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Abstract—Among the ternary functions, the subset of
monotone functions undoubtedly has the most applications.
For this reason, monotone ternary functions have been
intensively studied in previous research, although sometimes
under different names. For example, Mukaidono called them
regular ternary functions and proved that these are exactly
the ternary functions that can be represented by proposi-
tional logic formulas.

In this paper, we present a decomposition theorem for
monotone ternary functions to split a given function into
four functions by eliminating one of the argument vari-
ables. The decomposition theorem presented in this paper
is the basis for recursive algorithms on monotone ternary
functions that eliminate one of the used variables in each
recursion step. As an example, we present such a recursive
algorithm that translates a given monotone function into
a propositional logic formula, and we easily prove this
way Mukaidono’s theorems on disjunctive normal forms of
regular ternary, i.e., monotone, and B-ternary functions.

Index Terms—ternary logic, three-valued logic, monotone
functions, function decomposition

I. Introduction

Three-valued logic has been introduced by Jan Łukasiewicz

and Emil Post [31] more than a century ago to refine logical

reasoning by adding a third truth value for a possible but

unprovable truth. Kleene used ternary logic to reason about

computable functions where the third truth value denotes

a value that cannot be computed because it is undefined,

unknown or not yet available. Kleene’s negation, conjunction,

and disjunction were monotone so that fixpoints can be

computed to define the semantics of programs.

Meanwhile, ternary logic and ternary functions have

proven to be useful in many areas such as logic programming

[13]–[16], hazard analysis in circuits [5], [8], [12], [17], [18],

[25], [50], and the semantics of programs [2], [3], [23], [28],

[33], [34], [36], [37], [45], [47], just to name a few.

Since monotone functions are closed under composition,

it is clear that all propositional logic formulas using Kleene’s

operators define monotone functions. It is more difficult to

determine an equivalent propositional logic formula for a

given ternary monotone function. Mukaidono proved that

propositional logic with the constants 0, 1, and the Kleene

operators ¬, ∧, ∨ defines exactly a subset of the monotone

functions called the B-ternary functions (see Theorem 9

and [24], [25]). These are the monotone functions that

map boolean argument vectors to boolean values. Later,

Mukaidono also proved that adding the constant ⊥ allows

propositional logic to represent even all monotone functions

[27], [49].

In this paper, we revisit the monotone ternary functions

and present a decomposition theorem to split a given mono-

tone ternary function into four functions by eliminating one

of the argument variables. Conversely, we can construct all

monotone ternary functions by combining four monotone

ternary functions with a new variable according to the de-

composition theorem. The decomposition theorem presented

in this paper is therefore the basis for recursive algorithms

on monotone ternary functions that eliminate one of the

variables used in each recursion step. As an example, we

present such a recursive algorithm that translates a given

monotone function into a propositional logic formula, and we

easily prove this way Mukaidono’s theorems on disjunctive

normal forms of regular ternary, i.e., monotone, and B-

ternary functions.

The paper has the following outline: Section II lists the

notation used, and Section III discusses a straightforward de-

composition of general ternary functions into three functions

by fixing a variable to one of the constants ⊥, 0, or 1. Since
this theorem can be used for general ternary functions, it

requires non-monotone operators such as the absence test

(Definition 1) and is therefore not useful for monotone func-

tions. Section IV presents the main contribution of the paper:

Theorems 3-7 show the purpose of the base functions used

to construct a monotone ternary function according to the

final decomposition theorem. Conversely, Theorem 8 shows

that all monotone functions can be recursively constructed

by the decomposition theorem of this paper, so that we

can use it to define recursive algorithms over the monotone

ternary functions. In Section V, we use the results to reprove

Mukaidono’s theorems about the syntactic representation of

monotone ternary and B-ternary functions by propositional

logic. We also consider the important set of sequential

functions as a further subset of the monotone functions with

another decomposition theorem.
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II. Preliminaries

In this paper, we consider ternary functions over the truth

values T = {⊥, 0, 1} where B = {0, 1} is the subset of

boolean values, and ⊥ is the third truth value that denotes

an unknown, unstable, unavailable, or undefined value de-

pending on the application. We use the partial order ⪯ on T
that is defined as x ⪯ y :⇔ x = ⊥ ∨ x = y so that all pairs

of values have an infimum, but a supremum does not always

exist.

