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Abstract

Buffered Exposed Datapath (BED) architectures such
as SCAD move data transport, scheduling, and
processing-unit (PU) assignment to the compiler. In
this setting, FIFO buffer states and edge crossings in
dataflow graphs (DFGs) cause conflicts that are com-
monly addressed with copy nodes (for FIFO-conform
leveling) and swap nodes (for critical crossings), at the
cost of additional compute and memory. This thesis
asks how to minimize the number of newly inserted
copy and swap nodes under a fized node order and fized
PU allocation.

A two-stage heuristic is proposed: (i) a deterministic
queue simulation with dynamic lookahead and planned
give-back records exactly those rotations that are truly
required and derives a minimal set of copy nodes; (ii)
remaining per-channel conflicts are detected as adja-
cent inversions and resolved by locally inserted swap
nodes. Both stages preserve FIFO semantics, the orig-
inal node order, and the PU assignment of existing
nodes.



Zusammenfassung

Buffered-Exposed-Datapath-(BED)-Architekturen wie
SCAD verlagern Datentransport, Scheduling und PU-
Zuordnung in die Codegenerierung. Dabei fiihren
FIFO-Zustande und Kantenkreuzungen in Daten-
flussgraphen (DFGs) zu Konflikten, die {iblicher-
weise durch Copy-Knoten (fiir FIFO-konformes Lev-
eling) und Swap-Knoten (fiir kritische Kreuzungen)
entschirft werden — jedoch mit zusitzlichem Rechen-
und Speicheraufwand. Diese Arbeit untersucht,
wie sich die Anzahl neu einzufiigender Copy- und
Swap-Knoten bei fester Ausfithrungsreihenfolge (Node-
Order) und fester PU-Allokation minimieren ldsst.
Eine zwei-stufige Heuristik wird vorgeschlagen: (i) Eine
deterministische Simulation der Pufferdynamik mit dy-
namischer Vorausschau und geplanter Riickgabe identi-
fiziert genau jene Rotationen, die tatsichlich notwendig
sind, und leitet daraus eine minimale Menge an Copy-
Knoten ab. (ii) Verbleibende Kanal-Konflikte wer-
den als benachbarte Inversionen erkannt und durch
lokal eingefiigte Swap-Knoten aufgelést. Beide Phasen
wahren FIFO-Semantik, die urspriingliche Node-Order
und die PU-Allokation der vorhandenen Knoten.
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1 Einleitung

Buffered Exposed Datapath (BED) Architekturen wie SCAD verlagern Auf-
gaben, die klassische Prozessoren zur Laufzeit erledigen, in die Codegenerie-
rung: Der Compiler steuert Datentransport, Scheduling und die Zuordnung von
Operationen auf Verarbeitungseinheiten (Processing Units, PUs) mit FIFO-
Puffern. Damit riicken Datenfliisse, ihre Reihenfolgen und Pufferzusténde in
den Fokus der Korrektheit und Effizienz des erzeugten Codes. In der Praxis
werden sequentielle Programme zunéchst in Datenflussgraphen (DFGs) iiber-
setzt, deren Knoten Operationen und deren Kanten Transportbeziehungen
modellieren. Aus diesen DFGs entsteht anschliefend der Move Code fiir die
Zielarchitektur. Falsche Werte an den Kopfen der FIFO-Puffer sowie Kanten-
kreuzungen fithren dabei zu lokalen und strukturellen Konflikten, die ohne Ge-
genmafnahmen die Ausfithrbarkeit behindern oder blockieren. Copy-Knoten
(fiir FIFO-konformes Leveling) und Swap-Knoten (fiir das Auflésen kritischer
Kreuzungen) sind etablierte Bausteine, bringen aber zusétzlichen Rechen- und
Speicheraufwand mit sich. [SBR22a; SBR22b)|

Diese Thesis adressiert die Frage, wie sich die Zahl zusédtzlich benétigter
Copy- und Swap-Knoten unter festen Rahmenbedingungen minimieren l&sst:
Die vorgegebene Knotenausfithrungsreihenfolge (Node-Order) sowie eine feste
PU-Allokation bleiben fiir alle urspriinglichen Knoten erhalten. Neue Knoten
diirfen nur an markierten Konfliktpositionen eingefiigt werden und werden stets
auf derjenigen PU platziert, auf der der Konflikt sichtbar wird. Damit bleiben
sowohl Reihenfolge als auch Allokation invariant und sind fiir die Optimierung
als Nebenbedingungen zu respektieren.

Der vorgeschlagene Ansatz arbeitet zweistufig. Zunéchst simuliert die Heu-
ristik die Node-Order entlang mit einer dynamischen Vorausschau und geplan-
ter Riickgabe. Hierbei wird die minimale Anzahl der benotigten Copy-Knoten
ermittelt. In der zweiten Phase werden verbliebene critical crossings kanalwei-
se als benachbarte Inversionen erkannt und durch gezielte Swaps auf derselben
PU aufgelost. Beide Phasen wahren eine feste Reihenfolge, feste Allokation und
korrekte FIFO-Semantik. .






