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Abstract—Among the ternary functions, the subset of
monotone functions undoubtedly has the most applications.
For this reason, monotone ternary functions have been
intensively studied in previous research, although sometimes
under different names. For example, Mukaidono called them
regular ternary functions and proved that these are exactly
the ternary functions that can be represented by proposi-
tional logic formulas.

In this paper, we present a decomposition theorem for
monotone ternary functions to split a given function into
four functions by eliminating one of the argument vari-
ables. The decomposition theorem presented in this paper
is the basis for recursive algorithms on monotone ternary
functions that eliminate one of the used variables in each
recursion step. As an example, we present such a recursive
algorithm that translates a given monotone function into
a propositional logic formula, and we easily prove this
way Mukaidono’s theorems on disjunctive normal forms of
regular ternary, i.e., monotone, and B-ternary functions.

Index Terms—ternary logic, three-valued logic, monotone
functions, function decomposition

1. INTRODUCTION

Three-valued logic has been introduced by Jan Lukasiewicz
and Emil Post [31] more than a century ago to refine logical
reasoning by adding a third truth value for a possible but
unprovable truth. Kleene used ternary logic to reason about
computable functions where the third truth value denotes
a value that cannot be computed because it is undefined,
unknown or not yet available. Kleene’s negation, conjunction,
and disjunction were monotone so that fixpoints can be
computed to define the semantics of programs.

Meanwhile, ternary logic and ternary functions have
proven to be useful in many areas such as logic programming
[13]-[16], hazard analysis in circuits [5], [8], [12], [17], [18],
[25], [50], and the semantics of programs [2], [3], [23], [28],
[33], [34], [36], [37], [45], [47], just to name a few.

Since monotone functions are closed under composition,
it is clear that all propositional logic formulas using Kleene’s
operators define monotone functions. It is more difficult to
determine an equivalent propositional logic formula for a
given ternary monotone function. Mukaidono proved that
propositional logic with the constants 0, 1, and the Kleene
operators -, A, V defines exactly a subset of the monotone
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functions called the B-ternary functions (see Theorem 9
and [24], [25]). These are the monotone functions that
map boolean argument vectors to boolean values. Later,
Mukaidono also proved that adding the constant L allows
propositional logic to represent even all monotone functions
[27], [49].

In this paper, we revisit the monotone ternary functions
and present a decomposition theorem to split a given mono-
tone ternary function into four functions by eliminating one
of the argument variables. Conversely, we can construct all
monotone ternary functions by combining four monotone
ternary functions with a new variable according to the de-
composition theorem. The decomposition theorem presented
in this paper is therefore the basis for recursive algorithms
on monotone ternary functions that eliminate one of the
variables used in each recursion step. As an example, we
present such a recursive algorithm that translates a given
monotone function into a propositional logic formula, and we
easily prove this way Mukaidono’s theorems on disjunctive
normal forms of regular ternary, ie., monotone, and B-
ternary functions.

The paper has the following outline: Section II lists the
notation used, and Section III discusses a straightforward de-
composition of general ternary functions into three functions
by fixing a variable to one of the constants L, 0, or 1. Since
this theorem can be used for general ternary functions, it
requires non-monotone operators such as the absence test
(Definition 1) and is therefore not useful for monotone func-
tions. Section IV presents the main contribution of the paper:
Theorems 3-7 show the purpose of the base functions used
to construct a monotone ternary function according to the
final decomposition theorem. Conversely, Theorem 8 shows
that all monotone functions can be recursively constructed
by the decomposition theorem of this paper, so that we
can use it to define recursive algorithms over the monotone
ternary functions. In Section V, we use the results to reprove
Mukaidono’s theorems about the syntactic representation of
monotone ternary and B-ternary functions by propositional
logic. We also consider the important set of sequential
functions as a further subset of the monotone functions with
another decomposition theorem.
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II. PRELIMINARIES

In this paper, we consider ternary functions over the truth
values T = {L1,0,1} where B = {0,1} is the subset of
boolean values, and | is the third truth value that denotes
an unknown, unstable, unavailable, or undefined value de-
pending on the application. We use the partial order < on T
that is defined as * < y 1< x = 1 Vo = y so that all pairs
of values have an infimum, but a supremum does not always
exist.