For the syntactic representation of ternary functions, we

use propositional logic with the following Kleene operators

¬, ∧, ∨ that are monotone ternary extensions of the binary

negation, conjunction, and disjunction
1
:

x ¬x
⊥ ⊥
0 1
1 0

∧ ⊥ 0 1
⊥ ⊥ 0 ⊥
0 0 0 0
1 ⊥ 0 1

∨ ⊥ 0 1
⊥ ⊥ ⊥ 1
0 ⊥ 0 1
1 1 1 1

In addition to the above logic connectives, we also consider

the exclusive disjunction written as ⊕, the sequential if-then-
else (ITE) (γ ⇒ φ1 | φ0), and the parallel if-then-else (ITE)

(γ ⇛ φ1 | φ0) which are defined as follows:

• φ⊕ ψ :⇔ ¬φ ∧ ψ ∨ φ ∧ ¬ψ
• (γ ⇒ φ1 | φ0) :⇔ ¬γ ∧ φ0 ∨ γ ∧ φ1 ∨ ¬γ ∧ γ
• (γ ⇛ φ1 | φ0) :⇔ ¬γ ∧ φ0 ∨ γ ∧ φ1 ∨ φ0 ∧ φ1

We clearly have (0⇒ φ1 | φ0) = (0 ⇛ φ1 | φ0) = φ0 and

(1⇒ φ1 | φ0) = (1 ⇛ φ1 | φ0) = φ1, but for γ = ⊥, se-
quential ITE and parallel ITE are different: (⊥ ⇒ φ1 | φ0) =
⊥ and (⊥⇛ φ1 | φ0) = ⊥∧ (φ0 ∨φ1)∨φ0 ∧φ1. The latter

is the infimum of φ0 and φ1 which is 0 if both are 0, 1 if

both are 1, and ⊥ otherwise. Parallel ITE can express the

Kleene operators, but since sequential functions [2], [28],

[33], [45]–[47] are closed under composition, sequential ITE

cannot express any parallel operators.

III. General Function Decompositions

In general, a function decomposition is an algorithm that

determines for a given function f : Dn+1 → D and one of

its arguments x ∈ D, some functions f1, . . . , fm : Dn → D
such that there is a function g : Dm+1 → D with f(x, y) =
g(x, f1(y), . . . , fmy). It is well known that the following are

the only possible decompositions [1] of binary functions f :
Bn+1 → B besides permutations and negations:

• Shannon: f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x
• Positive Davio: f(x, y) = f0(y)⊕ x ∧ (f0(y)⊕ f1(y))
• Negative Davio: f(x, y) = f1(y)⊕¬x ∧ (f0(y)⊕ f1(y))

For all of the above decompositions, the functions f0 and f1
can be determined as co-factors of the given function f , i.e.,
f0(y) := f(0, y) and f1(y) := f(1, y).

1
These embeddings of the two-valued operations in ternary functions are

not the only possible ones even if we insist on montone functions: For

the conjunction, there are three further solutions, namely the left-sequential

conjunction x∧(y∨¬x), the right-sequential conjunction y∧(x∨¬y), and
the strict conjunction x ∧ y ∨ ¬x ∧ x ∨ ¬y ∧ y. Analogously, there are the

corresponding three other versions of the two-valued disjunction. However,

since sequential functions are closed under composition, it is not possible to

express the parallel operators shown in the table with the sequential ones

which is a strong argument in favor of the parallel operators.

The Shannon decomposition is the basis for binary deci-

sion diagrams (BDDs) [6], and the Davio decompositions are

the basis for functional decision diagrams (FDDs) [19], and

both are used in combination in Kronecker decision diagrams

[1], [11]. The Shannon decomposition is based on a case

distinction and a combination of the cases by disjunction.