2 Hintergrund

2.1 Buffered Exposed Datapath Architekturen

Eine Buffered Exposed Datapath Architektur ist eine spezielle Prozessorarchi-
tektur, bei der die internen Datenpfade und Verarbeitungseinheiten (Proces-
sing Units, PUs) sichtbar gemacht werden. Das heift, dem Compiler werden
sowohl die Art der PUs als auch ihre Anzahl und der Datenspeicher verfiigbar
gemacht. Bei Buffered Exposed Datapath Architekturen (BED Architekturen)
steuert der Compiler nicht nur den Datentransport, sondern kiimmert sich auch
statisch um das Scheduling der Instruktionen. Hier kiimmert sich der Compi-
ler um die Kommunikation zwischen den PUs und um die Allokation jeder
Instruktion fiir jede PU.

Das Scheduling wird mit FIFO Puffer umgesetzt. Davon kann es pro PU meh-
rere geben. Mit dieser Art des Schedulings und des Zwischenspeicherns der
Daten wird bei BED Architekturen auf globale Register verzichtet. [SBR22a]

Bei dieser Architektur werden die Instruktionen im Program Memory gespei-
chert und die Daten, die abgerufen werden, im Data Memory. Der Zugriff
auf die Instruktionen erfolgt iiber eine Control Unit (CU) und der Zugriff auf
die Daten iiber eine Load/Store Unit (LSU). Die PUs erhalten Werte, fithren
Berechnungen mit diesen Werten aus und geben die Ergebnisse aus. Instruk-
tionen geben an, welche Berechnung eine PU durchfiihrt und woher die Werte
kommen. Die Kommunikation zwischen PUs, CU, LSU und den Puffern findet
iiber Interconnection Networks statt. Wie eine BED Architektur im Allgemei-
nen aussieht, ist dargestellt in Abbildung [2.1]

EEEEBEEEE -

[Pucore| [PuCore] [ LsU | [ cu | |
1 I 1 [ | . ! I
Data
JLILILII]
Interconnection Network

Abbildung 2.1: Allgemeines Template einer BED Architekur |SBR22al

2.2 SCAD

Die SCAD(Synchrounous Control Asynchronous Dataflow) Architektur ist ei-
ne BED Architektur, die zur Ausfithrung von Programmen den asynchronen
Datenfluss und die synchrone Steuerung kombiniert. [Bha21; [Ker23]|
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SCAD ist so aufgebaut, dass es mehrere PUs gibt, die jeweils 2 Input Puffer,
2 Qutput Puffer und einen Input Puffer fiir den opcode haben. Der opcode ist
eine Anweisung, die festlegt, welche Operation die PU ausfiihren soll. Die Puf-
fer sind mit den Interconnection Networks verbunden. Zum einen gibt es den
Move Instruction Bus (MIB), der die Werte synchron von der Control Unit zu
den PUs schickt, und zum anderen gibt es das Data Transport Network (DTN),
das Werte zwischen den PUs, der LSU und der CU hin und her sendet, sollten
diese Werte verfiigbar sein.

2.2.1 FIFO Puffer

Jeweils 2 Input/Output Puffer einer PU speichern Paare von Eintrigen in der
Form (adr,val). Fiir einen Input Puffer ist adr die Adresse des Output Puffers
der PU, die den Wert wval produziert hat oder noch produzieren wird. Fiir
Output Puffer ist adr die Adresse des Input Puffers der PU, die den Wert val
konsumieren wird.

PU Core

o

Abbildung 2.2: Struktur einer PU mit dazugehérigen FIFO Puffern |Ker23|

)

Die Struktur der Input/Output Puffer und einer PU sind in Abbildung
dargestellt. Hier sieht man den PU Core, der in Gelb dargestellt ist, und die
Input Puffer oberhalb der PU sowie die Output Puffer unterhalb der PU. Diese
sind jeweils griin-rot dargestellt. Die Pfeile dazwischen und das rote und griine
Quadrat stellen die Interconnection Networks mit ihren Controllern dar. Das
rote Quadrat ist der MIB Controller und das griine Quadrat ist der DTN Con-
troller. Auf diese wird im weiteren Verlauf der Thesis noch ndher eingegangen.
Falls ein Wert val von einem Input Puffer erwartet wird, aber nicht ankomint,
weil er von dem Output Puffer noch nicht produziert oder noch nicht gesendet
wurde, wird im Input Puffer ein Eintrag gespeichert der Form (adr, L). Das




2.2 SCAD

Symbol L ist hierbei ein Platzhalter fiir val. Der Eintrag (adr, L) wird eben-
falls im Output Puffer gespeichert, wenn der Wert val erst noch von der PU
produziert werden muss. adr hat jeweils einen unterschiedlichen Wert fiir die
Puffer. Im Output Puffer wird als adr das tgt gespeichert und im Input Puffer
die src.

Der dritte Input Puffer einer PU speichert den opcode op. Dieser enthéilt die
Operation, die eine PU bei einer Berechnung verwendet. Er ist in Blau darge-
stellt in der Abbildung

2.2.2 Move Code

SCAD Programme bestehen aus einer Sequenz von Move Instructions. Diese
haben drei Formen:

e src — tgt: Hierbei ist src der Output Puffer einer PU und tgt der Input
Puffer einer PU. Das heifst, eine Move Instruction sagt aus, dass der Wert
val vom Output Puffer src zum Input Puffer tgt geschickt wird.

e tmm — tgt: Hierbei ist ¢mm ein immediate value und tgt der Input
Puffer einer PU. Das heift, ein immediate value wird zum Input Puffer
tgt geschickt.

e op — tgt: Hierbei ist op der opcode und tgt der Input Puffer einer PU.
Das bedeutet, der opcode wird zum Input Puffer tgt geschickt.

