
Performance Modeling and Analysis of Exposed Datapath
Architectures

Klaus Schneider, Demyana Selim, and Nadine Kercher

Department of Computer Science
RPTU University Kaiserslautern-Landau, Germany

FDL, September 9-12, 2025, St. Goar, Germany

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Motivation

I RISC architectures are limited in using instruction-level parallelism
I exposed datapath architectures expose architecture details to the compiler
I hence, the compiler can allocate the processing units and can schedule the

transfer of intermediate results by the generated program
I performance models are used to determine good parameters for processor design
I performance models guide simulations by simulators and protoypes
I we present a performance model for exposed datapath architectures

2 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Outline

1. Buffered Exposed Datapath (BED) Architectures

2. Dataflow Graphs and Move Code Programs

3. A Performance Model for BED Machines

4. Benchmarking the Performance Model

5. Summary

3 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

RISC Architectures

I RISC architectures dominate the processor world
I pipelined and superscalar implementations deliver high processor performance
I however, there are also problems with RISC architectures

I memory access became a bottleneck
I registers were introduced as fast on-chip memory
I compilers focus on the effective use of registers as scarce resource
I number of registers limits the amount of useable ILP
I number of registers cannot be easily increased

I the circuit complexity also grows with O(w2) when issuing w instructions per
cycle in superscalar implementations # bad power consumption

4 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Performance Models for RISC Architectures

I instruction set simulators can be used to determine design parameters
I in addition, several performance models exist for RISC architectures

I analytical performance models [14, 15, 9, 2, 12, 21, 10, 19, 1, 13]
I empirical performance models [17, 16, 4, 3, 20]
I sampled program simulation [18, 5, 6]
I trend models [11, 8, 7]

I many models focus on the size of the instruction issue width [2, 21, 12]

5 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Buffered Exposed Datapath (BED) Architectures

Interconnection Network

PU Core PU Core CU

Program

Memory

Data

Memory

LSU

I processor is a set of interconnected processing units (PUs)
I compiler takes care of instruction scheduling, PU allocation and data transports
I IO ports of PUs have FIFO buffers to avoid synchronization of PUs

6 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Move Code Programs and Virtual Channels

I intermediate results of PUs in BED architectures can be moved from PUs to PUs
programs of BED architectures consist of move instructions src→ tgt
I src and tgt uniquely identify I/O buffers of the PUs, constants, and opcodes
I standard PUs have two input buffers inL, inR and two output buffers outL, outR,

and a further input buffer for the opcode
I move instructions like PU[i].outL→ PU[i].inR transfer the head value of

PU[i].outL to the tail of PU[i].inR
I move instructions are issued by the control unit, synchronously registered

at the PUs, and executed later when operands become available
dataflow style execution of a sequential program

7 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Dataflow Graphs as Intermediate Compiler Representations

I BED architectures may execute many instructions in parallel
I to expose instruction-level parallelism (ILP) of sequential programs,

we suggest the following work flow:

sequential program→ dataflow graph→ move code program

I nodes of the dataflow graphs can fire when operands are available
dataflow graphs expose the entire ILP of the sequential program

8 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

More about Dataflow Graphs

a b

SEL

a b

NeqN0

D

ModN D

D

SWT

[0] I a fixed set of process nodes
I with static point-to-point connections
I each connection is a (unbounded) FIFO buffer
I nodes can fire if input values arrive
I values are buffered if not immediately consumed
highly parallel MoC
I we do not need further details for the following

9 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Performance of BED Machines

I prototypes were implemented for some BED architectures like TRIPS and others
I while reasonable design parameters might have been chosen, no proofs or

arguments about their optimality were given
I simulators are required to identify relevant design parameters and their values
I however, many simulations are required which is time-consuming
I performance models are required to reduce the number of simulation runs
I in the following, we present our performance model for BED architectures

10 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Parameters of our Performance Model

I program parameters
I n move instructions
I µ · n nodes and (1− µ) · n edges in the dataflow graph
I α nodes can be fired in parallel in average (width of the dataflow graph)

I BED architecture parameters
I p general purpose processing units
I λ cycles for average latency of a node firing
I β entries in each input/output FIFO buffer
I w move instructions are issued in each step by the control unit

11 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

A Performance Model for BED Machines
I Proposition: The runtime t of a program with n instructions, µ · n node firings,

and average ILP α on a BED machine with p PUs, buffer size β, instruction
latency λ, and instruction issue width w is determined as:

t(p,w , β) = n
min{α, p

µ·λ ,w , 2pβ}

I BED machines should therefore be designed such that the following hold:
p

µ · λ
= w = 2 · β · p

w instructions can be stored in 2pβ buffer entries
w instructions contain µ · w nodes of the dataflow graph
µ · w nodes can be ‘fired’ by the p PUs with latency λ

12 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Benchmarking the Performance Model