For ternary functions, a generalization of this principle is

possible, but requires additional operators:

Definition 1 (Presence/Absence Test). The ternary functions
η⊥, η0, and η1 are defined as follows:

x η⊥(x) η0(x) η1(x)

⊥ 1 0 0
0 0 1 0
1 0 0 1

In particular, η⊥ is called the absence test, and its negation is
called the presence test.

The names ‘presence/absence’ test are derived from applica-

tions in model-based design where ⊥ denotes the absence of

a data value. None of these functions is monotone, so none

of them can be expressed by the composition of monotone

operators, and in particular, we cannot define such operations

with propositional logic. However, we only need one of them:

Lemma 1 (Presence/Absence Test). Each one of η⊥, η0, and
η1 can express the other two:

• η⊥(x)⇔ ¬η1(x ∨ ¬x) • η0(x)⇔ ¬x ∧ ¬η⊥(x)
• η⊥(x)⇔ ¬η0(x ∧ ¬x) • η1(x)⇔ x ∧ ¬η⊥(x)

For boolean values, we clearly have η0(x) = ¬x and

η1(x) = x so that we can write the Shannon decomposition

as f(x, y) = f0(y)∧η0(x)∨f1(y)∧η1(x) which immediately

leads to the following ternary function decomposition:

Theorem 1 (Ternary Function Decomposition). For any func-
tion f : Tn+1 → T, there are functions f0, f1, f⊥ : Tn+1 → T
such that the following holds:

f(x, y) ⇔ f0(y) ∧ η0(x) ∨ f1(y) ∧ η1(x) ∨ f⊥(y) ∧ η⊥(x)
⇔ (f0(y) ∧ ¬x ∨ f1(y) ∧ x) ∧ ¬η⊥(x) ∨ f⊥(y) ∧ η⊥(x)
⇔ (η⊥(x) ⇒ f(⊥, y) | (x ⇒ f1(y) | f0(y)))

In particular, we may use the co-factors f⊥(y) := f(⊥, y),
f0(y) := f(0, y), and f1(y) := f(1, y).

The above ternary function decomposition is a straightfor-

ward generalization of the two-valued Shannon decomposi-

tion, and it can be directly used to define ternary decision

diagrams. We can also use it to convert any given ternary

function table into a disjunctive normal form:

Theorem 2 (Ternary DNF). Procedure TTab2DNF as im-
plemented by Algorithm 1 converts any given ternary func-
tion table into an equivalent formula in disjunctive normal
form. Therefore, any ternary function can be represented by
a propositional logic formula using the constants ⊥, 0, 1, the
monotone ternary functions ¬, ∧, ∨, and the non-monotone
ternary function η⊥.
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Algorithm 1 Converting Ternary Function Tables to DNFs

procedure TTab2DNF(n, f )
if n = 0 then

if f = ⊥ then return {{⊥}}
else if f = 0 then return {}
else return {{}}
end if

else
D⊥ ← TTab2DNF(n− 1, f(⊥, x2, . . . , xn))
D0 ← TTab2DNF(n− 1, f(0, x2, . . . , xn))
D1 ← TTab2DNF(n− 1, f(1, x2, . . . , xn))
f⊥ ← {c ∪ {η⊥(x1)} | c ∈ D⊥}
f0 ← {c ∪ {¬x1,¬η⊥(x1)} | c ∈ D0}
f1 ← {c ∪ {x1,¬η⊥(x1)} | c ∈ D1}
return Absorp(f⊥ ∪ f0 ∪ f1)

end if
end procedure

The algorithm returns a set of sets of literals, i.e., either

possibly negated variables or possibly negated absence tests

representing a disjunctive normal form. Absorp(D) removes

all cubes in D that are strict supersets of other cubes in D.

IV. Decompositions for Monotone Functions

Theorem 2 can be used to convert any ternary function into a

propositional logic formula that is even in disjunctive normal

form. However, each product term of the DNF contains an

absence test η⊥(xi) for each variable in the clause. For

many function classes, especially for the monotone functions,

such an absence test is not necessary. Therefore, this section

presents new decomposition theorems for monotone ternary

functions that do not require the absence test.