2.2.3 Interconnection Networks, Control Unit und Load/Store
Unit

Bei Ausfiihrung eines Programmes, also des entsprechenden Move Codes, wird
anhand des Program Counters immer die nichste Move Instruction von der
CU genommen und an die PUs iiber den MIB gesendet. In Abbildung ist
der MIB Controller dargestellt als rotes Quadrat und der MIB sind die roten
Pfeile. Handelt es sich um eine Move Instruction der Form src — tgt speichert
der Input Puffer mit der Adresse tgt den Eintrag (src, L) am Ende des Puffers.
Der Output Puffer src speichert den Eintrag (tgt, L) ebenfalls am Ende des
Puffers. Bei einer Move Instruction der Form op — tgt speichert der Input
Puffer tgt den opcode op im op Input Puffer. Sollte entweder der Output oder
Input Puffer bereits voll sein, wird keiner der Eintrige, also auch nicht der
fiir den entsprechenden anderen Puffer, gespeichert. Die CU enthélt dann ein
Feedback und wartet mit der Ausfithrung und verschickt es erneut mit dem
néchsten Schritt des Programms.

Hier féllt auf, dass die Adressen adr strikt synchron nach Move Code und Pro-
gram Counter entsprechend versendet und gespeichert werden. Die eigentlichen
Daten jedoch werden asynchron versendet und zueinander geschickt, und zwar
erst dann, wenn sie bereitstehen.

Diese Daten werden iiber das DTN versendet. Der Transport der Daten zwi-
schen PUs wird mit Nachrichten realisiert, die von den Output Puffern gesen-
det werden. Diese Nachrichten haben die Form (sre, tgt,val) und bestehen aus
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der Adresse des Output Puffers src von dem aus der Wert geschickt wird, der
Adresse des Input Puffers zu dem der Wert gesendet wird gt und dem Wert val
selbst. Die Nachricht (srec, tgt, val) wird vom Output Puffer erstellt, sollte der
Eintrag am Kopf des Puffers von der Form (tgt, val) sein. Die Nachricht wird
entsprechend an den Input Puffer tgt weiter geleitet und der Eintrag (sre, L),
der am nichsten zum Kopf des Puffers liegt, wird ersetzt durch den Eintrag
(sre,val). Die Input Puffer beobachten entsprechend auch die Interconnection
Networks. Die Reihenfolge, in der die Eintrige im Input Puffer bereits bereit-
stehen, ist komplett abhéngig vom Move Code und Program Counter. Das
heikt, dass Werte, die von verschiedenen Output Puffer an einen Input Puffer
gesendet werden, entsprechend in der Reihenfolge angeordnet werden, die vor-
gegeben ist, durch die bisherigen Eintrége im Puffer (sprich dem Move Code
und der program order).

Die LSU liest oder schreibt Werte von oder auf den Data Memory. Diese Werte
werden dann {iber das DTN gesendet. In Abbildung ist der DTN Cntroller
dargestellt als grines Quadrat und das DTN als griine Pfeile. Es gibt Move
Instructions der Form imm — tgt. Das bedeutet, dass immediate values zu
einem Input Puffer tgt gesendet werden. Der speichert am Ende des Puffers
den Eintrag (T,imm), wobei T als Platzhalter dient. [Bha2l|

2.2.4 Verarbeitungseinheit(PU)

Sollte eine Verarbeitungseinheit einen Eintrag der Form (adr, z) mit  # L am
Kopf eines ihrer Input Puffer finden, dann wird dieser Eintrag konsumiert und
resultierende Werte y werden produziert. Dabei ist y = f(x1...7),), wenn es
Eintrdage mit z;...x,, gibt. Bei Werten y; ...y, wird jeder Wert im Eintrag des
Output Puffers ¢ der Form (tgt, L) gespeichert, und zwar in diejenigen Eintra-
ge, die am néchsten am Kopf liegen. Dabei ersetzt der Wert den Platzhalter L
und wird in dem Eintrag gespeichert.

2.2.5 Datenflussgraphen

Die Codegenerierung eines strukturierten sequentiellen Programmes zum letzt-
endlichen Move Code hat als Zwischenschritt die Erstellung eines Datenfluss-
graphen (DFG). Dieser ist ein Data Process Networks (DPN) mit einer be-
schrinkten Menge an Knoten und Kanten. Die Knoten vom DFG sind die
Prozessknoten und die Kanten stellen das Senden und Empfangen von Output
Puffern zu Input Puffern dar. Ein strukturiertes Programm heifst in diesem Fall
ein Programm ohne ”goto” oder ”break” Anweisung. Das strukturierte sequen-
tielle Programm wird also zunichst in ein DFG iibersetzt und dann werden
die Knoten dieses DFGs auf die PUs des Prozessors gemappt. Die Edges des
DFGs werden gemappt auf die Input und Output Puffer des Prozessors. Je
nachdem, welcher Output Puffer Werte zu welchem Input Puffer sendet &n-
dert sich die Form und die Farbe der Pfeile im DGF. Das fithre ich spéater
aus. [Sch21; SBR22b)|

