PLAYOUT - A Hierarchical Layout System

Bernd Schirmann
Gerhard Zimmermann
University of Kaiserslautern
D-67653 Kaiserdautern

1. Introduction

Very Large Scale Integration (VLSI) has become a technology of large economical impor-
tance. Mastering of this technology on one hand means the latest semiconductor processing
technology, on the other hand computer aided design. Whereas the first is a problem for phys-
ics and chemistry, the progress in the second field results from large activities in electrical
engineering and computer science. Although alarge body of knowledge about solutionsto par-
tial problems exists, there is still alack of combining all these results into integrated systems
that are applicable to design very complex VLSI circuits. Thisis especially nowadays the case
where we can see a shift from bottom-up to top-down design.

The pLAYOUT project aims at a solution of the systems problem, based on hierarchy, top-
down planning and integrating design toolsin a CAD framework which is based on an object-
oriented data model and a net-based design flow model. pLaYOUT supports the physical design
from behavioral synthesisto the generation of the mask data. PLAYOUT triesto enforce correct-
ness, consistency, and completeness of designs in order to minimize checking requirements.
PLAYOUT can be used as a fully automatic layout generator, but sufficient control is given to
the designer to interact with the design process. Only the inclusion of designers experience
will, in general, result in better than just acceptable layouts. Due to its strong focus on plan-
ning, PLAYOUT isalso auseful early design tool for evaluating system and logic synthesis. The
estimation component of physical circuit characteristics is the perfect back-end of the behav-
ioral design phase.

Compared to existing layout tools without a planning component, we hope to achieve better
results and less iterations in the design cycle. These advantages could be shown by alarge test
design of acircuit with nearly 300,000 standard cells using a prototype implementation of the
PLAYOUT design system. We will use this example throughout this paper to explain the func-
tion of the PLAYOUT system.

This article emphasizes the system approach, the planning aspect, and the use of a hierarchy.
New or improved algorithms will be of minor interest. Section 2 will give a short overview of
the pLAYOUT design system. Section 3 will then describe our (top-down) design methodol ogy
while Section 4 will describe our main toolboxes in more detail. At the end, we will present
some aspects of our CAD framework in Section 5 before we will conclude the paper by

1

addressing alarge test design in Section 6.

2. System Overview

Figure 1 shows the pLAYOUT system architecture. The system is composed of independent
toolboxes which perform the CAD functions. The toolboxes are separated because of different
implementation languages and data structures. Most toolboxes have been implemented by our
group but severa foreign toolboxes like TrveerWoLr [Sel87] and miMoLA [Mar90, Zim88.1]
have been adapted to the pLAYOUT System.

All toolboxes are loosely integrated in the pLayouT CAD framework pLAYFRAME. Each
toolbox still hasits central data structure and may have several tools that read and modify this
structure. Design data are retrieved from the design database PLAYBASE in form of pLIF files
and loaded into the local data structure [Sie89] 1 External toolboxes are adapted by format con-
verters so that the central design database sees a pLIF file interface only. For toolboxes for
which we have access to the source code, the converter has been integrated into the toolbox.
Otherwise the converter is a stand-alone interface.

Currently, each toolbox hasits own user interface and controller. Control can aso be passed
down from the design manager [SpS88]. The design manager keeps track of the design
progress and directs the database manager.

All design data are stored and administered by an object oriented non standard database.
Each pLIF file is composed of a set of design objects that either represent the inputs or the
results of adesign step in atoolbox. The database manager composes and partitions these files
for every toolbox application. The database stores al relations between complex design
objects while the primitive design data are stored in the regular file system. The database has
exclusive access to these files.

This structure is very flexible, but still efficient. The set of toolboxes can be easily changed,
tools can be added to each toolbox and toolboxes can be executed on different computer types.
The communication through files can be carried over any LAN and distributed database imple-
mentations are possible. With todays databases the level of complex objects as primitives
alows for sufficient response times. Design file composition and decomposition on the data-
base side and interpretation and generation on the toolbox side create overheads that are in the
same range as the tool execution times. This disadvantage is compensated by the flexibility
which is especially valuable during the tool development and prototype phases. With progress
in nonstandard database research this file/complex object principle can be replaced in order to
reduce the overhead.

Figure 2 shows the dataflow between the toolboxes in a domain-level plane. Three domains

1. PLIF isadesign data exchange format [Sie88] like EDIF [EDI87] and veDL [HDL88]. In
contrast to other exchange formats, PL.IF has special language constructs for the physical
planning phase.

Schematic Entry

g
Q
=
—
=
o
=.
-]
«Q

}ﬁﬁ

Design M anagement

A

Shape Function

Generator RPC

Chip Planner

LIF«
A

Database Design

e
bl

Cell Synthesis

L IR« »| M anagement Data
Chip Assembly @ >
C_ADT > . 7
Objgct-oriented
atabase
External Tool System

)
«
=
=z
®
.
2

Converter

v
r

A
v

External Tool

(e.g. TimberWolf) Converter

#

Figurel PLAYOUT design environment.
All PLAYOUT tool boxes communicate via a design data base and ASCII (PLIF)
files. External tools are adapted by converters. The design management istigthly
coupled to the database via remote procedure call interface (RPC).
have been defined earlier |ZIm81]: behavior, structure and the physical domain. The early
design phases like Hardware/Software Co-design, High-Level Synthesis, and Logic Synthesis
cover the left part of the plane while the physical design phase consisting of Chip Planning,
Place& Route, and Layout Synthesis correspond to the right side. Verification and extraction
steps as well as simulation and test aspects can be found in all design phases. We split the
physical domain into floorplan and masklayout because of our chip planning emphasis.

Cells compose supercells or represent the complete system and are composed of subcells or
are leaf cells. Thisrelation defines an aggregation hierarchy which is represented by the levels
in Figure 2. The levels can be defined as needed and the three levels in Figure 2 describe an
example only.

In this figure, toolboxes, as for example the curr Pranner, are placed on domain boundaries
because they transform design data from one domain into another. Synthesis tools transform
data of any domain into data of the next domain to the right, and extraction tools work in the
opposite direction. Our ReparTITIONER IS @N Alternative within a single domain. All toolboxes

3

BEHAVIOR STRUCTURE FLOORPLAN MASKLAYOUT

Schematic | l
Entry R
e Shape Chip Call
g gg{ﬁ? Al Planning Assembly
MIMOLA : T l T
i Shape Chip Cell Cdl
it ggﬂgg D1 | Planing | | Synthesis| | Assembly
OASIS 0 I | 1
! Shape Cell
i : .
n SEE5: Synthesis
Schematic g |
Entry

Figure2 PLAYOUT toolboxes.
This figure shows the most important PLAYOUT synthesis toolboxes. They per-
form the design over all domains, from behavior up to masklayout. Most tool-
boxes are used recursively at several hierarchy levels.
The arrows show the general physical design flow.

at least interact with two levels: the cell-under-design (CUD) and its subcells. At the top level
the CUD is also called the system-under-design (SUD).

Figure 2 only shows the pLAYOUT tools which are most important for the physical top-down
approach. Logic synthesis tools and module generators as well as the test environment are not
part of PLAYOUT toolbox set but they are adapted with the oas1s design system [KBK90].

3. Design M ethodology

Figure 2 can aso be used to explain the design methodology of pLayouT. Starting point isa
behavioral description of the system that has to be designed. This description is normally hier-
archical and has to be transformed into a netlist. The synthesis will be performed by different
toolboxes depending on the hierarchy level and the type of the behavioral description. The
structure may be designed manually and entered via a schematic entry tool. However, thisis
the most time-consuming and error-prone possibility. More preferable is the usage of high-
level synthesis tools at processor level, logic synthesis tools at RT level, and module genera-
tors for the basic functions. Structural data of standard functions may also exist in a library.
Furthermore, a netlist may already exist from a previous implementation, perhaps with a dif-
ferent technology. Any mixture of sources is possible. A hierarchical netlist is complete if all
basic functions are mapped onto layout primitives.

In PLAYOUT we use the high-level synthesis system miMoLa Mss 11 [Mar90] that has been
developed at the University of Dortmund. For all other circuit descriptions above and below

4

that hierarchy level we used a schematic entry tool for synthesizing our test designsin the past.
Fortunately, we now can use the logic synthesis part of the oas1s design system instead of
designing all these cells manually. Hardware/software co-design aspects are not considered by
PLAYOUT until now.

In our running example that will be addressed in more detail at the end of the paper, 12 pro-
cessing elements had been described behaviorally and synthesized with MIMOLA. A MIMOLA-
to-PLIF interface that is integrated into MIMOLA generated the netlists at the processor level
and amodulelist at the RT-level. In order to create the internal structure of the RT-modules, we
used our schematic entry toolbox. Many of these RT-modules like multiplexers were refined in
many hierarchy levels because of their high degree of regularity. At the lowest level the basic
functions were mapped onto the commercial Siemens standard cell library acMos4H. At the
upper-most hierarchy level, the twelve processors were connected to implement an asynchro-
nous computing system by again using our schematic entry tool. We called the top-level circuit
XLII.

The structure hierarchy normally shows partitions that resemble functional units as for
example processors, adders, flip-flops, or gates. Rarely this partitioning is good for physical
design. Physical design tools generate good results only if the number of subcells and the rela-
tive sizes of the subcells are within a certain range. Both conditions are violated by typical
behavioral designs. In most cases, we have too many register transfer blocks as part of a pro-
cessor netlist which may be large memories as well as small inverters. On the other hand, the
register transfer blocks are built up by a deep hierarchy with few modules at each level. The
cells at system level also consist of a small number of subcells only.

We call the modification of the behavior-oriented netlist hierarchy into a new hierarchy
which fits to the physical design phase repartitioning. The automation of repartitioning is till
an unsolved problem in VLS design. A “flat” design with only one level of hierarchy would
not solve the problem, because the complexities of the resulting placement and routing prob-
lems are too high to be feasible. Flattening the hierarchical netlist and then computing a new
hierarchy from scratch (which is called partitioning) is neither a good approach because we
then loose the whole regularity of the circuit. The modification of the hierarchy has to be as
small as possible.

After repartitioning, hierarchical layout is generally done bottom-up. This means that first
the layout primitives are combined to form detailed layouts of larger cells, these are then com-
bined again until the chip is complete. At each level optimal layouts are sought, resulting in
corresponding shapes and pin positions of each cell beforeit is used at the next higher level.

The problem of the bottom-up approach is that local decisions govern global ones. It is
unlikely that different shapes (rectangles or more complex polygons) will fit together without
wasted area. If the placement of subcells is optimized for high area utilization, wiring length
and routing area at the higher hierarchy level will increase, as aready has been observed by
Breuer [Bre83].

Top-down chip planning tries to avoid wasted area and large signal delay times on higher
(global) levels. Shapes are planned which will fit together with minimal dead area and which
can be placed with minimal wiring length and total area at the higher levels. In order not to
push the waste to the lower levels, a prediction of the influence of the global placement on the
local subcell area and timing behavior is necessary. Specifically, this means a prediction of the
influence of shape and pin locations on the characteristics of the subcells. The influence on the
subcell area, which is aready well examined, is generally expressed by shape functions. In
contrast to that, the influence on the subcell’s timing behavior is still an important research
topic. The goal of chip planning is atrade-off between global and local aspectsin order to find
better layouts than with purely bottom-up methods.

After repartitioning our area estimator called Suapre Funcrion GeneraTor Calculates shape
functions for al cells in the hierarchy. Inputs are the known shape functions of the used cell
library (leaf cells) and the complete structural description. Figure 2 shows the bottom-up data-
flow of three levels of shape function generation. Shape functions could be calculated in post-
order in the hierarchy tree. This would cause many redundant calculations in the case of
regularity. Redundancy is avoided by exploiting the cell type concept, i.e. by generating the
shape functions for all non-leaf cells instead of the instances in the hierarchy tree. This has to
be done in reverse topological order of the cell hierarchy (which can be extracted from the
instance hierarchy). The chip level shape function isa prediction of thetotal chip area. If it ful-
fills the requirements, a suitable chip shape can be selected. Otherwise iterations through struc-
tural design and repartitioning may be necessary. This is a typical application of the suare
FUNCTIONS GENERATOR aS an “early design tool”.

The curr PLanner Starts with a predicted shape of the chip and, if given, the pad positions. It
triesto place the subcellsin a dlicing geometry [SzO80] such that the total areaincluding inter-
subcell-wiring becomes a minimum. The subcell shape functions and other constraints like
maximum length of critical paths are taken into account. The carr PLanner generates a floor-
plan consisting of the subcell placement and the assignment of the nets to wiring areas. No
detailed routing is performed.

For each subcell the planned shape in the floorplan and the approximate pin positions (pin
cost functions) are propagated to the next lower level. The Curp Pranner alSO generates a new
CUD shape function, now based on the known placement and global routing. This shape func-
tion is more precise than the one generated by the Suare Funcrron GeneraTor. It can be used for
an adjustment step at the next higher hierarchy level.