I the performance model has been evaluated by benchmarks
I tree summation (of 512 numbers)
I parallel prefix computation (of 128 numbers with Kogge-Stone and Brent-Kung)
I odd-even transposition sort (of 16 numbers)

I for each benchmark
I we first determine for a given number of p PUs, the minimal runtime t
I for this minimal runtime t and p PUs, we minimize the instruction issue width w

13 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Tree Summation of 512 Numbers: Optimal Parameters

0 50 100 150 200 250 0
250

500
750

0

500

1,000

1,500

#PUs p Width w

Ru
nt
im

e
t

Optimal Parameter Curve

I 512 numbers were added by first
adding 256 pairs, then 128 pairs,
etc. in a binary tree schedule

I w grows proportionally with p
as predicted by our model

I t grows anti-proportionally with
p as predicted by our model

14 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Parallel Prefix Computation by Kogge-Stone: Dataflow Graph

x0

D

x1

D

x10

D

x11

D

x12

D

x13

D

x14

D

x15

C

x2

D

x3

D

x4

D

x5

D

x6

D

x7

D

x8

D

x9

D

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

C AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN

D D D D D D D D D D D D D D C C

C AddNC AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN AddN

D D D D D D D D D D D D C C C C

C AddNC AddNC AddNC AddN AddN AddN AddN AddN AddN AddN AddN AddN

D D D D D D D D C C C C C C C C

C AddNC AddNC AddNC AddNC AddNC AddNC AddNC AddN

15 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Parallel Prefix Computation by Kogge-Stone: Optimal Parameters

0
32

64
96

1280 100 200
300 400

0

500

1,000

1,500

2,000

#PUs p Width w

Ru
nt
im

e
t

Optimal Parameter Curve
I the prefix sums of 128 numbers

were computed
I t grows anti-proportionally with

p as predicted by our model
I w has significant ‘noise’, but is

enveloped by a line that grows
proportionally with p

I the ‘noise’ is caused by mobility
windows whose size depends on
the remainder left by dividing
the number of nodes by p

16 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Parallel Prefix Computation by Brent-Kung: Dataflow Graph

x0

D

x1

AddN

x10

D

x11

AddN

x12

D

x13

AddN

x14

D

x15

AddN

x2

D

x3

AddN

x4

D

x5

AddN

x6

D

x7

AddN

x8

D

x9

AddN

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

C D C AddN C D C AddN C D C AddN C D C AddN

C C C D C C C AddN C C C D C C C AddN

C C C C C C C D C C C C C C C AddN

C C C C C C C D C C C AddN C C C C

C C C D C AddN C D C AddN C D C AddN C C

C D AddN D AddN D AddN D AddN D AddN D AddN D AddN C

17 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Parallel Prefix Computation by Brent-Kung: Optimal Parameters

0
32

64
96

1280 50 100150
200250

0

500

1,000

1,500

2,000

#PUs p Width w

Ru
nt
im

e
t

Optimal Parameter Curve
I the prefix sums of 128 numbers

were computed
I t grows anti-proportionally with

p as predicted by our model
I w has significant ‘noise’, but is

enveloped by a line that grows
proportionally with p

I the ‘noise’ is caused by mobility
windows whose size depends on
the remainder left by dividing
the number of nodes by p

18 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Odd-Even Transposition Sort

x1

D

x2

D

y1 y2

AndB

OrB

AndB

OrB

AndB

C

LesN

D

Not

DAndB

C

D D

D

C C C C

C

C

CC C

C

0
16

32
48

64 0 1020
3040

5060
0

500
1,000
1,500
2,000
2,500
3,000

#PUs p Width w

Ru
nt
im

e
t

Optimal Parameter Curve

19 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Summary of Contributions

I we present a performance model for BED architectures from which we derive that
balanced BED architectures require

p
µ · λ

= w = 2 · β · p

I this avoids potential bottlenecks, in particular
every cycle, w = 2 · p · β instructions can be stored in the buffers
every cycle, p = w · µ · λ instructions can be executed in parallel

I benchmarks proved the performance model

20 / 24

Outline BED Architectures BED Programs BED Performance Model Benchmarks Summary

Conclusions

I instruction issue width w must grow proportionally with the number of PUs
I for highly parallel programs, the size of FIFO buffers is less important
I optimal parameters are not reasonable due to the anti-proportional growth since a

comparable runtime can often be achieved with much smaller issue width and
number of PUs

21 / 24

References I

[1] Breughe, M., Eyerman, S., and Eeckhout, L.
A mechanistic performance model for superscalar in-order processors.
In International Symposium on Performance Analysis of Systems and Software (ISPASS) (New Brunswick, NJ, USA, 2012), IEEE Computer
Society, pp. 14–24.

[2] Dubey, P., Adams, G., and Flynn, M.
Instruction window size trade-offs and characterization of program parallelism.
IEEE Transactions on Computers 43, 4 (April 1994), 431–442.