We start with a first theorem that shows the limits of the

Shannon decomposition in ternary logic, so that we can see

what other parts of the decomposition are needed.

Theorem 3 (DC1). For any monotone function f : Tn+1 → T,
the following are equivalent:

• there are monotone functions f0,f1 : Tn → T such that
the following holds: f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x

• for all y ∈ Tn, we have

f(⊥, y) =
{
0 : if f(1, y) = f(0, y) = 0
⊥ : otherwise

Proof. We prove the two implications as follows:

⇒: For the functions f0 and f1 in the decomposition, we

obviously have f(1, y) = f1(y), f(0, y) = f0(y) and

f(⊥, y) = (f0(y)∨f1(y))∧⊥ =

{
0 : if f1(y) = f0(y) = 0
⊥ : otherwise

⇐: For any given function f with the mentioned property,

we define f0(y) := f(0, y) and f1(y) := f(1, y) so that

the decomposition holds.

Although the set of functions that have a DC1 decomposition

is quite large, it is rather limited in terms of interesting

functions: Not even the sequential functions belong to this

set. In particular, this set of functions is neither closed

under conjunction nor under negation, since both operations

would produce disjunctive normal forms with product terms

containing complementary pairs like ¬x ∧ x. This leads to

the following extension:

Theorem 4 (DC2). For any monotone function f : Tn+1 → T,
the following are equivalent:

• there are monotone functions f0,f1,f2 : Tn → T such
that the following holds:

f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x ∨ f2(y) ∧ ¬x ∧ x

• for all y ∈ Tn, we have f(⊥, y) ̸= 1

Proof. Note that f(⊥, y) = 0 implies f(1, y) = f(0, y) = 0
for any montone function f .

⇒: For the functions f0, f1, and f2 in the decomposition,

we obviously have f(1, y) = f1(y), f(0, y) = f0(y) and

f(⊥, y) = (f0(y) ∨ f1(y) ∨ f2(y)) ∧ ⊥

=

{
0 : if f2(y) = f1(y) = f0(y) = 0
⊥ : otherwise

⇐: For any given function f with the mentioned property,

we define f0(y) := f(0, y), f1(y) := f(1, y), and

f2(y) = f(⊥, y) so that the decomposition holds.

To understand the need for f2, consider the following: If

f(1, y) ̸= f(0, y) holds, then we have f(⊥, y) = ⊥ for any

monotone function f . However, if f(1, y) = f(0, y) = b ∈ B
holds, then we can have either f(⊥, y) = ⊥ or f(⊥, y) =
b. The DC1-functions are forced to choose f(⊥, y) = 0
for f0(y) = f1(y) = 0, while DC2-functions also allow

f(⊥, y) = ⊥ in this case by choosing f2(y) ̸= 0. This can be

seen from the following case distinctions for DC2-functions
(which also hold for DC1-functions for f2(y) = 0):

f(x, y) =


f0(y) : if x = 0
f1(y) : if x = 1
0 : if x = ⊥ and f2(y) = f1(y) = f0(y) = 0
⊥ : otherwise

Therefore, f2 removes the restriction to determine f(⊥, y) =
0 if f(1, y) = f(0, y) = 0 holds. However, as one can see

from the cases above, we can never have f(⊥, y) = 1 for

DC2-functions. This leads to the DC3-functions:

Theorem 5 (DC3). For any monotone function f : Tn+1 → T,
the following are equivalent:

• there are monotone functions f0,f1,f3 : Tn → T such
that the following holds:

f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x ∨ f3(y)

• for all y ∈ Tn, f(1, y) = f(0, y) = 0 implies f(⊥, y) = 0

Proof. ⇒: For the functions f0, f1, and f3 in the decom-

position, we obviously have f(0, y) = f0(y) ∨ f3(y),
f(1, y) = f1(y) ∨ f3(y), and

f(⊥, y) = (f0(y) ∨ f1(y)) ∧ ⊥ ∨ f3(y)

=

1 : if f3(y) = 1
0 : if f3(y) = f1(y) = f0(y) = 0
⊥ : otherwise
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⇐: For any given function f with the mentioned prop-

erty, we define f0(y) := f(0, y), f1(y) := f(1, y),
and f3(y) := f(⊥, y) ∧ f(0, y) ∧ f(1, y) so that the

decomposition holds.