For the syntactic representation of ternary functions, we
use propositional logic with the following Kleene operators
-, A\, V that are monotone ternary extensions of the binary
negation, conjunction, and disjunction':

@ | = AL 01 Vil 01
1| L 1l|L 0 L 1L L1
0|1 0/0 0O oL 01
10 1/1L 01 111 11

In addition to the above logic connectives, we also consider
the exclusive disjunction written as @, the sequential if-then-
else (ITE) (7 = o1 | ¢o), and the parallel if-then-else (ITE)
(7= ¢1 | wo) which are defined as follows:

e YBY P AYV AP

o (Y= @1lw0) e Y Apo VY ApLV oy Ay

o (Y2 p1lw0) = Y Apo VY ApLV o Apr
We clearly have (0= o1 | o) = (0= ¢1 | o) = po and
(I=¢1]p0) = (1= ¢1|wo) = @1, but for v = L, se-
quential ITE and parallel ITE are different: (L = ¢ | ¢g) =
Land (L= o1 |¢o) =LA (woV 1)V oA The latter
is the infimum of ¢y and ¢ which is 0 if both are 0, 1 if
both are 1, and | otherwise. Parallel ITE can express the
Kleene operators, but since sequential functions [2], [28],
[33], [45]-[47] are closed under composition, sequential ITE
cannot express any parallel operators.

III. GENERAL FUNCTION DECOMPOSITIONS

In general, a function decomposition is an algorithm that
determines for a given function f : D"*! — D and one of
its arguments = € D, some functions fi,..., f, : D" — D
such that there is a function g : D™*! — D with f(z,y) =
g(x, f1(y), ..., fmy). It is well known that the following are
the only possible decompositions [1] of binary functions f :
B"*! — B besides permutations and negations:

e Shannon: f(x,y) = fo(y) AN—xV fi(y) Az

e Positive Davio: f(z,y) = foly) ® z A (foly) @ f1(y))

o Negative Davio: f(z,y) = fi(y) ® =z A (fo(y) & f1(y))
For all of the above decompositions, the functions fy and f;
can be determined as co-factors of the given function f, i.e.,

fo(y) :== f(0,y) and fi(y) := f(1,y).

!These embeddings of the two-valued operations in ternary functions are
not the only possible ones even if we insist on montone functions: For
the conjunction, there are three further solutions, namely the left-sequential
conjunction z A (y V —z), the right-sequential conjunction y A (zV —y), and
the strict conjunction z Ay V —x A £ V =y A y. Analogously, there are the
corresponding three other versions of the two-valued disjunction. However,
since sequential functions are closed under composition, it is not possible to
express the parallel operators shown in the table with the sequential ones
which is a strong argument in favor of the parallel operators.

The Shannon decomposition is the basis for binary deci-
sion diagrams (BDDs) [6], and the Davio decompositions are
the basis for functional decision diagrams (FDDs) [19], and
both are used in combination in Kronecker decision diagrams
[1], [11]. The Shannon decomposition is based on a case
distinction and a combination of the cases by disjunction.
For ternary functions, a generalization of this principle is
possible, but requires additional operators:

Definition 1 (Presence/Absence Test). The ternary functions
1.1, Mo, and 11 are defined as follows:

\

[ni(®) mo(z) m(z) ]

— o8

1 0 0
0 1 0
0 0 1

In particular, 1, is called the absence test, and its negation is
called the presence test.

The names ‘presence/absence’ test are derived from applica-
tions in model-based design where L denotes the absence of
a data value. None of these functions is monotone, so none
of them can be expressed by the composition of monotone
operators, and in particular, we cannot define such operations
with propositional logic. However, we only need one of them:

Lemma 1 (Presence/Absence Test). Each one of 1., 19, and
11 can express the other two:

o 1o(x) & —ax A —my(x)
e n(z) & xA-mi(2)

o1 (x) = m(zVx)
e n1(z) & —mo(z A —x)

For boolean values, we clearly have ng(x) = -2z and
m(z) = x so that we can write the Shannon decomposition

as f(x,y) = foly) Ano(x)V f1(y) An1(z) which immediately
leads to the following ternary function decomposition:

Theorem 1 (Ternary Function Decomposition). For any func-
tion f : T" T — T, there are functions fy, f1, f1 : T — T
such that the following holds:

f(@,y) & foy) Amo(x) V fiy) Am(@) V fL(y) Ani(x)
& (foly) Aoz V fi(y) Ax) A-mi(z) V fi(y) Ani ()
< nu(z) = f(Ly) | (= fily) | fo(y))

In particular, we may use the co-factors f1 (y) := f(L,y),

fo(y) :== f(0,y), and fi(y) := f(1,9).

The above ternary function decomposition is a straightfor-
ward generalization of the two-valued Shannon decomposi-
tion, and it can be directly used to define ternary decision
diagrams. We can also use it to convert any given ternary
function table into a disjunctive normal form:

Theorem 2 (Ternary DNF). Procedure TTab2DNF as im-
plemented by Algorithm 1 converts any given ternary func-
tion table into an equivalent formula in disjunctive normal
form. Therefore, any ternary function can be represented by
a propositional logic formula using the constants 1, 0, 1, the
monotone ternary functions —, A, V, and the non-monotone
ternary function 1, .
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Algorithm 1 Converting Ternary Function Tables to DNFs
procedure TTab2DNF(n, f)
if n =0 then
if f = 1 then return {{L}}
else if f =0 then return {}
else return {{}}
end if
else
D, + TTab2DNF(n -1, f(L,ZEQ, -
Do — TTab2DNF(n — 1, f(O, o, ..
D1 < TTab2DNF(n — 1, f(1, 22, ..
fr{cu{nL(@)}ceDL}
Jo{cU{~z1, mo(21)} | c € Do}
fi+A{cU{z1, mi(x1)} | ce D}
return Absorp(f, U fo U f1)
end if
end procedure

)
S Tn))
)

<y I )

The algorithm returns a set of sets of literals, i.e., either
possibly negated variables or possibly negated absence tests
representing a disjunctive normal form. Absorp(D) removes
all cubes in D that are strict supersets of other cubes in D.

IV. DECOMPOSITIONS FOR MONOTONE FUNCTIONS

Theorem 2 can be used to convert any ternary function into a
propositional logic formula that is even in disjunctive normal
form. However, each product term of the DNF contains an
absence test 7, (z;) for each variable in the clause. For
many function classes, especially for the monotone functions,
such an absence test is not necessary. Therefore, this section
presents new decomposition theorems for monotone ternary
functions that do not require the absence test.

We start with a first theorem that shows the limits of the
Shannon decomposition in ternary logic, so that we can see
what other parts of the decomposition are needed.

Theorem 3 (DC1). For any monotone function f : T"*1 — T,
the following are equivalent:

e there are monotone functions fo,f1 : T — T such that

the following holds: f(z,y) = fo(ly) A -z V fi(y) Ax
e forally € T", we have

F(Ly) = {0 Sif f(1,y) = f(0,y) =0

L : otherwise
Proof. We prove the two implications as follows:
=-: For the functions fy and f; in the decomposition, we
obviously have f(1,y) = fi(y). f(0,y) = fo(y) and

F(Ly) = o)V Fig)AL = {0 HE Fi(y) = foly) =0

1 : otherwise

<«: For any given function f with the mentioned property,

we define fo(y) := f(0,y) and fi(y) := f(1,y) so that
the decomposition holds. O

Although the set of functions that have a DC1 decomposition
is quite large, it is rather limited in terms of interesting
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functions: Not even the sequential functions belong to this
set. In particular, this set of functions is neither closed
under conjunction nor under negation, since both operations
would produce disjunctive normal forms with product terms
containing complementary pairs like =z A z. This leads to
the following extension:

Theorem 4 (DC2). For any monotone function f : T" ™1 — T,
the following are equivalent:

e there are monotone functions fo,f1,f2 : T™" — T such
that the following holds:

f(xy) = foy) A=z V fily) Az V fa(y) A -z Az
o forally € T", we have f(L,y) #1

Proof. Note that f(L,y) = 0 implies f(1,y) = f(0,y) =0
for any montone function f.
=-: For the functions fy, f1, and f2 in the decomposition,
we obviously have f(1,y) = f1(y), f(0,y) = fo(y) and
f(Ly) = (fo(y) V fr(y) V f2(y)) A L
0 :if fo(y) = fi(y) = fo(y) =0

