
Using Static-Single-Information-
Form for SCAD code generation

Alexander Schneiders

Bachelor Thesis Presentation
June 28, 2018

 2/79

Outline

1. Introduction / Motivation
 the SCAD machine
 move code

2. Control flow
3. Remove constraints per basic-block
4. Summary

 3/79

Outline

1. Introduction / Motivation
 the SCAD machine
 move code

2. Control flow
3. Remove constraints per basic-block
4. Summary

 4/79

The SCAD machine

Synchronous Control Asynchronous Dataflow

● Exposed Datapath Architecture
● many processing units (PUs)
● PUs have buffered inputs/outputs (FIFO buffers)
● buffers are connected
● values are moved from output to input buffers
● PUs fire when they find operands in their input

buffers

 5/79

The SCAD machine

Synchronous Control Asynchronous Dataflow

 6/79

The SCAD machine

Goal: distribute instructions over pool of PUs to
get Instruction Level Parallelism (ILP)

 7/79

Outline

1. Introduction / Motivation
 the SCAD machine
 move code

2. Control flow
3. Remove constraints per basic-block
4. Summary

 8/79

Move Code

x ← 1 + 2

 9/79

Move Code

x ← 1 + 2

● move 1 to input buffer

1

 10/79

Move Code

x ← 1 + 2

● move 1 to input buffer
● move 2 to input buffer

1 2

 11/79

Move Code

x ← 1 + 2

● move 1 to input buffer
● move 2 to input buffer
● move opcode to input buffer

1 2+

 12/79

Move Code

x ← 1 + 2

● move 1 to input buffer
● move 2 to input buffer
● move opcode to input buffer
● PU fires

3

 13/79

Move Code

special move instructions

duplicate (dup)
● x ← y
● move from one buffer to

another
● add with 0, multiply with 1 or

even separate instruction

discard
● DISCARD(x)
● dequeue from output buffer

and get rid of a variable
● dup with 0 count or special

NULL buffer as target

 14/79

Move Code

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 15/79

Move Code

dequeue all copies of a variable consecutively

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 16/79

Move Code

dequeue all copies of a variable consecutively

x
x

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 17/79

Move Code

dequeue all copies of a variable consecutively

z
y
x
x

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 18/79

Move Code

dequeue all copies of a variable consecutively

x

z
y
x

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 19/79

Move Code

dequeue all copies of a variable consecutively

x x

z
y

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 20/79

Move Code

dequeue all copies of a variable consecutively

x x

wrong order of enqueing
must be mapped to different PUs z

y

x ← …
y ← …
z ← …
… ← x + y
… ← z + x

 21/79

Move Code

previous work: optimal move code generation
(making due with least number of PUs)

 22/79

Move Code

previous work: optimal move code generation
(making due with least number of PUs)

● employing SAT and SMT solvers
● bad running time for larger programs
● least number of PUs
● cannot map instructions to PUs freely

 23/79

Move Code

contribution: remove constraints

● arbitrary number of PUs (even 1)
● choose mapping freely

 24/79

Move Code

x ← 1 + 2

… ← x + 4

… ← 5 + x

generate move code instruction-wise

enqueue right operand
enqueue left operand
enqueue opcode
enqueue right operand
enqueue left operand
enqueue opcode
enqueue right operand
enqueue left operand
enqueue opcode

 25/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

 26/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

 27/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
x

 28/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
x

y

 29/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
y

 30/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
y

 31/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
y

attempt to dequeue y but find x instead

 32/79

Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
x´ ← x
… ← y
… ← x´

resolve buffer interference by
inserting a dup instruction

 33/79

Move Code

rest of this talk:

● deal with control flow
 produce correct number of copies
 restrict interferences to basic blocks

● resolve buffer interferences
 inserting dup instructions

 34/79

Outline

1. Introduction / Motivation
 the SCAD machine
 move code

2. Control flow
3. Remove constraints per basic-block
4. Summary

 35/79

Controlflow

control flow in general:

split points join points

 36/79

Controlflow

balancing:

x ← …

… ← x… ← x
… ← x
… ← x

 37/79

Controlflow

balancing:

x ← …

… ← x… ← x
… ← x
… ← x DISCARD(x)

DISCARD(x)

 38/79

Controlflow

loops:

 39/79

Controlflow

loops:

x ← …

… ← x

 40/79

Controlflow

loops:

x ← …

… ← x

 41/79

Static Single Information (SSI)

● program intermediate representation
● related to Static Single Assignment (SSA)
● properties (simplified)

 variables are defined only once
 and then used along one chain of uses
 each branch gets it‘s own copy of a variable

 42/79

Static Single Information (SSI)

σ (sigma) and ϕ (phi) functions
● pseudo assignment
● σ placed at split points
● ϕ placed at join points

 43/79

Static Single Information (SSI)

(x1 … xn) ← σ (x)

 44/79

Static Single Information (SSI)

(x1 … xn) ← σ (x)

x1 ← x x2 ← x x3 ← x

 45/79

Static Single Information (SSI)

(x1 … xn) ← σ (x)

… ← x1 … ← x2 … ← x3

 46/79

Static Single Information (SSI)

x1 ← x x2 ← x x3 ← x
… ← x1 … ← x2 … ← x3

 47/79

Static Single Information (SSI)

x ← ϕ (x1 … xn)

 48/79

Static Single Information (SSI)

x ← ϕ (x1 … xn)

x ← x1 x ← x2 x ← x3

 49/79

Static Single Information (SSI)

x ← ϕ (x1 … xn)

x1 ← … x2 ← … x3 ← …

 50/79

Static Single Information (SSI)

x ← x1 x ← x2 x ← x3

x1 ← … x2 ← … x3 ← …

 51/79

Static Single Information (SSI)

x ← …

… ← x

 52/79

Static Single Information (SSI)

x ← …

… ← x1

x1 ← ϕ(x,x3)

(x4,x3)←σ(x1)

 53/79

Static Single Information (SSI)

x ← …

… ← x1 x3 ← x1
x1 ← x3

x4 ← x1

x1 ← x

 54/79

Outline

1. Introduction / Motivation
 the SCAD machine
 move code

2. Control flow
3. Remove constraints per basic-block
4. Summary

 55/79

SSI+

● transformation on top of SSI
● unique use sites
● reduce buffer sizes

 56/79

SSI+

● 2 copies of a variable waiting in an
output buffer

● one copy to be used / consumed
● one to be duplicated for further use

 57/79

SSI+

x ← …

… ← x

… ← x

… ← x

 58/79

SSI+

x ← …

… ← x

… ← x1

… ← x1

x1 ← x

 59/79

SSI+

x ← …

… ← x

… ← x1

… ← x1

x1 ← x

 60/79

SSI+

x ← …

… ← x

… ← x1

… ← x1

x1 ← x

 61/79

SSI+

x ← …

… ← x

… ← x1

… ← x2

x1 ← x

x2 ← x1

 62/79

SSI+

x ← …

… ← x

… ← x1

… ← x2

x1 ← x

x2 ← x1

 63/79

SSI+

… ← x + y

 64/79

x1 ← x

SSI+

… ← x + y
y1 ← y

 65/79

x1 ← x

SSI+

… ← x + y
y1 ← y

 66/79

Buffer Interferences

now after SSI+
● unique definition
● unique use-site (maybe several uses)

 67/79

Buffer Interferences

now after SSI+
● unique definition
● unique use-site (maybe several uses)

detect buffer interferences for two variables x and y
● x and y enqueued and dequeued in same order (ok)
● else: x and y interfere

 68/79

… ← x

Buffer Interferences

x ← …

… ← y

y ← …

 69/79

… ← x

Buffer Interferences

x ← …

… ← y

y ← …

 70/79

… ← y

Buffer Interferences

x ← …

… ← x

y ← …

 71/79

… ← y

Buffer Interferences

x ← …

… ← x

y ← …

 72/79

… ← y

Buffer Interferences

x ← …

… ← x1

y ← …

x1 ← x

 73/79

Summary

● control flow problems solved
● no buffer interferences

 74/79

Summary

● control flow problems solved
● no buffer interferences

→ generate move code for arbitrary mapping and
arbitrary number of PUs

 75/79

Summary

● SSI (control flow & def-sites unique)

● SSI+ (make use-sites unique)

● encapsulated intervals (remaining buffer interferences)

● instruction-wise move code generation

 76/79

Summary

● SSI (control flow & def-sites unique)
 code size ca. doubled

● SSI+ (make use-sites unique)

● encapsulated intervals (remaining buffer interferences)

● instruction-wise move code generation

 77/79

Summary

● SSI (control flow & def-sites unique)
 code size ca. doubled

● SSI+ (make use-sites unique)
 small increase only

● encapsulated intervals (remaining buffer interferences)

● instruction-wise move code generation

 78/79

Summary

● SSI (control flow & def-sites unique)
 code size ca. doubled

● SSI+ (make use-sites unique)
 small increase only

● encapsulated intervals (remaining buffer interferences)
 almost none or heavy increase in code size

depending on the program
● instruction-wise move code generation

 79/79

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