Grundsétzlich ist ein DPN ein gerichteter Graph, wobei die Knoten Prozess-
knoten sind und die Kanten das Senden und Empfangen der Werte zwischen
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| syntax | semantics |

| token control |

(y) :==C(x) t = get(x)
pushi(z, y)
(o, 1) = Dix) t = get(x)
pushit, yy)
push(t, y;)
(1o, 1) = S(x0, x1) ty = get(xo)
t = get(x;)
pushity, yy)
push (g, y;)
(y) = ], x1) ty = get(xp)
t = get(xy)
pushity, y)
() :=Kix) t = get(x)

| control flow

(y) = SEL{c, 2y, x0) te = getic)

ta = if(2:) then get(x;) else get(xq)
pushityg, y)

(Y1, yo) = SWT(e, x) te = getic)

ety = get(x)

if(t:) then pushty, y1) else push(fy, yn)

| memory acoess I

(thout. ) = LDgladr, tkin) ta = get{adr)

tm = ?,Eﬂé‘km )
pushimem|a, t4], y)
pushify, thou)
(thoue) = STaladr, thi,, x) ta = get{adr)

bt = l?,EtUkm )

tx = get(x)

mem [a, tg] = tx
PUSh“m;H{am]

| data operations

(y) = Const(c) pushic, y)

(y) = MonOp(f, x) ty = get(x)

push(f(t.). y)

(y) = BinOp(®, xq, x1) th = get(xy)

t = get(x,)

pushity @ #y, y)

(y) = ITE(c, x5, x0) te = getic)

t; = get(x)

ty = get(xy)

if(t:) then push(t, y) else push(ty, y)

Abbildung 2.3: Syntax und Semantik der Prozessknoten von DPNs |Sch21

PUs darstellen [SBR22b|. In Abbildung sieht man Syntax und Semantik
aller Prozessknoten der DFGs. Die Lese und Schreiboperationen funktionieren
folgendermaken:

e get(x) konsumiert den Kopf des Input Puffers fiir einen nicht leeren Puffer
x = [zg, ..., Tn—1]. Der Kopfwert des Puffers z¢ wird ausgegeben und vom
Puffer entfernt.

e push(z,y) figt den Wert x am Ende des Puffers y hinzu.

So lassen sich die Prozessknoten erkldaren. In Abbildung zeigt sich die
Funktionsweise von Copy (C), Duplicate (D), Swap (S), Join (J), Kill (K), Se-
lect (SEL), Switch (SWT), Load Memorya(LD,), Store Memorya(ST,) und
¢ (Const). Der Index a bezeichnet hierbei eine bestimmte Speicherinstanz.
Wie man in Abbildung [2.4] sieht, gibt es eine Graphendarstellung in der ver-
schiedene Operationen der Prozessknoten und verschiedene Arten der Knoten
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und Kanten zeigen, wie Puffer und Prozessknoten miteinander interagieren
und verbunden sind. Ein schwarzer Pfeil steht fiir den linken Input, ein blauer
gestrichelter Pfeil steht fiir den rechten Input, eine gefiillte Pfeilspitze steht fiir
einen linken Output und eine leere Pfeilspitze steht fiir einen rechten Qutput.
Der Token Input durch LD und ST wird in Orange dargestellt.

Abbildung 2.4: Beispiel eines Datenflussgraphen |Sch21|

2.3 Mogliche Konflikte und Kreuzungen im
Datenverkehr

Im n#chsten Schritt werden die Prozessknoten auf PUs und die Puffer des
DFGs auf die Puffer der PUs gemappt. Wie DFGs gemappt werden, wird
in [SBR22b| genauer beschrieben, ldsst sich aber auch aus Abbildung
herauslesen.

Hierbei ist opc der opcode, also die Operation die von der PU ausgefiihrt




2.3 Mbgliche Konflikte und Kreuzungen im Datenverkehr

| node | inL I inR | opc | outL | outR |
(y) == C(x) x - C y _
(yo. y1) := D(x) x - D Yo Yi
(yo. y1) == S(xp,x1) x0 X1 S Yo 1
(y) = J{xo, x1) X0 x| y -
() = K(x) x - K - -
(tkour, y) = LDa(adr, tkin) adr | — LD y -
(tkgyr) = STaladr, tkip.x) | adr | x ST - -
(y) = Const(c) - - CS(c) | y -
(y) = MonOp(f,x) x - f y —
(y) = BinOp(©, xp, x1) X x 0] y -

Abbildung 2.5: Code Generation Mapping von Datenflussgraphen zu Move Co-
de [SBR221)|

wird. inL, inR sind der linke und rechte Input Puffer einer PU und outL, outR
sind der linke und rechte Output Puffer einer PU.