=\ L: otherwise

<«: For any given function f with the mentioned property,

we define fo(y) fO0.y), fi(y) == f(1,y), and

f2(y) = f(L,y) so that the decomposition holds. [
To understand the need for fo, consider the following: If
f(1,y) # f(0,y) holds, then we have f(L,y) = L for any
monotone function f. However, if f(1,y) = f(0,y) =be B
holds, then we can have either f(L,y) = L or f(L,y) =
b. The DCl-functions are forced to choose f(Ll,y) = 0
for fo(y) = fi(y) = 0, while DC2-functions also allow
f(L,y) = L in this case by choosing f(y) # 0. This can be
seen from the following case distinctions for DC2-functions
(which also hold for DC1-functions for f(y) = 0):

ﬁogy; cifx =0

rifx =1

f(z,y) = ()1 Y cif . = L and fa(y) = fi(y) = fo(y) =0
1 : otherwise

Therefore, f, removes the restriction to determine f(L,y)
0if f(1,y) = f(0,y) = 0 holds. However, as one can see
from the cases above, we can never have f(L,y) = 1 for
DC2-functions. This leads to the DC3-functions:

Theorem 5 (DC3). For any monotone function f : T"T1 — T,
the following are equivalent:

e there are monotone functions fo,f1,fs : T — T such
that the following holds:

f(,y) = foly) ANz V fily) Az V fs(y)
e forally € T, f(1,y) = f(0,y) = 0 implies f(L,y) =0

Proof. =-: For the functions fy, f1, and f3 in the decom-
position, we obviously have f(0,y) = fo(y) V f5(y),
f(Ly) = fi(y) V f3(y), and

F(Ly) = (foly) vV Ai(y)) ALV f(y)
1:if fy(y) =1
0 :if fs(y) = fi(y) = fo(y) =0

L : otherwise
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<: For any given function f with the mentioned prop-

erty, we define fo(y) := f(0,y). fi(y) = f(L )
and f3(y) == f(L,y) A f(O,y) A f(1,y) so that the
decomposition holds. O

As can be seen from the proof of the above theorem, it is
possible for DC3-functions to have f(L,y) = 1 which is not
possible for DC2-functions. One may wonder why the above
theorem cannot be generalized similarly to Theorem 1. To
discuss this, we can first prove the following theorem:

Theorem 6. For any monotone function f : T+l 5 T, there
are monotone functions fo, f1, f1 such that the following holds
for all y € T":

flz,y) = foly) A=z V fi(y) Az V fi(y) Ani(z)

Proof. Obviously, we can use fo(y) = f(0,y), fi(y) =
f(L,y), and fi(y) := f(L,y) for the decomposition. O
The above ternary decomposition is possible for all monotone
ternary functions. However, for some monotone functions
fo, f1, f1, the function f defined in the theorem is not
monotone, e.g., the following one is not monotone

fla,y) =L A-zVLAzV(LVy)Ani(x) = LVyAn.(z)

For this reason, the above decomposition is not useful for
monotone functions in the sense that we cannot use it to
enumerate the monotone functions by composing already
given monotone functions with fewer variables. Finally, we
therefore have the final theorem for a complete monotone
function decomposition:

Theorem 7 (DC4). For any monotone function f : T"*1 — T,
there are monotone functions fo,f1,f2,f3 : T" — T such that
the following holds:

flx,y) = foly) A=z V fily) ANz V fa(y) Az AxV f3(y)

= f(0,y), ily) == f(L,y),
= f(L,y) A FO,y) A f(Ly)

In particular, functions fo(y

fa(y) = f(L,y), and f3(y

satisfy the equation.

