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Abstract—In exposed data path architectures, registers are
replaced by an on-chip network that connects their process-
ing units (PUs) directly. This allows the compiler to determine
PU allocation, instruction scheduling, and data transport
between the PUs. To prevent unnecessary synchronization of
the PUs, their network ports are typically buffered. Although
many performance models are available for traditional RISC
architectures, there are no specific performance models for
buffered exposed datapath (BED) architectures.

In this paper, we investigate the impact of the relevant
design parameters of BED architectures, consider their de-
pendencies, and determine reasonable parameter values for
designing cost-effective efficient BED processors. In partic-
ular, we examine the number of PUs, the instruction issue
width (superscalarity), the size of network buffers, and the
latency of instructions, and relate these parameters with the
processor performance. We develop a performance model to
estimate the runtime in terms of the mentioned parameters
and validate our performance model with experimental re-
sults.

Index Terms—exposed datapath architectures, processor
performance models, design space exploration

I. Introduction

Modern processors consist of many concurrent components

such as register files, reservation stations, reorder buffers,

processing units, branch predictors, and caches that interact

closely with each other. The design parameters of these

components must be determined during processor imple-

mentation and affect the overall cost and performance of

the processors. However, determining these parameters with

hardware prototypes is nearly impossible, and even the use

of instruction set simulators is too time-consuming due to

the prohibitively large design space.
For this reason, various performance models have been

introduced [10], [17]–[20], [27], [28], [35]–[37], [39], [44],

[45], [47], [49]–[53], [61], [65], [68], [72], [73], [75] for

RISC processors. These performance models are not meant to

replace instruction set simulators, but rather to narrow the

design space by identifying dependencies between their de-

sign parameters. Thus, they can guide the use of simulators,

so that fewer simulation runs are needed to finally determine

design parameters. The available performance models for

pipelined and superscalar RISC processors provide a good

understanding of the relationships among their parameters.

Unfortunately, this is not the case for more recent types

of processor architectures, such as exposed datapath architec-

tures such as TTAs [14]–[16], [29], [32], [38], [77], RAW/Til-

era [66], [67], [71], TRIPS [12], [23], [55], [56], Tartan [48],

DySER [24], FlexCore [69], AMIDAR [22], STA [13], SCAD

[2], [5]–[7], [58], [60], Mozart [57], and others [21], [25], [30],

[31], [70], to name a few. As their name suggests, exposed

datapath architectures expose their internal datapaths to the

compiler. This allows the compiler to allocate processing units

(PUs) for the instructions, to schedule the instructions on

the PUs, and to manage the communication of intermediate

results between PUs.

Exposed datapath architectures are typically hybrid

dataflow/von Neumann architectures [8], [11], [34], [74].

Therefore, they still run sequential programs, but locally

exploit instruction-level parallelism (ILP) through dataflow

computing which means that computations are triggered

when operands are available. Typically, this requires buffers

to store intermediate results until they can be processed

further. Hence, many of these architectures are buffered ex-

posed datapath (BED) architectures. Their main architectural

paradigm is the decentralization of all processor components

[54], [76] to achieve quasi-linear scalable circuit designs [12],

[55] that can fully exploit the available ILP of programs. Due

to their different architecture, BED processors are based on

different design parameters than RISC processors.

In this paper, we therefore investigate the impact of

the design parameters of BED architectures, consider their

dependencies, and argue about reasonable values for imple-

menting cost-effective efficient BED processors. In particular,

we examine the number of PUs, the instruction issue width,

the size of buffers, and the latency of instructions, and

relate these parameters with the runtime of the program to

determine their impact on the performance. We develop a

performance model to estimate the runtime in terms of the

mentioned parameters and validate our performance model

with experimental results.

The paper has the following outline: In the next section,

we review related work on performance models, and explain

their use in processor design. We also describe a general

model of BED architectures that we use for our performance

model. Section III is the core of the paper and presents the

performance model which is validated by experiments in
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II. Related Work

A. Performance Models

Software simulators of processors such as SimpleScalar [3]

are based on the instruction set architecture (ISA) and the

microarchitecture of the processors. They can be used to

quickly evaluate the runtime of given programs for specific

values of design parameters before hardware prototypes are

actually implemented and can therefore be used to speed up

the processor design.

