary-accurate software with transaction-
or cycle-accurate hardware, ready to answer architectural questions that lie beyond the reach of high-
level design-space exploration. [24]

Crucially, the traceability chain remains unbroken. Because the generator works directly from the
model that has already passed safety, timing, and, if the SysML-Sec profile was active, security proofs,
the produced prototype inherits those guarantees by construction. Execution traces captured on So-
CLib are streamed back into TTool and rendered as UML sequence diagrams, so any misbehaviour
manifests itself as a deviation from the very diagram that was earlier verified. Thus, automatic code
generation and virtual prototyping are not mere convenience features: they are how TTool validates
that the high-level assurances established during modelling survive contact with an implementation
that is close enough to silicon to expose real-world timing, power and platform effects. [26] [11] [21]

3.2.6 Conclusion

TTool positions itself as a single, model-centred workbench in which one SysML artefact flows
through every stage of an embedded-system project. Under the DIPLODOCUS profile, that artefact
feeds rapid, quantitative architecture exploration; under AVATAR, it acquires timed behaviour and is

Chapter 3. Software Capabilities 37

subjected to push-button safety verification; with the SysML-Sec layer, it gains first-class concepts
for threats, cryptography and formal security proof. Because the same repository then drives auto-
matic C/SystemC/HDL generation and cycle-accurate virtual prototyping, the functional, real-time
and security guarantees established in the diagrams are preserved to an executable prototype. In this
sense, TTool realises the long-promised ideal of seamless, traceable co-engineering of performance,
safety and security within a free, open-source environment. [22] [11]

38

4 Translation Feasibility Analysis

Quartz and SysML represent two distinct paradigms in system modelling and specification. Quartz
is primarily a synchronous language, explicitly tailored towards embedded systems, ensuring deter-
minism and predictable concurrency. It emphasises precise control of timing and state transitions
through a synchronous programming model, where all concurrent activities progress simultaneously
in discrete steps. Quartz also provides formal semantics for verification and code synthesis, allowing
rigorous validation of system behaviours before implementation. [8]

In contrast, SysML (Systems Modelling Language) is a general-purpose modelling language derived
from the Unified Modelling Language (UML), explicitly extended and customised to cater to systems
engineering requirements. SysML integrates various diagrammatic representations, encompassing
structural, behavioural, and parametric modelling to support a broad spectrum of system complexities.
It allows modelling of diverse system domains, including software, hardware, and hybrid systems,
through diagrams such as state machines, activity diagrams, and block definitions. [9]

While Quartz is wholly rooted in formal and synchronous paradigms, SysML provides a flexible
framework ideal for systems engineering, capable of capturing structural, functional, and behavioural
aspects simultaneously. This foundational difference affects the feasibility of translation between the
two languages.

4.1 Model-of-Computation (MoC)
At the core of any translation effort lies an alignment or at least a workable reconciliation of the two
languages’ execution models. Quartz programs support is written for a perfect-synchrony MoC: every
thread reacts in lock-step to a global, logical clock. All reads, writes, and signal emissions that occur
between two successive pause statements are deemed instantaneous; only the pause itself consumes a
logical tick, thereby limiting macro-steps of computation and providing a precise barrier across which
delayed assignments (next(x) = ϖ) become visible. [8]

SysML, by contrast, inherits from UML the run-to-completion MoC for behaviour state-machines.
An event placed on the queue triggers a cycle in which the active configuration of states executes all
enabled internal transitions, entry/exit actions and do-activities until it reaches a quiescent configu-
ration; only then is the next event dequeued. The cycle is atomic with respect to other events but
not with respect to time. The specification leaves physical duration implicit and allows platforms to
interleave artefacts such as time-outs or external interrupts. [9]

From a translation viewpoint, these two models are not opposed, but they do differ in three critical
dimensions, which will be explained further:

• Tick granularity versus event granularity

• Determinism guarantees

Chapter 4. Translation Feasibility Analysis 39

• Concurrency representation

In practice, this alignment proves feasible but exposes two residual mismatches. First, SysML tools
rarely offer a notion of logical time, so visual simulations show all macro-steps collapsing onto a
single timeline; analysts must read guards ([clk↑]) to spot tick boundaries [9]. Second, specific Quartz
constructs, notably the abort and suspend lineages that rely on pre-emption during a tick, require
micro-state expansion in SysML to break the run-to-completion atomicity and inject the requisite
control flow. These expansions increase diagram size but preserve trace semantics.

Overall, the mapping of perfect synchrony onto run-to-completion is sound provided that each Quartz
macro-step is packaged as a single, indivisible event cycle in SysML. This strategy retains determin-
ism, honours delayed assignments, and keeps concurrency synchronous, thereby laying a solid MoC
foundation for the subsequent syntactic and semantic translations that follow in the chapter.

4.2 Basic Structural Units
Quartz subsumes interface, local scope and thread within the single syntactic notion of a module [8].
In contrast, SysML separates the description of data from the description of behaviour by pairing a
«block» with one or more distinct behaviour diagrams [9]. Translation, therefore, is less a matter
of inventing new abstractions than of repackaging the constituents of a Quartz module so that they fit
the dichotomy of block-as-structure and state-machine-as-behaviour set.

A Quartz header lists event variables and data variables together, indicating direction by a leading
‘?’ for inputs and ‘!’ for outputs [8]. In the target model, this mixed list divides naturally into two
categories. Every variable that conveys a persistent value across logical ticks becomes a block prop-
erty; its directional semantics “provided” or “required” is carried by the isFlow and isConjugated
tags of a flowProperty, or, where tool support is limited to ports, by adding a stereotyped proxyPort
connected externally through a connector [8]. Event variables, by contrast, possess no duration in
Quartz: they are momentary Booleans that revert to false at the next tick [8]. A faithful representation
in SysML is to retain a Boolean property for data flow analysis, but pair it with a Signal definition so
that other blocks can trigger the state machine without repeatedly polling the Boolean. The separa-
tion preserves information important for schedulability analysis, signals travel along connectors, and
Booleans remain local, introducing no semantic distortion to the synchronous design.

Inside the module body, Quartz allows nested declarations whose lifetime is delimited by braces [8].
SysML offers no lexical scope on properties, so the translator must either hoist such variables to the
block level or simulate their lifetime by resetting them on entry and exit of the state that represents
the lexical block. The first solution simplifies the abstract syntax tree and is adequate when the
liveness of the variable beyond its textual region is irrelevant to formal verification. The second
solution preserves encapsulation at the cost of additional transitions; it becomes necessary only when
the absence of the variable outside its scope conveys meaning, for instance, when an out-of-scope
reference would have been illegal in Quartz.

Parallelism in Quartz is expressed compositionally by the || operator, which spawns synchronous
threads [8]. SysML addresses this need through orthogonal regions in a composite state; however,
Quartz threads may themselves contain nested concurrency, resulting in an arbitrary tree structure.
An inductive mapping copies each parallel level into a composite state with as many regions as child
threads, reproducing the synchrony contract by entering all regions simultaneously and by placing a
join pseudo-state before every pause. Because SysML ensures that transitions between separate areas

Chapter 4. Translation Feasibility Analysis 40

are executed within the same run-to-completion step, the observable outcome aligns with Quartz’s
lock-step semantics without requiring tool extensions [9].

Assertions at module level (assert A G φ, or inline assert(φ)) must surface as verifiable artefacts in
the SysML model. The normative mechanism is a «requirement» element placed in a dedicated
requirement diagram and connected to the implementing block via a «satisfy» relationship. This
manoeuvre respects the SysML philosophy that requirements are not part of execution semantics,
yet remain prioritised, traceable down to every element that claims to fulfil them [9]. The original
predicate is preserved directly in the text tag of the requirement, allowing a model-checker integrated
with TTool to translate it back into temporal logic if desired.

4.3 Event and Signal Semantics
A second axis along which translation feasibility must be examined concerns the notion of an event,
that is, something that happens instantaneously and can be sensed by several concurrent actors in
the same logical instant [8]. Quartz and SysML both possess first-class mechanisms for modelling
such phenomena, yet their contractual details differ just enough to make a basic one-to-one mapping
unstable.

Quartz treats an event variable as a Boolean whose truth value is scoped to a single macro-step. Sup-
pose a thread executes emit(x), the variable x becomes present for the remainder of that tick and
automatically reverts to absent at the following tick boundary. Notably, presence has level semantics
rather than count semantics: multiple concurrent emissions of the same event do not accumulate, and
a guard such as if x then ... is satisfied as soon as at least one emission occurred in the cur-
rent macro-step. These semantics embody the design philosophy of synchronous languages, such as
Esterel and Quartz, where communication is broadcast and instantaneous. [8]

SysML, by contrast, offers two distinct artefacts that together cover this spectrum. A signal is an
element of the metamodel that can be raised on a transition and consumed by a trigger elsewhere. A
Boolean property held by a block represents a durable state. The UML-inherited run-to-completion
rule ensures that if a signal is put on the event pool during a cycle, any transition triggered by that
signal within the same cycle will observe it. Once the cycle completes, however, the signal is consid-
ered consumed and will not fire again unless it is re-raised. In this respect, signals already match the
“single-tick lifetime” of Quartz emissions. What SysML lacks is the convenience of accessing the
signal’s value as an ordinary Boolean expression in arbitrary guards and actions; guards can only test
the occurrence of a signal, not its presence as a variable. [9]

A semantically faithful translation can therefore proceed in two complementary layers. The first
layer introduces a signal definition for every Quartz event variable and schedules an outgoing signal
emission at each point where Quartz writes emit(e). The second layer adds a Boolean flow property
of the same name to the owning block and uses assignment actions to set the flag to true when
the signal is emitted and to reset it to false in the entry actions of every state reached after a tick
boundary. Because entry actions execute as part of the run-to-completion micro-step that follows the
signal emission, the flag is guaranteed to be cleared before any subsequent synchronous reactions,
replicating the automatic reset performed by Quartz. Guards inside the state machine may now refer
to the Boolean property [x] exactly as they did in the source program. However, the outside world
interacts solely through explicit signal connectors, preserving SysML’s separation between data flow
and control flow.

Chapter 4. Translation Feasibility Analysis 41

Two secondary issues call for brief comment. First, Quartz allows multiple concurrent emit(e) state-
ments. In the proposed mapping, each statement emits the same SysML signal during the same run-
to-completion step. UML semantics dictate that identical signals posted simultaneously combine into
a single pool entry, thereby preserving the “idempotence” of emission. Second, Quartz offers valued
events (for example, event int31 nickel_amount). SysML signals can carry attributes, so the numeric
payload migrates naturally into a signal attribute of type Integer, while the companion Boolean prop-
erty remains a simple flag indicating presence [9]. The translator must, however, inject an assignment
that copies the payload into a dedicated block attribute if the value is still needed after the tick in
which it was emitted.

4.4 Time-related Constructs
In Quartz, the notion of time is not anchored to physical duration but to the succession of logical ticks
created by the pause statement. Inside a tick, every assignment, signal emission, and guard evaluation
is considered instantaneous; only the boundary marked by pause advances the global clock and makes
assignments written with the next() operator observable in the subsequent tick. SysML, on the
other hand, treats time as something that can be modelled either implicitly, through the sequencing of
run-to-completion cycles, or explicitly by using time events or duration guards. [8] [9]

The point of such a mapping is that a Quartz tick corresponds bijectively to a single run-to-completion
step of a SysML state machine. Hence, every pause appearing in the source program must be mate-
rialised as a transition that leads either to a distinct successor state or back to the same state, thereby
forcing the SysML engine to complete the current step and begin a new one. By treating pause as a
semantic delimiter rather than a delay instruction with physical duration, one re-creates in SysML the
idea of discrete, global time that underpins Quartz’s causality analysis [8].

The second temporal idiom in Quartz is the delayed assignment expressed by next(x) = ϖ [8]. Se-
mantically, the right-hand side is evaluated in the current tick, but the new value of x becomes visible
only in the next tick [8]. SysML does not have a native construct for one-tick latency. Nonethe-
less, the effect can be reproduced with an auxiliary slot convention: one introduces a hidden attribute
x_next, writes the expression into that slot during the current run-to-completion cycle, and copies
x_next back into x at the beginning of the following cycle, typically using an entry action executed
on every state reached after a pause. This two-phase commit ensures that data-flow graphs derived
from the translated model respect the causality relations mandated by the Quartz semantics.

Quartz also offers quantitative waiting constructs, most prominently the await, whose guard is
evaluated repeatedly until a condition on either variables or time is satisfied [8]. An await(φ) means
“stay in a busy-wait loop across ticks until φ holds” [8]. In SysML, the nearest counterpart is a
self-transition guarded by the negation of φ, combined with an external transition guarded by φ, both
sharing the same triggering event introduced earlier for tick demarcation. Should the designer wish to
attach real-time meaning, for example, that a condition must hold within 50 ms, the SysML constraint
blocks can be invoked to relate the abstract tick to wall-clock duration. Still, such an interpretation is
an optional refinement rather than a prerequisite for behavioural equivalence.

A further asymmetry concerns pre-emption inside a tick, realised in Quartz by statements such as
abort S when(⇁) [8]. Pre-emption is effective at the logical level: if ⇁ becomes true, the body
S is terminated immediately, and control continues in the same tick [8]. SysML state-machines, re-
strained by run-to-completion semantics, cannot abort a transition mid-flight [9]. Feasible translation,
therefore, expands the single Quartz tick into a micro-protocol of two or more SysML states: the first

Chapter 4. Translation Feasibility Analysis 42

collects enabling signals, the second executes S under the assumption that ⇁ is still false, and an
alternate branch bypasses S altogether when ⇁ is true.

Finally, time progress itself is implicit in Quartz: if every thread eventually executes a pause, ticks
are guaranteed to accumulate. SysML offers the same guarantee only if no transition guard can stay
true indefinitely; otherwise, the model may livelock inside a single run-to-completion cycle. When
translating, it is therefore prudent to annotate the produced state machine with an assumption that
entry actions terminate quickly, or to include a watchdog constraint block that forbids unbounded
execution in a single tick. Such annotations do not change behaviour but document, within the SysML
model, the very assumption of finite intra-tick computation on which synchronous theory relies.

4.5 Control-Flow Statements and Their State-Machine Counterparts
The pragmatic value of any translation hinges on the faithfulness with which it conveys control struc-
ture, the rules that govern when a segment of behaviour begins, when it ends and under what cir-
cumstances it may be bypassed or repeated. Quartz specifies these rules by a compact collection
of surface forms, conditional choice, sequential composition, synchronous parallelism, iteration and
pre-emption, layered atop the synchronous-reactive MoC outlined earlier. SysML, in turn, equips its
behaviour diagrams with pseudo-states, composite states and orthogonal regions expressly to encode
branching, looping and concurrency. Although the names differ, a careful reading of their operational
definitions shows a near-isomorphism that permits mechanical translation once binding conventions
are adopted. [8] [9]

Consider first the conditional. The Quartz phrase if φ then S1 else S2 executes either S1
or S2 in the same logical tick, depending on whether the Boolean guard φ holds at the instant of
evaluation [8]. In SysML, the canonical equivalent is a choice pseudo-state whose outgoing tran-
sitions bear mutually exclusive guards φ and ¬φ. Because run-to-completion semantics ensure that
only one guard can fire in a given cycle, the exclusive-execution guarantee of Quartz is preserved [9].
Any assignments nested inside S1 or S2 appear as actions on the corresponding outgoing transition;
the next-to-auxiliary-slot handles immediate visibility requirements discussed earlier, so no ordering
anomalies arise.