As can be seen from the proof of the above theorem, it is

possible for DC3-functions to have f(⊥, y) = 1 which is not

possible for DC2-functions. One may wonder why the above

theorem cannot be generalized similarly to Theorem 1. To

discuss this, we can first prove the following theorem:

Theorem 6. For any monotone function f : Tn+1 → T, there
are monotone functions f0, f1, f⊥ such that the following holds
for all y ∈ Tn:

f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x ∨ f⊥(y) ∧ η⊥(x)

Proof. Obviously, we can use f0(y) := f(0, y), f1(y) :=
f(1, y), and f⊥(y) := f(⊥, y) for the decomposition.

The above ternary decomposition is possible for all monotone

ternary functions. However, for some monotone functions

f0, f1, f⊥, the function f defined in the theorem is not

monotone, e.g., the following one is not monotone

f(x, y) = ⊥∧¬x∨⊥∧x∨ (⊥∨ y)∧ η⊥(x) = ⊥∨ y∧ η⊥(x)

For this reason, the above decomposition is not useful for

monotone functions in the sense that we cannot use it to

enumerate the monotone functions by composing already

given monotone functions with fewer variables. Finally, we

therefore have the final theorem for a complete monotone

function decomposition:

Theorem 7 (DC4). For any monotone function f : Tn+1 → T,
there are monotone functions f0,f1,f2,f3 : Tn → T such that
the following holds:

f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x ∨ f2(y) ∧ ¬x ∧ x ∨ f3(y)

In particular, functions f0(y) := f(0, y), f1(y) := f(1, y),
f2(y) := f(⊥, y), and f3(y) := f(⊥, y) ∧ f(0, y) ∧ f(1, y)
satisfy the equation.

Proof. First of all, note that all functions f as defined in the

theorem are certainly monotone. Moreover, if we define for

a given monotone function f , the functions f0(y) := f(0, y),
f1(y) := f(1, y), f2(y) := f(⊥, y), and f3(y) := f(⊥, y) ∧
f(0, y) ∧ f(1, y), then we get by the absorption theorem

• f(1, y) = f1(y) ∨ f3(y)
• f(0, y) = f0(y) ∨ f3(y)
• f(⊥, y) = (f0(y) ∨ f1(y) ∨ f2(y)) ∧ ⊥ ∨ f3(y), i.e.,

f(⊥, y) =

1 : if f3(y) = 1
0 : if f3(y) = f2(y) = f1(y) = f0(y) = 0
⊥ : otherwise

The above equation holds, since f(⊥, y) = b ∈ B implies

f(1, y) = f(0, y) = b for any monotone function f .
Thus, we have f(⊥, y) = 1 ⇔ f3(y) = 1, f(⊥, y) =
0 ⇔ f3(y) = f2(y) = f1(y) = f0(y) = 0. Finally,
f(⊥, y) = ⊥ implies f2(y) = ⊥, and (f0(y) ∨ f1(y) ∨
⊥)∧⊥∨⊥∧f(0, y)∧f(1, y) is always equal to ⊥.

For any DC4-function, we therefore have the following

equation:

f(x, y) =


f0(y) ∨ f3(y) : if x = 0
f1(y) ∨ f3(y) : if x = 1
1 : if x = ⊥ and fi(y) = 1 for all i
0 : if x = ⊥ and fi(y) = 0 for all i
⊥ : otherwise

As can be seen, f3 determines function values f(⊥, y) = 1
by also enforcing f(0, y) = f(1, y) = 1, and that f2 and

f3 together determine the function value f(⊥, y) = 0 by

enforcing f(0, y) = f(1, y) = 0. Additional function values

0 and 1 are added for x = 0 by f0 and for x = 1 by f1,
respectively.