—_

Proof. First of all, note that all functions f as defined in the
theorem are certainly monotone. Moreover, if we define for
a given monotone function f, the functions fo(y) := f(0,v),
J1y) = f(L,y), f2(y) == f(L,y), and f5(y) := f(L,y) A
f(0,y) A f(1,y), then we get by the absorption theorem
f(Ly) = fi(y) V f3(y)
o f(0,y) = foly) V fs(y)
f(Ly) = (fow) vV fily) vV fa(y)) ALV f3(y). ie.,

1:if fy(y) =1
0 :if f3(y) = fo(y) = fi(y) = fo(y) =0

1 : otherwise

f(Ly) =

The above equation holds, since f(L,y) = b € B implies
f(1,y) = f(0,y) = b for any monotone function f.
Thus, we have f(L,y) = 1 & fay) = 1, f(L,y) =
0 & f3(y) = foly) = fily) = fo(y) = 0. Finally,
f(L,y) = L implies fo(y) = L, and (fo(y) V f1(y) V
DALV LIALO,y)Af(1,y) is always equal to L. [
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For any DC4-function, we therefore have the following
equation:

Jo(y) V fs(y):if 2 =0
fiy) Vv fs(y)if =1

flz,y)=41 :if x = 1 and fi(y) =1 for all ¢
0 cif z = 1 and f;(y) = 0 for all ¢
1 : otherwise

As can be seen, f3 determines function values f(L,y) =1
by also enforcing f(0,y) = f(1,y) = 1, and that f> and
f3 together determine the function value f(L,y) = 0 by
enforcing f(0,y) = f(1,y) = 0. Additional function values
0 and 1 are added for z = 0 by fy and for x = 1 by fi,
respectively.

The above decomposition theorem may be unexpected
since we need four functions fo,f1,f2,f3 to construct a
function f with one additional argument variable. Typically,
for ternary logic, one expects three cases, and thus three
sub-functions as in Theorem 1, but this is not useful for
constructing the monotone functions as we have outlined
step by step with the weaker decompositions.

Algorithm 2 Converting Monotone Function Tables to DNFs
procedure MTab2DNF(n, f)
if n =0 then
if f = 1 then return {{L}}
else if f =0 then return {}
else return {{}}
end if
else
D, + MTab2DNF(n — 1, f(L,zo,...,z,))
Do < MTab2DNF(n — 1, f(0,z2,...,2y))
Dy < MTab2DNF(n — 1, f(1, 2o, ..., 2,))
fo+{cU{-z1} | ce Dy}
f1 — {CU{Il} ‘ (S Dl}
fo e {(e\ {L}) U {~a1, a1} |c€ DL}
f3 {CJ_UC()UCl | c; €D,,co € Dy, 1 GDl}
return Absorp(fo U fiU foU{c€ f3| L &c})
end if
end procedure

The DC4-decomposition can be used to construct Algo-
rithm 2 which translates a monotone ternary function table
into a propositional logic formula in disjunctive normal form.
The algorithm is very similar to Algorithm 1. In contrast to
Algorithm 1, Algorithm 2 does not require the non-monotone
absence tests, and computes the four functions fo, f1,f2,f3 ac-
cording to Theorem 7 instead. As in Algorithm 1, Absorp(D)
removes all cubes in D that are strict supersets of other cubes
in D. In addition, it can remove constants 1, can merge
cubes by the following equivalences, and removes cubes with
constant 1 from f3 since these cannot become 1 (recall
Theorem 4):

e LANpA-p&S pA-pand LV eV -p & pVp

e TANPATQYNV T ANPNA-p= A

e LAXAVIA-TzApES LAY
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V. RELATED WORK
A. Regular Ternary and B-Ternary Functions

Theorem 7 and Algorithm 2 directly imply the following
theorem which in turn implies that propositional logic with
constants L, 0, 1 exactly corresponds with the monotone
ternary functions (see also [27]):

Theorem 8 (Syntactic Representation of Monotone Ternary
Functions). The set of monotone ternary functions can be
recursively constructed as follows:

e monotone ternary functions with no variables are the
constants 1, 0, 1

e every monotone ternary function f with n + 1 variables
can be written as f(z,y) = foly) A—xV fily) Az V
fo(y) A=z Az V f3(y) with monotone ternary functions
fo, f1, f2, f3 on n variables y

Proof. The proof proceeds by induction on the number of
variables: The induction base is clear, and the induction step
follows by the induction hypothesis and Theorem 7. O
By Algorithm 2, we further see that every monotone function
can be written as a DNF with complementary terms z A -z
as well as the constant | which was proved differently in
[27]. However, Algorithm 2 computes formulas different to
those in [27].

In previous work, Mukaidono also considered B-ternary
functions which is the strict subset of monotone ternary
functions that map boolean vectors x € B™ to boolean
values f(z) € B. In [24], [25], Mukaidono proved that the B-
ternary functions exactly correspond with the propositional
logic formulas without the constant L. Hence, the following
theorem can be concluded as well:

Theorem 9 (Syntactic Representation of B-Ternary Func-
tions). The set of B-ternary functions can be recursively con-
structed as follows:

e B-ternary functions with no variables are constants 0, 1

e every B-ternary function function f with n + 1 variables
can be written as f(z,y) = foly)A—zV f1(y)AzV fa(y)A
-z Az V f3(y) with B-ternary functions fy, f1, fo, f3 on
n variables y

While f(0,y) and f(1,y) are B-ternary if f is B-ternary,
f(L,y) may not be B-ternary so that D may contain cubes
with constant L. However, Algorithm 2 removes all constants
1 for B-ternary functions: Adding —x A « in f eliminates
the constants | in f, anyway, and since cubes with constant
1 cannot become 1, these are also removed from f3 (recall
Theorem 4).

B. Sequential Functions

The set of sequential functions is a very important subset
of the monotone functions. Intuitively, sequential functions
can avoid failures in the evaluation of expressions like x >
0A £ > 2 by evaluating the left side = > 0 first and only if
it is true, the right side is evaluated as well.

Definition 2 (Sequential Functions). The set of sequential
ternary functions can be recursively constructed as follows:
e sequential ternary functions with no variables are the
constants 1, 0, 1
e any sequential ternary function with n+1 variables can be
written as f(x,y) = (x = fi1(y) | fo(y)) with monotone
ternary functions fy and f1 on n variables y
Functions that are not sequential are called parallel.

It can be easily proved that all sequential functions are mono-
tone and closed under composition. Hence, the sequential
functions are a strict subset of the monotone functions:

Theorem 10 (Sequential Functions). All sequential functions
allow a DC2 decomposition, but there are DC2 functions that
are not sequential.

Proof. The sequential ITE operator can be expressed by —,
A, and V as follows:

(Y=¢1]v0) & waANYV o1 AYV oy Ay

Hence, all sequential functions are special DC2 functions
where f>(y) := 1 holds. A DC2 function which is not
sequential is for example f(z,y) : =z A—x Ay A —y. O
Parallel ITE can also be expressed by —, A, and V:

(Y= 1]w0) & woNyV o1 Ay Vo Al

and conversely, parallel ITE can express negation, conjunc-
tion, and disjunction®. However, if we would only consider
the functions that were obtained by parallel ITE f(z,y) :=
(x = f1(y) | fo(y)) with monotone functions fy and f;, we
would only obtain a strict subset of the DC3 functions, so
that parallel ITE is not directly useful for the enumeration
of all monotone functions.

VI. CONCLUSIONS

The monotone ternary functions have undoubtedly the most
applications among the subsets of ternary functions con-
sidered so far. This paper presents a new decomposition
theorem for monotone ternary functions that splits any given
monotone ternary function into four functions by eliminating
one of the argument variables. Conversely, we can construct
all monotone ternary functions by combining four arbitrary
monotone ternary functions with a new variable according
to the decomposition theorem. This way, we can enumerate
all monotone ternary functions, and therefore we can use
it for the construction of recursive algorithms on monotone
ternary functions that eliminate one of the variables used in
each recursion step. As an example, we have described a re-
cursive algorithm that translates a given monotone function
into a propositional logic formula, and in this way, we easily
prove Mukaidono’s theorems on disjunctive normal forms of
regular ternary, i.e., monotone, and B-ternary functions.

2We have the following equivalences:
o< (p=0]1)

A S (9= 1] 0)

VY e (p=1]9)

inf(p,9) & (L= ¢|¥)
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