However, although ISA simulators are very fast, the design

space of complex processors which depend on many archi-

tectural parameters is too large to be fully explored by simu-

lation alone. For this reason, performance models [10], [17]–

[20], [27], [28], [35]–[37], [39], [44], [45], [47], [49]–[53], [61],

[65], [68], [72], [73], [75] have been introduced to identify

dependencies between architectural parameters which can be

used to narrow the design space. Although these performance

models are less precise than ISA simulators, they can be used

for a rough design space exploration that can be refined

by ISA simulators and hardware prototypes. Several kinds

of performance models for processors have been developed

which allow us to better understand the use of instruction

level parallelism (ILP) of processors.

Analytical performance models are based on mathematical

models of microarchitectural components and are usually

based on probability distributions. Noonburg and Shen [50],

[51] developed an analytical model of superscalar processor

performance that is based on Jouppi’s idea [37] to consider

the dependency between the ILP of programs and the ILP

in processors: Typically, the performance (measured by ILP)

grows linearly with the number of processor components,

but becomes constant when the program’s ILP is reached.

The performance model of Noonburg and Shen [50], [51]

considers probability distributions for branching, instruction

fetching and instruction issuing. Dubey et al. [18] focus

on the impact of the processor’s instruction window size

to search for independent instructions, and Zyuban et al.

[75] study the impact of data dependency distances in this

context. Michaud et al. [47] found that the fetch rate grows

approximately as the square root of the distance between

mispredicted branches and is proportional to the available ILP

in a fixed-size instruction window. The performance model

of Karkhanis and Smith [39] focuses additionally on caches,

but also on branch predictors, instruction issue width, and

reorder buffers. Finally, an even more complete model is

presented by Taha and Wills [65] which also considers the

number and cycle-accurate behavior of PUs, [10] computes

in-order vs. out-of-order superscalarity, and [49] even con-

siders the use of shared memory.

In contrast to analytical performance models, there are em-

pirical performance models which aim to reduce the number

or length of simulation runs by modeling characteristics such

as the basic block size, branch probabilities, and memory

access rates. In particular, statistical simulation [19], [20],

[52], [53], [73] approximates the execution characteristics of

a given program by a profile that is used during the design

space exploration to generate a shorter synthetic program

with the same characteristics. In sampled program simulation

[27], [28], [61], parts of the simulated program are identified

that have the same average characteristics as the entire

program, and a weighted average of such program regions is

computed as the overall result.

Finally, there are trend models that study processor per-

formance by simulating some randomly selected processor

instances and extrapolating the observed trends to unknown

instances. For the extrapolation, different methods are used

such as linear [45] and non-linear regression [36] and also

artificial neural networks [35].

In addition to processor performance models, there are

also performance models for general parallel computing such

as Amdahl’s law [1] and Gustafson’s law [26]. However,

they do not consider architectural parameters of processors,

but consider parameters of the programs like the size and

structure of basic blocks to study the ILP of general programs

[44], [68], [72]. Finally, there are also performance models

for on-chip networks [4], [46] that become more and more

important for manycore processors.

B. Buffered Exposed Datapath (BED) Architectures

Exposed datapath architectures [5], [7], [12], [14]–[16], [22],

[24], [32], [38], [55], [58], [66], [67], [71] are relatively new

processor architectures that are descendants of VLIW pro-

cessors [14]–[16]. They expose their microarchitecture to the

compiler so that the compiler is able to allocate processing units

(PUs) for the instruction execution, to schedule the instructions

on the individual PUs, and to trigger the communication of

intermediate results between PUs. Particular architectures such

as TTAs [14]–[16], [29], [32], [38], [77], RAW/Tilera [66],

[67], [71], TRIPS [12], [23], [55], [56], Tartan [48], DySER

[24], FlexCore [69], AMIDAR [22], STA [13], SCAD [2], [5]–

[7], [58], [60], Mozart [57], and others [21], [25], [30], [31],

[70] use quite different concepts at a first glance. However,

their common idea is to decentralize all processor compo-

nents to avoid bottlenecks in the hardware design [54], [76],

and therefore to use powerful on-chip networks to connect

the PUs to make use of a large number of PUs [12], [55].

The compiler not only schedules the instructions, but also

allocates the PUs, and handles the communication of inter-

mediate results between PUs. In addition, these architectures

are hybrid dataflow/von Neumann architectures [8], [11], [34],

[74] which means that they still execute sequential programs,

but take advantage of ILP through dataflow computing which

is enabled by the buffered communication of the PUs that

ultimately triggers the computations.