The above decomposition theorem may be unexpected

since we need four functions f0,f1,f2,f3 to construct a

function f with one additional argument variable. Typically,

for ternary logic, one expects three cases, and thus three

sub-functions as in Theorem 1, but this is not useful for

constructing the monotone functions as we have outlined

step by step with the weaker decompositions.

Algorithm 2 Converting Monotone Function Tables to DNFs

procedure MTab2DNF(n, f )
if n = 0 then

if f = ⊥ then return {{⊥}}
else if f = 0 then return {}
else return {{}}
end if

else
D⊥ ← MTab2DNF(n− 1, f(⊥, x2, . . . , xn))
D0 ← MTab2DNF(n− 1, f(0, x2, . . . , xn))
D1 ← MTab2DNF(n− 1, f(1, x2, . . . , xn))
f0 ← {c ∪ {¬x1} | c ∈ D0}
f1 ← {c ∪ {x1} | c ∈ D1}
f2 ← {(c \ {⊥}) ∪ {¬x1, x1} | c ∈ D⊥}
f3 ← {c⊥ ∪ c0 ∪ c1 | c⊥ ∈ D⊥, c0 ∈ D0, c1 ∈ D1}
return Absorp(f0 ∪ f1 ∪ f2 ∪ {c ∈ f3 | ⊥ ̸∈ c})

end if
end procedure

The DC4-decomposition can be used to construct Algo-

rithm 2 which translates a monotone ternary function table

into a propositional logic formula in disjunctive normal form.

The algorithm is very similar to Algorithm 1. In contrast to

Algorithm 1, Algorithm 2 does not require the non-monotone

absence tests, and computes the four functions f0,f1,f2,f3 ac-
cording to Theorem 7 instead. As in Algorithm 1, Absorp(D)
removes all cubes in D that are strict supersets of other cubes

in D. In addition, it can remove constants ⊥, can merge

cubes by the following equivalences, and removes cubes with

constant ⊥ from f3 since these cannot become 1 (recall

Theorem 4):

• ⊥ ∧ φ ∧ ¬φ⇔ φ ∧ ¬φ and ⊥ ∨ φ ∨ ¬φ⇔ φ ∨ ¬φ
• x ∧ φ ∧ ¬φ ∨ ¬x ∧ φ ∧ ¬φ⇔ φ ∧ ¬φ
• ⊥ ∧ x ∧ φ ∨ ⊥ ∧ ¬x ∧ φ⇔ ⊥∧ φ
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V. Related Work

A. Regular Ternary and B-Ternary Functions

Theorem 7 and Algorithm 2 directly imply the following

theorem which in turn implies that propositional logic with

constants ⊥, 0, 1 exactly corresponds with the monotone

ternary functions (see also [27]):

Theorem 8 (Syntactic Representation of Monotone Ternary

Functions). The set of monotone ternary functions can be
recursively constructed as follows:

• monotone ternary functions with no variables are the
constants ⊥, 0, 1

• every monotone ternary function f with n + 1 variables
can be written as f(x, y) = f0(y) ∧ ¬x ∨ f1(y) ∧ x ∨
f2(y) ∧ ¬x ∧ x ∨ f3(y) with monotone ternary functions
f0, f1, f2, f3 on n variables y

Proof. The proof proceeds by induction on the number of

variables: The induction base is clear, and the induction step

follows by the induction hypothesis and Theorem 7.

By Algorithm 2, we further see that every monotone function

can be written as a DNF with complementary terms x ∧ ¬x
as well as the constant ⊥ which was proved differently in

[27]. However, Algorithm 2 computes formulas different to

those in [27].

