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RISC architectures are limited in using instruction-level parallelism
exposed datapath architectures expose architecture details to the compiler

hence, the compiler can allocate the processing units and can schedule the
transfer of intermediate results by the generated program

performance models are used to determine good parameters for processor design
performance models guide simulations by simulators and protoypes

we present a performance model for exposed datapath architectures
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BED Architectures
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RISC Architectures

» RISC architectures dominate the processor world

» pipelined and superscalar implementations deliver high processor performance
» however, there are also problems with RISC architectures

P> memory access became a bottleneck

P registers were introduced as fast on-chip memory

» compilers focus on the effective use of registers as scarce resource
» number of registers limits the amount of useable ILP

» number of registers cannot be easily increased

» the circuit complexity also grows with O(w?) when issuing w instructions per
cycle in superscalar implementations & bad power consumption

4/24



BED Architectures
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Performance Models for RISC Architectures

P instruction set simulators can be used to determine design parameters
> in addition, several performance models exist for RISC architectures
» analytical performance models [14, 15, 9, 2, 12, 21, 10, 19, 1, 13]
» empirical performance models [17, 16, 4, 3, 20]
» sampled program simulation [18, 5, 6]
> trend models [11, 8, 7]

» many models focus on the size of the instruction issue width [2, 21, 12]
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Buffered Exposed Datapath (BED) Architectures

PUCore| [Pucore] [ su | [ cu

» processor is a set of interconnected processing units (PUs)
» compiler takes care of instruction scheduling, PU allocation and data transports

» |0 ports of PUs have FIFO buffers to avoid synchronization of PUs
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BED Programs
[ ele}

Move Code Programs and Virtual Channels
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intermediate results of PUs in BED architectures can be moved from PUs to PUs
programs of BED architectures consist of move instructions src — tgt
src and tgt uniquely identify 1/O buffers of the PUs, constants, and opcodes

standard PUs have two input buffers inL,inR and two output buffers outL, outR,
and a further input buffer for the opcode

move instructions like PU[i].outL — PU[i].inR transfer the head value of
PUJi].outL to the tail of PU[i].inR

move instructions are issued by the control unit, synchronously registered
at the PUs, and executed later when operands become available

dataflow style execution of a sequential program
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Dataflow Graphs as Intermediate Compiler Representations

» BED architectures may execute many instructions in parallel

> to expose instruction-level parallelism (ILP) of sequential programs,
we suggest the following work flow:

sequential program — dataflow graph — move code program

» nodes of the dataflow graphs can fire when operands are available

9~ dataflow graphs expose the entire ILP of the sequential program
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BED Programs
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More about Dataflow Graphs

>

a fixed set of process nodes

with static point-to-point connections

each connection is a (unbounded) FIFO buffer
nodes can fire if input values arrive

values are buffered if not immediately consumed
highly parallel MoC

we do not need further details for the following
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BED Performance Model
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Performance of BED Machines
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prototypes were implemented for some BED architectures like TRIPS and others

while reasonable design parameters might have been chosen, no proofs or
arguments about their optimality were given

simulators are required to identify relevant design parameters and their values
however, many simulations are required which is time-consuming
performance models are required to reduce the number of simulation runs

in the following, we present our performance model for BED architectures
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Parameters of our Performance Model

> program parameters

» n move instructions

» 1 - nnodes and (1 — u) - n edges in the dataflow graph

> « nodes can be fired in parallel in average (width of the dataflow graph)
» BED architecture parameters

» p general purpose processing units

> X cycles for average latency of a node firing

> [ entries in each input/output FIFO buffer

» w move instructions are issued in each step by the control unit
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A Performance Model for BED Machines

» Proposition: The runtime t of a program with n instructions, y - n node firings,
and average ILP « on a BED machine with p PUs, buffer size 3, instruction
latency A, and instruction issue width w is determined as:

n
min{c, /%\’ w,2pS}

t(p,w, ) =

» BED machines should therefore be designed such that the following hold:

p
P B-p
% w instructions can be stored in 2pf buffer entries
% w instructions contain p - w nodes of the dataflow graph
% p - w nodes can be ‘fired’ by the p PUs with latency A
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Benchmarks
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Benchmarking the Performance Model

» the performance model has been evaluated by benchmarks
> tree summation (of 512 numbers)
> parallel prefix computation (of 128 numbers with Kogge-Stone and Brent-Kung)
» odd-even transposition sort (of 16 numbers)
» for each benchmark
» we first determine for a given number of p PUs, the minimal runtime t
» for this minimal runtime t and p PUs, we minimize the instruction issue width w
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Tree Summation of 512 Numbers: Optimal Parameters

Optimal Parameter Curve

) | » 512 numbers were added by first

1,500 [ adding 256 pairs, then 128 pairs,
i etc. in a binary tree schedule

1,000 | » w grows proportionally with p

as predicted by our model

500 ||

Runtime t

750 » t grows anti-proportionally with
p as predicted by our model
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Parallel Prefix Computation by Kogge-Stone: Dataflow Graph
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Parallel Prefix Computation by Kogge-Stone: Optimal Parameters

Optimal Parameter Curve

: » the prefix sums of 128 numbers
\ were computed
>

t grows anti-proportionally with

z 1,500 p as predicted by our model
i= 1.000 » w has significant ‘noise’, but is
§ ’ enveloped by a line that grows
500 proportionally with p
0 ) » the ‘noise’ is caused by mobility
0 400 windows whose size depends on
9% 100 the remainder left by dividing
1280 the number of nodes by p

#PUs p Width w
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Parallel Prefix Computation by Brent-Kung: Dataflow Graph
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Parallel Prefix Computation by Brent-Kung: Optimal Parameters

Optimal Parameter Curve

» the prefix sums of 128 numbers
were computed

» t grows anti-proportionally with
p as predicted by our model

» w has significant ‘noise’, but is
enveloped by a line that grows
proportionally with p

» the ‘noise’ is caused by mobility
windows whose size depends on
the remainder left by dividing
the number of nodes by p
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Odd-Even Transposition Sort

Optimal Parameter Curve

Runtime t
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Summary of Contributions

» we present a performance model for BED architectures from which we derive that
balanced BED architectures require

p

AW B-p

P this avoids potential bottlenecks, in particular

% every cycle, w =2 - p- 3 instructions can be stored in the buffers
% every cycle, p = w - i - X instructions can be executed in parallel

» benchmarks proved the performance model
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Conclusions

P instruction issue width w must grow proportionally with the number of PUs
for highly parallel programs, the size of FIFO buffers is less important

» optimal parameters are not reasonable due to the anti-proportional growth since a
comparable runtime can often be achieved with much smaller issue width and

v

number of PUs
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