A general template of a buffered exposed datapath (BED)

architecture is shown in Figure 1: BED architectures consist

of a data memory accessed by a load-store unit (LSU), a

program memory accessed by a control unit (CU), and a

number of general-purpose or special-purpose PUs. All PUs,

the LSU, and the CU are connected via FIFO buffers through

an interconnection network with each other to avoid an
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Fig. 1. General Template of a BED architecture [59]

unnecessary synchronization. In many cases, the compiler

generates move code instructions src → tgt. The target tgt
is thereby an input buffer of one of the PUs, the LSU or

the CU, and src may be an output buffer, an opcode or

an immediate operand. It is sufficient that PUs have two

input buffers PU[i].inL, PU[i].inR and two output buffers
PU[i].outL, PU[i].outR as well as a special input buffer

PU[i].opc for the opcodes. PUs fire if they find operands

in their input buffers, and produce results that are stored in

their output buffers. The interconnection network takes care

of the data transport and will move available values from

output buffers to input buffers. For example, Figure 2 shows

a move code program using four PUs to add the sum of the

first eight natural numbers.

While the hardware design of BED processors is simplified

compared to other architectures, the compilers are challenged

to produce efficient and correct code [58], [59]. Traditional

compilers focus mainly on the efficient use of registers

which is achieved by depth-first traversals of dataflow graphs.

However, this reduces the use of ILP which is optimized by

breadth-first traversals of dataflow graphs. In this paper, we

consider an optimal code generation that is based on breadth-

first traversals of dataflow graphs.

III. A Performance Model for BED Architectures

In this section, we develop a performance model to estimate

the runtime of a program on BED machines. The performance

model defined in Proposition 1 considers several parameters

of a BED machine such as the number of PUs p, the size

of each FIFO buffer β, the number of cycles λ required to

execute an average instruction, and the maximum number of

move instructions w provided by the control unit per cycle.

A. Program Parameters

The number of move instructions n in the program is obvi-

ously the most important parameter, but there is also the ILP

α of the program which determines how many instructions

can be executed in parallel on average. If α = n would

hold, then all instructions would be completely independent

of each other and the entire program could be executed in

a single step using sufficiently many PUs. However, even

in this case, the number of PUs can be much smaller

than n because many of the move instructions are data

transfers that are handled solely by the on-chip network

of the BED architecture. Therefore, we distinguish between

the total number n of instructions in the program, and the

included node firings f = μ · n < n. For a fully parallel

execution within a single step, we would therefore only need

f PUs since the remaining instructions are handled by the

data transfer network. As program parameters, we therefore

consider the number of move code instructions n, the fraction
of contained firings μ = f

n , and the average ILP α, i.e., the
average number of instructions executed in parallel.

B. Architecture Parameter 1: Instruction Latency

The instruction latency λ is the number of cycles it takes to

execute an instruction. Typically, the latency depends on the

type of instruction, since branches, load/store instructions,

and complex arithmetic instructions typically take more time

than token moves or simple arithmetic instructions. On the

other hand, it does not depend on the other parameters, nor

does it depend on a particular program. For the experiments,

we assume that load/store instructions take 12 cycles, di-

vision takes 8 cycles, multiplication takes 5 cycles, and all

other instructions take 3 cycles, which is justified by our

hardware prototype. Since the simpler instructions are much

more frequent than others, typical values of λ can be close

to 3. Therefore, we consider the instruction latency λ as a

constant in the following, unless the benchmarks contain

many complex operations.

C. Architecture Parameter 2: Number of Processing Units

An obvious parameter of a BED architecture is the number

of available PUs p. While the PUs can generally provide

specific functionalities, we consider only general-purpose

PUs in this paper to better analyze the impact of their

number. Due to the design of BED architectures, chip size

and power consumption grow only linearly with the number

of PUs. Typically, the runtime decreases until the processor

reaches the limit of the ILP provided by the program, and

then remains constant, so that more PUs do not increase

performance [50], [51]. Therefore, for a fixed program, we

investigate how the runtime depends on the number of PUs.

In particular, we want to find out whether the BED machine

is able to use the entire ILP of the program, and how the

performance grows with limited resources.
In the best case, all instructions are independent of each

other and the runtime of a program with n instructions

can be computed in time t ≈ n·λ
p . However, according to

Amdahl’s law, this is typically unrealistic, since there are

usually some sequential steps in programs. If the ILP allows

on average only α of the n instructions to be executed at a

time, then the runtime will instead be t ≈ n
α . Furthermore,

the PUs are only responsible for firing nodes, and among

the α instructions that can be executed per cycle, there are

only μ ·α many node firings that can be handled by the PUs.