Plain sequential composition (S1; S2) entails no semantic complication: the exporter emits an un-
conditional transition from the state encoding S1 to that encoding S2, so all micro-steps of S1 settle
before S2 begins, exactly as Quartz requires [8].

Quartz’s synchronous parallel operator (S1 || S2) demands closer scrutiny. The language requires that,
within a tick, both threads advance in lockstep, exchanging signals instantaneously and detecting
the absence or presence within the same macrostep [8]. The most literal SysML analogue is an
orthogonal composite state containing two regions. Each region hosts the translation of its respective
sub-statement, and both regions are entered simultaneously whenever the composite state is entered.
Because the standard stipulates that all enabled transitions in orthogonal regions fire within one run-
to-completion step, the simultaneity contract of Quartz is satisfied without auxiliary synchronisation
code [9].

Iteration in Quartz appears in two guises: the unbounded loop {S} and the bounded do {S}
while (φ). Both rely on the implicit re-entry of control at the tick boundary [8]. In SysML,
these patterns naturally map onto a self-transition when the body consists of a single state, or onto a
composite state that ends in a junction pseudo-state, whose outgoing branch either returns to the body

Chapter 4. Translation Feasibility Analysis 43

(if φ holds) or exits (otherwise) [9]. Because guards are evaluated at the instant the junction is reached
after all actions in the body have completed, the tight feedback loop intrinsic to Quartz semantics is
preserved.

Finally, Quartz’s statement immediate always emit e, which fires an event in the micro-step that
precedes the next pause, corresponds to a SysML internal transition or an entry action, depending
on whether the surrounding state already owns other entry behaviour. Either placement guarantees
that the signal is raised without waiting for an external trigger, mirroring the “immediacy” contract
embedded in the keyword.

4.6 Data-Type Compatibility
A translation that preserves behaviour must, at the very least, maintain the range and interpretation of
every data manipulated by the source program. Consequently, assessing feasibility at the type level
means asking whether each value domain offered by Quartz can be represented, either natively or
through a disciplined encoding, in the value space that SysML (and its underlying UML metamodel)
makes available.

Quartz exposes a concise yet expressive catalogue of atomic domains. At one end of the spectrum lie
logical signals (bool, declared with or without the event modifier) and reals. On the other hand, the
language provides parametric integers intk and natk whose bit-width k is part of the static type and
therefore of the program’s formal contract. A companion construct, the bit-vector (btvk), combines
a fixed width with unsigned arithmetic and bitwise operators. Composite structures are built through
tuples and arrays, but these are syntactic sugar: a tuple behaves like an anonymous record, an array
like a mapping from bounded indices to homogeneous elements; neither contributes novel semantic
subtleties beyond those of its constituents. The reference manual explicitly states that arithmetic on
bounded integers is modular: overflow wraps rather than raising an exception. [8]

SysML, by contrast, inherits from UML a modest suite of primitive types, Boolean, Integer, Real,
String and extends it with ValueType as a user-defined specialisation. A ValueType may own con-
straints written in parametric diagrams and, under Annexe C in [9], can refine its semantics through
OCL or informal text. What SysML lacks natively is the idea that an integer’s width belongs to the
type system rather than to a run-time representation. Overflow semantics are left to the code generator
or to a constraint block supplied by the modeller, not to the core specification itself. [9]

From that comparison, four translation cases emerge.

• Unbounded primitives: Quartz bool maps directly to SysML Boolean, and real to Real; no
semantic gap is present because both languages treat the domains as mathematical continua
and leave precision to platform choice.

• Bounded and modular integers: A fixed-width int7 (range -64 ... +63) admits no direct
host in SysML, yet the language’s constraint mechanism enables an exact surrogate. The tar-
get model introduces a ValueType Int7 with a single attribute value: Integer and a parametric
constraint -64 <= value < 64 [9]. If modular behaviour is essential, for instance, for bit-
accurate hardware synthesis, one adds context Int7::value post: result = (self.value + arg) mod
128 to every arithmetic operation. Though verbose, the pattern is systematic and tool-neutral;
it pushes width information into analysable constraint blocks without altering surrounding be-
haviour diagrams.

Chapter 4. Translation Feasibility Analysis 44

• Bit-vectors: A bit-vector of width k can likewise be recast as a ValueType Bv_k whose value
attribute is an Integer constrained to 0 <= value < 2k, accompanied, if necessary, by ex-
plicit behavioural libraries that define and, or, xor, and shift in terms of the underlying inte-
ger. Alternatively, some SysML toolchains furnish a built-in Unsigned type with user-editable
width; where available, the mapping simplifies to assigning that type and recording the width
in a tagged value [9].

• Composite aggregates: Because tuples in Quartz are anonymous products and arrays are ex-
tensions of ordinary variables by an index set, both structures map cleanly to either nested
value types or to blocks with parts in SysML [8]. The choice hinges on intended usage. If
the aggregate is intended for arithmetic or bitwise manipulation, a ValueType is more suitable,
maintaining the structure atomic in the sense of the metamodel. If, however, individual com-
ponents participate in connectors, representing the tuple as a block with ports renders these
interaction points explicit and verifiable.

Two semantic mismatches nonetheless deserve attention. Firstly, Quartz programs rely on the com-
piler to generate modular arithmetic, whereas UML/SysML leave overflow behaviour unspecified.
A translator that aspires to soundness must therefore develop the modular constraints; otherwise, a
SysML execution engine might signal an arithmetic exception where Quartz would wrap around.
Secondly, the event qualifier in Quartz imbues a Boolean with a tick-scoped lifetime, a distinction
that neither the primitive Boolean nor the Signal in SysML records. Preserving that aspect requires
the twin-representation pattern (a signal for inter-block synchronisation, combined with a Boolean
property and automatic reset for intra-tick guards).

Despite those caveats, no Quartz type is inexpressible in the vocabulary endorsed by the SysML stan-
dard. Where the mapping is not bijective, disciplined use of ValueType and constraint blocks suffices
to re-establish the exact range and algebraic properties assumed by Quartz semantics. Hence, at the
level of value domains, the feasibility of translation is upheld, with clearly delineated obligations
on the translator to inject auxiliary constraints wherever the target language would otherwise leave
behaviour underspecified.

4.7 Concurrency, Causality, and Determinism
The final axis on which translation feasibility must be weighed concerns the rules that govern how
simultaneously active pieces of behaviour interact, whether their combined effect is deterministic,
and under what circumstances a specification is statically rejected as causally inconsistent. Quartz
and SysML each provide mechanisms for parallel composition. Still, they inhabit markedly different
conceptual worlds: Quartz is rooted in the algebra of synchronous languages, whose first principle is
the existence of a single, global logical instant, whereas SysML inherits from UML an architecture
centred on interleaving and an explicit event queue [8] [9]. Reconciling the two, therefore, calls for a
careful review of both the guarantees Quartz offers and the freedoms SysML leaves open.

Quartz enforces determinism through three pillars. First, the language interprets the operator || as
perfect synchrony. Every constituent thread observes the exact logical tick boundaries, and every sig-
nal is broadcast instantaneously to all threads in that tick. Second, Quartz subjects each module to a
causality analysis: if two threads could, in the same tick, write to the same variable or simultaneously
emit and test the same signal cyclically, the compiler reports an error. Third, the semantics specifies

Chapter 4. Translation Feasibility Analysis 45

that, given an input history, a program yields a unique trace of variable valuations and signal pres-
ences; non-determinism is disallowed by construction. These properties make reasoning tractable, for
they reduce verification to the study of a single, total state transition relation. [8]

SysML, although capable of encoding synchronous behaviour, does not impose it by default. Paral-
lelism appears in two impressions. Within a single state machine, concurrency is expressed through
orthogonal regions; during a run-to-completion step, every area is scheduled conceptually simultane-
ously. However, the standard permits the execution engine to reorder independent actions, as long as
the externally visible trace remains observationally equivalent. Across multiple state machines, either
separate blocks or separate behaviours inside the same block, scheduling relies on an event pool that
serves one event at a time. The standard explicitly allows more than one transition to be enabled by a
given event; if they are not ordered by priority, the resulting choice is nondeterministic. Consequently,
determinism in SysML is possible but nowhere guaranteed; it is an emergent attribute of the diagram
authored by the modeller. [9]

For translation, the question becomes whether Quartz’s determinism survives mapping into a language
that admits non-determinism. The solution is affirmative under a disciplined transformation policy.
Because Quartz’s causality check ensures that no pair of threads races on the same variable, each
transition set generated for the corresponding orthogonal regions will be conflict-free: guards derived
from distinct source threads are mutually exclusive, or they write disjoint attributes [8]. Suppose a
rare case arises where two guards test the same condition but do not use the same variable. In that
case, the translator can insert an ordered pair of transitions labelled by the same guard but assigned
strict numeric priorities, thereby emulating the stable arbitration order inherent in the synchronous
model.

Causality hazards of the instantaneous feedback type, where a signal is both emitted and queried
within the same tick, need particular scrutiny. Quartz compiles such patterns successfully only if
the resulting Boolean equation has a unique least fixed-point; otherwise, the program is rejected
[8]. SysML offers neither language-level fixed-point semantics nor a causality checker [9]. The
translation, therefore, implicitly bans such feedback, as any Quartz program that passes compilation
is already guaranteed to yield an acyclic, well-founded dependency graph. The guards and actions
exported into the target model inherit that acyclicity, so the absence of a causality checker in SysML
does not risk stability.

A subtler divergence concerns broadcast semantics. In Quartz, an emit(e) performed by any thread
renders e present for all threads during the remainder of the tick; presence is a level property, not
a counting one [8]. In SysML, broadcasting is realised through the posting of a signal instance
into the event pool [9]. Multiple emissions of the same signal within one run-to-completion cycle
naturally connect because UML stipulates that only one pool entry exists per signal when identical
attribute values are supplied [9]. Nevertheless, another block could consume the signal and re-emit
it within the same macro-step, violating the single-producer-single-consumer illusion that is inherent
in synchronous semantics [8]. Preservation of broadcast semantics, therefore, requires that emissions
be confined to the state-machine generated from the same Quartz module, or that external senders
be constrained via «constraint» blocks or modelling guidelines, to emit only between macro-steps.
This prerequisite does not hinder feasibility; it merely identifies an interface contract between the
translated component and its SysML environment.

Chapter 4. Translation Feasibility Analysis 46

4.8 Formal Aspects
Whereas the previous sections have concentrated on the operational alignment of Quartz and SysML,
practical translation also depends on how the two languages capture non-functional intent and for-
mal correctness claims. In safety-critical development, such metadata can be as consequential as
behaviour itself; losing it in translation would weaken traceability. Although Quartz and SysML
approach the problem from different angles, they provide complementary mechanisms that can be
related in a semantics-preserving way.

Quartz distinguishes two broad classes of logical annotations. Inline assert(φ) statements stip-
ulate invariants that must hold at the instant of execution. At the same time, the satisfies block at
module level lists temporal properties, typically interpreted under an LTL or CTL semantics, rang-
ing over the infinite tick sequence. Both kinds are executable in the sense that the run-time monitor
produced by the Averest tool chain will trap if a violation occurs. The presence of an assume con-
struct further allows the modeller to declare environment constraints that need not be enforced by the
program but must be relied upon during verification. [8]

SysML, in contrast, externalises correctness claims into a requirements model. The standard pre-
scribes a «requirement» stereotype with attributes id, text, and risk, and provides three relationships
to the design model: «deriveReqt», «satisfy», and «verify». Behavioural constraints can also be ex-
pressed as constraint blocks, which embed equations or Boolean predicates and can be tied to value
flows in parametric diagrams. [9]

A semantics-oriented mapping, therefore, associates:

• every assertion in Quartz with a low-level «requirement» element whose text field contains the
original Boolean expression, and whose «satisfy> connector targets the state machine or, when
the assertion refers to data only, the owning block;

• every assumption with a constraint block stereotyped «assumption», connected via «refine» to
the context that is expected to honour the condition;

• every temporal property with a higher-level «requirement» plus a «verify» relationship pointing
to a test case artefact. That test case carries the temporal formula, either in raw syntax or trans-
lated into TTool’s pattern language, so that automated prove-or-falsify tasks can be scheduled
[9].

In this scheme, the SysML model gains complete traceability from requirement to design, while the
Quartz origin of each property remains visible.

4.9 Known Gaps and Conclusion
The comparison carried out in the foregoing sections shows that almost every construct of Quartz
can be functionalised within the expressive envelope of SysML. However, perfect translatability is
not a binary attribute; instead, it shades gradually from “straightforward” through “possible with
disciplined patterns” to “requires future language or tool support.” This closing section enumerates
the residual mismatches that currently occupy the latter two zones and, in doing so, frames an agenda
for continued research.

The first and most conspicuous gap lies in the treatment of bounded integers. Quartz types, such as
int7 or btv16, take priority in the static semantics: they support wrap-around arithmetic and participate

Chapter 4. Translation Feasibility Analysis 47

in compile-time causality checks that guarantee overflow cannot propagate inconsistently. SysML,
by contrast, views an Integer as an abstraction over the width provided by the execution platform and
leaves overflow behaviour to code generators or constraint annotations. While the value-type pattern
discussed earlier faithfully constrains the range of a variable, it can only approximate the algebra of
modular arithmetic by embedding the requisite mod-k equations in OCL or parametric constraints.
Because few industrial tools evaluate such constraints symbolically, the verification power available
in Quartz is challenging to replicate downstream. A principled solution would extend the UML
metamodel with a fixed-width integer specialisation whose semantics are formally aligned with syn-
chronous languages. [8] [9]

A second, subtler issue concerns the ordering of multiple next updates that share a logical tick. Quartz
guarantees that the evaluation of right-hand expressions is instantaneous and that the commit to base
variables co-occurs at the start of the next tick [8]. SysML offers no primitive to explicitly state that
two assignments executed in one run-to-completion step must commit in lockstep at the beginning of
the following step [9]. The auxiliary-slot technique recovers tick-delayed visibility, but the relative
ordering among several such commits remains implicit. In practice, the ambiguity rarely manifests,
yet a faithful semantics would either serialise all delayed updates into one composite action or insert
micro-states whose sole responsibility is to perform the commits in a deterministic order. Formalising
a tick-atomic stereotype for transition actions represents another avenue for future standardisation.

A third limitation pertains to broadcast semantics across block boundaries. Within an individual state
machine, the mapping of Quartz events to SysML signals, along with Boolean flags, maintains the
present/absent invariant. However, once distinct blocks begin to exchange those signals, nothing
in the core specification prevents one block from re-emitting a signal inside the same macro-step
in which it was consumed, thereby violating synchronous single-producer assumptions. Constraint
blocks can forbid such patterns, but their enforcement is tool-dependent [9]. A language-level notion
of tick-local broadcast, analogous to the run-to-completion pool yet scoped globally, would eliminate
the reliance on user discipline.

Finally, there is a methodological question about verification carry-over. Quartz boasts a mature tool
chain for model checking temporal properties formulated in the satisfies clause [8]. SysML, con-
versely, relies on external profiles (PSM, MARTE) or vendor-specific integrations to conduct tem-
poral verification [9]. Translating a property into a «requirement» or «test case» element preserves
traceability but says nothing about the soundness of re-proving the property after architectural elab-
oration. Establishing a proof-transformation theorem stating that a property proved on the Quartz
model remains valid on the translated SysML model under well-defined refinement conditions is an
open research problem.

48

5 Program Architecture and
Implementation

5.1 Introduction
Model-driven design flows for embedded systems routinely combine a diversity of specification lan-
guages and analysis tools. In such settings, the Quartz language offers a concise, synchronous no-
tation for reactive behaviour [8]. In contrast, SysML, particularly its AVATAR profile, as supported
by TTool, serves as a primary language for simulation, model checking, and code generation [17].
Bridging these two worlds requires more than syntactic conversion: it demands that the behavioural
semantics and any formal properties stated in Quartz survive intact in the diagrammatic representation
understood by TTool.

The translation program written for this thesis fulfils that role. Written entirely in F#, it parses a
Quartz source file, asks the Averest back-end to compile the program into an Extended Finite-State
Machine (EFSM), performs a series of semantic refinements, and finally serialises the result as a
single, self-contained XML document that TTool can import. Because the exporter also lifts each
Quartz assert clause into a dedicated requirement element and automatically wires a «satisfy»
connector from the requirement to the resulting state-machine, the traceability chain remains explicit
from source code to SysML artefact.

5.2 Averest NuGet Package and Initial Parsing Phase
At the first section of the translator lies the Averest NuGet package, a mature collection of libraries
that implement the complete Quartz front-end: lexical analysis, parsing, static type checking, and
the generation of a clock-synchronous EFSM [12]. Leveraging this package offers the advantage of
obtaining a SysML state machine equivalent model, which can be easily translated into SysML state
machines.

The translator begins with a single line of configuration:

let quartzFile = @"...Robot02.qrz"

Internally, the path is passed to

let parsedModule = Compiler.ParseQuartzModuleFromFile quartzFile

which yields a ModuleDef comprising two parts: a sequence of declarations (declStmt.decL),
and the main body (declStmt.stmt). Both are F# data structures produced by Averest, already
decorated with type information, lexical positions, and elaborated names. These features will later be
used to generate accurate SysML attributes and requirement identifiers.

Chapter 5. Program Architecture and Implementation 49

Immediately after parsing, the translator invokes

let efsm = Quartz.ComputeStateTrans true mainStmt

where the boolean flag requests control-flow mode. In that mode, the Averest compiler inserts explicit
"pause boundaries" into the EFSM. Every synchronous step delimited by the pause keyword in
Quartz becomes a pair of non-instantaneous nodes. This explicit alternation will later enable a faithful
representation of temporal semantics in the SysML state machine.

Finally, a call to Quartz.AddSinkState appends a terminal node that collects all transitions
flagged as immediate; this node guarantees that the EFSM is structurally complete (every execu-
tion path ends somewhere) and makes it straightforward to represent the termination of synchronous
instant behaviour in SysML.

At this point, the input file has been transformed into a fully elaborated semantic model, an EFSM
enriched with type and location data, ready for the refinement and export stages described in the
remainder of the chapter.

5.3 EFSM-Level Transformation Utilities
Once the raw EFSM has been obtained from Averest, the translator applies a pair of semantic re-
finements whose purpose is to make the machine operationally compatible with the execution model
expected by AVATAR. The core difficulty stems from Quartz’s next() operator: within a single log-
ical tick, a process may assign the future value of a variable while simultaneously reading its present
value. Averest records such statements as AssignNxt actions, but SysML offers no native notion
of deferred assignment [12].

The translator, therefore, adopts a two-phase update protocol implemented by the mutually indepen-
dent functions transformEFSMWithCommit and commitAssignments.

Conceptual idea is that instead of trying to preserve AssignNxt directly, the compiler first rewrites
every deferred update AssignNxt(LhsVar(x), ..., e) into an immediate assignment on a
shadow variable x_next. In a second sweep, it inserts, on every EFSM node, an unconditional
"commit" action that copies x_next back to x, thus emulating the synchronous register update that
occurs between ticks. Because the commit action is unconditional and appended to the surface-action
set of each state, it is executed in the same atomic step as any other transition leaving the state.

Technical details.

• makeNextQName queries Averest’s global name table, allocates a fresh symbol called
<original>_next, and returns it as a BasicName.

• transformEFSMWithCommit traverses the set surfActs attached to every EFSM node,
pattern-matches on AssignNxt, and converts it into AssignNow using the newly minted
shadow variable.

• commitAssignments collects all assignments whose left-hand side ends in "_next", con-
structs the corresponding base variable via string replacement, and emits unconditional
AssignNow actions of the form x := x_next. These unconditional commits are merged
into the existing surfActs set via a simple set union, preserving determinism.

Chapter 5. Program Architecture and Implementation 50

One minor optimisation is performed while traversing the EFSM: assertions are recognised by their
AssignNow signature or explicit Assert tag and are left untouched, because they will later be
reused to build requirements in the SysML model. An internal-naming predicate (isInternal)
prevents temporary variables such as "__ell..." from entering into the final diagram.

The outcome of this two-pass transformation is a structurally unchanged EFSM, whose updates are
purely immediate, greatly simplifying the subsequent mapping to SysML states and connectors.

5.4 In-Memory SysML Structure Types
The exporter does not stream XML directly from the EFSM. Instead, it constructs a language-neutral
intermediate representation consisting of four modest record types:

LISTING 5.1: SysML Structure
1 type SysMLState = { Name: string; EntryActions: string list }
2 type SysMLTransition = { From: string; To: string; Guard: string; Action: string

}
3 type SysMLBlock = { Name: string; States: SysMLState list;
4 Transitions: SysMLTransition list }
5 type SysMLConnection = { FromBlock: string; ToBlock: string; Signal: string }

Design rationale.

• Entity coherence: By grouping all information related to a given state or transition into one
immutable record, the code avoids the scattered information that would arise if fields were
emitted in sections.

• Separation of concerns: The generator that consumes the EFSM to build these records remains
oblivious to XML syntax; conversely, the serializer that emits XML need not understand EFSM
minutiae.

• Extensibility: Additional fields (e.g., colour, stereotype, timing annotation) can be appended
later without disturbing existing code.

Field choice.

• EntryActions is stored as a list even though the current translator never emits entry actions.
The redundancy is intentional: it anticipates future optimisations where constant initialisations
can be hoisted from self-loops into state entry code.

• Guard and Action are plain strings. Retaining the exact textual form produced by Averest
guarantees traceability.

• SysMLConnection is defined for completeness, even though the present prototype generates
a single block. Its presence signals the intent to handle multi-block architectures in later work.

Together, these lightweight data structures form the pivot between Quartz semantics and SysML
syntax. They enable the exporter to assemble a coherent, type-checked model in memory, complete
with states, transitions, variables, and requirements, before a single byte of XML is written, thereby
facilitating testing and future feature growth.

Chapter 5. Program Architecture and Implementation 51

5.5 Requirements Extraction and Filtering Utilities
A faithful translation must preserve the formal properties of the original. Hence, the current prototype
focuses on assert statements embedded within the operational code, as they are immediately visible
in the EFSM generated by Averest.

In SysML / AVATAR, requirements are entirely separate from the state machine that realises them.
By lifting Quartz assertions into the requirement domain, we achieve two goals simultaneously:

1. Traceability: Each correctness condition is represented by its own COMPONENT type="5200"
node, so that subsequent verification tools, or a human reviewer, can locate the specification
without scanning behavioural code.

2. Separation of concerns: Removing assertions from the state machine keeps the latter focused
on what the system does, while the requirement diagram records why the behaviour is correct.

The utility module comprises two functions:

LISTING 5.2: Requirements Extraction and Filtering Utilities
1 extractRequirementsFromEFSM : NodeOfEFSM array -> RequirementInfo list
2 removeAssertActionsFromEFSM : NodeOfEFSM array -> NodeOfEFSM array

extractRequirementsFromEFSM walks through every (guard, action) pair in the
surfActs set of each EFSM node. Whenever the pattern matcher encounters Assert(qname,
expr), it packages the textual predicate into a RequirementInfo record whose fields mirror
TTool’s metamodel [27]:

LISTING 5.3: Requirement Info
1 { Id = Guid.NewGuid().SubString(0,8)
2 Description = sprintf "%s : assert %s" qname expr
3 Kind = "Functional"
4 Criticality = "Low"
5 ReqType = "SafetyRequirement"
6 }

A fresh eight-character identifier ensures that requirement IDs are unique. The kind and criticality
are left at conservative defaults. Still, their explicit presence in the record makes them easy to refine
if a future version of the tool reads structured annotations from the Quartz source.

removeAssertActionsFromEFSM performs the dual task of filtering: it returns a deep copy of
the EFSM in which every Assert action, or bookkeeping assignment generated from an assertion
(__rteAtLine...), has been deleted. The behaviour diagram will therefore remain uncluttered,
while the requirement node, produced in a separate <Modeling> section, retains the predicate for
formal analysis.

5.6 Translating the EFSM into a SysML State-Machine
With requirements safely gathered, the filtered EFSM is ready to be mapped onto an AVATAR state
machine. This transformation is encapsulated in the single function EFSMtoSysML: NodeOfEFSM
array -> SysMLBlock, which converts the graph-structured EFSM into the flat, record-based
data model.

Chapter 5. Program Architecture and Implementation 52

Mapping Strategy

• Nodes → States: Each strongly-connected component index (node.sccIndex) becomes a
state name State_<n>. No attempt is made to recover the original Quartz line numbers or
identifiers; an SCC-based naming scheme guarantees uniqueness and preserves reachability
relations.

• Surface actions → Self-loops: Guard/action pairs that do not trigger a change of SCC are
rendered as self-transitions. This choice avoids an explosion of tiny micro-states and keeps the
diagram close to the textual EFSM.

• Control transitions: The set node.rsdStmts identifies edges that leave the current SCC;
each (condition, target) pair is emitted as a connector whose source is State_<src>
and whose destination is State_<target>.

• Entry actions: The current compiler version does not attach code to the entry block of a state.
Nevertheless, the SysMLState record reserves an EntryActions list to accommodate fu-
ture optimisations (e.g., constant initialisations hoisted out of self-loops).

Filtering Heuristics

Two predicates keep the resulting diagram readable:

LISTING 5.4: Filtering Heuristics
1 isInternal(name) // filters _ _ e l l , _ _ t m p variables
2 isAssertAssignment(a) // filters assignments generated from asserts

Both are applied before emitting a transition, ensuring that internal signals never appear in the public
SysML facade.

Guard and Action Serialisation

Rather than inventing a custom pretty-printer, the translator relies on Expr.ToString() and
Action.ToString() provided by Averest [12]. Although the output is occasionally verbose,
preserving exact formatter output has two advantages: Perfect traceability: A developer can copy a
guard from the XML and find it unmodified in the EFSM, thereby avoiding mismatches. The risk of
mis-parsing or re-interpreting complex expressions (especially those involving bounded integers) is
eliminated.

Visual Layout Heuristic

For human legibility, a grid layout is applied, states are placed four per row at 300 px horizontal
and 220 px vertical spacing. The coordinates are computed once and stored in a Map<string,
int*int> so that the connector generator can anchor arrowheads automatically. When the state
machine grows beyond one screen, TTool’s built-in "auto-layout" feature can be invoked without
conflicting with the translator’s positions.

The resulting SysMLBlock instance, together with the list of requirements produced earlier, now
contains all structural information required for final serialisation: block attributes, states, transitions,
guards, actions, and satisfy links.

Chapter 5. Program Architecture and Implementation 53

5.7 Generating Block-level Attributes and Type Information
Before a single state can be generated, the exporter must create a block diagram that declares ev-
ery variable visible at the top level in the Quartz module. AVATAR encodes such data inside the
<extraparam> tag of a component of type 5000, one line per attribute [27]. The helper routine
generateAttributesXml therefore acts as a miniature type-translation layer between Averest
and TTool.

The routine starts by iterating over the list of (qname, Decl) pairs produced by the parser. For each
declaration, it queries Decl.qtype, passes the result to typeCodeOfQType, and receives back
the numeric code that AVATAR expects. A bounded integer such as int{2} or nat{10} is widened
to code 8, which represents an int value in TTool [28]. Booleans become code 4 and exotic constructs
that have no AVATAR counterpart fall back to 0, the schema’s catch-all value [28]. Because Quartz
rarely assigns explicit initial values, the companion function defaultValueForQType supplies
a neutral literal, 0 for integers and naturals, false for Booleans, 0.0 for reals, so that the resulting
XML passes TTool’s static checker without further annotation.

Each attribute is then assembled as a one-line string,

LISTING 5.5: Block-level Attributes
1 <Attribute access="0" var="0"
2 id="credit"
3 value="0"
4 type="8"
5 typeOther=""/>

and injected verbatim into the block’s <extraparam> section. The fixed field access= "0"
grants public visibility; var= "0" states that the element is a plain attribute rather than a signal or
port; and typeOther is left blank because it becomes relevant only when type= "0".

5.8 Requirement Diagram Synthesis and XML Serialisation
Immediately after gathering assertions from the EFSM, the translator invokes the written function
generateRequirementsXml, whose task is to write an entire <Modeling> section dedicated
to AVATAR’s requirement diagram. The routine unfolds a rigid, three-element structure for each
property: an element reference, a requirement node, and a satisfy connector that binds the two.

The element reference is emitted first as a COMPONENT type= "5207" [29]. Its sole purpose is to
serve as an anchor; the inner infoparam names the behavioural artefact, here always StateMachine,
so that, when the diagram is opened in TTool, the connection to the state machine panel is formed.
Coordinates in <cdparam> are chosen on a simple horizontal grid (150 px increments) so that refer-
ence boxes line up neatly above their requirements, but any later drag-and-drop in the GUI preserves
the semantic link because connectors target components by their integer id, not by geometry.

The requirement node itself follows immediately as COMPONENT type= "5200" [29]. Inside its
<extraparam> block, the translator writes the predicate in full Averest syntax to the textline
field. The reqType is fixed to SafetyRequirement and tinted with TTool’s orange shade color=
"-1773070" [28]. A fresh eight-character hash is copied into both the id attribute and the com-
ponent’s display name, ensuring uniqueness across the diagram. Flags satisfied= "true" and

Chapter 5. Program Architecture and Implementation 54

verified= "true" are set optimistically. A later formal-analysis pass could toggle them to re-
flect the actual proof status without affecting the behavioural model.

Finally, a connector of type 5208 materialises the satisfy relation [29]. The infoparam field con-
tains the string «satisfy», which TTool’s renderer interprets as a stereotype and adorns with the
correct iconography. The two-way points <P1> and <P2> reference the numerical IDs of the poly-
line’s endpoints, allowing the editor to redraw the polyline correctly even after the user rearranges
the layout. A cdparam entry at the geometric midpoint offers TTool an initial bend position; the
attribute <AutomaticDrawing data= "true"/> instructs the tool to recalculate the shape
automatically when either endpoint moves.

Listing 5.6 shows, with all geometry and sizing information intact, the trio of elements generated for
the assertion stop → 2 <= exactDist <= 4 in the Robot-02 case study:

LISTING 5.6: Requirement Diagram
1 <COMPONENT type="5207" id="0" uid="97914769- " index="0">
2 <cdparam x="150" y="150"/>
3 <sizeparam width="150" height="30"
4 minWidth="10" minHeight="30"
5 maxWidth="2000" maxHeight="2000"
6 minDesiredWidth="107" minDesiredHeight="0"/>
7 <infoparam name="AvatarElementReference" value="StateMachine"/>
8 </COMPONENT>
9

10 <!-- Requirement node -->
11 <COMPONENT type="5200" id="1" uid="159e9944- " index="1">
12 <cdparam x="150" y="220"/>
13 <sizeparam width="180" height="70" />
14 <infoparam name="Requirement" value="Req_exactDist_0d424bf3"/>
15 <extraparam>
16 <textline data="__asrt000 : assert (stop->exactDist<=4&2<=exactDist)"/>
17 <kind data="Functional"/>
18 <criticality data="Low"/>
19 <reqType data="SafetyRequirement" color="-1773070"/>
20 <id data="0d424bf3"/>
21 <satisfied data="true"/>
22 <verified data="true"/>
23 </extraparam>
24 </COMPONENT>
25

26 <!-- satisfy connector -->
27 <CONNECTOR type="5208" id="1000" uid="a952f1f3- " index="1000">
28 <cdparam x="170" y="200"/>
29 <infoparam name="connector" value="<<satisfy>>"/>
30 <P1 x="150" y="180" id="0"/>
31 <P2 x="170" y="240" id="1"/>
32 <AutomaticDrawing data="true"/>
33 </CONNECTOR>

Every numerical attribute shown—id, index, x, y, width, height is mandatory for TTool’s
parser. In contrast, textual tags (infoparam, textline, kind) carry the semantic payload. By
emitting them in the precise order expected by the DTD, the exporter guarantees that the resulting file
is not merely well-formed XML but also schema-compliant, loading in TTool without warnings.

Chapter 5. Program Architecture and Implementation 55

5.9 Serialising the Complete Model – “Main XML Generation”
The final stage in the pipeline takes the in-memory SysMLBlock structure, already populated with
states, transitions, and the list of extracted requirements, and converts it into a single, self-contained
XML document. This file must be simultaneously acceptable to TTool, visually intelligible when
rendered, and traceable back to every semantic item present in the EFSM. Achieving those three
goals requires a disciplined ordering of elements, careful reuse of identifiers, and a handful of layout
heuristics that, while purely cosmetic, greatly ease human inspection.

Cohesion between block diagram and state-machine

AVATAR separates data context from behaviour by placing variable declarations, inputs and outputs
in a Block Diagram Panel and behavioural logic in a State-Machine Panel. The exporter, therefore,
begins the "Design" section by emitting a <AVATARBlockDiagramPanel> that contains exactly
one component of type 5000. The infoparam of that component is deliberately set to the string
"StateMachine", which is the same lexical token used as the panel name of the state-machine emitted
later in the file. TTool uses this identity to cross-reference diagrams internally; the connection of
AvatarElementReference in the requirement view causes the editor to zoom straight to the
correct block diagram, which in turn contains a hyperlink to the state machine. By choosing a single,
stable name at the root of the hierarchy, the translator guarantees that the three views, requirements,
data, and behaviour remain coherently linked.

LISTING 5.7: Block Diagram Panel
1 sb.AppendLine(" <Modeling type=\"AVATAR Design\" nameTab=\"QuartzSysML\" tabs=\"

Block Diagram\">") |> ignore
2 sb.AppendLine(" <AVATARBlockDiagramPanel name=\"BlockDiagram\" minX=\"10\"

maxX=\"2500\" minY=\"10\" maxY=\"1500\" zoom=\"1.0\">") |> ignore
3 sb.AppendLine(" <MainCode value=\"\"/>") |> ignore
4 sb.AppendLine(" <Optimized value=\"true\"/>") |> ignore
5 sb.AppendLine(" <considerTimingOperators value=\"true\"/>") |> ignore
6 sb.AppendLine(" <Validated value=\"StateMachine;\"/>") |> ignore
7 sb.AppendLine(" <Ignored value=\"\"/>") |> ignore

Block Diagram Component and its extended parameters

Inside the component tagged type="5000", the exporter writes a <sizeparam> that mirrors
TTool’s default canvas settings (461 ! 358 px). The bounding box is not strictly required for parsing,
yet having it present means the diagram opens centred and at a readable zoom. The <extraparam>
section holds two fixed meta-entries, <blockType> and <CryptoBlock>, followed by the com-
plete list of <Attribute> lines generated earlier. Because every attribute carries the numeric type
code and a concrete initial literal, the block diagram is immediately executable in TTool.

LISTING 5.8: Block Diagram Component
1 sb.AppendLine($" <COMPONENT type=\"5000\" id=\"0\" index=\"0\" uid=\"{

blockUid}\">") |> ignore
2 sb.AppendLine(" <cdparam x=\"445\" y=\"19\"/>") |> ignore
3 sb.AppendLine(" <sizeparam width=\"461\" height=\"358\" minWidth=\"5\"

minHeight=\"2\" maxWidth=\"2000\" maxHeight=\"2000\" minDesiredWidth=\"0\"
minDesiredHeight=\"0\"/>") |> ignore

4 sb.AppendLine(" <hidden value=\"false\"/>") |> ignore
5 sb.AppendLine(" <cdrectangleparam minX=\"10\" maxX=\"1400\" minY=\"10\"

maxY=\"900\"/>") |> ignore

Chapter 5. Program Architecture and Implementation 56

6 sb.AppendLine($" <infoparam name=\"block\" value=\"{escapeXml blockName
}\"/>") |> ignore

7 sb.AppendLine(" <new d=\"false\"/>") |> ignore
8 sb.AppendLine(" <extraparam>") |> ignore
9 sb.AppendLine(" <blockType data=\"block\" color=\"-4072719\"/>") |>

ignore
10 sb.AppendLine(" <CryptoBlock value=\"false\"/>") |> ignore
11 sb.AppendLine(generateAttributesXml allVars) |> ignore
12 sb.AppendLine(" </extraparam>") |> ignore
13 sb.AppendLine(" </COMPONENT>") |> ignore
14 sb.AppendLine(" </AVATARBlockDiagramPanel>") |> ignore

Emitting state components

Each EFSM node is mapped to a COMPONENT type= "5106". The exporter lays those compo-
nents on a rectangular grid, four columns wide, with a 300 px column pitch and a 220 px row pitch.
While the grid does not replicate the control-flow topology, it prevents states from overlapping and
keeps connectors short enough to maintain a legible visual structure. In the long run, a layout al-
gorithm informed by TTool’s force-directed engine would be preferable; however, the grid offers an
acceptable trade-off for a prototype.

Each state component receives a fresh GUID in its uid field, satisfying TTool’s requirement that ev-
ery shape can be addressed unambiguously when diagrams are merged. No entry actions are currently
written, but the <entry> tag is left available so that future optimisations can be made.

LISTING 5.9: State Machine Component
1 sb.AppendLine($" <COMPONENT type=\"5106\" id=\"{compId}\" index=\"{compId}\"

uid=\"{uid}\">") |> ignore
2 sb.AppendLine($" <cdparam x=\"{x}\" y=\"{y}\"/>") |> ignore
3 sb.AppendLine($" <sizeparam width=\"250\" height=\"200\" minWidth=\"5\"

minHeight=\"2\" maxWidth=\"2000\" maxHeight=\"2000\" minDesiredWidth=\"0\"
minDesiredHeight=\"0\"/>") |> ignore

4 sb.AppendLine($" <hidden value=\"false\"/>") |> ignore
5 sb.AppendLine($" <cdrectangleparam minX=\"10\" maxX=\"2500\" minY=\"10\"

maxY=\"1500\"/>") |> ignore
6 sb.AppendLine($" <infoparam name=\"state\" value=\"{escapeXml state.Name

}\"/>") |> ignore
7 if not (List.isEmpty state.EntryActions) then
8 let entryStr = String.concat "; " (state.EntryActions |> List.map escapeXml)
9 sb.AppendLine($" <entry>{entryStr}</entry>") |> ignore

10 sb.AppendLine(" </COMPONENT>") |> ignore

Geometric logic for connectors

A connector (type= "5102") in AVATAR is essentially a polyline whose two ends must touch any
of the twelve numbered connection points pre-computed for every state [29]. Selecting which points
to use can influence the number of bends TTool inserts. The exporter, therefore, consults the relative
position of source and destination states. If the target lies to the right, the arrow leaves the right-hand
midpoint of the source (x+width, y+height/2) and enters the left-hand midpoint of the target; if
the transition is vertical, the top or bottom edge is used likewise. In the special case of a self-loop,
the arrow is drawn from mid-right, downwards, and back up, reserving space for a label.

The <cdparam> stored inside the connector is purposely set to the geometric midpoint of the seg-
ment; this is not strictly necessary for import, but it provides TTool with an initial bend location that

Chapter 5. Program Architecture and Implementation 57

often results in a cleaner route. The attribute <AutomaticDrawing data= "true"/> signals
to the editor that it may rearrange the polyline automatically when the user drags either state.

Because TTool identifies connection ends by the numeric id of the component rather than by its uid,
the exporter increments a global connId counter by ten after every connector. The large stride is
deliberate: it leaves space for TTool’s run-time indexing, preventing accidental collisions when the
file is opened, saved, and reopened. This idea does not visually work yet, but it is not a difficult task
once Ttool’s behaviour regarding the connectors is understood.

LISTING 5.10: State Machine Connector
1 sb.AppendLine($" <CONNECTOR type=\"5102\" id=\"{connId}\" index=\"{connId}\"

uid=\"{uid}\">") |> ignore
2 sb.AppendLine($" <cdparam x=\"{midX}\" y=\"{midY}\"/>") |> ignore
3 sb.AppendLine($" <sizeparam width=\"0\" height=\"0\" minWidth=\"0\"

minHeight=\"0\" maxWidth=\"2000\" maxHeight=\"2000\" minDesiredWidth=\"0\"
minDesiredHeight=\"0\"/>") |> ignore

4 sb.AppendLine($" <infoparam name=\"connector\" value=\"null\" from=\"{
escapeXml trans.From}\" to=\"{escapeXml trans.To}\"/>") |> ignore

5 sb.AppendLine($" <TGConnectingPoint num=\"0\" id=\"{connId + 1}\"/>") |>
ignore

6 sb.AppendLine($" <P1 x=\"{p1x}\" y=\"{p1y}\" id=\"{connId + 2}\"/>") |>
ignore

7 sb.AppendLine($" <P2 x=\"{p2x}\" y=\"{p2y}\" id=\"{connId + 3}\"/>") |>
ignore

8 sb.AppendLine($" <AutomaticDrawing data=\"true\"/>") |> ignore
9 sb.AppendLine($" <new d=\"false\"/>") |> ignore

10 sb.AppendLine(" </CONNECTOR>") |> ignore

Sub-components as transition carriers

Immediately after each connector, the exporter emits a SUBCOMPONENT type= "-1" whose
father id field points back to the connector’s id [29]. This nesting tells TTool that the sub-
component visually sits on the polyline and carries the semantic payload of the transition. Four
<TGConnectingPoint> tags are supplied exactly as required by the schema, numbered consecu-
tively after the sub-component’s own id.

The <extraparam> block inside the sub-component contains one line per attribute that the AVATAR
metamodel can attach to a transition. Only three lines matter to the translator:

• <guard...> receives the raw text of the EFSM guard, wrapped in square brackets to conform
to AVATAR syntax.

• <actions...> is inserted only when the EFSM transition carries a non-empty update. Omit-
ting the tag when no update exists keeps the XML minimal while remaining valid.

• <probability...> is left empty, anticipating future work on probabilistic EFSMs.

Timing-related tags (afterMin, afterMax, extraDelay1/2) are written but left blank; their
presence documents the possibility of extension according to the program.

LISTING 5.11: State Machine Subcomponent
1 sb.AppendLine($" <SUBCOMPONENT type=\"-1\" id=\"{subcompId}\" index=\"{

connId}\" uid=\"{subUid}\">") |> ignore
2 sb.AppendLine($" <father id=\"{connId}\" num=\"0\"/>") |> ignore
3 ...

Chapter 5. Program Architecture and Implementation 58

4 sb.AppendLine($" <extraparam>") |> ignore
5 sb.AppendLine($" <guard value=\"[{escapeXml guardPart}]\" enabled=\"

true\"/>") |> ignore
6 ...
7 if actionPart <> "" then
8 sb.AppendLine($" <actions value=\"{escapeXml actionPart}\" enabled

=\"true\"/>") |> ignore
9 sb.AppendLine($" </extraparam>") |> ignore

Father–child linkage and index coherency

Every state component, connector, and sub-component carries both an id and an index. Although
TTool treats the two numbers synonymously, using both fields allows a quick visual check. id is
always equal to index for components. Still, sub-components share the connector’s index to verify
that the hierarchy is well-formed. During serialisation, the exporter maintains three independent
counters (compId, connId, subcompId), ensuring a monotonic increase and thereby compliance
with the internal lookup tables of the editor.

Summary of the generation phase

By the time generateSysMLXml returns its string, the document contains in strict top–down order:
the requirement diagram, the block diagram with attributes, and the fully wired state-machine. Every
coordinate and every identifier already satisfies TTool’s static checks; loading the file, therefore,
produces a syntactically neat project. The modest grid layout is sufficient for diagrams with several
dozen states, where aesthetics matter. TTool’s auto-layout can refine the visuals without breaking the
semantic bindings, as arrows are anchored by component id rather than by absolute pixel position.
In this way, the exporter produces an artefact.

5.10 Putting It All Together and Concluding Remarks
The final block of the program, beginning with a call to applyTransformationWithCommit
and ending with a confirmation printed to the console, serves as the binding unit that integrates into
one cohesive compilation pipeline. Conceptually, this driver script does little more than thread data
through a series of pure functions. However, its sequencing is crucial because each function consumes
an artefact whose structure has been meticulously prepared by the preceding step.

The pipeline unfolds in four brisk statements:

LISTING 5.12: Final Statements
1 let transformedEFSM = applyTransformationWithCommit completeEFSM
2 let requirements = extractRequirementsFromEFSM transformedEFSM
3 let efsmNoAssert = removeAssertActionsFromEFSM transformedEFSM
4 let sysMLModel = EFSMtoSysML efsmNoAssert

First, the EFSM is normalised so that every update is immediate and every next() assignment
is mirrored by a commit. Second, the same EFSM is mined for assertions, producing a list of
RequirementInfo records while still in-memory. Third, those assertions are stripped from the
behavioural graph, ensuring that the future state machine will not display them as executable code.
Finally, the curated EFSM is mapped onto the neutral SysMLBlock data structure introduced earlier.
Only after the semantic content has been divided cleanly between behaviour and requirement does
the exporter call let sysmlXml = generateSysMLXml sysMLModel requirements

Chapter 5. Program Architecture and Implementation 59

to produce the textual representation shown in earlier listings. The system is invoked by the writ-
ten System.IO.File.WriteAllText method, which writes the XML to disk, where it can be
directly dragged into TTool’s workspace.

Closing the Semantic Loop

The translator now completes a closed semantic loop:

1. Quartz grammar → parsed AST (Averest)

2. AST → EFSM (Averest code generator)

3. EFSM → normalised EFSM (two-phase commit)

4. Normalised EFSM → behaviour+requirements (logical split)

5. Behaviour + requirements → SysML/AVATAR XML (serializer)

6. XML → TTool project (end-user artefact)

Each arrow represents either a pure function or a side-effect-free traversal, making the entire compi-
lation chain amenable to future extension and modification. All intermediate artefacts are expressible
in F# record syntax and therefore serialisable for regression testing. More importantly, every syntac-
tic construct that the user writes in Quartz variables, threads, pause statements, next() updates,
guards, actions, and asserts re-emerges in the SysML document in recognisable form, either as a
block attribute, a state, a transition, or a requirement node.

Outlook

The current prototype is already functionally complete for the portion of Quartz used in the evaluation
later: it handles parallel loops, synchronous pauses, and inline assertions. The architecture described
in this chapter, built around a sequence of small, testable transformations, leaves ample room for
growth. Adding support for probabilistic guards, timing constraints, or hierarchical blocks would
require only local adjustments, typically an extra field in one record type and a few lines in the
serialiser, without risking the correctness guarantees established up to this point.

Thus, Chapter 5 has documented not only what the translator does but also how and why each design
decision was taken. The next chapter will demonstrate empirically that the architecture outlined here
succeeds in practice, producing SysML artefacts that are both syntactically valid and semantically
faithful across a collection of Quartz programs.

60

6 Evaluation

The purpose of this chapter is to evaluate the correctness and effectiveness of the developed transla-
tion tool, which converts models specified in the Quartz language into their corresponding Extended
Finite State Machine (EFSM) representations and ultimately into SysML XML files. Also, it aims to
provide tangible evidence that the resulting XML files are structurally conformant with the import re-
quirements of TTool and are, at least in principle, ready for downstream activities such as verification
or code generation.

This evaluation aims to ensure that the translation process preserves the intended behaviour, structure,
and semantics of the original Quartz models at each stage of the transformation pipeline. The testing
further seeks to demonstrate that the tool can handle a range of representative examples, including
models that incorporate various features such as concurrency, event handling, control flow constructs,
and assertions.

Ultimately, the goal is to establish confidence that the toolchain provides a sound and practical solu-
tion for bridging the gap between Quartz specifications and SysML-based modelling and verification
environments. At the same time, any residual deficiencies, be they semantic, syntactic, or purely
cosmetic, will be documented, thereby outlining a clear agenda for future improvement.

6.1 Methodology
The evaluation proceeds in three carefully delineated stages, each corresponding to one step of the
translation pipeline. Stage 1 compiles the Quartz source with the Averest NuGet, yielding an EFSM
whose nodes represent micro-states of the synchronous execution model and whose edges carry
guards and actions exactly as generated by the compiler. Textual statements of the EFSM are re-
tained so that they can later be aligned with the SysML representation.

In Stage 2, the F# tool converts the EFSM into a SysML XML document. The exporter generates two
separate views: an AVATAR Requirement Diagram that re-expresses any Quartz assert statements,
and an AVATAR Design that comprises both a block diagram used to declare variables and their initial
values, and a state machine whose structure mirrors that of the EFSM. Every XML element is written
by the tool itself; no manual editing is allowed, ensuring that the assessment reflects the tool’s native
capabilities.

Stage 3 is a cross-representation audit. For the principal test case, the audit is exhaustive: each
variable in Quartz must appear as an attribute in the block diagram; each EFSM node must correspond
to a state component; and every EFSM transition must be matched by a connector/sub-component
pair whose <guard> and <actions> tags are textual replicas of the compiler output. Temporal
semantics are checked by verifying that the pause instruction in Quartz becomes the alternation of
states in both the EFSM and the SysML machine. Where feasible, the XML is imported into TTool
to confirm that the file is syntactically accepted and that the diagram renders without fatal errors. For

Chapter 6. Evaluation 61

the secondary programs, the same checks are applied selectively, and their associated transitions are
traced end-to-end, providing confidence that the findings generalise beyond the primary example.

Throughout the process, discrepancies are logged in a structured format and, where required, traced
back to a specific stage of the pipeline. This disciplined, artefact-centric methodology not only
demonstrates the present correctness of the tool but also establishes a reproducible framework for
future regression tests as the translator and the surrounding toolchain evolve.

6.2 Test Case Selection
The test cases used for evaluating the translation tool were carefully selected from the Quartz example
database. The primary motivation behind this selection strategy is to facilitate a focused and manage-
able testing environment during the initial development phase of the translation program. Specifically,
the examples were chosen to avoid those models that involve hierarchical module structures, in favour
of self-contained, single-program models. This choice allows for a more straightforward mapping be-
tween Quartz and SysML, making it easier to analyse and compare the semantics of both languages
in a controlled setting.

Moreover, priority was given to examples that incorporate fundamental programming constructs such
as loops, conditional statements, and parallelism. These features are essential in assessing the trans-
lation tool’s ability to accurately represent concurrency, event synchronisation, and data manipulation
in the target SysML format. By focusing on models that showcase parallel threads, synchronisation
through events, as well as conditional branching and iterative control flow, the evaluation can directly
address the most critical challenges associated with behavioural preservation during translation.

Each model has been chosen not only for its relevance in demonstrating essential control and data
flow patterns, but also for its clarity and simplicity, which are vital for effective manual comparison
and semantic analysis. This approach ensures that the translation results can be easily interpreted and
validated, and also provides valuable insight into the fundamental compatibility of Quartz and SysML
state machine semantics.

By grounding the test suite in well-understood examples from the Quartz repository and emphasising
core language features, the evaluation can systematically explore the strengths and limitations of
the translation process, while setting a clear foundation for future work involving more advanced or
hierarchical models.

6.3 Results
The Robot-02 example, from the Quartz database [10], is initially used to evaluate the translator.
Although modest in size, the program encompasses a remarkable diversity of language features, in-
cluding three parallel threads, guarded updates, a non-trivial sensor-error model, immediate event
emission, a temporal property expressed as an assertion, and a liveness requirement. Its richness
ensures that every stage of the toolchain —Averest compilation, EFSM extraction, requirement ex-
traction, block synthesis, and state-machine generation —is exercised in a realistic setting.

6.3.1 Quartz Specifications

Listing 6.1 reproduces the exact source that feeds the pipeline. A hidden variable, exactDist,
records the actual distance between the robot and an obstacle. The first thread increments that distance

Chapter 6. Evaluation 62

whenever the push command is received; it also checks, by assertion, that stop is never raised unless
exactDist lies between 2 and 4. The second thread models a sensor that reports sensedDist
with a bounded error of ±1, while the third thread constitutes the control logic, which emits stop as
soon as the sensed distance is believed to be safe.

LISTING 6.1: Quartz: Robot02
1 module Robot02(event ?push, int{2} ?err, event stop) {
2 int{3} sensedDist; // distance determined by vehicle’s sensor
3

4 // note that exactDist is made local and therefore hidden to the vehicle
5 {int{3} exactDist;
6 // this thread maintains the exact distance
7 loop {
8 if(push & !stop)
9 next(exactDist) = exactDist + 1;

10 assert(stop -> 2<=exactDist & exactDist<=4);
11 w1: pause;
12 }
13 || // this thread models the sensor which determines sensedDist with error
14 loop {
15 case
16 (err>0) do sensedDist = exactDist + 1;
17 (err<0) do sensedDist = exactDist - 1;
18 default
19 sensedDist = exactDist;
20 w2: pause;
21 }
22 } // end of scope of exactDist
23 || // This thread models the vehicle’s program whose aim is to emit stop
24 // when it is sure that 2<=exactDist<=4 holds only based on sensedDist.
25 // The program below is not correct (see driver t1)
26 loop {
27 if(sensedDist>=3)
28 immediate always{ emit(stop); }
29 w3: pause;
30 }
31 }
32 satisfies {
33 goal1: assert A F stop;
34 }

6.3.2 Extended Finite-State Machine

Figure 6.1 shows the EFSM obtained from Averest [12]. Three non-instantaneous nodes are sufficient
to encode the combined behaviour of the three threads, while a fourth, instantaneous node represents
inactivity after the stop has been emitted. Within state 0, the compiler has flattened all guarded assign-
ments of the w1 and w2 threads; the self-loop labelled <!(3<=sensedDist) ==> ...> stems
directly from the guard in the w3 thread. Assertions from Listing 6.1 are preserved directly, for exam-
ple __rteAtLine17002 : assert exactDist-1<3-3<=exactDist+1, which checks
the sensor error bounds.

Chapter 6. Evaluation 63

FIGURE 6.1: EFSM: Robot02 [30]

6.3.3 XML output

The XML produced by the translator now contains both a requirement-level view and a behavioural
design.

Requirement diagram: The first <Modeling> section introduces a requirement node whose textline
element re-states the safety claim "stop → 2 <= exactDist <= 4" in formal syntax. A «sat-
isfy» connector attaches it to an AvatarElementReference that designates the state-machine, thereby
making the proof obligation explicit at the model level.

Block diagram: The block declares three attributes, push, err, and stop, whose names and initial
values coincide with those in the Quartz header.

State-machine: Each EFSM node is rendered as a type="5106" component, while every edge
becomes a connector/sub-component pair. Listing 6.2 shows one such pair, corresponding to the
negated guard !(3 <= sensedDist) and the assignment for label w3.

LISTING 6.2: Fragment of XML
1 <COMPONENT type="5200" id="1" ...>
2 <cdparam x="150" y="220"/>
3 <infoparam name="Requirement" value="Req___asrt000_0d424bf3"/>
4 <extraparam>
5 <textline data="__asrt000 : assert (stop->exactDist<=4&2<=exactDist)"/>
6 <reqType data="SafetyRequirement"/>
7 <criticality data="Low"/>
8 <satisfied data="true"/>
9 </extraparam>

Chapter 6. Evaluation 64

10 </COMPONENT>
11

12 <CONNECTOR type="5208" id="1000" ...>
13 <infoparam name="connector" value="<<satisfy>>"/>
14 <P1 x="150" y="180" id="0"/>
15 <P2 x="170" y="240" id="1"/>
16 </CONNECTOR>
17

18 <COMPONENT type="5000" id="0" ...>
19 <infoparam name="block" value="StateMachine"/>
20 <extraparam>
21 <Attribute id="push" type="4" value="false"/>
22 <Attribute id="err" type="8" value="0"/>
23 <Attribute id="stop" type="4" value="false"/>
24 </extraparam>
25 </COMPONENT>
26

27 <COMPONENT type="5106" id="0" ...>
28 <cdparam x="100" y="100"/>
29 <infoparam name="state" value="State_0"/>
30 </COMPONENT>
31

32 <CONNECTOR type="5102" id="60" ...>
33 <infoparam name="connector" value="null" from="State_0" to="State_0"/>
34 <P1 x="350" y="200" id="62"/>
35 <P2 x="410" y="260" id="63"/>
36 </CONNECTOR>
37

38 <SUBCOMPONENT type="-1" id="10060" ...>
39 <father id="60" num="0"/>
40 <extraparam>
41 <guard value="[!(3<=sensedDist)]" enabled="true"/>
42 <actions value="w3_next = true" enabled="true"/>
43 </extraparam>
44 </SUBCOMPONENT>

Because the translator is currently unable to guarantee a graphical anchor by state identifier, connec-
tors are referenced by numeric connection points. When the file is opened in TTool, several arrows
require manual realignment. The semantic payload, the guard, and the action remain intact nonethe-
less.

6.3.4 Observations

A stepwise check of the artefacts generated for the Robot-02 example confirms that the translator
carries forward nearly every semantic detail of the original Quartz program.

Preservation of data context: All externally visible variables of the Quartz header push, err, and
stop re-appear in the block description (Listing 6.2). Quartz distinguishes int{2} from an un-
bounded integer, whereas AVATAR offers only a generic signed type (type= "8").

Guards and actions: Every conditional appearing in the EFSM text, whether an inequality (err<0),
a conjunction (push & !stop), or a negation (!(3<=sensedDist)), is reproduced identically in
the <guard> field of the corresponding SysML transition. Likewise, each state update becomes a
one-line <actions> entry. The fragment shown in Listing 6.2 illustrates a typical pattern: the guard

Chapter 6. Evaluation 65

[!(3<=sensedDist)] and the assignment w3_next = true match the EFSM that originates
in the w3 thread.

Temporal semantics of pause: The synchronous-reactive clock of Quartz manifests itself in the
EFSM as an alternation between "pre-pause" and "post-pause" states, and the translator keeps that
alternation intact in the SysML machine. Instantaneous EFSM nodes, used to model the immediate
always emission of stop, are mapped to SysML states whose instant= "true" attribute forces
zero-time execution.

Requirement extraction and traceability: The compiler generates five distinct safety assertions, one
per syntactic occurrence of assert, and the exporter converts each into its own SafetyRequirement
node (Listing 6.2). Every node is linked to the behavioural model by a «satisfy» connector, so
the obligation is propagated automatically to subsequent analysis stages. Although the requirement
text remains in formal notation, its direct lineage from the Quartz source is explicit.

Remaining limitations

These examples have revealed four further limitations that, while not blocking, will require dedicated
work before the exporter can claim full language coverage and industrial-grade readability.

Bounded-integer fidelity: Quartz allows the programmer to declare fine-grained bit-widths such as
int2 or nat10. The current translator widens every such type to the generic signed code 8 mandated
by AVATAR. Functionally, this causes no misbehaviour; the generated state machine never produces
values outside the original range, but it still represents an information loss. Bit-width constraints
often provide immediate insight into resource usage and can drive downstream optimisations (for
instance, the choice of a micro-controller register class). A principled solution would either extend
AVATAR’s metamodel with a "sub-range" attribute or encode the bound as an explicit invariant in
the requirement diagram and link it back to each arithmetic update. Both directions are feasible, yet
neither is implemented in the present prototype.

Natural-language presentation of requirements: The exporter faithfully copies each Quartz assert
predicate into the <textline> field of a SafetyRequirement. While this guarantees semantic precision,
it leaves the requirement in formal Averest syntax replete with logical connectives, infix inequalities,
and, at times, auxiliary variables such as __rteAtLine. . . . Typical SysML practice, however, expects
requirements to be phrased in controlled natural language for validation. Bridging that gap calls for
an additional layer: either a pattern library that paraphrases common relational forms. Until such a
component is integrated, the requirements panel will remain formally correct yet less approachable.

Ordering inside the States: The first is the execution ordering of multiple next updates. Inside a
single EFSM state, the compiler may emit several updates to disjoint variables next(exactDist),
next(w1), next(w2), and so on. It is not yet clear if AVATAR executes all actions attached to
one transition atomically or offers any semantics for ordering across distinct transitions enabled by
the same guard. As a result, the precise chronology of updates within a logical tick is implicit rather
than explicit in the XML. While no counter-example has been observed in practice, a future version
of the exporter should either serialise the updates into one composite action or introduce intermediate
micro-states to make the order unambiguous.