Bei einem DFG kénnen sich Kanten kreuzen. Das heiftt, die Kreuzungen ent-
stehen bei der Ubertragung von Output Puffern zu Input Puffern. Wenn diese
Kreuzungen kritisch sind, sorgt das dafiir, dass der Move Code auf dem Pro-
zessor nicht ausfiihrbar ist, es sei denn, man verwendet Swap-Knoten. Grund-
satzlich konnen vier Fille auftreten bei 2x2 PUs wie in Abbildung zu
sehen ist [SBR22bj SB23|. Wir gehen von 2 Output Puffer srep, srea und
2 Input Puffer tgt,tgto bei einem gelevelten DFG mit den Instruktionen
srcy — tgty, sreg — tgte aus:

e Sollte srey # sreo und tgty # tgts sein, dann entsteht keine Kreuzung
und jede Reihenfolge von src; — tgty und srce — tgty im Move Code
ist richtig.

e Sollte srcy # srco und tgt; = tgto sein, dann muss eingehalten wer-
den, dass x1 vor x9 konsumiert wird. Die Reihenfolge, in der z; und -
produziert werden, ist egal.

e Sollte srcy = srece und tgt; # tgts sein, dann muss eingehalten wer-
den, dass x1 vor xo produziert wird. Die Reihenfolge, in der x; und o
konsumiert werden, ist egal.

e Sollte src; = sreg und tgty = tgts sein, dann kann eine kritische Kreu-
zung, ohne die Anwendung von Swap-Knoten, entstehen. Wie in Abbil-
dung[2.6] gezeigt, entsteht die Kreuzung, wenn x1 vor xo produziert wird,
aber x9 erst vor x7 konsumiert werden sollte.

2.3.1 Leveln des Datenflussgraphen

Um spétere Wartezeiten und Blockierungen des Move Codes zu verhindern,
levelt man den DFG. Diese Wartezeiten und Blockierungen koénnen entstehen,
weil die FIFO Puffer mit dem FIFO (First In First Out) Prinzip arbeiten. Also
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srcy # srcg A tgty # tgt, srcy; = srez A tgt, # tgt,

x2

®1 2 x1

x2 %1 %2 x1
move code

X1 —q Xy ipy — 4

x'g:p!—qu XgZPE—Pq'z

or
Xg ifta = 42
Xy —q

srcy # srcp Atgt, = tgt, srcy = srcg A tgt, = tgt,

: : x2
x1 x2 x1
%1 x1
X2 x2

move code

Xz ifta =42

impossible case
X1 — 4y

Abbildung 2.6: Darstellung der méglichen Kreuzungen in einem DFG [SB23|

wird bei dem Zugriff auf den Puffer erst der Kopf des Puffers weggenommen
und sollte ein Wert hinzugefiigt werden, wird er am Ende des Puffers hin-
zugefiigt. Dementsprechend kann die Berechnung der PUs nur durchgefiihrt
werden, wenn die fiir die Berechnung bendétigten Werte am Kopf ihrer Puffer
gespeichert sind. Sollte das nicht der Fall sein, kann man mit Copy-Knoten
diese Werte an den Kopf des Puffers bringen. Das funktioniert so, dass ein to-
ken von der PU konsumiert wird und ein token mit demselben Wert von dieser
PU produziert wird. Ein gelevelter Datenflussgraph ist ein Datenflussgraph,
dem eine Levelstruktur ¢ : V. — N zugeordnet ist, so dass fiir jede Kante
(u,v) € E gilt £(u) < £(v) und zwischen zwei abhingigen Knoten keine Levels
iibersprungen werden. Copy-Knoten werden genutzt, um ungelevelte DFGs zu
leveln. [SBR22b|
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2.3 Mbgliche Konflikte und Kreuzungen im Datenverkehr

2.3.2 Planarisierung des Datenflussgraphen

Wie schon in Kapitel erwihnt gibt es in einem gelevelten DFG kritische
Kreuzungen, die auftreten kénnen. Auch Erwdhnung fand, dass diese durch
Swap-Knoten aufgelost werden kénnen. Bezogen auf Abbildung kann man
die Werte mit Swap-Knoten vertauschen bis x1 nach zo produziert und auch
erst danach konsumiert wird. Mit Hilfe dieser Swap-Knoten lassen sich die kri-
tischen Kreuzungen eines DFGs auflésen und er wird planar.

Abbildung 2.7: Datenflussgraph eines MiniC Programm das eine kritische Kreu-
zung enthalt, bei Ausfiihrung auf einer PU

In Abbildung[2.7]ist ein Graph mit einer solchen kritischen Kreuzung darge-
stellt, unter der Annahme, dass der sequenzielle Code auf einer PU des SCAD-
Prozessors ausgefiihrt wird. Zusétzlich entsteht die kritische Kreuzung nur un-
ter einer bestimmten Reihenfolge, in der die Knoten ausgefiihrt werden, der
sogenannten Node-Order. Der sequenzielle Code, auf dem der Graph basiert,
ist in MiniC geschrieben und wird in dem Code dargestellt.

Mit diesem Code entsteht die kritische Kreuzung unter der Voraussetzung,
dass er auf einer PU ausgefiihrt wird. Die Node-Order ist: n4, n1, n2, n0, n3. In
Abbildung 2.7kind zu den Knoten die jeweiligen Benennungen zu sehen. Diese
stehen immer links oben zu den Knoten. n4 ist zum Beispiel der Dup Knoten
D. Als Erstes wird n4 ausgefithrt und a wird dupliziert, womit 2 tokens entste-
hen. Die tokens bf0 und bf3 haben denselben Wert wie a. bf0 befindet sich jetzt
im linken Output Puffer der PU. Durch die Ausfithrung des Knotens n2 wird
bf3 mit dem token das durch den Knoten nl entsteht addiert und ergibt das

11



Kapitel 2: Hintergrund

Code 2.1 MiniC Programm das eine Kreuzung verursacht, vorausgesetzt, das
Programm lauft auf einer PU
nat a, b;
nat r;
thread crossingSwap {
nat x1, x2;
x1l = a + b;
X2 =a+ 1;
r = x2 + x1;

token bf5. bf5 ist jetzt ebenfalls im linken Output Puffer. Als nichstes miisste
n0 ausgefiihrt werden. Hierfiir wird bf0 im linken Input Puffer der PU benétigt
und b im rechten. Das geht aber nicht weil bf5 nach wie vor im Output Puffer
ist und aufgrund des FIFO Prinzips zuerst zum Linken Input Puffer bewegt
werden miisste. Das ist eine kritische Kreuzung. In der Abbildung ist eine
Lésung dieser kritischen Kreuzung mit Swap-Knoten dargestellt.

Hier wird ein Swap-Knoten nach dem Knoten n4 eingefiigt und dementspre-
chend die tokens bf3 und bf0 vertauscht wodurch die Kreuzung verhindert
wird. bf0 wird n&mlich jetzt zuerst gebraucht und mit dem Knoten n0 verar-
beitet und danach entsteht mit der Addition bf3 und Const(1) der token bfs
der dann ohne das bf0 erwartet wird und fiir die letztendliche Addition durch
den Knoten n3 hergenommen werden kann.

2.3.3 Notwendigkeit der Copy und Swap-Knoten

Gelevelte Graphen durch Copy-Knoten haben den Vorteil des FIFO konformes
Verhalten ohne Risiko von Deadlocks. Der Nachteil ist jedoch, dass mehr Re-
chenaufwand und Speicheraufwand vorhanden sind. Bei der Berechnung durch
die PUs wird mehr Rechenleistung benotigt fiir Operationen, die eigentlich
irrelevant fiir die Berechnung der Werte sind. Durch das Weglassen ausgewahl-
ter Copy-Knoten ist der DFG zwar nicht mehr gelevelt, aber Ressourcen und
Speicher kénnen eingespart werden. Man muss nur darauf achten, dass man
nur Copy-Knoten entfernt, die keine Deadlocks auflésen.

Ahnlich ist es bei den Swap-Knoten. Auf manche dieser kann verzichtet wer-
den, was dieselben Vorteile bringt. Planaritit heifst in diesem Fall, dass die
kritischen Kreuzungen durch Swap-Knoten verhindert werden [SBR22b|. Das
heikt, auf Swap-Knoten zu verzichten, kommt immer mit dem Nachteil daher,
dass man bestimmte Constraints einhalten muss oder zusétzliche PUs bend-
tigt, was wiederum auch mehr Ressourcen verbraucht.

Constraints bedeutet in diesem Fall, dass man das Auftreten kritischer Kreu-
zungen gar nicht erst erlaubt. Das hat den entscheidenden Nachteil, dass viele
PUs notwendig sein kénnen. Also kénnen hier auch viele PUs und Ressourcen
notwendig sein, nur um Crossings zu umgehen. Wie und wie viel Copy und
Swap-Knoten man einspart, ist ein Abwégen der genannten Vor- und Nachtei-
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2.3 Mbgliche Konflikte und Kreuzungen im Datenverkehr

Abbildung 2.8: Datenflussgraph eines MiniC Programm das eine kritische Kreu-
zung, die durch einen Swap-Knoten gelost wurde, enthiélt, bei Aus-
fiihrung auf einer PU

le.

Auf jeden Fall bendtigt es, um aus einem DFG generisch einen level-planaren
DFG zu machen, viel Speicher und Ressourcen. Das kann mit Weglassen be-
sagter Knoten optimiert werden.
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3 Heuristik zur Minimierung von
Copy- und Swap-Knoten

3.1 Voraussetzungen und Rahmenbedingungen

3.1.1 Ausgangslage

Es gibt eine feste Node-Order 7 und eine feste PU-Allokation pu, die vom Al-
gorithmus vorausgesetzt werden. Der Algorithmus erwartet als Eingabe einen
DPN und liefert als Ausgabe einen DPN mit minimaler Knotenzahl sowie die
entsprechend angepasste Node-Order und die angepasste PU-Allokation.

3.1.2 Node-Order

Die Ausfiihrungsreihenfolge der Knoten wird festgelegt und bleibt wihrend und
nach Anwendung des Algorithmus unveréindert, abgesehen von neu eingefiigten
Knoten. Das wird realisiert, indem der Algorithmus die Positionen markiert,
an denen ein Copy- oder Swap-Knoten erforderlich ist, und diese Knoten spéter
genau an diesen Stellen in die Node-Order einfiigt.

3.1.3 PU-Allokation

Jedem existierenden Knoten wird eine PU zugeordnet. Wie viele PUs es gibt
und welcher Knoten welcher PU zugeordnet wird, héngt von der PU-Allokation
ab. Formal wird eine PU-Allokation als Abbildung p:V — {0,...,k — 1} be-
trachtet, die jedem DPN-Knoten v € V eine PU zuweist, wobei k die verfiigbare
PU-Kapazitét ist.

Auch die PU-Allokation bleibt, abgesehen von neu eingefiigten Knoten, unver-
dndert. Die Allokation der eingefiigten Knoten erfolgt stets so, dass die Tokens,
die zuvor vom betroffenen Knoten konsumiert wurden, auch vom neu einge-
fiigten Knoten konsumiert werden. Das heifst: Neue Knoten werden immer auf
derselben PU eingefiigt, auf der der Konflikt entstanden ist.

3.1.4 Zu minimierende Knotentypen
Copy-Knoten

Copy-Knoten haben folgendes Verhalten: (y) := Copy(x). Beim Leveln des
DPN entstehen Copy-Knoten (falls der DPN nicht bereits gelevelt ist). Diese
sind aber nicht alle notwendig, um konfliktfrei zu bleiben. Der Algorithmus
behélt nur einen Teil der Copy-Knoten des gelevelten DPN und fiigt sie in die
Node-Order ein, um mit weniger Copy-Knoten dennoch konfliktfrei zu bleiben.
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Kapitel 3: Heuristik zur Minimierung von Copy- und Swap-Knoten

Swap-Knoten

Swap-Knoten haben folgendes Verhalten: y,y2 := Swap(x1,x2) und kénnen
notwendig sein, falls nach dem FEinfiigen minimaler Copy-Knoten weiterhin
Konflikte bestehen. Dies betrifft critical crossings, wie in [2.3] beschrieben.

3.1.5 Allgemeiner Ansatz

Der Algorithmus funktioniert so, dass zundchst nach einer méglichst minimalen
Anzahl an Copy-Knoten gesucht wird. Sollten dennoch k Konflikte vorhanden
sein, wird weiterhin nach der kleinsten méglichen Anzahl an Copy-Knoten
gesucht, bei gleichbleibendem k. Anschliekend werden die verbleibenden critical
crossings mit einer minimalen Anzahl an Swap-Knoten geldst.

3.1.6 DPN-Modell und Pufferarchitektur

Ein DPN ist ein gerichteter Graph G = (V, E). Jeder Knoten v € V besitzt
eine Operation op mit Signatur yi,...,ym = op(z1,...,zy,). Kanten fithren
Werte von y; zu x;.

Jede PU hat zwei Eingabepuffer, die als zwei FIFO-Queues modelliert wer-
den: L und R. Ein Knoten kann in einem Schritt nur zwei Kopfwerte hq, ho
konsumieren und nur dann, wenn sie den erwarteten Werten entsprechen: [s
(links erwarteter Wert) und rs (rechts erwarteter Wert) des néchsten Knotens
in 7. Die Werte der Ausgabepuffer werden fiir den Algorithmus sofort tiber
eine Konsumenten-Abbildung in die Ziel-Queue eingeordnet (Konsumenten-
Abbildung: Var — (PU, Side), wobei Side € {L, R}).

Jeder Wert lv (linker Ausgabewert) und rv (rechter Ausgabewert) wird un-
mittelbar in einen Eingabepuffer geschrieben. Die Ziel-PU und die Wahl des
Puffers erfolgen wie folgt:

e PU: Der Wert v wird auf die PU des ersten Konsumenten von v verscho-
ben.

e Puffer: Falls v = Is, wird v nach L verschoben; falls v = rs, nach R.
Es kann vorkommen, dass zwei Werte nach L und R verschoben werden,
dass kein Wert verschoben wird, oder, falls es nur einen Wert gibt, dieser
je nach Ubereinstimmung mit s bzw. rs nach L oder R.

3.1.7 Konfliktarten

Seien v; und vy zwei Werte. Falls v; bzw. vg ungleich [s oder rs sind, ent-
spricht der erwartete Wert nicht dem am Kopf des jeweiligen Fingabepuffers.
Es entsteht ein Konflikt, der mit einem Copy-Knoten geldst werden muss. Der
Copy-Knoten erzeugt ein neues Token. Im Fall von diesem Algorithmus wird
jedoch derselbe Wert an das Ende des Puffers angehéngt, dieses Verhalten ist
eine Rotation. Wird derselbe Wert zweimal rotiert, wiren zwei Copy-Knoten
notwendig. In diesem Fall wiirde der zweite Copy-Knoten den durch den ersten
entstandenen Token kopieren. Da jedoch kein neuer Token durch dieses Ver-
fahren entsteht, wird die zweite Rotation desselben Werts registriert und als
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3.2 Heuristische Vorgehensweise zur Minimierung von Copy- und
Swap-Knoten

zweiter Copy-Knoten gewertet, der den ersten Copy-Knoten des urspriingli-
chen Werts kopiert. Das wird so analog weitergefiihrt sollte ein Wert mehrfach
kopiert werden miissen. Fiir jeden blockierenden Wert v wird gepriift, ob im ge-
levelten DPN ein Copy-Knoten existiert, der v kopiert, d.h. ein Copy-Knoten

vy == Copy(v).