For this reason, we get the following estimation for a fully

utilized system
p

λ
≈ μ · α

Based on this, we obtain the following estimation for the

runtime that we will refine further in the following:

t ≥ μ · n
min(μ · α, p

λ )
= max

{
n

α
,
μ · λ · n

p

}
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D. Architecture Parameter 3: Instruction Issue Width

The instruction issue width ŵ is the maximum number of

move instructions that will be fetched and sent to the PUs in

one processor cycle. The actual number of instructions issued

may be less than the maximum because the buffers of the

PUs may be full. An obvious, but typically unrealistic, upper

bound for the issue width is the size of the program. In this

case, all move instructions are fetched and sent to the buffers

of the PUs in the first cycle, and the rest of the execution

can then be completely organized along the availability of

operands, i.e., in dataflow order, to achieve maximum ILP.

In a balanced system, the number of instructions w pro-

vided on average by the control unit is equal to the number

of instructions consumed by the PUs. Since p PUs with

an average instruction latency λ can execute on average p
λ

instructions, but only μ · w of the provided instructions are

real node firings, we find the following relationship

p

λ
≈ μ · w ≈ μ · α

Hence, if we provide only w < p
μ·λ instructions per cycle,

some of the PUs will become idle, and we would achieve the

same performance with fewer PUs as well.

E. Architecture Parameter 4: Buffer Size

As already mentioned in the previous section, the maximum

buffer size β̂ is another parameter of a BED architecture. It

directly affects the issue width and the possible parallelism

of the BED machine. In particular, the buffers must be large

enough to store the instructions that are issued in each cycle

so that with two buffers per PU, we need the following with

the average number of tokens β in the buffers:

2 · β · p ≈ w

F. Performance Model

Having discussed the parameters of the BED architecture

and the programs executed on it, we now summarize the

previous discussions in a performance model: We consider

the execution of a program with n instructions containing

μ·n node firings and an average ILP α as determined by data

dependencies. The program is executed on a BED architecture

with p PUs, instruction issue width w, instruction latency

λ, and buffer size β. Since we are considering a particular

program and want to determine an optimal BED machine

for its execution, we consider n, μ, and α to be constants.

The instruction latency λ is also considered to be a constant,

since it depends only on the circuit implementation of the

arithmetic operations. In addition to the average values, we

also want to determine the minimum number p of PUs, the

minimum instruction issue width w, and the minimum buffer

size β such that the minimum runtime t is obtained for the

program under consideration.

For a processor architecture with unlimited resources, the

program can be executed in time t = n
α , so the real runtime

on a BED machine must be greater than this value. For

limited resources, the following potential bottlenecks exist:

1) The number of PUs may not be sufficient to perform

μ · α node firings per cycle. Since the BED machine

is able to execute p
λ node firings per cycle, we should

have p
λ ≈ μ · α.

2) The control unit must provide enough instructions per

cycle, thus w ≈ α.
3) The size of the buffers β is not sufficient to store w

instructions per cycle, thus, we demand 2 · β · p ≈ w.

We therefore obtain the following performance model:

Proposition 1 (Performance Model). The runtime t of a

program with n instructions, μ · n node firings, and average

ILP α on a BED machine with p PUs, buffer size β, instruction
latency λ, and instruction issue width w is determined as

follows:

t(p, w, β) =
n

min{α, p
μ·λ , w, 2pβ}

BED machines should therefore be designed with parameters

p,w,β,λ such that the following equations hold:

p

μ · λ = w = 2 · β · p

The perfect BED machine will therefore use p = α ·μ ·λ PUs

with an instruction issue width w := α = p
μ·λ and buffer

size β := α
2p = w

2p = 1
2μλ . With these estimations, we can

already see that the buffer size β is quite uncritical, i.e., it

can be chosen independent of p and w, and depends only

on μ and λ. In contrast, the instruction issue width w must

grow linearly with the number of PUs p.