Graphical anchoring of connectors: In the current implementation, transition arrows are attached
to states via numerical connection points (P1, P2) rather than by state identifiers. Ttool imports
the file without semantic error, but its layout engine misplaces the arrows, giving the appearance of

Chapter 6. Evaluation 66

disconnected edges. The defect is purely cosmetic; simulation still adheres to the encoded guards and
actions, yet it hampers manual inspection.

Despite these caveats, the Robot-02 example discussed, as well as other examples, demonstrate that
the translator preserves guarded behaviour, synchronous timing, variable initialisation, local-state
semantics, and user-defined safety properties. The resulting XML loads in TTool; the requirement
diagram is automatically linked to the behaviour, and all computational steps visible in the EFSM
can be located directly in the SysML state machine. The evidence, therefore, supports the claim
that the prototype provides a reliable and semantically faithful bridge from Quartz specifications to
SysML/AVATAR models, a prerequisite for any subsequent model-driven analysis or code-generation
workflow.

6.4 Confirmation
In addition to the in-depth Robot-02 investigation, the translator was exercised on six further Quartz
examples from [10]: VendingMachine, EuclidMod, EuclidSub, EulerNumber, Robot01, and Square-
Root. Each model was subjected to the identical three-stage pipeline described in Section 6.3: (i)
compilation with Averest to obtain an EFSM, (ii) automated export to SysML/AVATAR XML, and
(iii) cross-representation auditing of variables, states, transitions, and safety assertions.

Although the individual programs differ widely, the outcome was uniform. In every case, all Quartz
variables reappeared as AVATAR block attributes with the correct basic type; every EFSM node was
matched by a type= "5106" state component; and each guarded assignment was transferred di-
rectly into the <guard> and <actions> tags of a SysML transition. When assertions were present,
the exporter generated a SafetyRequirement node whose textline reproduced the original
predicate and whose «satisfy» link correctly targeted the enclosing state-machine.

Minor shortcomings paralleled those already noted for Robot-02. Diagrams required manual realign-
ment of connectors because arrows were bound to numerical points rather than to explicit state iden-
tifiers, and the chronological ordering of multiple next updates inside a single logical tick remains
implicit in the XML. Critically, however, none of the supplementary examples revealed a deviation in
functional semantics: every event, guard, action, and assertion visible in the EFSM could be traced
one-to-one into the SysML artefact.

The consistency of these results across seven different programs provides strong evidence that the
prototype translator is not merely correct for a single showcase example but operates robustly over a
representative section of the Quartz language. [4]

67

7 Conclusion and Future Work

This thesis aimed to address a pragmatic gap that emerged in the model-based development of reactive
and embedded systems. Designers who adopt Averest and its synchronous language Quartz obtain
a mathematically rigorous platform for functional verification [4]. Designers who rely on TTool
and its SysML/AVATAR profile gain integrated facilities for architectural exploration, schedulability
analysis, and, crucially, security verification through the ProVerif back-end [17]. Until now, models
from these frameworks could be manually rewritten from one notation to another, but no automated,
semantics-preserving route existed. The core objective of the thesis was therefore twofold. First,
to determine, independently of any implementation, whether a faithful translation from Quartz to
SysML is possible in principle. Second, to demonstrate that feasibility by building and evaluating a
prototype translator that emits TTool-compatible XML.

This thesis encompasses a range of information, beginning with an understanding of the syntax and
semantics of Quartz and SysML, which serve as the reference against which the correctness of any
transformation must be judged. Then the capabilities of the two tool suites are surveyed, revealing an
apparent complementarity: Averest excels at synchronous functional proof, while TTool contributes
architectural, performance and security viewpoints.

Further, the conceptual kernel of the thesis is delivered: the translation feasibility analysis. It showed
that perfect synchrony in Quartz can be embedded in UML’s run-to-completion semantics by mapping
each logical tick to a synthetic event cycle; that control-flow constructs, data types, concurrency and
formal assertions each appreciate a sound counterpart in SysML; and that the remaining mismatches
(fixed-width integers, broadcast semantics across blocks, explicit tick ordering) are tractable through
disciplined modelling patterns or modest tooling extensions.

Guided by that analysis, a prototype translator is designed and implemented in F#. The program
parses a Quartz module, constructs the extended finite-state machine produced by the Averest com-
piler, and serialises the result into a SysML XML file accepted by TTool. The generator handles de-
layed assignments, synchronous parallelism, explicit requirements and basic data attributes; it injects
auxiliary slots (x_next) to preserve tick-delayed visibility and synthesises a requirements diagram so
that Quartz assertions appear as «satisfy» relationships in AVATAR.

Then the translator is evaluated on a representative set of Quartz programs, including vending ma-
chine controllers, Euclidean algorithms, and robotic sensing loops. For each example, the generated
XML could be imported into TTool. Functional traces matched those produced by Averest; require-
ments were present and traceable. The study also identified four shortcomings: the absence of native
bounded integers, implicit ordering of multiple next commits, cosmetic misplacement of connec-
tors, and the fact that exported requirements remain in formal rather than natural language. These
deficiencies do not undermine semantic soundness, yet they mark the frontier between a research
prototype and a production-quality bridge.

Chapter 7. Conclusion and Future Work 68

The work confirms that an unbridgeable semantic divide does not separate synchronous and SysML
models. With careful mapping of ticks to run-to-completion cycles, of events to signal-plus-Boolean
conventions, and of temporal assertions to requirement elements, a designer can migrate executable
behaviour, test benches and even proof obligations from Averest to TTool without rewriting or manual
synchronisation. Conversely, architectures elaborated in SysML, such as partitioning and deployment,
as well as cryptographic protocols, can be analysed for confidentiality and authenticity without for-
feiting the high-confidence functional kernel originally verified in Quartz. The prototype translator,
with further modifications, therefore, establishes a round-trip path that allows each tool to contribute
its strengths to a single development artefact.

Future Work

Several avenues require continuation:

1. Native support for fixed-width and modular arithmetic:
Integrating a ValueType sub-profile for bounded integers into AVATAR, together with code-
generation templates that enforce wrap-around operations, would remove the need for external
OCL constraints and make the translation more transparent to analysts unfamiliar with syn-
chronous theory.

2. Broadcast-discipline contracts:
Extending AVATAR with a “single-producer-per-tick” constraint block, auto-generated by the
translator, would guard against accidental re-emission of signals by other blocks and thus pre-
serve Quartz’s broadcast semantics even in large, multi-block models.

3. Reverse translation and co-evolution:
While the thesis concentrated on the forward direction, industrial practice benefits from both
frameworks. Developing a SysML-to-Quartz back-map, at least for the synchronous subset,
would enable iterative refinement where security insights lead to functional changes and vice
versa.

4. Proof-transformation theorems:
A formal study relating proofs carried out by the Averest model-checker to those conducted
by TTool’s ProVerif gateway could supply mathematical assurance that security and functional
properties survive architectural elaboration.

5. Usability and visual fidelity:
Fine-tuning connector anchoring, layout heuristics, and naming conventions would transform
the prototype into a tool that practitioners can adopt without requiring manual post-editing of
diagrams.

Bridging specification languages is often portrayed as a peripheral engineering task. However, it
exercises the very core of semantics: only when two notations can exchange models loss-lessly do
we discover how well their conceptual foundations align. This thesis has demonstrated that the syn-
chronous discipline of Quartz and the event-driven richness of SysML are sufficiently coherent to
allow for such a bridge, and that doing so multiplies the analytical power available to designers.
By coupling Averest’s exhaustive functional verification with TTool’s architectural and security tool-
chain, the work provides a step toward an integrated model-driven methodology.

69

A Code

LISTING A.1: Complete Code
1 // =================== Quartz to TTool SysML XML Translator ===================
2 // This program parses a Quartz (Averest) program, generates its EFSM,
3 // and exports everything as a TTool-compatible XML file.
4 // ==
5

6

7 open Averest.Quartz
8 open Averest.Quartz.Statements
9 open Averest.TeachingTools

10 open Averest.TeachingTools.Quartz
11 open Averest.Core.Expressions
12 open Averest.Core.Names
13 open Averest.Core.Actions
14 open Averest.Core.Types
15 open Averest.Core
16 open Averest.Core.Declarations
17 open System.Text
18 open System.Security
19

20

21

22 // -------------------------- File and Parsing ------------------------------
23

24 // Path to the Quartz file (change as needed)
25 let quartzFile = @"E:\Master’s Study Material\Thesis\Quartz Programs\Robot02.qrz"
26

27 // Parse the Quartz module from the file
28 let parsedModule = Compiler.ParseQuartzModuleFromFile quartzFile
29 let mainStmt = parsedModule.declStmt.stmt
30

31 // Compile the module into an Extended Finite State Machine (EFSM)
32 let withControlFlow = true
33 let efsm = Quartz.ComputeStateTrans withControlFlow mainStmt
34

35 // Add a sink (terminal) state to the EFSM
36 let completeEFSM = Quartz.AddSinkState efsm
37

38

39

40 // ---------------------- EFSM Transformation Utilities ----------------------
41

42 // Helper: produce the "x_next" version of a variable (for next() semantics)
43 let makeNextQName (qname: QName) =
44 match qname with
45 | BasicName idx ->
46 let originalName = Names.index2NameTable[idx]

Appendix A. Code 70

47 let nextName = originalName + "_next"
48 let nextIdx = Names.InsertName nextName
49 BasicName nextIdx
50 | _ -> failwith "Unsupported QName format for ’next’ transformation"
51

52 // Helper: wrap a QName and type as a left-hand-side variable
53 let makeLhsVar (qname: QName) (qtype: QType) : LhsExpr =
54 LhsVar(qname, qtype)
55

56 // Transform AssignNxt to AssignNow with *_next variables, excluding Asserts
57 let transformEFSMWithCommit (efsm: NodeOfEFSM array) =
58 efsm |> Array.map (fun node ->
59 let transformedActs =
60 node.surfActs
61 |> Set.map (fun (guard, action) ->
62 match action with
63 // Convert next-step assignments to _next variables
64 | AssignNxt(LhsVar(qname, qtype), _, expr) ->
65 let nextName = makeNextQName qname
66 let newLhs = makeLhsVar nextName qtype
67 (guard, AssignNow(newLhs, qtype, expr))
68 // Leave other actions (including Assert) untouched
69 | _ -> (guard, action)
70)
71 { node with surfActs = transformedActs }
72)
73

74

75 // Add commit steps (copy *_next vars back to their base vars)
76 // This enables two-phase state variable updates (Quartz model semantics)
77 let commitAssignments (efsm: NodeOfEFSM array) =
78 // Find all assignments to *_next vars in the EFSM
79 let assignments =
80 efsm
81 |> Array.collect (fun node ->
82 node.surfActs
83 |> Set.toArray
84 |> Array.choose (fun (_, action) ->
85 match action with
86 // For each assignment to a _next variable, generate a "commit"

action
87 | AssignNow(LhsVar(qname, qtype), _, _) when
88 qname.ToString().EndsWith("_next") ->
89 let originalNameStr = qname.ToString().Replace("_next", "")
90 let originalQName =
91 if Names.name2IndexTable.ContainsKey originalNameStr then
92 BasicName(Names.IndexOfName originalNameStr)
93 else
94 // Insert the base name if it doesn’t exist
95 let idx = Names.InsertName originalNameStr
96 BasicName idx
97 let lhs = makeLhsVar originalQName qtype
98 let rhs = MkVarExpr qname qtype
99 Some(BoolConst true, AssignNow(lhs, qtype, rhs))

100 | _ -> None
101)
102)
103 |> Set.ofArray

Appendix A. Code 71

104

105 // Add all commit actions to each EFSM node
106 efsm |> Array.map (fun node ->
107 let newSurfActs = Set.union node.surfActs assignments
108 { node with surfActs = newSurfActs }
109)
110

111 // Apply the above transformations in sequence
112 let applyTransformationWithCommit (efsm: NodeOfEFSM array) =
113 efsm
114 |> transformEFSMWithCommit
115 |> commitAssignments
116

117

118

119 // ---------------------- SysML Structure Types ------------------------------
120

121 // Represents a single state in the SysML state machine
122 type SysMLState = {
123 Name: string
124 EntryActions: string list
125 }
126

127 // Represents a single transition (edge) between SysML states
128 type SysMLTransition = {
129 From: string
130 To: string
131 Guard: string
132 Action: string
133 }
134

135 // Represents a block (the overall SysML state machine)
136 type SysMLBlock = {
137 Name: string
138 States: SysMLState list
139 Transitions: SysMLTransition list
140 }
141

142 // Represents a connection between SysML blocks (not used in this script)
143 type SysMLConnection = {
144 FromBlock: string
145 ToBlock: string
146 Signal: string
147 }
148

149

150

151 // -------------- Requirements Extraction and Filtering Utilities --------------
152

153 // Info required to fill a TTool SysML Requirement block
154 type RequirementInfo = {
155 Id: string
156 Description: string
157 Kind: string
158 Criticality: string
159 ReqType: string
160 Satisfied: bool
161 Verified: bool

Appendix A. Code 72

162 ElementName: string
163 }
164

165 // Extract all Assert actions in the EFSM as requirements
166 let extractRequirementsFromEFSM (efsm: NodeOfEFSM array) : RequirementInfo list =
167 efsm
168 |> Array.collect (fun node ->
169 node.surfActs
170 |> Set.toArray
171 |> Array.choose (fun (guard, action) ->
172 match action with
173 | Assert(qname, expr) ->
174 let assertionStr = sprintf "%s : assert %s" (qname.ToString()) (

expr.ToString())
175 Some {
176 Id = System.Guid.NewGuid().ToString().Substring(0, 8)
177 Description = assertionStr
178 Kind = "Functional"
179 Criticality = "Low"
180 ReqType = "SafetyRequirement"
181 Satisfied = true
182 Verified = true
183 ElementName = qname.ToString()
184 }
185 | _ -> None
186)
187)
188 |> Array.toList
189

190

191 // Remove all Assert actions from EFSM (so they are not shown as state machine
actions)

192 let removeAssertActionsFromEFSM (efsm: NodeOfEFSM array) =
193 efsm
194 |> Array.map (fun node ->
195 { node with
196 surfActs =
197 node.surfActs
198 |> Set.filter (fun (_, action) ->
199 match action with
200 | Assert(_, _) -> false
201 | _ -> true
202)
203 }
204)
205

206

207

208 // ---------------------- EFSM to SysML State Machine ------------------------
209

210 // Convert the EFSM to a SysMLBlock for code generation
211 let EFSMtoSysML (efsm: NodeOfEFSM array) : SysMLBlock =
212 // Helper: skip internal state and temp variables
213 let isInternal (name: string) =
214 name.StartsWith("__ell") || (name.StartsWith("__") && name.EndsWith("

_next"))
215

Appendix A. Code 73

216 // Helper: check if an action is an assertion or a runtime assertion
assignment

217 let isAssertAssignment action =
218 match action with
219 | AssignNow(LhsVar(qn, _), _, _) when qn.ToString().StartsWith("

__rteAtLine") -> true
220 | Assert(_, _) -> true
221 | _ -> false
222

223 // Generate all state nodes
224 let allStates =
225 efsm
226 |> Array.map (fun node ->
227 {
228 Name = sprintf "State_%d" node.sccIndex
229 EntryActions = []
230 }
231)
232 |> Array.toList
233