3.2 Heuristische Vorgehensweise zur Minimierung
von Copy- und Swap-Knoten

In diesem Abschnitt wird die Heuristik beschrieben. Sie arbeitet unter den in
Abschnitt umrissenen Rahmenbedingungen: Eine feste Node-Order 7 und
eine feste PU-Allokation y sind vorgegeben und bleiben fiir alle urspriinglichen
Knoten erhalten, nur neu eingefiigte Knoten (Copy, Swap) werden an genau
markierten Positionen in 7 ergénzt. Neue Knoten werden stets so allokiert, dass
sie auf derselben PU liegen wie der Konsument, dessen Erwartung sie erfiillen,
d. h. ein eingefiigter Knoten erscheint auf derjenigen PU, auf der der Konflikt
sichtbar wird. Auf jeder PU modellieren wir zwei FIFO-Eingabepuffer L und
R, und pro Schritt darf der nichste Knoten in 7 héchstens zwei Kopfwerte
konsumieren, die exakt den links bzw. rechts erwarteten Werten entsprechen.
Produzierte Werte werden sofort geméf einer Konsumenten-Abbildung in die
Zielpuffer einsortiert.

Ziel und Grundidee: Ziel ist es, bei fixer Ausfithrungsreihenfolge und fixer
PU-Zuordnung die Anzahl zusétzlich benétigter Knoten zu minimieren. Dazu
zerlegt die Heuristik die Aufgabe in zwei Phasen:

e (i) Zunichst werden nur Copy-Knoten betrachtet. Wir simulieren die
Pufferdynamik, protokollieren dabei, wann eine Rotation stattfindet, und
leiten aus diesen Rotationen die kleinste notwendige Menge an Copy-
Knoten ab.

e (ii) In einem zweiten, nachgelagerten Schritt werden verbleibende Kon-
flikte auf demselben Kanal, die critical crossings, durch gezielte Swap-
Knoten aufgeldst.

Pufferdynamik, Erwartung und Simulation

Ausgangspunkt ist die gegebene Node-Order 7. Wir durchlaufen 7 in Produzent-
Konsument-Schritten. Wahrend jedem Schritt, werden die Ausgabewerte so-
fort dem Eingabepuffer derjenigen PU und Seite zugefiihrt, auf der der erste
Konsument den Wert erwartet. Damit ist zu jedem Zeitpunkt die ,néchste Er-
wartung“ des kommenden Konsumentenknotens eindeutig: (Is, rs) fur die linke
bzw. rechte Seite. Stimmen die Kopfe der beiden Puffer (hr,hg) mit (Is,rs)
iiberein, kann konfliktfrei konsumiert werden.

Treffen Erwartung und Kopfwerte nicht zusammen, bietet der Algorithmus
zwei Mechanismen:
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Kapitel 3: Heuristik zur Minimierung von Copy- und Swap-Knoten

1. Rotation zum erwarteten Kopf: Das erwartete Token wird innerhalb
des entsprechenden Puffers nach vorne rotiert. Jede Rotation hingt das
vordere Token an, an das Pufferende. Wichtig ist, dass dieses Ereignis
protokolliert wird: Fiir jeden rotierten Wert v wird vermerkt, dass v
an dieser Stelle an das Pufferende angehingt wurde. Im Endergebnis
wird jede dieser beobachteten Rotationen als Copy-Bedarf fiir den Wert
v gezdhlt, vorausgesetzt, dass v einem Input eines vorhandenen Copy-
Knotens des gelevelten DPN entspricht.

2. Vorausschauende Verschiebung (rechts nach links) mit Riick-
gabe: Da der Einsatz von Copy-Knoten dazu flihren kann, dass Werte
nicht im rechten, sondern im linken Puffer erwartet werden, verwendet
der Algorithmus einen kleinen Lookahead K. Wenn auf derselben PU
innerhalb der nichsten K Konsumentenschritte klar ist, dass ein aktu-
ell rechts anstehender Wert dort als rechter Kopf bendtigt werden wird,
jedoch durch davorliegende rechte Tokens blockiert wire, wird dieses blo-
ckierende rechte Token vorzeitig nach links umgehéngt (ans Ende von L)
und als ,spéiter wieder zurlickzugeben® markiert. Genau in dem Schritt,
in dem es rechts tatsdchlich benétigt wird, wird das Token von L am Kopf
genommen und zuriick nach R gelegt (die ,Riickgabe“). Diese Riickgabe
ist deterministisch geplant.

Beide Mafnahmen sind vorldufige Puffer-Operationen in der Simulation: Da-
bei werden noch keine realen Copy- oder Swap-Knoten in den DFG eingefiigt.
Stattdessen sammeln wir ausschlieklich Evidenz dafiir, wo Rotationen auftre-
ten. In beiden Fillen sind Copy-Knoten erforderlich, die jeweils den zu ro-
tierenden oder zu verschiebenden Wert kopieren. Dabei werden ausschliefslich
Copy-Knoten verwendet, die im gelevelten DPN vorhanden sind.

Ableitung der minimalen Copy-Menge

Nach dem vollstandigen Simulationslauf iiber 7 liegt eine Menge von Rotati-
onsereignissen vor, die wir auf Inputnamen von Copy-Knoten abbilden. