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Motivation

I RISC architectures are limited in using instruction-level parallelism
I exposed datapath architectures expose architecture details to the compiler
I hence, the compiler can allocate the processing units and can schedule the

transfer of intermediate results by the generated program
I performance models are used to determine good parameters for processor design
I performance models guide simulations by simulators and protoypes
I we present a performance model for exposed datapath architectures
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RISC Architectures

I RISC architectures dominate the processor world
I pipelined and superscalar implementations deliver high processor performance
I however, there are also problems with RISC architectures

I memory access became a bottleneck
I registers were introduced as fast on-chip memory
I compilers focus on the effective use of registers as scarce resource
I number of registers limits the amount of useable ILP
I number of registers cannot be easily increased

I the circuit complexity also grows with O(w2) when issuing w instructions per
cycle in superscalar implementations # bad power consumption
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Performance Models for RISC Architectures

I instruction set simulators can be used to determine design parameters
I in addition, several performance models exist for RISC architectures

I analytical performance models [14, 15, 9, 2, 12, 21, 10, 19, 1, 13]
I empirical performance models [17, 16, 4, 3, 20]
I sampled program simulation [18, 5, 6]
I trend models [11, 8, 7]

I many models focus on the size of the instruction issue width [2, 21, 12]
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Buffered Exposed Datapath (BED) Architectures
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I processor is a set of interconnected processing units (PUs)
I compiler takes care of instruction scheduling, PU allocation and data transports
I IO ports of PUs have FIFO buffers to avoid synchronization of PUs
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Move Code Programs and Virtual Channels

I intermediate results of PUs in BED architectures can be moved from PUs to PUs
# programs of BED architectures consist of move instructions src→ tgt
I src and tgt uniquely identify I/O buffers of the PUs, constants, and opcodes
I standard PUs have two input buffers inL, inR and two output buffers outL, outR,

and a further input buffer for the opcode
I move instructions like PU[i].outL→ PU[i].inR transfer the head value of

PU[i].outL to the tail of PU[i].inR
I move instructions are issued by the control unit, synchronously registered

at the PUs, and executed later when operands become available
# dataflow style execution of a sequential program
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Dataflow Graphs as Intermediate Compiler Representations

I BED architectures may execute many instructions in parallel
I to expose instruction-level parallelism (ILP) of sequential programs,

we suggest the following work flow:

sequential program→ dataflow graph→ move code program

I nodes of the dataflow graphs can fire when operands are available
# dataflow graphs expose the entire ILP of the sequential program
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More about Dataflow Graphs

a b

SEL

a b

NeqN0

D

ModN D

D

SWT

[0] I a fixed set of process nodes
I with static point-to-point connections
I each connection is a (unbounded) FIFO buffer
I nodes can fire if input values arrive
I values are buffered if not immediately consumed
# highly parallel MoC
I we do not need further details for the following
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Performance of BED Machines

I prototypes were implemented for some BED architectures like TRIPS and others
I while reasonable design parameters might have been chosen, no proofs or

arguments about their optimality were given
I simulators are required to identify relevant design parameters and their values
I however, many simulations are required which is time-consuming
I performance models are required to reduce the number of simulation runs
I in the following, we present our performance model for BED architectures
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Parameters of our Performance Model

I program parameters
I n move instructions
I µ · n nodes and (1− µ) · n edges in the dataflow graph
I α nodes can be fired in parallel in average (width of the dataflow graph)

I BED architecture parameters
I p general purpose processing units
I λ cycles for average latency of a node firing
I β entries in each input/output FIFO buffer
I w move instructions are issued in each step by the control unit
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A Performance Model for BED Machines
I Proposition: The runtime t of a program with n instructions, µ · n node firings,

and average ILP α on a BED machine with p PUs, buffer size β, instruction
latency λ, and instruction issue width w is determined as:

t(p,w , β) = n
min{α, p

µ·λ ,w , 2pβ}

I BED machines should therefore be designed such that the following hold:
p

µ · λ
= w = 2 · β · p

# w instructions can be stored in 2pβ buffer entries
# w instructions contain µ · w nodes of the dataflow graph
# µ · w nodes can be ‘fired’ by the p PUs with latency λ
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Benchmarking the Performance Model

I the performance model has been evaluated by benchmarks
I tree summation (of 512 numbers)
I parallel prefix computation (of 128 numbers with Kogge-Stone and Brent-Kung)
I odd-even transposition sort (of 16 numbers)

I for each benchmark
I we first determine for a given number of p PUs, the minimal runtime t
I for this minimal runtime t and p PUs, we minimize the instruction issue width w
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Tree Summation of 512 Numbers: Optimal Parameters
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I 512 numbers were added by first
adding 256 pairs, then 128 pairs,
etc. in a binary tree schedule

I w grows proportionally with p
as predicted by our model

I t grows anti-proportionally with
p as predicted by our model
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Parallel Prefix Computation by Kogge-Stone: Dataflow Graph
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Parallel Prefix Computation by Kogge-Stone: Optimal Parameters
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I the prefix sums of 128 numbers

were computed
I t grows anti-proportionally with

p as predicted by our model
I w has significant ‘noise’, but is

enveloped by a line that grows
proportionally with p

I the ‘noise’ is caused by mobility
windows whose size depends on
the remainder left by dividing
the number of nodes by p
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Parallel Prefix Computation by Brent-Kung: Dataflow Graph
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Parallel Prefix Computation by Brent-Kung: Optimal Parameters

0
32

64
96

1280 50 100150
200250

0

500

1,000

1,500

2,000

#PUs p Width w

Ru
nt
im

e
t

Optimal Parameter Curve
I the prefix sums of 128 numbers

were computed
I t grows anti-proportionally with

p as predicted by our model
I w has significant ‘noise’, but is

enveloped by a line that grows
proportionally with p

I the ‘noise’ is caused by mobility
windows whose size depends on
the remainder left by dividing
the number of nodes by p

18 / 24



Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Odd-Even Transposition Sort
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Summary of Contributions

I we present a performance model for BED architectures from which we derive that
balanced BED architectures require

p
µ · λ

= w = 2 · β · p

I this avoids potential bottlenecks, in particular
# every cycle, w = 2 · p · β instructions can be stored in the buffers
# every cycle, p = w · µ · λ instructions can be executed in parallel

I benchmarks proved the performance model
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Conclusions

I instruction issue width w must grow proportionally with the number of PUs
I for highly parallel programs, the size of FIFO buffers is less important
I optimal parameters are not reasonable due to the anti-proportional growth since a

comparable runtime can often be achieved with much smaller issue width and
number of PUs
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