234 // Generate all transitions between states
235 let allTransitions =
236 efsm
237 |> Array.toList
238 |> List.collect (fun node ->
239 let thisState = sprintf "State_%d" node.sccIndex
240

241 // For each explicit guarded assignment (not assertion or internal),
add a transition

242 let guardedTransitions =
243 node.surfActs
244 |> Set.toList
245 |> List.choose (fun (guard, action) ->
246 if isAssertAssignment action then None else
247 match action with
248 | AssignNow(LhsVar(qn, _), _, _) when isInternal (qn.ToString

()) -> None
249 | _ ->
250 Some {
251 From = thisState
252 To = thisState
253 Guard = guard.ToString()
254 Action = action.ToString()
255 }
256)
257

258 // Add EFSM control transitions (e.g. state-to-state jumps)
259 let controlTransitions =
260 node.rsdStmts
261 |> Set.toList
262 |> List.map (fun (cond, targetNodeId) ->
263 {
264 From = thisState
265 To = sprintf "State_%d" targetNodeId
266 Guard = cond.ToString()
267 Action = ""
268 }
269)

Appendix A. Code 74

270 guardedTransitions @ controlTransitions
271)
272

273 {
274 Name = "QuartzToSysMLStateMachine"
275 States = allStates
276 Transitions = allTransitions
277 }
278

279

280

281 // ------------------- Helpers for SysML Attribute/Type XML -------------------
282

283 // Type code mapping for TTool XML attributes
284 let typeCodeOfQType (qt: QType) =
285 match qt with
286 | Qint _ -> 8
287 | Qbool -> 4
288 | Qreal -> 10 // Not checked
289 | Qbtv _ | Qnat _ -> 8 // Not checked
290 | _ -> 0
291

292 // Default value for each type, for XML initialization
293 let defaultValueForQType (qt: QType) =
294 match qt with
295 | Qint _ | Qnat _ | Qbtv _ -> "0"
296 | Qbool -> "false"
297 | Qreal -> "0.0"
298 | _ -> ""
299

300 // Generate attributes XML for the block diagram section
301 let generateAttributesXml (decls: (string * Decl) list) =
302 decls
303 |> List.map (fun (name, decl) ->
304 let typeCode = typeCodeOfQType decl.qtype
305 let initVal = defaultValueForQType decl.qtype
306 sprintf "<Attribute access=\"0\" var=\"0\" id=\"%s\" value=\"%s\" type

=\"%d\" typeOther=\"\"/>"
307 name initVal typeCode
308)
309 |> String.concat "\n"
310

311 // Escape XML special characters
312 let escapeXml (input: string) =
313 SecurityElement.Escape(input)
314

315

316

317 // ------------------- Requirements XML Generation ----------------------------
318

319 // Write the Avatar Requirement section for all extracted requirements
320 let generateRequirementsXml (requirements: RequirementInfo list) =
321 let sb = StringBuilder()
322 sb.AppendLine(" <Modeling type=\"Avatar Requirement\" nameTab=\"AVATAR

Requirements\">") |> ignore
323 sb.AppendLine(" <AvatarRDPanel name=\"AVATAR RD\" minX=\"10\" maxX

=\"1900\" minY=\"10\" maxY=\"1400\" zoom=\"1.0\">") |> ignore
324

Appendix A. Code 75

325 let mutable compId = 0
326 let mutable connectorId = 1000
327

328 for req in requirements do
329 let refUid = System.Guid.NewGuid().ToString()
330 let reqUid = System.Guid.NewGuid().ToString()
331 let satisfyUid = System.Guid.NewGuid().ToString()
332

333 // Element Reference Block
334 sb.AppendLine($""" <COMPONENT type="5207" id="{compId}" index="{

compId}" uid="{refUid}">""") |> ignore
335 sb.AppendLine($""" <cdparam x="{150 + compId*100}" y="150"/>""")

|> ignore
336 sb.AppendLine($""" <sizeparam width="150" height="30" minWidth

="10" minHeight="30" maxWidth="2000" maxHeight="2000" minDesiredWidth
="107" minDesiredHeight="0"/>""") |> ignore

337 sb.AppendLine($""" <hidden value="false"/>""") |> ignore
338 sb.AppendLine($""" <cdrectangleparam minX="10" maxX="1900" minY

="10" maxY="1400"/>""") |> ignore
339 sb.AppendLine($""" <infoparam name="AvatarElementReference" value

="StateMachine"/>""") |> ignore
340 sb.AppendLine($""" <new d="false"/>""") |> ignore
341 sb.AppendLine(" </COMPONENT>") |> ignore
342

343 // Requirement Block
344 sb.AppendLine($""" <COMPONENT type="5200" id="{compId + 1}" index="{

compId + 1}" uid="{reqUid}">""") |> ignore
345 sb.AppendLine($""" <cdparam x="{150 + compId*100}" y="220"/>""")

|> ignore
346 sb.AppendLine($""" <sizeparam width="180" height="70" minWidth="1"

minHeight="30" maxWidth="2000" maxHeight="2000" minDesiredWidth
="136" minDesiredHeight="0"/>""") |> ignore

347 sb.AppendLine($""" <hidden value="false"/>""") |> ignore
348 sb.AppendLine($""" <cdrectangleparam minX="10" maxX="1900" minY

="10" maxY="1400"/>""") |> ignore
349 sb.AppendLine($""" <infoparam name="Requirement" value="Req_{req.

ElementName}_{req.Id}"/>""") |> ignore
350 sb.AppendLine($""" <new d="false"/>""") |> ignore
351 sb.AppendLine($""" <extraparam>""") |> ignore
352 sb.AppendLine($""" <textline data="{escapeXml req.Description

}"/>""") |> ignore
353 sb.AppendLine($""" <kind data="{req.Kind}"/>""") |> ignore
354 sb.AppendLine($""" <criticality data="{req.Criticality}"/>""")

|> ignore
355 sb.AppendLine($""" <reqType data="{req.ReqType}" color

="-1773070"/>""") |> ignore
356 sb.AppendLine($""" <id data="{req.Id}"/>""") |> ignore
357 sb.AppendLine($""" <satisfied data="{req.Satisfied.ToString().

ToLower()}"/>""") |> ignore
358 sb.AppendLine($""" <verified data="{req.Verified.ToString().

ToLower()}"/>""") |> ignore
359 sb.AppendLine($""" </extraparam>""") |> ignore
360 sb.AppendLine(" </COMPONENT>") |> ignore
361

362 // Satisfy Connector
363 sb.AppendLine($""" <CONNECTOR type="5208" id="{connectorId}" index

="{connectorId}" uid="{satisfyUid}">""") |> ignore

Appendix A. Code 76

364 sb.AppendLine($""" <cdparam x="{150 + compId*100 + 20}" y
="200"/>""") |> ignore

365 sb.AppendLine($""" <sizeparam width="0" height="0" minWidth="0"
minHeight="0" maxWidth="2000" maxHeight="2000" minDesiredWidth="0"
minDesiredHeight="0"/>""") |> ignore

366 sb.AppendLine($""" <infoparam name="connector" value="<<
satisfy>>"/>""") |> ignore

367 sb.AppendLine($""" <P1 x="{150 + compId*100}" y="180" id="{compId
}"/>""") |> ignore

368 sb.AppendLine($""" <P2 x="{150 + compId*100 + 20}" y="240" id="{
compId + 1}"/>""") |> ignore

369 sb.AppendLine($""" <AutomaticDrawing data="true"/>""") |> ignore
370 sb.AppendLine($""" <new d="false"/>""") |> ignore
371 sb.AppendLine(" </CONNECTOR>") |> ignore
372

373 compId <- compId + 2
374 connectorId <- connectorId + 1
375 sb.AppendLine(" </AvatarRDPanel>") |> ignore
376 sb.AppendLine(" </Modeling>") |> ignore
377 sb.ToString()
378

379

380

381 // ------------------------- Main XML Generation ------------------------------
382

383 // Generate the full SysML XML including requirements, block diagram, and state
machine

384 let generateSysMLXml (sysmlModel: SysMLBlock) (requirements: RequirementInfo list
) =

385 let sb = StringBuilder()
386 sb.AppendLine("<?xml version=\"1.0\" encoding=\"UTF-8\"?>") |> ignore
387 sb.AppendLine("<TURTLEGMODELING version=\"1.0 beta\"

ANIMATE_INTERACTIVE_SIMULATION=\"false\">") |> ignore
388

389 // Add requirements section first (if any)
390 if not (List.isEmpty requirements) then
391 sb.AppendLine(generateRequirementsXml requirements) |> ignore
392

393 // Block Diagram Panel for the main state machine block
394 sb.AppendLine(" <Modeling type=\"AVATAR Design\" nameTab=\"QuartzSysML\"

tabs=\"Block Diagram\">") |> ignore
395 sb.AppendLine(" <AVATARBlockDiagramPanel name=\"BlockDiagram\" minX=\"10\"

maxX=\"2500\" minY=\"10\" maxY=\"1500\" zoom=\"1.0\">") |> ignore
396 sb.AppendLine(" <MainCode value=\"void __user_init() {\"/>") |> ignore
397 sb.AppendLine(" <MainCode value=\"}\"/>") |> ignore
398 sb.AppendLine(" <Optimized value=\"true\"/>") |> ignore
399 sb.AppendLine(" <considerTimingOperators value=\"true\"/>") |> ignore
400 sb.AppendLine(" <Validated value=\"StateMachine;\"/>") |> ignore
401 sb.AppendLine(" <Ignored value=\"\"/>") |> ignore
402 let blockName = "StateMachine" // Considered
403 let allVars: (string * Decl) list =
404 parsedModule.declStmt.decL
405 |> Seq.toList
406 |> List.map (fun (qname, decl) -> (qname.ToString(), decl))
407 let blockUid = System.Guid.NewGuid().ToString()
408 sb.AppendLine($" <COMPONENT type=\"5000\" id=\"0\" index=\"0\" uid=\"{

blockUid}\">") |> ignore
409 sb.AppendLine(" <cdparam x=\"445\" y=\"19\"/>") |> ignore

Appendix A. Code 77

410 sb.AppendLine(" <sizeparam width=\"461\" height=\"358\" minWidth=\"5\"
minHeight=\"2\" maxWidth=\"2000\" maxHeight=\"2000\" minDesiredWidth

=\"0\" minDesiredHeight=\"0\"/>") |> ignore
411 sb.AppendLine(" <hidden value=\"false\"/>") |> ignore
412 sb.AppendLine(" <cdrectangleparam minX=\"10\" maxX=\"1400\" minY

=\"10\" maxY=\"900\"/>") |> ignore
413 sb.AppendLine($" <infoparam name=\"block\" value=\"{escapeXml blockName

}\"/>") |> ignore
414 sb.AppendLine(" <new d=\"false\"/>") |> ignore
415 sb.AppendLine(" <extraparam>") |> ignore
416 sb.AppendLine(" <blockType data=\"block\" color=\"-4072719\"/>") |>

ignore
417 sb.AppendLine(" <CryptoBlock value=\"false\"/>") |> ignore
418 sb.AppendLine(generateAttributesXml allVars) |> ignore
419 sb.AppendLine(" </extraparam>") |> ignore
420 sb.AppendLine(" </COMPONENT>") |> ignore
421 sb.AppendLine(" </AVATARBlockDiagramPanel>") |> ignore
422

423 // State Machine Panel (includes all states and transitions)
424 sb.AppendLine(" <AVATARStateMachineDiagramPanel name=\"StateMachine\" minX

=\"10\" maxX=\"2500\" minY=\"10\" maxY=\"1500\" zoom=\"1.0\">") |> ignore
425 let numPerRow = 4
426 let statePositions =
427 sysmlModel.States
428 |> List.mapi (fun i state ->
429 let x = 100 + 300 * (i % numPerRow)
430 let y = 100 + 220 * (i / numPerRow)
431 (state.Name, (x, y))
432)
433 |> Map.ofList
434 let mutable compId = 0
435 let mutable connId = 0
436 let mutable subcompId = 10000
437 // Emit all state nodes as COMPONENTS
438 for state in sysmlModel.States do
439 let uid = System.Guid.NewGuid().ToString()
440 let (x, y) = statePositions.[state.Name]
441 sb.AppendLine($" <COMPONENT type=\"5106\" id=\"{compId}\" index=\"{

compId}\" uid=\"{uid}\">") |> ignore
442 sb.AppendLine($" <cdparam x=\"{x}\" y=\"{y}\"/>") |> ignore
443 sb.AppendLine($" <sizeparam width=\"250\" height=\"200\" minWidth

=\"5\" minHeight=\"2\" maxWidth=\"2000\" maxHeight=\"2000\"
minDesiredWidth=\"0\" minDesiredHeight=\"0\"/>") |> ignore

444 sb.AppendLine($" <hidden value=\"false\"/>") |> ignore
445 sb.AppendLine($" <cdrectangleparam minX=\"10\" maxX=\"2500\" minY

=\"10\" maxY=\"1500\"/>") |> ignore
446 sb.AppendLine($" <infoparam name=\"state\" value=\"{escapeXml

state.Name}\"/>") |> ignore
447 if not (List.isEmpty state.EntryActions) then
448 let entryStr = String.concat "; " (state.EntryActions |> List.map

escapeXml)
449 sb.AppendLine($" <entry>{entryStr}</entry>") |> ignore
450 sb.AppendLine(" </COMPONENT>") |> ignore
451 compId <- compId + 1
452

453 // Emit all transitions as CONNECTORS and SUBCOMPONENTS
454 let getStatePos name =
455 match Map.tryFind name statePositions with

Appendix A. Code 78

456 | Some (x, y) -> (x, y)
457 | None -> (100, 100)
458 for trans in sysmlModel.Transitions do
459 let uid = System.Guid.NewGuid().ToString()
460 let subUid = System.Guid.NewGuid().ToString()
461 let stateWidth = 250
462 let stateHeight = 200
463 let (srcX, srcY) = getStatePos trans.From
464 let (dstX, dstY) = getStatePos trans.To
465 let (p1x, p1y, p2x, p2y) =
466 if trans.From = trans.To then
467 (srcX + stateWidth, srcY + stateHeight / 2,
468 srcX + stateWidth + 60, srcY + stateHeight / 2 + 60)
469 elif dstX > srcX then
470 (srcX + stateWidth, srcY + stateHeight / 2,
471 dstX, dstY + stateHeight / 2)
472 elif dstX < srcX then
473 (srcX, srcY + stateHeight / 2,
474 dstX + stateWidth, dstY + stateHeight / 2)
475 elif dstY > srcY then
476 (srcX + stateWidth / 2, srcY + stateHeight,
477 dstX + stateWidth / 2, dstY)
478 else
479 (srcX + stateWidth / 2, srcY,
480 dstX + stateWidth / 2, dstY + stateHeight)
481

482 let midX = (p1x + p2x) / 2
483 let midY = (p1y + p2y) / 2
484

485 sb.AppendLine($" <CONNECTOR type=\"5102\" id=\"{connId}\" index=\"{
connId}\" uid=\"{uid}\">") |> ignore

486 sb.AppendLine($" <cdparam x=\"{midX}\" y=\"{midY}\"/>") |> ignore
487 sb.AppendLine($" <sizeparam width=\"0\" height=\"0\" minWidth