In previous work, Mukaidono also considered B-ternary

functions which is the strict subset of monotone ternary

functions that map boolean vectors x ∈ Bn
to boolean

values f(x) ∈ B. In [24], [25], Mukaidono proved that the B-

ternary functions exactly correspond with the propositional

logic formulas without the constant ⊥. Hence, the following

theorem can be concluded as well:

Theorem 9 (Syntactic Representation of B-Ternary Func-

tions). The set of B-ternary functions can be recursively con-
structed as follows:

• B-ternary functions with no variables are constants 0, 1
• every B-ternary function function f with n+ 1 variables

can be written as f(x, y) = f0(y)∧¬x∨f1(y)∧x∨f2(y)∧
¬x∧ x∨ f3(y) with B-ternary functions f0, f1, f2, f3 on
n variables y

While f(0, y) and f(1, y) are B-ternary if f is B-ternary,

f(⊥, y) may not be B-ternary so that D⊥ may contain cubes

with constant ⊥. However, Algorithm 2 removes all constants

⊥ for B-ternary functions: Adding ¬x ∧ x in f2 eliminates

the constants ⊥ in f2 anyway, and since cubes with constant

⊥ cannot become 1, these are also removed from f3 (recall

Theorem 4).

B. Sequential Functions

The set of sequential functions is a very important subset

of the monotone functions. Intuitively, sequential functions

can avoid failures in the evaluation of expressions like x >
0 ∧ y

x > x by evaluating the left side x > 0 first and only if

it is true, the right side is evaluated as well.

Definition 2 (Sequential Functions). The set of sequential
ternary functions can be recursively constructed as follows:

• sequential ternary functions with no variables are the
constants ⊥, 0, 1

• any sequential ternary function with n+1 variables can be
written as f(x, y) = (x⇒ f1(y) | f0(y)) with monotone
ternary functions f0 and f1 on n variables y

Functions that are not sequential are called parallel.

It can be easily proved that all sequential functions are mono-

tone and closed under composition. Hence, the sequential

functions are a strict subset of the monotone functions:

Theorem 10 (Sequential Functions). All sequential functions
allow a DC2 decomposition, but there are DC2 functions that
are not sequential.

Proof. The sequential ITE operator can be expressed by ¬,
∧, and ∨ as follows:

(γ ⇒ φ1 | φ0)⇔ φ0 ∧ ¬γ ∨ φ1 ∧ γ ∨ ¬γ ∧ γ
Hence, all sequential functions are special DC2 functions

where f2(y) := 1 holds. A DC2 function which is not

sequential is for example f(x, y) := x ∧ ¬x ∧ y ∧ ¬y.
Parallel ITE can also be expressed by ¬, ∧, and ∨:

(γ ⇒ φ1 | φ0)⇔ φ0 ∧ ¬γ ∨ φ1 ∧ γ ∨ φ0 ∧ φ1

and conversely, parallel ITE can express negation, conjunc-

tion, and disjunction
2
. However, if we would only consider

the functions that were obtained by parallel ITE f(x, y) :=
(x⇛ f1(y) | f0(y)) with monotone functions f0 and f1, we
would only obtain a strict subset of the DC3 functions, so

that parallel ITE is not directly useful for the enumeration

of all monotone functions.

VI. Conclusions

The monotone ternary functions have undoubtedly the most

applications among the subsets of ternary functions con-

sidered so far. This paper presents a new decomposition

theorem for monotone ternary functions that splits any given

monotone ternary function into four functions by eliminating

one of the argument variables. Conversely, we can construct

all monotone ternary functions by combining four arbitrary

monotone ternary functions with a new variable according

to the decomposition theorem. This way, we can enumerate

all monotone ternary functions, and therefore we can use

it for the construction of recursive algorithms on monotone

ternary functions that eliminate one of the variables used in

each recursion step. As an example, we have described a re-

cursive algorithm that translates a given monotone function

into a propositional logic formula, and in this way, we easily

prove Mukaidono’s theorems on disjunctive normal forms of

regular ternary, i.e., monotone, and B-ternary functions.

2
We have the following equivalences:

• ¬φ⇔ (φ⇛ 0 | 1)
• φ ∧ ψ ⇔ (φ⇛ ψ | 0)
• φ ∨ ψ ⇔ (φ⇛ 1 | ψ)
• inf(φ,ψ) ⇔ (⊥ ⇛ φ | ψ)
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