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The SCAD machine

Synchronous Control Asynchronous Dataflow

● Exposed Datapath Architecture
● many processing units (PUs)
● PUs have buffered inputs/outputs (FIFO buffers)
● buffers are connected
● values are moved from output to input buffers
● PUs fire when they find operands in their input 

buffers
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The SCAD machine

Synchronous Control Asynchronous Dataflow
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The SCAD machine

Goal: distribute instructions over pool of PUs to 
get Instruction Level Parallelism (ILP)
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Move Code

x ← 1 + 2
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Move Code

x ← 1 + 2

● move 1 to input buffer
● move 2 to input buffer
● move opcode to input buffer

1 2+



  12/79

Move Code

x ← 1 + 2

● move 1 to input buffer
● move 2 to input buffer
● move opcode to input buffer
● PU fires

3
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Move Code

special move instructions

duplicate (dup)
● x ← y
● move from one buffer to 

another
● add with 0, multiply with 1 or 

even separate instruction

discard
● DISCARD(x)
● dequeue from output buffer 

and get rid of a variable
● dup with 0 count or special 

NULL buffer as target
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Move Code

x ← …
y ← …
z ← …
… ← x + y
… ← z + x
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Move Code

dequeue all copies of a variable consecutively

x ← …
y ← …
z ← …
… ← x + y
… ← z + x
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Move Code

dequeue all copies of a variable consecutively

x x

z
y

x ← …
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Move Code

dequeue all copies of a variable consecutively

x x

wrong order of enqueing
must be mapped to different PUs z

y

x ← …
y ← …
z ← …
… ← x + y
… ← z + x
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Move Code

previous work: optimal move code generation
(making due with least number of PUs )
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Move Code

previous work: optimal move code generation
(making due with least number of PUs )

● employing SAT and SMT solvers
● bad running time for larger programs
● least number of PUs
● cannot map instructions to PUs freely
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Move Code

contribution: remove constraints

● arbitrary number of PUs (even 1)
● choose mapping freely
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Move Code

x ← 1 + 2

… ← x + 4

… ← 5 + x

generate move code instruction-wise

enqueue right operand
enqueue left operand
enqueue opcode
enqueue right operand
enqueue left operand
enqueue opcode
enqueue right operand
enqueue left operand
enqueue opcode
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Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x
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Move Code
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Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
… ← y
… ← x

x
y

attempt to dequeue y but find x instead
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Move Code

x ← 1 + 2
y ← 3 + 4
… ← x
x´ ← x
… ← y
… ← x´

resolve buffer interference by 
inserting a dup instruction
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Move Code

rest of this talk:

● deal with control flow
 produce correct number of copies
 restrict interferences to basic blocks

● resolve buffer interferences
 inserting dup instructions
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Outline
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Controlflow

control flow in general:

split points join points
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Controlflow

balancing:

x ← … 

… ← x… ← x
… ← x
… ← x
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Controlflow

balancing:

x ← … 

… ← x… ← x
… ← x
… ← x DISCARD(x)

DISCARD(x)
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Controlflow

loops:
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Controlflow

loops:

x ← … 

… ← x 
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Controlflow

loops:

x ← … 

… ← x 
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Static Single Information (SSI)

● program intermediate representation
● related to Static Single Assignment (SSA)
● properties (simplified)

 variables are defined only once
 and then used along one chain of uses
 each branch gets it‘s own copy of a variable
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Static Single Information (SSI)

σ (sigma) and ϕ (phi) functions
● pseudo assignment
● σ placed at split points
● ϕ placed at join points
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Static Single Information (SSI)

(x1 … xn ) ← σ (x)
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Static Single Information (SSI)

(x1 … xn ) ← σ (x)

x1 ← x x2 ← x x3 ← x
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Static Single Information (SSI)

(x1 … xn ) ← σ (x)

… ← x1 … ← x2 … ← x3
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Static Single Information (SSI)

x1 ← x x2 ← x x3 ← x
… ← x1 … ← x2 … ← x3
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Static Single Information (SSI)

x ← ϕ (x1 … xn )
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Static Single Information (SSI)

x ← ϕ (x1 … xn )

x ← x1 x ← x2 x ← x3
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Static Single Information (SSI)

x ← ϕ (x1 … xn )

x1 ← … x2 ← … x3 ← … 
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Static Single Information (SSI)

x ← x1 x ← x2 x ← x3

x1 ← … x2 ← … x3 ← … 
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Static Single Information (SSI)

x ← … 

… ← x 
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Static Single Information (SSI)

x ← … 

… ← x1 

x1 ← ϕ(x,x3)

(x4,x3)←σ(x1)
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Static Single Information (SSI)

x ← … 

… ← x1 x3 ← x1 
x1 ← x3 

x4 ← x1 

x1 ← x 
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Outline
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SSI+

● transformation on top of SSI
● unique use sites
● reduce buffer sizes
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SSI+

● 2 copies of a variable waiting in an 
output buffer

● one copy to be used / consumed
● one to be duplicated for further use
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SSI+

x ← … 

… ← x

… ← x

… ← x
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SSI+

x ← … 

… ← x

… ← x1
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SSI+

x ← … 

… ← x

… ← x1

… ← x2

x1 ← x

x2 ← x1
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SSI+

… ← x + y
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x1 ← x

SSI+

… ← x + y
y1 ← y
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x1 ← x

SSI+

… ← x + y
y1 ← y
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Buffer Interferences

now after SSI+
● unique definition
● unique use-site (maybe several uses)
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Buffer Interferences

now after SSI+
● unique definition
● unique use-site (maybe several uses)

detect buffer interferences for two variables x and y
● x and y enqueued and dequeued in same order (ok)
● else: x and y interfere
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… ← x

Buffer Interferences

x ← … 

… ← y

y ← … 
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… ← x

Buffer Interferences

x ← … 

… ← y

y ← … 
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… ← y

Buffer Interferences

x ← … 

… ← x

y ← … 
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… ← y

Buffer Interferences

x ← … 

… ← x

y ← … 
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… ← y

Buffer Interferences

x ← … 

… ← x1

y ← … 

x1 ← x
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Summary

● control flow problems solved
● no buffer interferences
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Summary

● control flow problems solved
● no buffer interferences

→ generate move code for arbitrary mapping and 
arbitrary number of PUs
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Summary

● SSI (control flow & def-sites unique)

● SSI+ (make use-sites unique)

● encapsulated intervals (remaining buffer interferences)

● instruction-wise move code generation
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Summary

● SSI (control flow & def-sites unique)
 code size ca. doubled

● SSI+ (make use-sites unique)
 small increase only

● encapsulated intervals (remaining buffer interferences)
 almost none or heavy increase in code size

depending on the program
● instruction-wise move code generation
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Questions?
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