=\"0\" minHeight=\"0\" maxWidth=\"2000\" maxHeight=\"2000\"
minDesiredWidth=\"0\" minDesiredHeight=\"0\"/>") |> ignore

488 sb.AppendLine($" <infoparam name=\"connector\" value=\"null\" from
=\"{escapeXml trans.From}\" to=\"{escapeXml trans.To}\"/>") |> ignore

489 sb.AppendLine($" <TGConnectingPoint num=\"0\" id=\"{connId +
1}\"/>") |> ignore

490 sb.AppendLine($" <P1 x=\"{p1x}\" y=\"{p1y}\" id=\"{connId +
2}\"/>") |> ignore

491 sb.AppendLine($" <P2 x=\"{p2x}\" y=\"{p2y}\" id=\"{connId +
3}\"/>") |> ignore

492 sb.AppendLine($" <AutomaticDrawing data=\"true\"/>") |> ignore
493 sb.AppendLine($" <new d=\"false\"/>") |> ignore
494 sb.AppendLine(" </CONNECTOR>") |> ignore
495

496 let guardPart = trans.Guard
497 let actionPart = trans.Action
498

499 sb.AppendLine($" <SUBCOMPONENT type=\"-1\" id=\"{subcompId}\" index
=\"{connId}\" uid=\"{subUid}\">") |> ignore

500 sb.AppendLine($" <father id=\"{connId}\" num=\"0\"/>") |> ignore
501 sb.AppendLine($" <cdparam x=\"{midX}\" y=\"{midY}\"/>") |> ignore
502 sb.AppendLine($" <sizeparam width=\"50\" height=\"25\" minWidth

=\"0\" minHeight=\"0\" maxWidth=\"2000\" maxHeight=\"2000\"
minDesiredWidth=\"0\" minDesiredHeight=\"0\"/>") |> ignore

503 sb.AppendLine($" <hidden value=\"false\"/>") |> ignore

Appendix A. Code 79

504 sb.AppendLine($" <enabled value=\"true\"/>") |> ignore
505 sb.AppendLine($" <cdrectangleparam minX=\"10\" maxX=\"2500\" minY

=\"10\" maxY=\"1500\"/>") |> ignore
506 sb.AppendLine($" <infoparam name=\"List of all parameters of an

Avatar SMD transition\" value=\"\"/>") |> ignore
507 sb.AppendLine($" <new d=\"false\"/>") |> ignore
508 sb.AppendLine($" <TGConnectingPoint num=\"0\" id=\"{subcompId +

1}\"/>") |> ignore
509 sb.AppendLine($" <TGConnectingPoint num=\"1\" id=\"{subcompId +

2}\"/>") |> ignore
510 sb.AppendLine($" <TGConnectingPoint num=\"2\" id=\"{subcompId +

3}\"/>") |> ignore
511 sb.AppendLine($" <TGConnectingPoint num=\"3\" id=\"{subcompId +

4}\"/>") |> ignore
512 sb.AppendLine($" <extraparam>") |> ignore
513 sb.AppendLine($" <guard value=\"[{escapeXml guardPart}]\"

enabled=\"true\"/>") |> ignore
514 sb.AppendLine($" <afterMin value=\"\" enabled=\"true\"/>") |>

ignore
515 sb.AppendLine($" <afterMax value=\"\" enabled=\"true\"/>") |>

ignore
516 sb.AppendLine($" <extraDelay1 value=\"\" enabled=\"true\"/>") |>

ignore
517 sb.AppendLine($" <extraDelay2 value=\"\" enabled=\"true\"/>") |>

ignore
518 sb.AppendLine($" <delayDistributionLaw value=\"0\" enabled=\"

true\"/>") |> ignore
519 sb.AppendLine($" <computeMin value=\"\" enabled=\"true\"/>") |>

ignore
520 sb.AppendLine($" <computeMax value=\"\" enabled=\"true\"/>") |>

ignore
521 sb.AppendLine($" <probability value=\"\" enabled=\"true\"/>") |>

ignore
522 if actionPart <> "" then
523 sb.AppendLine($" <actions value=\"{escapeXml actionPart}\"

enabled=\"true\"/>") |> ignore
524 sb.AppendLine($" </extraparam>") |> ignore
525 sb.AppendLine($" </SUBCOMPONENT>") |> ignore
526

527 connId <- connId + 10
528 subcompId <- subcompId + 10
529

530 sb.AppendLine(" </AVATARStateMachineDiagramPanel>") |> ignore
531 sb.AppendLine(" </Modeling>") |> ignore
532 sb.AppendLine("</TURTLEGMODELING>") |> ignore
533 sb.ToString()
534

535

536

537 // --------------------------- MAIN: Put it all together ---------------------
538

539 // Apply EFSM transformation pipeline
540 let transformedEFSM = applyTransformationWithCommit completeEFSM
541

542 // Work on Requirements
543 let requirements = extractRequirementsFromEFSM transformedEFSM
544 let efsmNoAssert = removeAssertActionsFromEFSM transformedEFSM
545

Appendix A. Code 80

546 // Generate SysML state machine model
547 let sysMLModel = EFSMtoSysML efsmNoAssert
548

549 // Generate full XML including requirements, block diagram, and state machine
550 let sysmlXml = generateSysMLXml sysMLModel requirements
551

552 // Output the XML to file (change path as needed)
553 let outputFile = @"E:\Master’s Study Material\Thesis\Code\QuartzToSysML_Robot2.

xml"
554 System.IO.File.WriteAllText(outputFile, sysmlXml)
555

556 printfn "Quartz EFSM translated to SysML XML!"

81

Bibliography

[1] “Embedded systems market.” Accessed: 17.07.2025. (2025), [Online]. Available: https://
www.fortunebusinessinsights.com/embedded-systems-market-108767.

[2] L. Cunha, J. Sousa, J. Azevedo, S. Pinto, and T. Gomes, “Security first, safety next: The next-
generation embedded sensors for autonomous vehicles,” Electronics, vol. 14, no. 11, p. 2172,
2025.

[3] K. Schneider and J. Brandt, “Quartz: A synchronous language for model-based design of
reactive embedded systems,” in Handbook of Hardware/Software Codesign, Springer, 2017,
pp. 29–58.

[4] K. Schneider and T. Schuele, “Averest: Specification, verification, and implementation of reac-
tive systems,” in Conference on Application of Concurrency to System Design (ACSD), 2005.

[5] I. Dragomir, I. Ober, and D. Lesens, “A case study in formal system engineering with sysml,”
in 2012 IEEE 17th International Conference on Engineering of Complex Computer Systems,
2012, pp. 189–198. DOI: 10.1109/ICECCS20050.2012.6299214.

[6] L. W. Li, D. Genius, and L. Apvrille, “Formal and virtual multi-level design space explo-
ration,” in International Conference on Model-Driven Engineering and Software Development,
Springer, 2017, pp. 47–71.

[7] N. Halbwachs, “Synchronous programming of reactive systems: A tutorial and commented
bibliography,” in International Conference on Computer Aided Verification, Springer, 1998,
pp. 1–16.

[8] K. Schneider, “The synchronous programming language quartz,” Internal Report 375, Depart-
ment of Computer Science, University of Kaiserslautern, Tech. Rep., 2009.

[9] “Omg systems modeling language.” Accessed: 13.07.2025. (2015), [Online]. Available: https:
//www.omg.org/spec/SysML/1.4/PDF.

[10] K. Schneider. “Averest framework.” Accessed: 12.07.2025. (2025), [Online]. Available: http:
//www.averest.org/.

[11] L. Apvrille. “Ttool website.” Accessed: 16.07.2025. (2013), [Online]. Available: https://
ttool.telecom-paris.fr/.

[12] K. Schneider. “Api reference.” Accessed: 13.07.2025. (), [Online]. Available: http://www.
averest.org/AverestLibDoc/reference/index.html.

[13] M. A. B. Khadra, Y. Bai, and K. Schneider, “Synthesis of distributed synchronous specifica-
tions to systemoc,” in MBMV, 2014, pp. 71–81.

[14] J. Brandt, “Synchronous models for embedded software,” Ph.D. dissertation, Technische Uni-
versität Kaiserslautern, 2013.

[15] C. Gündogan and A. M. Sahin, “Interaktive verifikation von synchronen systemen,”
[16] K. Schneider, T. Schuele, and M. Trapp, “Verifying the adaptation behavior of embedded

systems,” in Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems, 2006, pp. 16–22.

https://www.fortunebusinessinsights.com/embedded-systems-market-108767
https://www.fortunebusinessinsights.com/embedded-systems-market-108767
https://doi.org/10.1109/ICECCS20050.2012.6299214
https://www.omg.org/spec/SysML/1.4/PDF
https://www.omg.org/spec/SysML/1.4/PDF
http://www.averest.org/
http://www.averest.org/
https://ttool.telecom-paris.fr/
https://ttool.telecom-paris.fr/
http://www.averest.org/AverestLibDoc/reference/index.html
http://www.averest.org/AverestLibDoc/reference/index.html

Bibliography 82

[17] G. Pedroza, L. Apvrille, and D. Knorreck, “Avatar: A sysml environment for the formal ver-
ification of safety and security properties,” in 2011 11th Annual International Conference on
New Technologies of Distributed Systems, IEEE, 2011, pp. 1–10.

[18] Y. Roudier, M. S. Idrees, and L. Apvrille, “Sysml-sec: A sysml environment for the design and
development of secure embedded systems,” XP055249349,

[19] L. Apvrille and Y. Roudier, “Towards the model-driven engineering of secure yet safe embed-
ded systems,” arXiv preprint arXiv:1404.1985, 2014.

[20] Y. Roudier and L. Apvrille, “Sysml-sec: A model driven approach for designing safe and secure
systems,” in 2015 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD), IEEE, 2015, pp. 655–664.

[21] L. Apvrille and A. Becoulet, “Prototyping an embedded automotive system from its uml/sysml
models,” in Embedded Real Time Software and Systems (ERTS2012), 2012.

[22] L. Apvrille and Y. Roudier. “Sysml-sec website.” Accessed: 16.07.2025. (), [Online]. Avail-
able: https://sysml-sec.telecom-paris.fr/.

[23] L. Apvrille, “Ttool for diplodocus: An environment for design space exploration,” in Proceed-
ings of the 8th international conference on New technologies in distributed systems, 2008,
pp. 1–4.

[24] A. Enrici, L. Li, L. Apvrille, and D. Blouin, “A tutorial on ttool/diplodocus: An open-source
toolkit for the design of data-flow embedded systems,” Tech. rep, Tech. Rep., 2022.

[25] L. Apvrille and T. Alessandro. “Avatar model checker.” Accessed: 16.07.2025. (2020), [On-
line]. Available: https://ttool.telecom-paris.fr/docs/ttool_avatarmodelchecker.
pdf.

[26] D. Genius, L. Li, and L. Apvrille, “Model-driven performance evaluation and formal verifi-
cation for multi-level embedded system design,” in 5th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD 2017), 2017.

[27] L. Apvrille. “Ttool development infrastructure.” Accessed: 12.07.2025. (2025), [Online]. Avail-
able: https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/
master/doc/dev_infrastructure/ttool_development_infrastructure.
tex?ref_type=heads.

[28] L. Apvrille. “Coffee machine avatar.” Accessed: 13.07.2025. (), [Online]. Available: https:
//ttool.telecom-paris.fr/networkmodels/CoffeeMachine_Avatar.
xml.

[29] L. Apvrille and A. Enrici. “Tg component manager.” Accessed: 12.07.2025. (2025), [Online].
Available: https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/
master/src/main/java/ui/TGComponentManager.java.

[30] R. E. S. Group. “Tools for quartz programs.” Accessed: 12.07.2025. (2022), [Online]. Avail-
able: https://es.cs.rptu.de/tools/TeachingTools/Quartz.html.

https://sysml-sec.telecom-paris.fr/
https://ttool.telecom-paris.fr/docs/ttool_avatarmodelchecker.pdf
https://ttool.telecom-paris.fr/docs/ttool_avatarmodelchecker.pdf
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/doc/dev_infrastructure/ttool_development_infrastructure.tex?ref_type=heads
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/doc/dev_infrastructure/ttool_development_infrastructure.tex?ref_type=heads
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/doc/dev_infrastructure/ttool_development_infrastructure.tex?ref_type=heads
https://ttool.telecom-paris.fr/networkmodels/CoffeeMachine_Avatar.xml
https://ttool.telecom-paris.fr/networkmodels/CoffeeMachine_Avatar.xml
https://ttool.telecom-paris.fr/networkmodels/CoffeeMachine_Avatar.xml
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ui/TGComponentManager.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ui/TGComponentManager.java
https://es.cs.rptu.de/tools/TeachingTools/Quartz.html

83

Tools

Note on the Use of Generative AI
Parts of this thesis were written with the assistance of the language model Chat GPT by OpenAI and
Grammarly. The AI was used as a tool to support the drafting process through language generation,
rephrasing, or stylistic suggestions. All AI-assisted content has been critically reviewed, edited, and
verified by the author to ensure accuracy, academic integrity, and compliance with the standards of
scholarly work.

	List of Figures
	Listings
	List of Abbreviations
	Introduction
	General Problem Setting
	Thesis Objectives
	Structure of the Thesis

	Language Specifications
	Quartz: Syntax and Semantics
	Core Concepts and Semantic Pitfalls
	Concrete Syntax
	Formal (Operational) Semantics
	Combining Syntax and Semantics
	Conclusion

	SysML: Syntax and Semantics
	Diagram Frame and Notation Conventions
	Concrete Graphical Elements of a SysML State-Machine Diagram
	Transition Firing Semantics
	State-Execution Semantics
	Sub-Machine Reuse, Parameters, and Block Integration
	Syntax and Semantics of SysML’s Remaining Diagram Families
	Conclusion

	Software Capabilities
	Averest
	Compilation
	Code Generation
	Formal Verification
	Conclusion

	Ttool
	Security Engineering with SysML-Sec and AVATAR
	Model-Centric Environment
	Design-Space Exploration and Performance Simulation
	Safety and Real-Time Formal Verification
	Automatic Code Generation and Virtual Prototyping
	Conclusion

	Translation Feasibility Analysis
	Model-of-Computation (MoC)
	Basic Structural Units
	Event and Signal Semantics
	Time-related Constructs
	Control-Flow Statements and Their State-Machine Counterparts
	Data-Type Compatibility
	Concurrency, Causality, and Determinism
	Formal Aspects
	Known Gaps and Conclusion

	Program Architecture and Implementation
	Introduction
	Averest NuGet Package and Initial Parsing Phase
	EFSM-Level Transformation Utilities
	In-Memory SysML Structure Types
	Requirements Extraction and Filtering Utilities
	Translating the EFSM into a SysML State-Machine
	Generating Block-level Attributes and Type Information
	Requirement Diagram Synthesis and XML Serialisation
	Serialising the Complete Model – “Main XML Generation”
	Putting It All Together and Concluding Remarks

	Evaluation
	Methodology
	Test Case Selection
	Results
	Quartz Specifications
	Extended Finite-State Machine
	XML output
	Observations

	Confirmation

	Conclusion and Future Work
	Code
	Bibliography
	Note