[3] Eeckhout, L., Bell, R., Stougie, B., De Bosschere, K., and Kurian John, L.
Control flow modeling in statistical simulation for accurate and efficient processor design studies.
In International Symposium on Computer Architecture (ISCA) (Munich, Germany, 2004), IEEE Computer Society, pp. 350–363.

[4] Eeckhout, L., Nussbaum, S., Smith, J., and de Bosschere, K.
Statistical simulation: adding efficiency to the computer designer’s toolbox.
IEEE Micro 23, 5 (2003), 26–38.

[5] Hamerly, G., Perelman, E., Lau, J., and Calder, B.
SimPoint 3.0: Faster and more flexible program phase analysis.
Journal of Instruction-Level Parallelism 7 (2005), 1–28.

[6] Hamerly, G., Perelman, E., Lau, J., Calder, B., and Sherwood, T.
Using machine learning to guide architecture simulation.
Journal of Machine Learning Research 7, 12 (2006), 343–378.

[7] Ipek, E., McKee, S., de Supinski, B., and Caruana, R.
Efficiently exploring architectural design spaces via predictive modeling.
ACM SIGOPS Operating Systems Review 40, 5 (2006), 195–206.

References II

[8] Joseph, P., Vaswani, K., and Thazhuthaveetil, M.
A predictive performance model for superscalar processors.
In Microarchitecture (MICRO) (Orlando, Florida, USA, 2006), IEEE Computer Society, pp. 161–170.

[9] Jouppi, N.
The nonuniform distriubtion of instruction-level and machine parallelism and its effect on performance.
IEEE Transactions on Computers 38, 12 (December 1989), 1645–1658.

[10] Karkhanis, T., and Smith, J.
A first-order superscalar processor model.
In International Symposium on Computer Architecture (ISCA) (Munich, Germany, 2004), IEEE Computer Society, pp. 338–349.

[11] Lee, B., and Brooks, D.
Accurate and efficient regression modeling for microarchitectural performance and power prediction.
In Architectural Support for Programming Languages and Operating Systems (ASPLOS) (San Jose, California, USA, 2006), J. Shen and
M. Martonosi, Eds., ACM, pp. 185–194.

[12] Michaud, P., Seznec, A., and Jourdan, S.
Exploring instruction fetch bandwidth requirement in wide issue superscalar processors.
In Parallel Architectures and Compilation Techniques (PACT) (Newport Beach, California, USA, 1999), IEEE Computer Society, pp. 2–10.

[13] Mitra, R., Joshi, B., Ravindran, A., Mukherjee, A., and Adams, R.
Performance modeling of shared memory multiple issue multicore machines.
In International Conference on Parallel Processing Workshops (ICPP-WS) (Pittsburgh, Pennsylvania, USA, 2012), IEEE Computer Society,
pp. 464–473.

[14] Noonburg, D., and Shen, J.
Theoretical modeling of superscalar processor performance.
In Microarchitecture (MICRO) (San Jose, California, USA, 1994), IEEE Computer Society, pp. 52–62.

References III

[15] Noonburg, D., and Shen, J.
A framework for statistical modeling of superscalar processor performance.
In International Symposium on High-Performance Computer Architecture (HPCA) (San Antonio, TX, USA, 1997), IEEE Computer Society,
pp. 298–309.

[16] Nussbaum, S., and Smith, J.
Modeling superscalar processors via statistical simulation.
In Parallel Architectures and Compilation Techniques (PACT) (Barcelona, Catalunya, Spain, 2001), IEEE Computer Society, pp. 15–24.

[17] Oskin, M., Chong, F., and Farrens, M.
HLS: combining statistical and symbolic simulation to guide microprocessor designs.
In International Symposium on Computer Architecture (ISCA) (Vancouver, British Columbia, Canada, 2000), ACM, pp. 71–82.

[18] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.
Automatically characterizing large scale program behavior.
In Architectural Support for Programming Languages and Operating Systems (ASPLOS) (San Jose, California, USA, 2002), K. Gharachorloo,
Ed., ACM, pp. 45–57.

[19] Taha, T., and Wills, S.
An instruction throughput model of superscalar processors.
IEEE Transactions on Computers 57, 3 (2008), 389–403.

[20] Wenisch, T., Wunderlich, R., Ferdman, M., Ailamaki, A., Falsafi, B., and Hoe, J.
SimFlex: Statistical sampling of computer system simulation.
IEEE Micro 26, 4 (2006), 18–31.

[21] Zyuban, V., Brooks, D., Srinivasan, V., Gschwind, M., Bose, P., and Strenski, P.
Integrated analysis of power and performance for pipelined microprocessors.
IEEE Transactions on Computers 53, 8 (August 2004), 1004–1016.

	Outline
	Buffered Exposed Datapath (BED) Architectures
	Dataflow Graphs and Move Code Programs
	A Performance Model for BED Machines
	Benchmarking the Performance Model
	Summary