In the following, we want to validate the above equations

with experiments. As mentioned above, we therefore con-

sider the execution of a program with n instructions, μ · n
node firings, and average ILP α. For the execution, we can

therefore consider two phases [37], [50], [51]:

a) Full Utilization: is obtained for parameters

min{ p
μ·λ , w, 2pβ} ≤ α. For these parameter values, all

p PUs are fully utilized, thus the BED machine executes
p

μ·λ ≤ α instructions per cycle, the control unit issues

w ≤ α instructions per cycle, and the FIFO buffers store

these instructions per cycle. For the runtime, we have

t(p, w, β) =
n

min{ p
μ·λ , w, 2pβ}

Thus, the runtime depends anti-proportionally on p and w.

b) Underutilized Execution: is obtained for parameters

min{ p
μ·λ , w, 2pβ} > α where the BED machine could exe-

cute more instructions per cycle than the program allows.

Hence, the runtime converges to its lower bound t = n
α .

Thus, for a given program with a high degree of average

ILP α, we will see that the runtime μ · λ · n
p decreases anti-

proportionally with a growing number of PUs p until we

reach full utilization. After that point, more PUs will not

improve the performance. Also, if the instruction width is

less than α, it will limit the performance that reaches its

lower bound n
w > n

α .
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1 -> PU[0].inL
2 -> PU[0].inR
AddN -> PU[0].opc
3 -> PU[1].inL
4 -> PU[1].inR
AddN -> PU[1].opc
5 -> PU[2].inL
6 -> PU[2].inR
AddN -> PU[2].opc
7 -> PU[3].inL
8 -> PU[3].inR
AddN -> PU[3].opc
PU[0].outL -> PU[0].inL
PU[1].outL -> PU[0].inR
AddN -> PU[0].opc
PU[2].outL -> PU[1].inL
PU[3].outL -> PU[1].inR
AddN -> PU[1].opc
PU[0].outL -> PU[0].inL
PU[1].outL -> PU[0].inR
AddN -> PU[0].opc

Fig. 2. Move Code for Adding Numbers 1,. . . ,8 using p=4 PUs in TreeSum.

IV. Experimental Results

In this section, we consider three benchmarks to validate our

performance model stated in Proposition 1. The programs are

given as dataflow graphs that are leveled according to their

data dependencies. These dataflow graphs can be mapped to

a BED machine with a single PU, and for a given number of

PUs p, the nodes are scheduled level by level by allocating

one of the available PUs (list scheduling is known to be

optimal [33], [42], [64] in this case). We then determine for

triples (p, w, β) the execution time t(p, w, β) with a cycle-

accurate instruction set simulator. In all experiments, the

values for the buffer size β turned out to be less important,

so that we focus on a mapping of (p, w) to the runtime t.
Instead of presenting 3D-surface maps, we prefer to extract

the optimal 3D-curve of points (p, w, t) consisting for a given
p the minimum width w to achieve the minimum runtime t.

A. Benchmark 1: Tree Sum

As a first benchmark, we consider the summation of m = 2k

numbers organized in a binary tree of height k. The move

code program requires m− 1 additions and 2(m− 1) move
instructions for transferring the intermediate results (see

Figure 2). In general, there are n = 3(m − 1) instructions

containing m − 1 additions and 2(m − 1) data transfers,

so that we have μ = m−1
3(m−1) = 1

3 . If we would execute

all nodes of a level of the binary tree in parallel, we

would obtain the minimum runtime tmin = k · λ. Since all

n = 3(m − 1) = 3(2k − 1) instructions are executed in this

time, we obtain α = n
tmin

= 3(2k−1)
k .

For example, for k = 9, we add m = 29 = 512 numbers

organized in a binary tree with m− 1 = 511 addition nodes

that are arranged in k = 9 levels. The minimum runtime

of the move code program with n = 3(m − 1) = 1533
instructions is tmin = k · λ = 9 · 3 = 27 and the average

ILP is α = n
tmin

= 1533
27 ≈ 56.77 . . ..

Using our simulator, we compute triples (p, w, t) consist-
ing of the runtime t obtained for numbers of PUs p and

0 50 100 150 200 250 0
250

500
750

0

500

1,000

1,500

#PUs p Width w

R
u
n
ti
m
e
t

Optimal Parameter Curve

Fig. 3. Optimal Parameter Curve for the Tree Summation of 512 Numbers
(blue) and its projection to the runtime-PU plane (red).

instruction issue widths w which yields a surface t(p, w).
For the obtained triples (p, w, t) on that surface, we compute

for each p the minimum w to obtain the minimum runtime

t which yields a curve in the coordinates (p, w, t) that is

shown in Figure 3. The points on this curve determine for

any number of PUs p, the minimum width w at which the

minimum runtime t was obtained. For this benchmark, the
minimum instruction width w has the upper bound 3p. In
between the values p with w = 3p, we see instruction issue

widths w < 3p. They result from the possibility to distribute

the nodes on more PUs. Thus, some PUs can start their

executions later without increasing the runtime. Since the

minimal w strongly depends on the number of PUs starting

to execute in the first cycle, this reduces the required w.
As expected, the minimum runtime t = 27 is reached for

p ≥ 256 with w ≥ 768. However, for 128 ≤ p < 256, we
already find a slightly higher runtime t = 30. Hence, with
almost half the number of PUs and instruction width, we

get almost the same performance! Also for 64 ≤ p ≤ 127,
we get acceptable runtimes 39 ≥ t ≥ 33. So, everything
is in accordance with our performance model: Considering

Proposition 1, we expect a linear dependency between p and

w which is confirmed by the experiment.

B. Benchmark 2: Parallel Prefix Computation

The parallel prefix computation is a fundamental algorithm

of parallel computing [41], [43], [63]: The task is to com-

pute, for a given sequence of operands x0, . . . , xn−1 and

an associative function f , the sequence of prefixes x0,

f(x0, x1), f(x0, f(x1, x2)), . . . , f(x0, f(. . . , xn−1) . . .). With

sufficiently many PUs, it is possible to solve the problem in

O(log(n)) time, and many algorithms of this complexity have
been proposed, including those by Sklansky [62], Kogge-

Stone [40], Brent-Kung [9], and Ladner-Fisher [43].

In this section, we evaluate the Brent-Kung and Kogge-Stone

algorithms represented as dataflow graphs in Figure 4 and

Figure 5, respectively, on a BED machine where we use a
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Fig. 4. Parallel Prefix Computation due to Brent-Kung for 16 Inputs.
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Fig. 5. Parallel Prefix Computation due to Kogge-Stone for 16 Inputs.

simple addition for the function f . The dataflow graph of the

Brent-Kung algorithm as shown in Figure 4 has 2·log2(n)−1
rows which have however dependencies from left to right as

shown in the graph. Hence, we add further copy nodes to

make sure that the dependencies are not within a row so that

each row can be fired in parallel. After this transformation,

there are n · (4 · log2(n)− 3) nodes in total including 2 · n−
log2(n)− 2 addition nodes, the same number of duplication

nodes, and (4 · n + 2) · log2(n) − 7 · n + 4 copy nodes. The

longest path through the dataflow graph starts in x0 and

leads to yn−2 with 4(log2(n) − 1) + 1 many nodes, so that

the minimum runtime is t = (4 · log2(n) − 3) · λ. Since we

need two move instructions for copy and duplication nodes,

and three move instructions for addition nodes, the program

has (8 · n − 1) · log2(n) − 4 · n − 2 move instructions. The

maximum ILP is therefore α = (8·n−1)·log2(n)−4·n−2
(4 log2(n)−3)·λ ∈ Θ(nλ ),

and μ = n·(4·log2(n)−3)
(8·n−1)·log2(n)−4·n−2 ≈ 1

2 .

The dataflow graph of the Kogge-Stone algorithm has 2 ·
log2(n) levels with n · (log2(n)− 1) + 1 addition nodes, the

same number of duplication nodes, and 2 ·n− 2 copy nodes,

thus 2 · n · log2(n) nodes in total. Since there are 5 · n ·
log2(n) − n + 1 instructions, we get μ = 2·n·log2(n)

5·n·log2(n)−n+1 .

The length of the longest path through the dataflow graph

has 2·log2(n) nodes which determines the minimum runtime

t = 2 · λ · log2(n).

TABLE I
Statistics for Brent-Kung and Kogge-Stone for 128 numbers

Brent-Kung Kogge-Stone

nodes f 3200 1792
rows 13 14
depth δ 25 14
min. runtime t = δ · λ 75 42
instructions n 6647 4353

μ = f
n 0.48 0.41

ILP α 88.6 103.6

0
32

64
96

1280
50 100

150
200

250
0

500

1,000

1,500

2,000

#PUs p Width w
R
u
n
ti
m
e
t

Optimal Parameter Curve

Fig. 6. Optimal Parameter Curve for the Brent-Kung Parallel Prefix Sum of
128 Numbers (blue) and its projection to the runtime-PU plane (red).

Table I shows some statistics for both dataflow graphs for

128 inputs. Since both graphs have 128 nodes in each level,

128 PUs are required for the minimum execution time.

The optimal parameter curves for 128 numbers are shown
in Figures 6 and 7, respectively, and are similar to the

curve of the binary tree sum. Their projections onto the

PU-time dimensions are shown in Figure 8, where the blue

curve is obtained for Brent-Kung and the red curve for
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Fig. 7. Optimal Parameter Curve for the Kogge-Stone Parallel Prefix Sum
of 128 Numbers (blue) and its projection to the runtime-PU plane (red).
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Kogge-Stone. The two curves show the anti-proportional

dependency between the runtime and the number of PUs

as predicted by our performance model, where the minimum

runtimes obtained for p ≥ 128 are 75 cycles (Brent-Kung)

and 42 cycles (Kogge-Stone), respectively.

Figures 9 and 10 show the projections of the optimal

parameter curves shown in Figures 6 and 7 onto the PU-

width dimensions. As can be seen, we can find for each

benchmark a constant κ such that w(p) ≤ κ · p which

confirms the linear dependency between the width w and

the number of PUs p as predicted by our model.

C. Benchmark 3: Odd-Even Sorting

Odd-even sorting is a relatively simple parallel sorting al-

gorithm that requires O(n2) work with a parallel runtime

O(n) using O(n) PUs. The algorithm performs a sequence
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Fig. 10. Instruction Issue Width in Terms of PU Number for the Kogge-
Stone Parallel Prefix Sum of 128 Numbers.

of compare&swap operations in pairs of rounds where in

the first round of such a pair all elements with even/odd

indices x[2∗i],x[2∗i+1] are compared, and in the sec-

ond round of the pair, all elements with odd/even indices

x[2∗i+1],x[2∗i+2] are compared. Thus, odd-even sorting

of n numbers requires �n
2 � and �n−1

2 � compare&swap op-

erations in each first and second round, respectively, (see

Figure 11). The dataflow graph has 1
2 · (27 · n2 − 13 · n)

nodes and its move code program has 1
2 · (61 · n2 − 33 · n)

instructions. Hence, μ ≈ 0.44. Moreover, we have n levels

of compare&swap subgraphs and each subgraph has 7 levels.

Thus, we have 7n levels, and the minimum runtime is 7λn.
Figures 12 and 13 show the results for sorting 16 numbers.

The dataflow graph has 3352 nodes with at most 8 · 6 = 48
nodes in a level, and its move code program has 7544

instructions. The curves show a precise anti-proportional

dependency between the minimum runtime t and the number
of PUs p as predicted by our performance model. The

minimum runtime t = 7 · 16 · 3 = 336 cycles is achieved

with p ≥ 48 PUs.

Clearly, BED architectures have a fixed number of PUs

p and a fixed instruction issue width w. According to our

performance model, p and w determine each other in a

balanced BED architecture. Otherwise, either more instruc-

tions than necessary are issued, or not all PUs can be

utilized. This phenomenon is shown in Figure 13 where the

runtime depending on the number of PUs is shown for fixed

instruction issue widths w ∈ {4, 8, 16, 32} given in red, blue,

brown, and green color. These curves follow the optimal

runtime until a larger width is required, and then remains

constant because too few instructions are issued to utilize

further PUs. While this should be clear, it is noteworthy that

we get the optimal runtime t = 336 with p ≥ 48 PUs only

for w ≥ 32. This instruction width is not reasonable because

of the anti-proporitional dependency between t and w that

gives already good runtimes for much smaller widths.
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V. Conclusions

This paper presents a performance model for buffered ex-

posed datapath (BED) processors. The model relates relevant

design parameters such as the number of PUs, the instruction

issue width, the size of FIFO buffers, the instruction latency,

the computation/communication ratio with the execution

time and the ILP of programs. Our benchmarks perfectly

validated the proposed relationships.

The performance model also shows that BED architectures

can utilize a large number of PUs to take full advantage of

programs’ ILP, and they require an instruction issue width

that grows proportionally to the number of PUs. Second,

there is a anti-proportional dependency between the runtime

and the number of PUs. Therefore, it is not reasonable to

determine design parameters for a minimum runtime since a

comparable runtime can often be achieved with much smaller

parameter values.
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