The curp Pranner iSrecursively called at the lower levels for al subcells again. The hierar-
chy tree can be traversed in breadth-first or depth-first manner. In case of a breadth-first tra-
versal we have several choices. We can either plan all subcells independent of each other
(sequentially or in parallel), or we can adjust the floorplan of the CUD after planning each sub-
cell. This iterative planning/adjustment approach allows for a better response to deviations
between planned and refined shapes and pin positions of the subcells. Out iterative approach is

called Three-Phase Chip Planning. However, this reduces the degree of parallelism and there
still remains an ordering problem.

Better results are conceivableif all subcells of a CUD are planned in parallel with dynamical
update of the CUD floorplan and communication between the neighbor subcells about shape
and pin locations. This approach would probably generate the best results and could be distrib-
uted on parallel hardware. Still research is necessary to find the right communication parame-
ters and control points and to study the convergence. One of the first parallel planning methods
is described in [GIZ92].

In Figure 2 two planning levels are shown. Either more or fewer levels are possible, depend-
ing on the complexity of the total structure and the complexity which each toolbox can handle
efficiently. The complexity is measured by the number of primitives that have to be placed in
total or at each level. The PLAYOUT Curp Pranner WOrks best with 30 to 80 subcells.

After chip planning the final mask layout has to be computed bottom-up with respect to the
top-down computed floorplans. This phaseis called Chip Assembly and it is split into Cell Syn-
thesis and the following Cell Assembly. Cell synthesis is the link between the top-down plan-
ning phase and the bottom-up assembly phase. The input for cell synthesisis aframe and pin
positions and is similar to the chip planning input. However, the cell synthesis step uses layout
primitives (e.g. standard cells) and computes a final layout similar to cell assembly. In PLAY -
ouT cell synthesis is currently restricted to memories and standard cells blocks to reduce the
number of toolboxes to be supported.

Cell assembly uses the floorplan of the CUD and layouts of the subcells as input and com-
putes the final layout of the CUD. Since we aready performed a (top-down) planning step for
the CUD, no placement has to be done as it is the case for pure bottom-up physical design. In
our case, we take over the topology from the floorplan and only adjust the geometry with
respect to the subcell layouts. The global routing information of the floorplan is refined by
detailed routing. After successful detailed routing the mask layout is complete.

The hierarchy tree need not be balanced. We therefore may find cell synthesis and cell
assembly steps at the same hierarchy level.

4. Toolboxes

After discussing the global design methodology we will now go into some more details of
the toolboxes. Although prayouT supports the whole VLS| design from behavior to layout,
our main focus is the physical top-down chip planning phase. We will therefore concentrate on
the toolboxes which cover this part of the design. These will especially be our area estimator
called suape Funcrron GeneraTor and the PLAYOUT Curp Pranner. Besides these two toolboxes
we will also describe the cell assembly based on the floorplan provided by the Cure Pranner
and we will spend some place for addressing the repartitioning step. The latter isimportant for
preparing the hierarchical netlist for the physical design phase.

The prayouT front-end toolboxes which synthesize the netlist data from the behavioral
description of a circuit have already been mentioned in the previous section. For this purpose
we mainly use the MIMOLA synthesis system Ms11 from University of Dortmund and our own
schematic entry toolbox for the manual synthesis steps. Recently, we also have access to the
logic synthesis component of the oas1s design system from mMcNc. Since both synthesis tool-
boxes have not been developed by our group and both do not belong to the main topic of this
contribution we will not go into more detail of these design aspects.

For the remaining part of this contribution we assume that a hierarchical netlist is available
no matter how it has been generated. However, the netlist hierarchy reflects the behavioral
design. It therefore must be repartitioned to meet the requirements of the layout tools.

4.1 Repartitioning

The goal in repartitioning is the generation of a suitable hierarchy for the physical design
phase. A physical hierarchy has some hard and some soft conditions that have to be fulfilled. In
this discussion we include levels beyond the chip level because very complex systems may
require cabinets, racks, printed circuit boards (PCBs), multi chip carriers and chips.

Each of these levels has different requirements. Examples for hard conditions are the maxi-
mum number of slotsin arack, pins on PCB connectors, or of pads on achip. Total power dis-
sipation and chip area are other hard constraints.

On the chip soft conditions dominate. Currently we try to enforce the following:

e The number of cells placed by chip planning should be between 30 and 80. For a
smaller number the flexibility may be too small to achieve dense placements. For
larger numbers execution time would becometoo large for interactive design styles.
For cell synthesis using standard cells the number should be between several hun-
dreds and several thousands for similar reasons.

e The subcells of a CUD should not differ in area by more than a factor of 10. Espe-
cialy for slicing geometries it is hardly possible to place very different cells
together in a dlice without stretching the smaller one beyond reasonable aspect
ratios. On the other hand only few good placements exist for cells of equal shape.
Thus a good distribution of subcell sizesin each CUD is an advantage.

e Functional hierarchies often display a high regularity by the use of standard func-
tions. The RT-level, the gate level, and complex gate level are good examples. If we
would repartition only with both objectives described above, most of this regularity
would disappear and no standard function would remain on intermediate levels of
the hierarchy. Loss of regularity resultsin alarger design task. The distribution of
standard functions over many partitions would reduce the capability of manual
inspection and comprehension of alayout. This would also reduce the possibilities
of meaningful manual interactions and improvements.

e The number of nets between partitions should be minimized to the extent of what a
good min-cut algorithm would achieve. Thisis necessary to reduce the overall wir-

8

ing length by pushing the dense wiring into cells at low levels of the hierarchy and
thus small dimension.

e Considering timing conditions is very important. Experiments have shown that the
structure hierarchy has a large impact on the timing behavior of the layout. Time-
critical nets should therefore be limited to small cells, too. This should not only be
achieved on the average but individually. One critical net with along wiring length
may determine the total systems performance.

As we mentioned above, there are two alternative approaches to solve the problem (see Fig-
ure 3). The brute-force approach is to flatten the whole hierarchy and then to construct a new
hierarchy from scratch by recursively applying an n-way partitioning algorithm. This method
is depicted by the lower part of Figure 3.

behavior-oriented layout-adjusted
structure hierarchy structure hierarchy

flattening automatic
o n-way partitioning
fffffff 000 -0
O intermediate cell @ standard cell O macro block (e.g. memory block)

Figure3 Alternative repartitioning approaches

The problem for this approach is the large number of different objectives as described
above. This number of conditions can be easily extended and it is difficult to merge all of them
into a single cost function that would be necessary for the partitioning agorithm. Our idea
therefore isto achieve the goals by small, local changesto the original hierarchy using an inter-
active repartitioning tool.

Opposite to the automatic n-way partitioning method would be a manua repartition

approach. The repartitioning tool would only keep track of a consistent hierarchical netlist but
all decisions have to be made by the designer. A more sophisticated approach would be extend-
ing the interactive tool by analysis and proposal functions.

The development of the PLAYOUT ReparTrTIONER fOllOWEd the latter idea. In order to gain
experiences, we first implemented an interactive repartitioning toolbox without any sophisti-
cated functionality. A graphical user interface supports the designer in performing basic repar-
titioning steps. For example, we can generate a new cell at any level of the hierarchy (i.e. a
new node in the hierarchy tree), replacing a set of selected cells. These cells become subcells
of the new cell and thus move down in the hierarchy. Delete is the reverse operation. We can
also move cells from one location in the tree or graph to another. The distinction between tree
and graph operations is the difference between changing only one instance and the type of a
cell, respectively. In the latter case a change affects all instances of a cell (type). From these
basic functions all possible changes of the tree or graph can be constructed. All functions are
controlled by menus.

This basic repartitioning approach was good for first experiments only. The results were
often better than automatic partitioning because we could keep the regularity and other objec-
tives. However, it was not possible to do large changes and to consider timing problems with-
out having analysistools. We extended the PL.AYOUT ReparTITIONER DY SUCh @nalysis functions
but also by tools implementing simple strategies like “flattening of all blocks with less than
500 standard cells’ [HNZ93]. Various (n-way) partitioning tools considering different objec-
tive functions complete the tool set. They are only used to suggest changes but no change will
be done without designer interaction.

The current architecture of our ReparTiTIONER has Similarities with an expert system
approach. The analysis and the suggestion tools can be regarded as experts which provide their
results via the graphical, interactive interface to designer for decision making. This scenario is
very similar to the Al rule-based blackboard architecture [HaR85] which is an interesting
approach for our problem. The kernel of the ReparTITIONER COrresponds to the blackboard.
Additional “experts’ can easily be added. The challenge of our research will be replacing the
designer step by step with more automatic control instances. Nevertheless, we believe that it
will not be possible to fully replace the designer within the near future. Figure 4 shows a sim-
plified view of the blackboard approach.

4.2 Area Estimation

The most important part of top-down VLS| design is (top-down) chip planning. As
described above, this step is divided into a bottom-up area estimation and a following top-
down planning phase. Figure 5 shows the floorplan section at one hierarchy level. The left part
of thisfigureillustrates the area estimation. Beginning at the level of the leaf cells we compute
shape functions for the cells at the higher hierarchy levels. The input for an estimation step are
the shape functions of the subcells and the netlist of the CUD. The output curve will beinput to
the area estimation at the next higher level.

10

blackboard

/

timing conditions

areviolated
move addl one level up

y,

call mincut expert

desianer control timing regularity mincut
INEM «—» instance expert expert expert

A

A A A A

C knowledge base)

Figure4 Smplified view of a blackboard architecture for repartitioning

The shape functions are one of the most important inputs for chip planning. The planner uses
the curves of the subcells and the netlist of the current cell for computing a floorplan as small
as possible. For top-down chip planning, we have a further input. This is a frame with fixed
dimensions and pin intervals at the border. It is aresult of the preceding planning step at the
next higher hierarchy level and it is based on the shape function of the current cell. The result-
ing floorplan should match this frame.

The output of a planning step is the floorplan that will be used by the cell assembly and the
frames of the subcells which are input at the next lower hierarchy level. However, the quality
of chip planning depends to a large extent on the quality of area prediction which is modeled

by shape functions. In order to understand the area estimation we take a short digression into
our geometric model.

shape function frame
T netlist l floorplan
Shape Chip =i
SERSED: ** Planning | | 10l

|

: |
awess (D)) 06

Figure5 Interaction between aArea estimation and chip planning

11

4.2.1 Shape Functions

Our godl is the estimation of shape functions of rectangular layouts. Shape functions form
the border between feasible and infeasible shapes. Figure 6a shows the shape function of a
fixed macro cell A for which only one layout alternative exists. The black dot (corner) defines
the x and y dimensions of the rectangular cell A. All other points on the curve and in the
hatched area are made feasible by adding empty spaceto A on any of the four sides or within A.
It can be used for wiring.

A

>
X
a) one layout alternative b) four layout alternatives

Figure6 Shape function of a macro cell

IF A has different shapes (for example A,, ..., A,) by controlling the layout of A with differ-
ent parameters, then a shape function as in Figure 6b evolves. Per definition as a lower area
bound, the shape function is monotonic and A, could be constructed by adding empty area to
A, or A;. The shape function in Figure 6b is therefore fully defined by the corner coordinates
AL A, A,

A, may have propertiesthat neither A, or A; have. For example, A, may have all pinson one
side, whereas A, and A; have pinson all four sides. Thus, in aspecific floorplan, A, may, despite
larger area, produce a smaller floorplan or a shorter critical delay path. Therefore, we do not
always enforce monotony.

For flexible cells, only estimated shape functions can exigt, if the layout style offers design
decisionsthat influence the layout area. Thus each corner point hastolerancesin x andy and the
shape function has a tolerance band around the average curve as shown in Figure 7. In the
extreme the shape function can be a continuous curve, but due to tolerances and design style
restrictions it can always be approximated by a suitable number of corners. Module generators
can be either modeled by macro shape functionsif they generate fully predictable layouts or by
flexible cell shape functions otherwise.

Our basic geometry is slicing. Slicing is the dominant approach in floorplanning because of
features which simplify placement and routing. It is not obvious that more complex structures
have major advantages. A possible extension to dlicing isthe deviation of the slicing lines from
straight lines.

Slicing dissects the rectangle of a CUD into non overlapping rectangles representing the
subcells. The walls between the subcells are the slicing or cut lines. Slicing geometries can be

12

YA II

|l“| tolerance band
L

/ shape function

"X
Figure7 Shape function of a flexible cell

represented by slicing trees. If shape functions for the leaves of atree are known and the orien-
tations of all dlices in the tree are determined, the shape functions can be easily added up the
tree and thus for the root node which represents the CUD [Ott83]. Figure 8 shows this corre-
spondence.

If the orientations of the slices are not known, optimal orientations can be determined by add-
ing monotonic shape functions horizontally and vertically and selecting the corners with mini-
mal area of both results (see below).

The resulting shape function estimates the total area only if no additional wiring space is
required. We extended the model by trying to estimate this space [Zim88]. This led to a five

color mode!.
- 2 T_\,

D Qe

] L
I T

Figure8 dicing structure and tree

4.2.2 The Five Color Model

Let us look at any one level of a multi-level hierarchy and let us assume that we seek the
shape function of the CUD. The CUD consists of n subcells subj, j = 1.. n. Each cell has pins
at its perimeter. Nets are globally defined for all hierarchy levels. A net can therefore exist at
many levels. For the purpose of estimation we divide nets into segments that are fully con-

13

tained in one level only.

Such a net segment can be further divided into pink and red parts (Figure 9). The pink part of
the net connects only the pins of the subcells sub; but not the pins of the CUD (dotted lines).
Pink segments are internal connections of a cell and exist if more than one internal pin exists.
Red net segments connect pink segments (or the only internal pin of anet) to an external CUD
pin (solid lines).

red box

red net segment

[E R NN Y]
T..
o R RO
x -—~

-~
LN NN

Figure9 Pink and red net segments.
The figure shows net segments on two hierarchy levels.

With this notion of net colors we define wiring areaw” ™k and w'® for the CUD. wP™ js the
sum of all areas occupied by internal wiring and w' e jsthe area necessary for connecting the
internal wiring with the CUD border. Accordingly we define enclosing rectangles for both col-
ors, called the pink and the red box, resp. (Figure 9). The areas of both boxes are denoted aP'™
and a", resp. In addition, we define a blue box with area a%“€ for the case that all nets of the
current level are disregarded. aPlu€ js the sum of all subcell areas. Note, that the blue and the
pink boxes are fictive boundaries because neither al subcells nor the pink net segments are
located at a particular part of the chip die without contact to red net segments. Nevertheless,
we need the sizes of these fictive boxes for area estimation.

Besides these three colors pink, red, and blue, we use afourth color black which denotes the
empty space (wasted area). Thisisthe areawhich is neither occupied by the subcell nor by wir-
ing. Since the empty space is spread over the whole CUD, no concrete black box can be
extracted. We only use the total amount of empty areafor the estimation. This value is denoted
by a8ty o ghlack
In our estimation model, the different colored areas are computed as follows:

14

e The areaof the (fictive) blue box is the sum of all subcel 1%
Q"' = a;fjf,j . 1)
j
e The pink areaincludes the blue box (i.e. the subcell areq), the area occupied by the

pink wiring segments, and the empty space:

ink blue ink black
™ = a" W™+ a . (2)

¢ Thered areacontainsthe pink area and the area of the red wiring segments connect-
ing the internal wiring with the CUD boundary:

ared - apink+ Wred. (3)

For performing floorplanning, these four colors are not enough. We further have to consider
the wiring external to the CUD which we denote by the color green. Figure 10 depicts this
aspect. Figure 10a shows a floorplan with five subcells a, b, c, d, and e (gray blocks). We
assume the wiring to be located in channels between these blocks. The white rectangles
describe channels and the white polygons connecting the channels describe switchboxes. The

black boxes model the empty space.

a) red subcells and wiring channels b) assigning wiring area to the subcells

Figure10 Floorplan with five subcells

For computing a correct geometry of the floorplan we have to assign fitting shapes to the
subcells. Thisis done by adding up the shape functions of the subcells and then distributing the
CUD area to the subcells with respect to this shape functions (see Section 4.3). For that pur-
pose, the subcell shape functions must include all wiring area. We assign the channel and

2. Corresponding to our color model described so far, the boundaries of the subcells are equal
to their red boxes. They include all sub-sub-cells (sub-2-cells) as well as the whole internal
(pink and red) wiring area and empty space. With that, layout frames are red, too.

15

switchbox areas to the adjacent subcells which results in a glicing topology as depicted by Fig-
ure 10b. The five rectangles now include the (red) subcell areas and the inter-cell wiring
w9 We assign the color green to these rectangles:

agreen — ared + Wgreen (4)
We need this notion during floorplanning of the CUD because wP™ and w'® are useless

parameters for the placement of the subcells:

pink red _ green
Weup T Weup = Zwsubj : ()

J

4.2.3 Shape Function Arithmetic

The input to the shape function computation are the shape functions of the subcells and the
netlist of the CUD. Output should be the shape function of the CUD. Since we restrict to slic-
ing structures, we first compute a binary slicing tree by a partitioning step (see Figure 8). We
compute the shape functions of the inner nodes of this tree bottom-up until we get the curve of
the root node (CUD). The task of each iteration step is to combine the shape functions of two
sibling nodes in the tree to get the shape function of their common father node as resullt.

a) Adding two shape functions

Let us assume that we have two sibling nodes A and B in the slicing tree which have a com-
mon father node. For the example we further assume that both nodes are |eaf nodes. However,
the procedure described below works identically for al other nodesin the tree. For both nodes
we have three different layout alternatives. Figure 11a shows these alternatives and the corre-
sponding shape functions.

We now can place cell A beside cell B or we can place A above or below B. Depending on
the orientation of the slicing line, we get two different shape function for the common father
node. The vertical cut, this means cell A is placed beside cell B, results in the curve of Figure
11b and a horizontal cut resultsin the curve of Figure 11c. In all cases, the bounding box of the
father node contains more or less empty space which is the result of the slicing topology.

Both curves have to be combined to get a single shape function for the father node. The
resulting shape function must again describe the lower bound of all feasible shapes. So, the
unification procedure takes those curve segments from curve 1 and curve 2 which form this
lower bound (Figure 12). In our example, the result is the curve which is shown by the solid
black and gray line. Each corner point gets a tag that denotes the cut orientation with minimal
area consumption. We call this: optimal orientation.

Until now, we considered only the subcell areas which resulted in a correct shape function
for the common father node. On the other hand, no wiring space has been considered. Thiswir-
Ing space widens the cell areain horizontal and vertical directions. The combined shape func-
tion has to be shifted to the top and the right. This shifted curve would be input to the shape
function computation at the next higher level.

16

curve 2

|

- - A

b) horizontal addition c) vertical addition

Figure1l Horizontal and vertical addition of two shape functions

Wiring area can be divided into the pink internal wiring and the red external wiring. For
combining two sibling nodes, the pink net segments of the father node are segments which have
connections to both sibling nodes only. They cross the corresponding slicing line. Red net seg-
ments have connections to at least one of the two child nodes and any node outside the consid-
ered subtree. They may be pink net segments of an ancestor node.

This distinction between pink (— internal) and red (— external) wiring is necessary because
the area needed for external wiring depends very much on the positions of the pins on the cell
border which are not known during the bottom-up area estimation phase. Our basic area estima-
tion model is therefore based on pink wiring only that can be very well estimated without geo-
metrical informations.

yA

-_—=== CUIVEe1l
—--= Curve?2

v

Figure12 Combining two shape functions

17

Independent of the shape of a cell, we estimate the area needed to connect its subcells, i.e.
the increase of the cell area due to the pink wiring, by the following simple functions (Figure
15):

) =3 |
T j shape function

B includin
B subcell grea only

YA
Y shape function
y r 2 incl ugl%g internal
< Yw A wiring area
A
B e B | v
™ X
Figure13 Wring Area Estimation.
The shift of the shape function isindependent of the shapes.
Xw = Npink " Tx * O (6)
Yw = Npink * ty - Oty (7)

Wires between the subcells need additional spacein x andy direction, called x,, and y,,. The
horizontal enlargement x,,, of the cellsis estimated by multiplying the number of internal wires
connecting the subcells (nyin) With astatistical track demand factor t, and atechnology depen-
dent scale factor a,. t, determines how many vertical tracks a single wire needs on the average.
It models the quality of the layout tools and routers. The value is typically about 0.6 which
means. one wire needs a little bit more than a half track on the average. o, is a scale factor
describing the width of asingle track. It depends on the design rules. The vertical enlargement
Y IS estimated accordingly. In total, we have a constant shift of the shape function to the top
and right (right side of Figure 15).

b)Feedthroughs

A still open problem is the empty space (wasted area) that occurs due to the cornersin the
shape functions. If we set two cells on top of each other as shown in figure 14, the composite
cell gets the maximum of both x dimensions and the sum of the y dimensions. The difference
in x results in empty space a®™V.

B

Figure14 Empty space

18

In our model, we assume that empty space increases the transparency of a cell. Transparency
is modeled by vertical and horizontal feedthroughs. Standard cells, for example, have built-in
feedthroughs perpendicular to the row. We measure vertical feedthroughs by the wiring space
xf in the x-dimension of acell. The empty space a®™PY of cell B in figure 14 is modeled as wir-
ing space x® and thus

xfg = xfg+x° . (8)

X denotes an area with empty space added. The question now is: What is the vertical trans-
parency of the combined cell AB. We use the weighted sum of two extremes. One extreme
takes the average of the sum of the transparencies of A and B, the other the minimum. This
resultsin

xfa + XF
xf,., = ¢C- A B

AB 5 +(1-c) -min(>2fA,>2fB) . (9)

A large set of measurements with our design tools has shown that xf,g is much nearer to the
minimum than to the average. We set ¢ << 1. The horizontal transparency in this example is
easily computed, because no empty space has to be considered:

yfc,g = Yfc, +yfcg . (10)

The case of cellswith avertical dicing lineis handled accordingly. In the calculation of wir-

ing space the feedthrough dimensions are subtracted from the needed wiring space for nets. Any
remaining feedthrough space is propagated up in the slicing tree.

4.2.4 Hierarchical Models

Until now, we considered the area estimation on one hierarchy level. We construct a binary
slicing tree and add the shape functions of the subcells up in the tree until we get the shape func-
tion of the CUD. Wiring area, empty space, and transparencies are considered as described in
Equation (6) to (10).

The hierarchical bottom-up area estimation over severa hierarchy levels can be done in the
same manner. We (virtually) combine the dlicing trees of all hierarchy levels into one large
dlicing tree (Figure 15). In this big (virtual) tree, we pairwise add up the shape functions as
described above.

The open question for this approach concerns the type of the gray nodesin Figure 15, i.e. the
type of the elements of our cell hierarchy. For the shape function arithmetic we only consid-
ered internal wiring and with that pink area only. On the other hand, we previously mentioned
that the subcells in the cell hierarchy are red or eventually green during floorplanning (when
we add the wiring channels to the subcell areas). With that, there may be three different hierar-
chical models depending on the color of the cell: ahierarchical red model, a hierarchical pink
model, and a hierarchical green model. They will now be shortly discussed.

a) Hierarchical Red Model
Macro cells, i.e. layout boundaries, as well as the subcells which are used for floorplanning
arered. They include all wiring to the cell boundary. It may be obvious that all elements of the

19

a) (n-ary) hierarchy tree ' b) dicing tree
Figure15 Caéll hierarchy tree and corresponding slicing tree.
During area estimation, we expand the n-ary hierarchy tree to a binary dlicing

tree. The shape functions of the gray nodesin the slicing tree are the shape func-
tions of the corresponding nodes hierarchy tree.

cell hierarchy are modeled as red boxes. They can be defined recursively using equations (1),
(2), and (3):

red _ red pink red
a = 2 asubj+W +w

]
This definition of ahierarchical model has two disadvantages. Thefirst oneisthe fact that a

net may pass through several levels of the hierarchy without connecting more than one internal
pin, that means without pink segments (Figure 16). No good model is known for the estimation
of achain of red segments over severa levels. The second disadvantage is that the area neces-
sary for red wiring depends very much on the positions of the pins on the cell border which are
not known during the bottom-up area estimation phase.

black
a

+ (12)

= ed Net segment
| Ttem »)

.] === PiNk net segment

— ’

Figure16 Chain of red net segments

b) Hierarchical Pink Model

Because of the disadvantages of the recursive red model, we use arecursive pink model dur-
ing area estimation. In order to get rid of the red net segments, we add all red segments to the
next pink segment on a higher level. Figure 17 explains this notion. The pink net segments and

20

the pink boxes are shown by dotted lines. The extension of the pink segment yields an increase
of the pink wiring area per net which is described by WP

= red net segment

==== pPiNk net segment

~ :
~
,----------

- ammm®

Figure17 Pink net model.
This example has three pink net segments.

The pink recursion can then be described by the area equation
apink - Zazbgk + \;-vpink + ablack. (12)
Our pink model has proven itd qual i]ty for many standard cell and flexible cell examples.
Some results are shown in Section 6. Our Suape Funcrion GeneraTor therefore strictly uses
the pink model for the complete slicing and hierarchy trees. In order to use a shape function for
floorplanning at any hierarchy level, the additional red wiring space has to be added at that
level:
ared - apink+ Wred. (13)
Here, w® is the red wi ring area at the level of floorplanning only. We call this additional

space the red shift. It will be discussed in the following Section.

c) Hierarchical Green Model

We mentioned above that for computing a correct geometry during floorplanning green
boxes are needed. The green area 89" includes all subcell areas a?“€ and the whole wiring
area WPk ed4+a8MPY of the CUD. With that, it is easy to see that:

green _ green
a” = Yagy (14)

j
Thisisthe most ssmple recursive equation. Nevertheless, the hierarchical green model is not

applied in practice because floorplanning will always be done at one hierarchy level only.

4.2.5 Red Shift

The reduction to internal wiring results in a uniform, correct hierarchical area estimation
model. Only for the top-level cell and during top-down chip planning we need an estimation of
the wiring area to the cell/chip border. In this Section, we will show that the layout area of a

21

given cell often depends very much on the position of the pins. During top-down chip planning,
we use a more precise model for estimating the subcell areas which consist of internal wiring
and external wiring to the subcell border.

We are now interested in knowing the influence of pin positions on the overall area. At least
the chip planner must know this effect because the planner must reserve room for the subcells
in afloorplan including all wiring areainside the subcells.

In our first area estimation approach, we estimated the external wiring area of cellswith ran-
dom pin positions [Zim88]. This led to a shift of the shape function to the top and right which
was the same for all points on the curve. However, alarge set of measurements has shown that
this assumption is not true. The measurements showed that the influence of restricted pin posi-
tions istoo large to use random pin distributions for the estimation.

In our new approach, we prefer a two-phase estimation concept. During bottom-up estima-
tion before chip planning (phase |) we estimate the cell areaincluding subcellsand internal wir-
ing only. External wiring will not be considered (see above). This area is very close to the
smallest possible layouts of a cell for all aspect ratios. The additional areas which are needed
for external wiring will later be estimated by the chip planner (phase 11).

External wiring enlarges cellsin x and y dimensions. We basically estimate the additional
area with a function that is explained below and illustrated by the curves in Figure 18. The
curves describe the total cell side length x™y!® with respect to the number of pins (or external
nets) which we describe by the letter & w;, my, is the number of pinsat the top and bottom sides
and m), i, are the pins at the left and right sides, resp.

cell width cell height

2 Y
\j

"th "2h T
Figure18 Cell dimensions with respect to the number of entering nets

In general, we have two similar curves for the horizontal and vertical sides of a cell. These
curves consist of three segmentswhich are separated by two pointsmty,,, and mt,, . Thefirst seg-
ment is a horizontal line. Its value (xP"KyPiNk) js the width/height of the cell including internal
wiring only. mty,,, represent the number of built-in feedthroughs which are not used for internal
wiring wP™ . They can now be used for external wiring w'®d without increasing the cell dimen-
sions. Aslong as all built-in feedthroughs are not occupied the whole side length (x°t and y**t,
resp.) is equal to the length of the side while considering internal wiring only (x° = xP"K and
yiot = yPINK yegn) For horizontal increase of the cell we consider vertical built-in feedthroughs
xf only. The horizontal feedthroughs yf are used for computing the cell height.

22

The second curve segment represents an estimation method that issimilar to estimating inter-
nal wiring. If we have more incoming nets than we can compensate by feedthroughs, we mul-
tiply each additional net by aspecial track demand factor t"®d for external netsand, again, by the
scale factor o representing the design rules.

For both segments together we estimate the total cell boundaries including external wiring
asfollows:

If m; < o, and my, < 1y, then:

XtOt — Xplnk+(maX(|:(Tct+TCb) t:((\:-‘/d+ (TC|+TCI.) t;id—XfiI,O) ’ (XX)

If fLY| < Toh and T, < Toh then:

tot red

ink d
= ypln +(maX([(7tt+7tb) t;s + (M + 7)) v —yf],O) : ocy)

Let us look at the first formulain more detail. It computes the total cell width x'". Aslong
as the number of vertical incoming nets myy, is smaller than the second threshold value wt,, we
add the pins at the top and bottom sides and multiply the sum with a horizontal track demand
factor for vertical incoming nets ((r, +7,) - to). We similarly add the pins at the left and
right sides and multiply the sum with a horizontal track demand factor for horizontal incoming
nets ((m, +,) -t)3. The sum of both terms is the number of necessary vertical tracks for
external wiring which increases the cell width.

From that number we subtract the number of vertical feedthroughs xf. Aslong as these feed-
throughs are not occupied, we can compensate these with external wiring. The cell width will
not increase (x° = x™). Since the number of built-in feedthroughs may be larger than the
requirement for external wiring, we must take care that the subtraction does not become nega-
tive (— max-function.

Finally, we multiply the remaining track number with the scal e factor o, to get the additional
width of the cell for the entering nets. The second formula computes the cell height Y. It is
similar to thefirst function. Wejust use different track demand factors and the vertical scalefac-
tor o, as well as the horizontal feedthroughs yf and the vertical side length yi”t.

The third curve segment is needed for the case that the capacity of aside wt, is smaller than
the associated number of entering nets. The capacity of a side depends on the design style and
must be determined experimentally (see below). If the number of pins on a side exceeds the
capacity, each additional entering wire needs awhole track. The slope of the curve is therefore
one. In the case that the number of entering nets at two opposite sides both exceed the capacity
of the side (n,) some entering nets can pairwise share a track. In this case we assume that the

saturation point m, is not reached. We first compute the difference between the numbers of pins

3. Nets entering from the left and right sides also increase the cell width but less than vertically entering nets. At

redzo’ 5

d
floorplan level we set t)r(f] =~0,2andt,

23

at two opposite sides. Only for this difference we add whole tracks.

Design styles
As mentioned above, the track demand factors, the number of built-in feedthroughs, and the

capacity depend on the design style. The also depend on the number of metal layers. Until now,
we examined two different cell typesand design styles. Thefirst classare general cellsfor which
we do chip planning. The second class are standard cell blocks.

If we have general cells and we allow over-the-cell routing, the functions for external wiring
are the same as described above (figure 18). Before we have to extend the cell dimensions we
fill-up the subcell feedthroughs which are not used by internal wiring. With two metal layersfor
routing, typically no built-in feedthroughs are left. The problem class is then the same as for
chip planning without over-the-cell wiring. We can assume:

Th =Ty = 0.
cell width cell height
A Kot . A ytot
=1 #s=1
- -
v T "2h n

Figure19 External wiring area for general cells without built-in feedthroughs
The saturation point o, will never be reached for practical applications.

All entering nets need additional wiring space. For our test designs the entering net number wt
belongs to the second curve segment in all cases. The pin number will be multiplied with the
track demand factors shown above.

Determining the saturation point 1, is not so easy for general cells. We can only find , if the
general cell containsrigid macro subcellsand the aspect ratio of the general cell isfar away from
one. In practice we never reached m,. This has two reasons. First, pins occupy only a small
amount of the frame which is below the capacity. The second, much more important reason
results from the design style. As we mentioned above, estimating external wiring is important
for top-down chip planning. In this case, the subcells of the considered general cell are not yet
designed, their shapes are till flexible. They can easily be adjusted to the channel widths. In
practice, we have so much flexibility for designing general cellsthat using the second curve seg-
ment, i.e. multiplying the number of entering nets with atrack demand factor, is sufficient:

Toh, Tty — ©°-

The second design style we examined experimentally are standard cell block layouts. We
assume horizontal rows for this paper. Here it is reasonable to have no pins to the side of cell
rows. An upper bound of the capacity of the vertical sidesis therefore equal to yIDink minus the
accumulated height of the rows. Thisisthe sum of all channel heights.

24

ot Cell width ot o8l heigh

Xpi n : y

- > - >
Tiv=Tpy ™

Figure20 External wiring area for standard cell blocks

Experiments have shown that this value is too high for the threshold point r,. We achieved
good results by setting
Mion = 0.2+ (yP™ Joy).
Since standard cells do not have horizontal built-in feedthroughs, the function yIOink hasthe same
shape as for general cells without built-in feedthroughs (figure 20). For the cell height we have
T1h = 0.

For the cell width the conditions are different. Here we experimentally found the following:
If we have a good standard cell placement tool, most of the standard cells with connections to
the top and bottom sides of the block are not placed in the center of the block but near the top
or bottom row. The occurrence of these cells decreases with their distance from the block border.
On the other hand, built-in feedthroughs are used for internal wiring mainly in the center of the
block.

The feedthroughsin the top and bottom rows are not needed for internal wiring. In the center
where we have only few unused feedthrough we do not have many cells connected to external
nets. In most cases, nets can enter from top and bottom without enlarging the block. Unused
feedthroughs compensate the track requirement for external wiring.

Our experiments have shown that the number of feedthroughs at the outermost rows is an
indication for the capacities of the top and bottom sides (m,,). In the case that all these feed-
throughs are used, each additional entering net needs a further feedthrough and therefore a
whole track. On the other hand, as long as we still have unused feedthroughs, the width of the
standard cell block does not increase due to external wiring. This meansthat we do not have the
second curve segment for X' of standard cell blocks. Ty, ISequal to m,, inthiscase (Figure 20).
For our standard cell placement tool and the currently used cell library we have

Ty = oy = 0.5 (X™ Jory).
In our test designs, i.e. in practical applications, we very seldom reached this capacity.

4.3 Chip Planning

The purpose of chip planning is the placement of (rectangular) blocks, the determination of
their shape, and global wiring. Global wiring determines channel or over-the-cell routing
reguirements, assigns nets to channels and determines pin-cost functions. The goals are mini-
mal area, a solution to net length limits, and an estimation tolerance that allows chip assembly

25

without iterations through chip planning and without loss in layout quality.

The major phases of the PLAYOUT Curr Pranner are placement, sizing and global routing.
Especialy for placement several algorithms can be selected. Placement can be improved by
manual interaction. The curr Pranner therefore has a menu-controlled user interface. The
floorplan computation is supported by a number of important analysis tools. Besides the inter-
active control, the cuzp PLanner can be controlled by a control command file. Thisisimportant
for the design control by the design manager of the pL.ayouT CAD framework.

4.3.1 Placement

Placement should ideally not be separated from global routing. But it has been shown that
already subtasks of placement are np-complete (see [Len90]). Therefore we even separate
placement into several phases.

Therestriction to slicing structures and its representation as slicing tree suggest as afirst step
the generation of the tree. The slicing geometry (topography) is fully described by the tree if it
Is oriented and ordered and if the leaf nodes are sized. In detail this means:

e Orientation: Every intermediate node islabeled v (vertical cut line) or
h (horizontal cut line).

e Ordering: The ordering of siblingsin the tree from left to right means ordering
in the floorplan from left to right and bottom to top, respectively.

e Sizing: Dimensions (X, y) are chosen for al leaf cells. Thisis equivalent to
choosing coordinates on the green shape function.

The topology is described by the oriented and ordered slicing tree. Without orientation and
ordering we call it the unoriented tree. In PLAYOUT, the unoriented tree can be generated by
clustering or partitioning. The cuzre Pranner has a clustering algorithm as reported in [RRZ84]
and a bipartitioning tool that implements the mincut algorithm [FiM82]. Cell areais used for
balancing the tree. A disadvantage of theses simple methods is that the position of the CUD
pins (— pin cost function) is not considered. To prevent this disadvantage, pLaYouT further
uses quadri and tri partitioning at the CUD level. For all possible topologies of four or three
dlices and for known CUD pin cost functions, the partitioning with pin propagation of the set
of subcells is sought. Below this level bipartitioning takes place (considering pin location as
much asit is possible without orientation). This generates a tree with an oriented ordered sub-
tree at the root.

The topology is generated by either a combined orientation and ordering algorithm or by
optimal orientation (Section 4.2.3, page 17) and a separate ordering algorithm. Both algo-
rithms proceed in the same manner. In a breadth first traversal, subtrees with k levels are
selected and in these subtrees all permutations are tested. Simple tests consider half-perimeter
lengths of net bounding boxes. Better results have been achieved by calculating the shape
functions for the roots of the subtreesfor all permutations and then select the permutation with
the area minimum. Runtime and quality increase with increasing k.

Placement is finished by sizing. Sizing calculates the shape function of the CUD for agiven

26

orientation and selects the CUD dimension closest to the given CUD frame. Thissizing issim-
ply the application of vertical or horizontal shape function adds in the topology. Note that the
curp Pranner hasto add green subcell shape functions while the Suare Funcrion GeneraTor Cal-
culates pink functions. The curpr PLanner a0 adds wiring space to correct for intersibling wir-
ing and which results in pink CUD shape function. This will be corrected by ared and green
increase for nets external to the CUD. Thisincrease is distributed to all green subcells.

The resulting topography includes an area estimate for global wiring without exact knowl-
edge of the wiring channel distribution. Thiswill be refined after global wiring.

4.3.2 Global Wiring

Global wiring is performed on a channel intersection graph which is an abstraction of the
channels to segments of the dlicing lines. The channel widths are the capacities of the edges of
the channel intersection graph. The nodes are the intersections of dlicing lines. Figure 10
shows an example. For the purpose of over-the-cell routing, the channel intersection graph is
extended by pseudo-channels. This can either be done by extending dlicing lines across the
CUD or by introducing edges across the sub-cells (dotted lines). Built-in feedthroughs are
modeled by pseudo-channel capacities.

O O O O O O

o
: '- e
-
. N

h e
O O—O O O—oO

a) channel intersection graph b) Seiner tree of net a-c-d-e
in the channel intersection graph

Figure21 channel intersection graph to the floorplan from figure 10

Global routing does not find the best routing for a given channel capacity, but determinesthe
channel capacities for the best routing path of each net. Only in the case of subcells with fixed
over-the-cell routing capacities (e.g. macro cells), the router is constrained by channel capaci-
ties.

Global routing demonstrates one peculiarity of planning most clearly: decisions are deferred
aslong as possible if the information may still grow. Therefore, if a net has to be connected to

27

aflexible cell, global routing terminates the net at a node of the channel intersection graph on
the green outline of the cell. The pin assignment is deferred. Global routing uses a heuristic to
determine a Steiner tree for each net on the channel intersection graph. At this point the green
box is sufficient for routing. Exceptions are macro cells, because pin locations are fixed. The
location of the red box of macro cells in the green box has to be estimated in order to find the
corners adjacent to each of the pins. Global routing then proceeds as before.

Global routing results in net counts for each edge in the channel intersection graph (chan-
nel).Three types of nets have to be distinguished: A net that passes through a channel needs a
full track. A net that enters a channel and ends there will need part of atrack, determined by a
track demand factor. A net which islocal to one channel is called abutting and typically has a
small track demand factor.

At first, all nets end at nodes of the graph and thus only passing nets occur. A net is abutting
if it is degenerated to one node. It then has to be determined from the geometry of floorplan
which edge has to provide wiring space. Determining the exact pin positions on the red boxes
is deferred until the next lower level of the hierarchy is planned. Because these ending nets
cannot be totally neglected, we add corresponding estimated area to the red box of the con-
nected cell. After the numbers of tracks are determined, the width of all channelsis calculated.
Thisisfollowed by an optimal distribution of the channel areas to the green areas of the sub-
cells.

Finally, pinintervals are determined for each pin that is not fixed. The pin interval is defined
at the perimeter of the red box. If we move the pin out of this range, extra inter-subcell wiring
will be necessary. This area has to be provided by the red cell. Reasons for moving pins out of
the interval may be the pin capacity of the interval or the placement of the sub-subcells within
the subcell of the CUD.

Figure 10 shows an example of pin intervals with four different cases. We assume two nets
to be part of the floorplan of Figure 10. One net connects the cells b-d-e. The interval at cell b
is the projection of the channel, at cell e the passing area, and at cell d the upper-right corner.
The second net shows an abutment situation. Here, the intervals are the projection of the abut-
ting cell sides on each other.

In conclusion, the results of global routing are:

e A more precise floorplan based on the additional knowledge of the channel widths.
e Pin-cost-function for al subcell pins.
e Assignment of netsto channels for detailed routing.

4.3.3 Global Wiring Iteration

Global wiring in the first iteration was based on a floorplan with estimated routing area
requirements. The resulting floorplan may have different dimensions. In the general case the
changes are not large enough to justify a new placement, but we can repeat global wiring for
this new floorplan. Thiswill again cause changes and may be repeated indefinitely.

These iterations can only have one goal: The improvement of the design. Currently we use

28

,
;
;
;
;
:
.
,
.
.
.

Figure22 Pinintervals of two nets

pin interval

the total CUD area as a measure of quality. Therefore we iterate as long as the area decreases.
Our experience so far shows that a minimum is normally reached after one or two iterations.
Also, the area gain caused by iterations isin most cases less than 5%. For global wiring itera-
tions awiring algorithm based on restricted channel width (from the previousiteration) may be
reasonable. [Mei91] describes such an approach using flow methods.

4.3.4 Manual Interaction and Analysis

During the whole design process so far, the design decisions that affect the final layout the
most is the placement phase during chip planning. Several combinations of placement algo-
rithms and cost functions can be applied to find a good solution. No combination could so far
be shown to be superior to others®. Thus one of the tasks of the desi gnersisthe selection of one
or more combinations and the evaluation of the results. For this purpose a range of analysis
toolsis provided, e.g.

e Graphical display of the floorplan is used for visua inspection, determination of
problem areas, and for interactive changes to the placement.

e Graphical display of the dlicing tree with orientation and ordering. This shows prob-
lemsin partitioning (unbalanced tree) and is used for more complex interactive
placement changes as for example moves of subtrees.

e Area statistics showing the total area of selected nodes in the dlicing tree and the
shares of differently colored areas. Thisisused to roughly compare placement alter-
natives.

¢ Net lengths and a net density distribution histograms in the CUD rectangle.

e By selecting subcell or nodes in the tree, precise geometric dimensions and other
details can be interrogated.

e Original and final shape functions can be viewed for selected nodes in the tree.

4. We did not experiment with tools like Gordian and TimberWolfMC because our goa is the development of the
overall top-down design method not individual algorithms.

29

Currently, interactive changes of the placement are supported. The topography is automati-
cally adjusted after every change and immediately displayed. In the future, we also want to
support limited repartitioning steps if no floorplan with sufficiently small empty space can be
found.

Interaction also allows moving back and forth between the different phases of chip planning.
Also, intermediate states can be preserved and restored at any time. Thus the design can be
interrupted and alternatives can easily be compared with the option to return to the best inter-
mediate state.

4.4 3-Phase Chip Planning

The average tolerance of our area estimation method is about 10-15% [SuA95]. However, in
the worst case the deviation can be substantially greater. In pure top-down chip planning, we
have no chance to compensate these differences. The only possibility to react to deviationsis
to return to the shape function estimation phase and to change estimation parameters or to use
realizations (layouts) of critical cells (using macros instead of flexible cells).

On the other hand, if we are not planning the top-most cell, it may be possible to compensate
the deviation of the current cell shape with the deviations of the sibling cells. The area of the
supercell should not change if the sum of all area estimations of the sibling cellsis similar to
the areas of the floorplans and layouts, respectively. Furthermore, al planned cells are slightly
flexible because their subcells are still flexible. This flexibility increases the chance of a good
balancing.

So, it is useful after computing a floorplan of the CUD to perform an adjustment planning
step for the supercell before continuing the top-down planning process at the subcell level. The
deviations at the current level can be compensated at the supercell level. Figure 23 depicts that
approach. There are three planning steps which we denote by o, 8, and y. After planning the
subcells at level i+1 (phase o), we perform an adjustment step at level i (phase) before con-

@ frame

floorplan
\L\ 1\ level i

\ AL

]
T h=

o
shapefunctions : Ea

Figure23 Floorplan djustment process

30

tinuing the top-down planning of al subcells at level i+1 (phase B).

Of course, the cell at level i itself is part of an adjustment process for it's supercell on level
i-1. Thus, the three fundamental planning phases o, 3, and y are performed with each cell.
Therefore, we call our planning method Three-Phase Planning [SAZ92].

The following actions are performed:

Phase o (Initial Floorplan):
e placement
e global wiring
e wiring area estimation
e sizing (computing a correct geometry and a shape function for the CUD)
e computation of pin constraints for the CUD

The result of phase o is a floorplan from which we use the topology for further

planning steps and the pin constraints of the CUD for an adjustment step at the
supercell level. Since the subcells are still flexible, many floorplans with different
shapes but the same topology are feasible. We generate a refined shape function
that describes all possible shapes of the same topology. This shape function is a
very important input to the supercell adjustment (phase), too. Refined shape func-
tions are more precise than shape functions of flexible cells because they rely on a
particular topology and a global routing (not only on a rough wiring area estima-
tion).

Phase B (Adjustment to new Frame):
e globa wiring (using the placement of step oo and the frame description from the
supercell adjustment step)
e wiring area estimation
e sizing (computing the subcell shapes)
e computation of pin constraints for the flexible subcells

Aswe will see later, in the adjustment step y of the supercell, a new frame of the
CUD was computed based on its refined shape function and its pin assignments of
phase a.. In phase 3, we adjust the geometry of the topology from phase o to this
new frame.

As in the pure top-down planning strategy, we now compute the pin constraints
for the subcells. The subcells can then be planned in phase o (see above) which
results in cells with new constraints (refined shape functions and pin constraints).
These constraints are input to the CUD adjustment planning phase .

Phase y (Adjustment to more precise Subcell Data):
e correction of the global wiring (because subcell pins can move)
e wiring area estimation
e sizing (selection of subcell shapes using the refined shape functions of the subcells

31

from phase o)
e computation of pin constraints for the subcells

The resulting subcell constraints (area, shape, and pin positions) of phase y are
used asinput to phase 3 and y of the subcell.

In addition, our curr Pranner allows the designer to interactively change the floorplan in
every planning phase. For example, it is sometimes necessary to change the slicing structure
(and with that the topology data) without changing the adjacencies of the cells, i.e. the global
topology. The global wiring may use new channels for a particular net when the topology of
the dlicing lines changes.

In figure 24 the three planning phases with the top-down and bottom-up data interchange are

outlined. In contrast to our refined shape functions all other hierarchical top-down design sys-
frame

floorplan

=0
t ?

R S
_@Shapefuncti(ms @ @

Figure24 Chip Planner input/output during the three phases
(afloorplanis also passed from phase o to B and from 3 to y)

tems use at most one fixed shape for an adjustment [YiW89]. They do not provide any top-
down adjustment like the phase 3.

Figure 25 shows an abstract notation of a hierarchical planning over three levels. The plan-
nings of al subcells were combined in each case. Even though there are bottom-up move-
ments, it is obvious that the global direction of the design process is still top-down. At the top

level, the pad frame is created (e.g. by our graphical Pap Frame EprTor; pfe) and at the lowest
hierarchy level we perform the cell synthesis syn.

pfe pfe
pad frame
Lo\ /B L level 1

N R S

yn level 3

Figure25 Threelevel chip planning with adjustment

32

Stepwise Refinement

So far we assumed that all planning steps o of the subcells will be performed in parallel,
independently of each other. However, in several cases, balancing the floorplan in phase y can
be improved by generating the floorplans of the subcells step by step. On the other hand, it may
be desirable to insert al critical cellsfirst (e.g. cells which do not fit to the estimations) and to
leave the remaining cells flexible which can balance the whole floorplan in a following adjust-
ment step.

An extreme possibility for a stepwise refinement strategy is the depth-first traversal of the
hierarchy tree. The advantage of this method is that we have the freedom to build critical mod-
ules (subtrees) step by step first. The disadvantage of a depth-first strategy is that we loose the
whole parallelism. No planning processes can be performed concurrently.

Another possible strategy is to plan all subcells (perhaps with different topologies for each
subcell) and leave the final configuration decision to the curr Pranner. Within the adjustment
phase y of the CUD, the curr Pranner chooses the most fitting floorplan alternative of each
cell. Experiments have shown that there is no single best solution. The strategy with best
results depends on the actual design.

Convergence
In total, there are many possible strategies although we use only three different phases. In an

extreme strategy, it is possible to descend and to ascend the hierarchy tree in ayo-yo fashion.

So, we have to show that our procedure terminates. In each bottom-up adjustment step y, we
always replace at least one flexible subcell by a floorplan or a layout. A floorplan will be
replaced by a layout only. When all flexible subcells are replaced by a layout, the final cell
assembly terminates the adjustment procedure.

While the procedure terminates for all strategies, we can see a convergence behavior when
executing the stepwise refinement strategy. Here, we replace the inexact flexible cells with
more exact rigid cells step by step. With each replacement, one inexact component has been
removed and with that the tolerances will become smaller. The floorplan geometries converge
to the final layout.

Restrictions

In spite of all the freedoms we have, we are not permitted to build a cell and one of its sub-
cellsin parallel. Before we can make a planning step 1y, we have to stop all subcell planning
processes and have to collect the current results asinput for the adjustment step .. After y,, we
can go on with the subcell plannings in consideration of the new constraints from v;.. If we do
not stop the subcell processes, we build divergent bottom-up and top-down frame descriptions.

It isthe design managers task to keep track of the planning process. In [ASZ93] we describe
seven rules which are implemented in our design manager. These rules guarantee the correct
traversal through the circuit hierarchy. They are the basis of an automatic design management
that controls a correct design flow.

33

Three of the seven rules correspond to the three chip planning phases.

¢ Rule 1 describes that phase o of a CUD can be performed as soon as a frame has
been computed top-down (by a planning step of the supercell) and no floorplan of
the CUD has already been produced.

¢ Rule 2 represents phase 3 in asimilar way. The only additional precondition is that
phase o has already been performed. After computing the floorplan of phase 3, the
frames of the subcells are available for which we can now perform phase o.

e The precondition of rule 3isthat all subcells are ready for an adjustment step. This
means that we already have a refined shape function for each of the subcells avail-
able. Executing thisrule enables rule 1 or rule 2 for the subcells.

Using these three rules, an adjustment in phase v is only possible when all subcells have
been planned in phase a.. On the other hand, it may be desirable to perform phase y before all
subcells are planned or to use a subcell floorplan of phase y for the adjustment (see: stepwise
refinement strategy). In this case, we have to ensure that these subcells are not within an active
planning process. All active design processes of the subcells must be stopped before phase y of
the CUD can be performed. We need four further rules to stop the subcell processes.

e Rule 4 starts stopping for all active subcells processes.

e Rules5 and 6 recursively stop all active processes in a whole circuit subtree. The
recursion is terminated by applying rule 4.

e Rule7signalsthat all subprocessesareterminated and (re-) activatesthe adjustment
phase v.

4.5 Chip Assembly

Chip assembly is the final phase of layout synthesis. Chip assembly in PLAYOUT is espe-
cialy designed for our top-down chip planning design style. Three-phase chip planning and
chip assembly have a close interaction to guarantee an exchange of constraints between levels
of the hierarchy. During chip assembly the floorplan is refined and the layout completed. Chip
assembly is composed of two different functions: cell synthesis and cell assembly. Different
strategies can be applied for moving in the hierarchy tree. Instead of generating the layouts of
subcells in the same floorplan independently in all cases, layout may also proceeds in parallel
and constraints like pin positions or shape and position of the blocks in the floorplan may be
exchanged dynamically. This method results in excellent adjustment of pin positions between
cells and thus areduction of channel widths. The compaction problem as part of chip assembly
Is solved by a genetic algorithm.

Besides our approach, thereisonly very little related published work about chip assembly in
conjunction with top-down chip planning. Two other systems should be mentioned. In the
BEAR System [PDM90] floorplanning and chip assembly are integrated. The floorplan is
refined until all channels can be routed. The cHEOPS system [MBE9Q] has manual floorplan-
ning but an explicit chip assembly step.

34

45.1 Strategies

There are three possible strategies for chip assembly: pure bottom-up, iterative, and paral-
lel. Pure bottom-up chip assembly means that the layout of all cells at any level of the hierar-
chy are completed independently of each other, either by cell synthesis or by cell assembly.
Thus the layouts can be executed in any order or concurrently.

Iterative chip assembly is a continuation of our iterative three-phase chip planning approach.
Itisidentical to the adjustment phase y while using subcell layoutsinstead of subcell floorplans
for the adjustment. But the main direction is reversed. We now start at the lowest level of the
hierarchy. For one or more selected cells the layout is finished according to the current floor-
plan. Then the floorplan is adjusted by executing the sizing step again and correcting the global
routing. This may change the specifications for the remaining cells, that are still flexible. Aswe
stated above, the quality of the layout depends very much on the order of the subcell refine-
ment. Our experiments show that critical cells should belaid out first because less critical cells
can better be adjusted in general case. To date, there is little more knowledge about a good
order.

Parallel chip assembly tries to avoid the order dependency. Constraints are passed between
cellswhile layout is performed. Constraints are shapes, pin intervals, and exact locations of the
cellsrelative to each other. Aslayout of acell proceeds, all three groups of parameters change
from planned to fixed. The occurring changes in these parameters may change the require-
ments of other cells. If, for example, two cells share a channel, then pins of a net on opposite
sides of the channel should abut. This can be achieved by initially letting the pin positions float
and attract each other during parallel layout. Until now, we manage parallel cell synthesis. Par-
alel cell assembly seems possible but is not yet implemented.

4.5.2 Cell Synthesis

Cell synthesisis generating the layout of a CUD with primitive subcells. Examples of sub-
cells are standard cells, sea-of-gates cells, or transistors in a gate matrix design style. Tools can
be placement and routing tools or module generators. In any case the CUD has been repre-
sented to chip planning by a shape function. The curr Pranner Selected apoint from that curve,
assigned pins to pin intervals, and adjusted the shape according to the number of entering nets
(— red shift).

In pLaYouT only standard cell placement and routing is currently implemented. The imple-
mentation of the placement follows the simulated annealing algorithm as implemented in
TivMerWoLFSC [SelL87]. Improvements have been introduced in row length adjustment by
dynamic estimations of feedthroughs. The width of the channelsis continuously estimated to
improve the net cost function. This is all done by a fast global routing step which can be
applied during placement.

Influence of pin intervals
The influence of pin intervals on the CUD frame is an important issue for our top-down

35

approach and needs to be explained in more detail. Pin intervals are determined by the curp
pranner after global routing. A pininterval is the part of the cell boundary, where the cost for
connecting an external net to the cell boundary is a zero (see Section 4.3.2).

Let usconsider cell e from of 10 as an example and let us assume that the cell internally may
want to place the pin outside of the interval. This is possible but results in a penalty for the
internal net costs. For cell d it isimpossible to place anet directly in the corner. To achieve pin
positions close to the corner the same penalty applies. This penalty is calculated during stan-
dard cell placement as the smallest Manhattan distance from the rectangle that encloses the
inner terminals of a net and the pin interval. In Figure 26 this distance is shown as a double
arrow.

Final pin placement is done before global routing. For a corner interval a pin position is
selected which is closest to an inner terminals of the net but belongs to a side adjacent to the
corner. For other intervals we must distinguish if the enclosing rectangle of the inner net termi-
nals matches the interval or not. In the first case the best position inside the interval is selected,
thus following the global routing constraints on the next higher hierarchy level. If it does not
match we have the choice to select the best position on the side of the interval (arrows a and b
in Figure 26) or to select the best position inside the interval, depending on available routing
tracks (arrow c). In figure 26 three possible placements for a pin are indicated by the dotted
arrows. If the pin is placed inside the interval, an additional vertical routing track (feed-
through) must be available on the fourth row.

TITITTTITTD 4 e vt
T T I] I pininterval

T IR [T 0 pin
[N-IIB)-...

TITITI T 1T 43 nepenaty
[e 2

""""" bounding box of inner

| | || |‘|‘ net terminas

|

Figure26 Net penalty dueto pininterval

Parallel cell synthesis

One goal of parallel cell synthesisisthe reduction of the width of channels between cells by
matching pin positions on opposite sides of the channel. The width is only effected by nets that
have all pinsin the channel (— abutment nets). The net between cells a and b in Figure 10
shows such a situation. The global router assigns the overlap of the cells as pin intervals. If the

36

layouts of the cells would be generated independently of each other, any position of the pins
might result.

A second goal is the fine-tuning of shapes and the floorplan positions of the cells. As the
positions of the standard cells converge to their final values, the sizes of all cells become more
precise and rigid. Also, the width of the channels can be calculated more precisely as pin inter-
vals shrink to dots. This requires a continuous adaption of the floorplan.

In pLAYOUT we built a multi-process environment which allows constraints to be propa-
gated between processes at the same level of the hierarchy and with a parent process at the next
higher level. All adjacent cells exchange pin intervals, which influence the penalty added to the
internal net cost. The result of the iteration process is that the enclosing rectangles in adjacent
cells attract each other and hopefully overlap in the end. Global routing will then select pin
positions in the overlap so that abutment is guaranteed or as close to each other as possible.
The width of the channel between the cells is minimized. But it has to be mentioned that the
additional constraint on the pin intervals may result in larger cells. Experiments so far show
that the overall gain islarger than loss.

It is the task of the parent process to control the overall cell placement. This is done by
adapting the floorplan to the intermediate results of the cell synthesis processes (— place-
ment). Because the actual shapes of the cells generally diverge from the predicted shapes, it is
necessary to legalize the channel geometry of the floorplan. This results in new subcell posi-
tions which must be passed to the synthesis processes. The operation has to be performed
repeatedly.

In the case that actual and predected shapes of cells diverge drastically, it may also be neces-
sary to resize the floorplan completely (while keeping the given topology) thus getting new
shapes for the subcells. The problem of propagating these new shapes to the child processesis
that as soon as the number of rows of a standard cell block isfixed, the shape has little flexibil-
ity. If the parent process forces a drastic change in shape, the number of rows has to be
changed and the standard cell placement process has to be started again. All other processes
which are not affected will be stopped until this cell isin the same state as before.

Parallel cell synthesisis an excellent candidate of a distributed computing system. All pro-
cesses are highly CPU-intensive and constraints propagation requires relatively low communi-
cation bandwidth. Therefore alocal area network and the UNIX Network Computing System
(NCS) are used as communication environment.

4.5.3 Cell Assembly

Given a floorplan and set of macro cells as subcells, cell assembly is the task to adjust the
placement of the subcellsin away that detailed routing can be completed with minimal routing
and wasted area. After layout synthesis of the subcells has been completed, the floorplan is no
longer optimal because the sizes and the shapes of cells generally have changed. A final adjust-
ment step of the floorplan is necessary. For that we have the choice to ssmply legalize the chan-
nel geometry or to do afurther optimization step.

37

The legalization is done as follows. The width of the channels can be calculated more pre-
cisely than after global routing because the exact pin positions of the subcells are known. We
first calculate the density for all channel segments between adjacent pairs of cells as afunction
of their relative position. For each pair of cells we get a density function as shown in figure 27
[Bec93]. Legalization is done by adjusting the channel topography bottom-up the slicing tree.
Channels are equivalent to slicing lines and are extended or reduced until all distances between
adjacent cells at least are equal to the density function for the actual positions of the cells.
Since the subslices have already been fixed, individual cells along a slice cannot be moved rel-
ative to the others.

current
placement

Figure27 Channel density function

The second choice is an optimization step that moves cells together as close as possible.
Since the channel density function is not a constant, the optimization can determine the best
position of cells along a channel which need not be the position after legalization. This optimi-
zation problem is not just two-dimensional compaction (which is difficult enough) but the dis-
tance between cells is also a function of their relative position perpendicular to the distance.
The problem is reduced because the topology must not change. The range of expected shifts
between cells is limited by the distance functions. Our solution to the problem is a genetic
algorithm. A population of approximately 100 legal floorplans is used to generate children by
crossing and permutation. A selection process chooses a new generation of floorplans from
parents and children including the best floorplans of the parent generation. This is repeated
until the solution does not further improve [GHZ91].

38

Channel definition and pin positioning

The final task before detailed routing is the geometric definition of the channels and the
assignment of junction pins at the end of the channels. Since we use dlicing structures we need
not have switchboxes as shown in Figure 10 but we define channels along the whole slicing
lines.

A still open problem is the definition the geometrical boundaries of the channels because the
dicing lines are only of topological interest. We have to define where the channels precisely
intersect. We decided to define the channels as small as possible to increase the optimization
potential of the channels of ancester nodes in the dlicing tree. Figure 28 shows an example of
our approach. The bold-faced polygon encloses the routing area corresponding to the horizon-
tal dlicing line. The segments of the polygon which do not belong to the border of a cell inter-
sect the routing area from orthogona channels. On these segments virtual pins are defined
which are called junction pins. All these junction pins are located to fixed positions which
results in a switchbox with irregular shape and connections on all segments of the polygon.

; propagating abutment
| avoidsjogs

: || :
—t. : B B
-T = : |
1 : ; -

" n
| l/ :
sorting saves routing tracks L
O junction pin in the orthogonal channel

m pin
Figure28 Channel definition

The placement of the junction pinsis performed by sorting the nets and by propagating abut-
ment positions and some other constraints. We implemented the net ordering algorithm from
[Gro89] to avoid unnecessary crossings but did some dlight modifications. Abutment checks
which lead to fixed positions as indicated in Figure 28 will be preferred in case of a conflict
with sorting. Our main goals are:

39

e minimizing the number of jogsin a net

e well structured channels which support easy routing in Manhattan style routing
model

e minimizing the overall net length

e routing of all channelsin paralel.

A disadvantage of using such an ordering algorithm is the requirement for a switchbox
router. However, since our channel definition needs a switchbox router anyway, we can make
full use of the junction pin assignment method. Experiments with the assignment method have
shown an astonishing reduction in wire length, number of vias, and routing effort.

5. The PLAYOUT CAD Framework PLAYFRAME

The pLAYOUT design system has been extended by a CAD framework when it became nec-
essary to conduct large test designs with several hierarchy levelsin a university environment.
Since our group aways has limited resources of CAD tool developers and designers we
decided to increase the CAD support for the development of the pLAYOUT system itself aswell
as for the test designs as much as possible. This was the beginning of our CAD framework
project. The framework is called PLAYFRAME. The project contains research in the fields of
databases, design flow management, design planning, and tool integration.

The pLAYFRAME architecture is very similar to the general framework architecture which
has been described by Newton et. al. in [BHN92] (Figure 29). The kernel of PLAYFRAME iS an
object-oriented, prototype design database which has been developed in our group. However,
our main research topic in data management was on data modeling. Our first data model which
was published in [SIZ89] was extensively tested by many test designs. Recently, we improved
the model especially for a better support of top-down design steps [SAS94].

Besides database support, the administration and control of the design flow became more
and more important with increasing circuit sizes. Our large test designs have shown that it is
amost impossible to conduct such designs without computer support. PLAYFRAME has there-
fore been extended by an interactive design manager called DESTMA.

The third major topic of our framework research is a generator-based support of the CAD
tool development. A new software engineering environment called MOOSE was first devel oped
to automatically generate the data management components of our CAD tools from abstract
models. Due to the success of this approach we now extend MOOSE to generate other software
components (e.g. the tool flow control and the graphical interface), too.

These are the three mgjor research topics of our CAD framework project. They will now be
described in some more detail.

5.1 The Design Database PLAYBASE
Since the main focus of our PLAYOUT project is the design of very large, hierarchica cir-
Cuits, it very early became necessary to have access to database support for managing the large

40

higher services like
ext. ext. .
ltoolbox| ftoolbox| | tool adaption . level 5
L 1| n e cooperation strategies
CAD CAD € e « code generation
toolbox| |toolbox
1 n interface to design flow
external toolboxes control level 4

uniform programming interface
toolbox integration level

data version data user, level 3
representation control access interaction
physical i
data management process managemen level 2
abstract operating system

file program communi- user
management execution cation interaction level 1

operating system

Figure29 PLAYFRAME layer architecture

amount of design data. This requirement was aready existent in the mid 1980's when no com-
mercial non-standard database was available on the market. We therefore had to design and to
implement our own prototype design database. Our major requirement was an easy to use data
administration system with a comfortable interface. Less important were the permanent data
security and the multi-user ability of the database which are two important aspects for com-
mercial databases. We do not need these aspects because none of our test circuits has to be
designed asin an industrial environment. Our main focus therefore was the data modeling and
the administration of long-term transactions which are necessary for design as well as a com-
fortable access to the data basis.

We implemented our prototype database PLAYBASE in Smarntark-80, an object-oriented
programming language. The advantage of this approach was the comfortable programming
environment of svarrTark-80 which was areal help for the prototype implementation of our
object-oriented data model [SiZ89], the transaction management [Sie89], and an interactive
user interface based on a universal data browser (Figure 30).

The svarntark-80 database prototype is very successful aslong as al data can be stored in
main memory. In the case that the smarLTark-80 image does not fit into main memory the per-
formance becomes unacceptable. To ensure that the large amount of design data which are nec-
essary for our designs can be managed by our database implementation, we partitioned the
design data in meta data and micro data. The objects and the relations in the database only
concern the meta data (administration data) which are most important for the design manage-

41

(359 - wit
(359 - fledOu

DESIGNMANAGER) <8 retrizys
for: DESIGNMANAGER) <8 reti

©ll 1146 - backio_1072, itKey 1,ctkey 1, ce

9 October
h93.im.bakup ... done.
at 23 Octaher 1993 7:22:02 am

[5 possibleCant

1 Fpctv1#1 (1070-backrot ||| Fpis (1148-backro_toao)ped]| mitvaoet 1148
toolboxes | transactions \|| ; iy (1070-hackeot] || Fpls 1147 2)ed|| Mitvase (1150-backro_
0.

3 FRCIVI#T (1146=Backro| || Fpis (1151- X

browse 4 FpCtvi#2 (1146-hackro_||| Fpls (1150-backro_1078)ed]| Mitvi7#1 (1147-backro_

object =n 5 FpCtvase Fpls (1143-backio_1078)#d || IMIltv24#1(1151=backro s
#:

ied|| Mitviget (1143-packro

1
1
1
1

rsion (call 151 = backro_1074, key 24, tech ac

ort
is off | Mitvza#t (1151-backro_1074]| Fplsat (sT=backrasioza]| Fyopieshiarzzm>-Fpisat
plsAl (]

|| c=pl t=—————=bl 5| L

0l

e
e
revisionc data '

Figure30 PLAYBASE graphical user interface

ment. The micro data which are the basic design data like nets, pins, etc. are stored in regular
files in the file system of the operating system. These files will be accessed by the database
only. For preparing the input of a design step, PLAYBASE combines and extends these files by
special header informations with respect to the meta data model. This approach can be seen for
most other CAD framework approaches, too. With progress in object-oriented data base
research it may be possible to store both, the meta data and the micro data, together in the data-
base.

The transaction model that isimplemented by PLAYBASE is a subset of the transaction mod-
els of most advanced design databases. We aso implemented long-term transactions which do
not follow the ACID principle anymore (see Figure 31). Design transaction may last hours or
days and may manage large amount of complex data.

In our prototype database we did not implement all aspects of the right column in Figure 31.
On the one hand, we do not alow nested transactions and on the other hand, our design data
are stored persistently only after savepointing which has to be done explicitly by the user. All
further security aspects are those of the operating system. However, these restrictions do not
limit our test designs. Until now, there was no need for nested transactions. All further split-
tings of the transactions could easily be done outside the database. The persistency of design
data based on savepointing is sufficient for our environment. It is even questionable if a more
complex transaction model would be more helpful.

The most positive feedback from our designers concerns the interface of PLAYBASE. On the
one hand, the extended svariTark-80 browsers shown in Figure 30 are very suitable for the
list-oriented, interactive navigation through the design data. On the other hand, the flexible
programming interface can be easily exploited for implementing a prototype design flow man-
ager directly on top of the database [SpS88].

42

ACID feature standard transactions design transactions

atomicity (A) | - stomic - saving as much of the work as
=> either all changes are visible possible
(— commit) - intermediate states are possible
or noneisvisible (— abort) — save points
consistency (C) - consistency checks are expensive
- consistency checks are short, sm- | (e.g. checking if alayout imple-
ple, and static (e.g. fee > 0) ments a given function needs

extraction and simulation tools)

isolation (I) - intermediate statesare invisibleto

) - nested transactions possible
other transactions

durability (D) - committed changes survive

- committed changes survive
forever

system crash .
— version concept
amount of data - large amount of complex data
- few records :
— check-out/check-in
deadlocks - abort of transaction - resolved by designers

Figure31 Transaction features

5.2 Design Flow Management and Design Planning

Currently, we have a second version of a design manager as part of our framework. While
the first version was implemented together with the database in the same SvariTark-80 image
(which realized tightly coupled systems), we now have a separate design manager which inter-
actswith pLAYFRAME viaaremote procedure call (RPC) interface. Thisinterface istransparent
to the designer who still believes to interact with the database directly (but more comfortably).

One of the most important aspects of a good design management tools is a suitable visual-
ization of the actual design state. For evaluating the design state the list-oriented browsers of
the database are not sufficient. Important design objects must be graphically visualized in their
typical representation. Additional analysis tools are necessary to compare design alternatives.
In addition, the graphical interface must be able to support the designer to interfere in the
design in an easy manner. This emphasizes the importance of the user interface of the CAD
framework. Furthermore, additional planning and control assistants are necessary to guarantee
aconsistent and successful design. The final decision will still be made by the designer.

For visualization of the design state we implemented a design management component
called DEsIMA [Qued4]. It has a graphical interface for representing design objects. As stated
above, a textual representation of the design objects and their relations, which is typical for
databases, is not sufficient for estimating the design state. All design objects should be repre-
sented in a suitable, graphical manner (Figure 32). bESIMA, for example, represents the hierar-

43

chy relations by trees (as it is al'so done by the Repartitioner); circuit data, floorplan data, and
layout data are shown as schematics, floorplans, and layouts while the visualization abstracts
from unnecessary details.

Figure32 DESMA user interface

The graphical representation of al design objects which are important for the design state
enables the designer to comfortably compare design alternatives. DEsIMA further supports this
comparison by integrated analysistools. Very helpful or even necessary isthe fact that DESIMA
manages the design data consistently in several windowsin an object-oriented fashion. Version
and domain relations will be considered. For instance, if the designer selects anodein the hier-
archy tree, then pEs1IMA also highlights all corresponding circuits, floorplans, and layouts. If
the cell is only a component of a visualized floorplan, the corresponding part of the floorplan
will be highlighted.

The list-oriented browsers of PLAYBASE are integrated into DESIMA, too. Until now, they
are the most suitable way to navigate through the data model and an excellent tool to show the
actual state of the design transactions. DESIMA also allows to switch from the browsers to the
graphical representation of the entries (design objects) and vice versa at any time.

Interactive design management is a further feature of bEsIMA. The designer can select any
depicted object for a design action (a graphical object as well as an entry in a browser list).
This can be a single object or a group of objects. After pressing the “start task” button from a

44

pop-up menu (Figure 32) DESIMA calls PLAYFRAME to create a new design transaction and to
retrieve the corresponding toolbox input data for each of the selected design objects. Then the
toolbox will be started.

The design flow model is implemented by an extended Petri net [Bre93]. Transitions of the
net represent design tools (more precisely: design tasks because some toolboxes are able to
perform different tasks or we can combine two or more stand-alone tools to a single task).
Design data are described by tokens on the places which means that the places represent data
types. A design tool is executable in the case that the corresponding transition of the Petri net is
enabled (i.e. it can fire). A planning component based on the Petri net supports the designer in
navigating through the net in a suitable manner. While the net itself represents actual design
tools and data dependencies, the pL.aYoUuT planning component is based on estimation tools

(e.g. our SHAPE FUNCTION GENERATOR).

5.3 Generator-Based Toolbox Development

Besides supporting the VLS| design itself by the pLAYBASE data management component
and the pEsiMA design management component the pLavyouT CAD framework group also
works on the support of the toolbox integration. Our overall approach is the automatic genera-
tion of as much of the toolbox’ source code as possible. The input of the code generators are
abstract models, e.g. extended Entity Relationship diagrams for the data management compo-
nent [ASS95]. Our ideas resulted in the MOOSE software development environment (MOOSE IS
an acronym for Model-based Object-Oriented Software generation Environment). Figure 33
depicts an overview of our approach.

The precondition for the success of our generator concept was the fact that the major part of
the source code is very similar for all toolboxes of a design system. For instance, most of the
toolboxes have a graphical user interface which has to be nearly identical for al toolboxes to
guarantee a common look and feel. In addition, the data management component and the con-
trol flow component are not very different between the particular toolboxes. It therefore makes
sense to implement these components only once and to reuse these implementations of the
components for al toolbox. Thisideais similar to the library approach.

However, our experiences have shown that arigid library concept (asit is the case for the x -
winoows and OSF-Morrr libraries) is not suitable for our requirements [Pah94]. Although a
component has similar functionality for different toolboxes, there may be different require-
ments for the runtime behavior, memory consumption, etc. For example, the netlist of a circuit
hasto be stored in a compact linear list for one toolbox while we prefer afast hashing structure
for another toolbox.

Our ideais not to use a library implementation for reuse but to reuse the functionality of the
corresponding component which will be represented by an abstract model. For each particular
toolbox implementation this model will be modified or adjusted to meet the individual require-
ments of the toolbox. Then the modified model together with additional toolbox-specific, non-
functional requirements are input to a code generator. MOOSE already contains a large number

45

user interface desi gn fI ow
model

characteristics

of atoolbox
N

<£::::L’ r mcsnmdd
g data model

D|D) [Cell—|Net
1
-

J L
e — v
e
~
N
~— | editors |
(internal data base)
MOOSE
file I
communi- / ERSdAN-l
cation coae
_~"| Ccode
generator

0 000000000000O0O0
~
o
=<
N
O 000000000000O0O0

Figure 33 éj)%%%SE
To reduce the complexity of the figure we only show the code gener ator s of the data
management components

of code generators for different framework components and different programming languages

46

(including generators for the database data description language (DDL) and a hypertext docu-
mentation generator). By using MooSE for the toolbox development we saved up to 30% of the
programming time. This time can now be better used for finding excellent CAD agorithms.

6. Conclusion

We described a top-down VLS| design method and our design system pPLAYOUT. Recently
we performed several large test designs to show the quality of this approach. The examplesrun
so far show that such a method is feasible and superior to bottom-up methods. The design of
the largest test circuit shall shortly be described on behalf of all other designs.

The XLII test design

Circuits with at least three hierarchy levels are necessary to perform arealistic hierarchical
design with two or more planning and one cell synthesis levels. We constructed our own test
circuit with approximately 280,000 standard cells because we had no access to a benchmark
circuit of this complexity.

We designed four different processing elements (PEs). Each PE was instantiated three times.
These twelve PEs were connected to form a single large circuit which we named x1.1 1°. Each
PE was instantiated three times to conduct several experiments. One of the three instances was
configured with many fixed macro cells, resulting in a bottom-up like design strategy. The lay-
outs of the macro cells were synthesized with minimal area and no restrictions to their shapes.
The second instance was designed top-down where the sizes and the shapes of the subcells
were determined by a top-down chip planning step. The layouts of the subcells must be con-
structed with respect to these values. The third instance was completed in a mixed manner.

Intotal, x.11 isachip with twelve PEs which were further partitioned into 40 - 50 standard
cell blocks each. After repartitioning x.1 1 was structured into four hierarchy levels:

1. level: 1chip

2. level: 32 modules (20 flexible cells, 12 memory macro cells)

3. level: 793 standard cell blocks and 60 memory macro cells
4. level: 282,765 standard cells

We used the three configuration types to demonstrate that pLayouT can handle different
design styles in one design. At all hierarchy levels, the cells consist of fixed and flexible sub-
cells.

After repartitioning we computed the shape functions of all cells bottom-up. We needed two
estimation parameter sets. One parameter set was used for the cells for which we generated
floorplans assuming that wiring is symmetrical in horizontal and vertical direction. For the
standard cell blocks we needed an asymmetrical parameter set that was adapted to the row
structure of these cells.

5. Thecircuit is part of the MCNC benchmark set but is named SALLY there.

47

After computing the shape function of the top level cell chip planning was started. In the
floorplan domain we performed three different experiments:
e pure top-down chip planning
o (iterative) three-phase chip planning
e comparison of the top-down and the bottom-up design styles.

The result of the pure top-down design, i.e. the deviation of the floorplan from the final lay-
out, is shown in the left part of Figure 34. To compensate the variance in the estimated subcell
areas we did three-phase chip planning. Since it was not possible to estimate the area of stan-
dard cell blocks more precisely than 10 - 15% in all cases, the subcells did not fit accurate into
the planned spaces in the floorplan. The empty space increased and so the overall cell area.
This could be avoided by the iterative planning method.

(top-down) layout after
cell f cl?or lan Aq layout * iterated A,
P planning
PE1.1 280 mm? 5% 294 mm? 290 mm? 1%
PE1.2 324 mm? 4% 339 mm? L L
PE1.3 356 mm? 2% 349 mm? 343 mm? 2%
PE2.1 285 mm? 7% 305 mm? L L
PE2.2 291 mm? 17 % 340 mm? 310 mm? 10 %
PE2.3 310 mm? 10 % 341 mm? 310 mm? 10 %
PE3.1 347 mm? 5% 364 mm? 359 mm? 1%
PE3.2 327 mm? 10 % 360 mm? 346 mm? 4%
PE3.3 390 mm? 6% 413 mm? 401 mm? 3%
PE4.1 233 mm? 1% 230 mm? L L
PE4.2 236 mm? 2% 241 mm? S o kK
PE4.3 242 mm? 5% 254 mm? L L

*) result of pure top-down design
**) iterative three-phase chip planning has not been performed

Figure34 Results of the XLII test design
A4: deviations of the floorplans (based on estimated subcells) from layouts
A,: gain of the iterative tree-phase chip planning method.

We tested the iterative planning method in our second experiment. The results are shown in
the right part of Figure 34. Figure 35 shows a section of a floorplans at the second hierarchy
level as an example. Picture a) shows the floorplan based on the area estimations of the sub-
cells. The second picture shows a revised floorplan that contains the layouts of the subcells.

48

The layouts were computed with respect to the frames of picture @). While the three cellsin the
lower-right corner became little smaller than the prediction, the area of the cells on the |eft-
hand side increased. In the iterative planning method, we first inserted the layouts of all critical
subcells. After adapting the floorplan of the CUD to the inserted layouts, all other cells were
synthesized with a new shape in two further iteration steps. Picture ¢) shows the result of the
iterative planning method. The empty space is much smaller than for the pure top-down
method.

a) floorplan with estimated subcells b) revised floorplan with subcell layouts
after pure top-down planning

flexible cell
c) revised floorplan with subcell layouts
macro cell after iterative 3-phase chip planning

Figure35 Comparison of pure top-
down and iterative chip
planning

Our third experiment was a comparison between the top-down and the bottom-up approach.
As described above, several PEs were configured with many fixed macro cells while other PEs
were configured with almost flexible standard cell blocks only. We used the configurations to
compare the top-down approach (floorplan with flexible subcells) with the bottom-up approach
(floorplan with fixed macro cells). For the experiment we did placement for two cells PE2 and
PE4 (configured with macros) using the same input frames as for two corresponding cells with
flexible subcells (PEL and PE3, respectively). The result of the comparison is shown in Figure
36. It is conform with our expectation that the placement of macro cells results in a larger
empty space (while the top-down chip planning with flexible subcells is | ess precise because of
the inaccuracies of the subcell estimations). We aready confirmed this results by further exper-

49

iments.

cell configuration total area empty space wiring area
PE1 flexible 310 mm? 34 mm? 147 mm?
PE2 macro 337 mm? 57 mm? 157 mm?
PE3 flexible 346 mm? 27 mm? 163 mm?
PE4 macro 397 mm? 50 mm? 205 mm?

Figure36 Comparison of top-down and bottom-up design styles

Chip assembly completed the final layout. The layouts of the subcells were composed bot-
tom-up with respect to the top-down floorplan. Using our iterative chip planning method, the
rearrangement of the subcells by cell assembly was smaller than the rearrangement of a pure
top-down generated floorplan.

Acknowledgment

A system like PLAYOUT is necessary to prove the quality of aVVLSI design method. It isalso
the extent of what a research group in an university can accomplish. Because it is a group
effort, the authors names stand in place of many who contributed. Contributions also came
from other project groups in the Sonderforschungsbereich (SFB) 124 and from colleagues
working in the same field that were guests of the SFB. The SFB is financed by the Deutsche
Forschungsgemeinschaft and provided most of the funding. Besides the basic funding by the
University of Kaiserslautern, the Zentrum fir Rechnergestiitzte I ngenieurssysteme and the Sie-
mens AG enhanced our funds.

References

[ASS95] Altmeyer, J., Schirmann, B., Schitze, M.. “Generating ECAD Framework
Code from Abstract Models’. In “Proc. 32nd Design Automation Conference
(DAC)”, San Francisco, June 1995.

[ASZ93] Altmeyer, J., Schirmann, B., Zimmermann, G.. “Three-Phase Chip Planning -
Strategy and Flow Control”. SFB 124 report No. 21/93. University of Kaisers-
lautern, 1993.

[BHN92] Barnes, T.J., Harrison, D., Newton, A.R., Spickelmier, R.L.. “Electronic CAD
Frameworks”. Kluwer Academic Publishers, Norwell, MA, 1992.

[Bec93] Becker, T.. “Router-Dependent Estimation of Wiring Areafor Chip Assembly”.
Master thesis, University of Kaiserdautern, 1993. (in German)

[Bre83] Breuer, M.A.. “A Methodology for Custom VLSI Layout”. Journal IEEE Trans-
actions on Circuits and Systems, Vol. CAS-30, No. 6, 1983.

[Bre93] Bretschneider, F.. “A Process Model for Design Flow Management and Plan-
ning”. In “VDI-Fortschrittsberichte, Volume 9, No. 157”. VDI-Verlag, 1993.

[EDI187] “EDIF Electronic Design Interchange Format Version 2 0 0. Electronics Indus-

tries Association, Washington, 1987.

50

[FiM82]

[GHZ91]

[GIZ92]

[Gro89]
[HDL8S]

[HNZ93]

[HaR85)]
[KBK90]
[Len90]

[MBEQQ]

[Mar90]

[Meiol]

[Ott83]

[PDM90]

[Paho4]
[Quedd]
[RRZ84]

[SAS94]

[SAZ92]

[SeL87]

Fiduccia, C.M., Mattheyses, R.M.. “A Linear-Time Heuristic for Improving
Network Partitions’. In “Proc. 19th Design Automation Conference (DAC)”,
1982.

Glasmacher, K., Hef3, A., Zimmermann, G.. “A Genetic Algorithm for Global
Improvement of Macrocell Layouts’. In “Proc. Int. Conference on Computer
Design (ICCD)”, Cambridge, 1991.

Glasmacher K., Zimmermann G.. “Chip Assembly in the PLAYOUT VLS
Design System”. In “Proc. European Design Automation Conference (EURO-
DAC)”, Hamburg, 1992.

Groeneveld, P.. “On Globa Wire Ordering for Macro Cell Routing”. In “Proc.
26th Design Automation Conference (DAC)”, 1989.

“|EEE Standard VHDL Language Reference Manual”. The Institute of Electri-
cal and Electronics Engineers, Inc., New York, 1988.

Hebgen, W., Nuhn, P, Zimmermann, G.. “RETO, an Optimal Clocking Algo-
rithm for Digital Synchronous Circuits’. SFB 124 report No. 42/93. University
of Kaiserslautern, 1993.

Hayes-Roth. “A Blackboard Architecture for Control”. Journal Artificial Intelli-
gence, No. 26, 1985.

Kedem, G., Brglez, F., Kozminski K.. “ASIC Design with OASIS’. In “Proc.
Int. Symposium on Circuits and Systems’, New Orleans, 1990.

Lengauer, T.. “Combinatorial Algorithms for Integrated Circuit Layout”. John-
Wiley & Sons, Chichester, 1990.

Masson, C., Barbier, D., Escassut, R., Winer, D., Chevallier, G. F., Zeegers, P.
A., Bull, S.. “CHEOPS: An Integrated VLSI Floor Planning and Chip Assem-
bly System Implemented in Object Oriented LISP’. In “Proc. European
Design Automation Conference (EDAC)”, Glasgow, Scotland, 1990.
Marwedel, P. “A Software-System for the Synthesis of Computer Architectures
and for the Generation of Microcode”. Habilitation thesis, reprinted as. Report
No. 356, Computer Science Institute, Dortmund. University of Kiel, 1990. (in
German)

Meixner, G.. “Global Routing of Very Large Scale Integrated Circuits Based on
Flow Methods and Timing Considerations’. PhD thesis, University of Kaisers-
lautern, 1991.

Otten, R.H.J.M.. “Efficient Floorplan Optimization”. In “Proc. Int. Conference
on Computer Design (ICCD)”, 1983.

Pedram, M., Dai, W. W.-M., Marek-Sadowska, M., Ogawa, Y.. “Ongoing
Research and Development of BEAR Layout System”. In “Proc. Int. Work-
shop on Layout Synthesis’, Research Triangle Park, NC, 1990.

Pahle, H.. “Model-Based Generation of CAD Framework Components’. PhD
thesis, University of Kaiserslautern, 1994. (in German)

Queins, S.. “DESIMA, an Interactive Design Management System in PLAY -
OUT”. Master thesis, University of Kaiserdautern, 1994. (in German)

Rao, P, Ramnarayan, R., Zimmermann, G.. “SPIDER, A Chip Planner for ISL
Technology”. In “Proc. 21st Design Automation Conference (DAC)”, 1984.
Schirmann, B., Altmeyer, J. Schitze, M.. “On Modeling Top-Down VLS
Design”. In “Proc. Int. Conference on Computer-Aided Design (ICCAD)”,
San Jose, CA, 1994.

Schirmann, B., Altmeyer, J., Zimmermann, G.. “ Three-Phase Chip Planning -
An Improved Top-Down Chip Planning Strategy”. In “Proc. Int. Conference of
Computer Aided Design (ICCAD)”, Santa Clara, CA, 1992.

Sechen, C., Lee, K.. “An Improved Simulated Annealing Algorithm for Row-
Based Placement”. In “Proc. Int. Conference on Computer-Aided Design”,
Santa Clara, CA, 1987.

51

[SiZ89]

[Siess]

[Sies9]

[SpS88]

[SuA95]
[Sz080]

[YiW89)]

[Zim81]

[Zim88]

[Zim88.1]

Siepmann, E., Zimmermann, G.. “An Object-Oriented Datamodel for the VLS
Design System PLAYOUT”. In “Proc. 26th Design Automation Conference
(DAC)”, Las Vegas, 1989.

Siepmann, E.. “PLIF - an Object-Oriented Data Exchange Format for the Com-
munication in PLAYOUT”. SFB 124 report No. 32/88. University of Kaisers-
lautern, 1988. (in German)

Siepmann, E.. “A Data Management Interface as Part of the Framework of an
Integrated VLSI-Design System”. In *“Proc. Int. Conference on Computer-
Aided Design (ICCAD)”, Santa Clara, CA, 1989.

Spang, H., Siepmann, E. . “An Object-Oriented Toolbox Manager for the VLS
Design System PLAYOUT”. ZRI report No. 5/88, University of Kaiserdautern,
1988.

Schirmann, B., Altmeyer, J.. “The Effect of Pin Constraints on Layout Ared’.
In “Proc. |EEE European Design and Test Conference (ED& TC)”, Paris, 1995.
Szepieniec, A.A., Otten, R.H.J.M.. “The Genealogical Approach to the Layout
Problem”. In “Proc. 17th Design Automation Conference (DAC)”, 1980.
Ying, C.-S., Wong, J.S.-L.. “An Analytical Approach to Floorplanning for Hier-
archical Building Blocks’. Journal Transactions on Computer-Aided Design,
1989.

Zimmermann, G.. “CAD Tools for the Synthesis of Hardware and Software”.
In “Proc. 5th Intern. Conf. on Computer Hardware Description Languages ”,
Kaiserslautern, 1981.

Zimmermann, G.. “A New Area Shape Function Estimation Technique for
VLS Layouts’. In “Proc. 25th Design Automation Conference (DAC)”, Ana-
heim, 1988.

Zimmermann, G.. “The MIMOLA Design System - A Computer Aided Digital
Processor Design Method”. In “25 Years of Electronic Design Automation, A
compendium of papers from the Design Automation Conference”, 1988.

52

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

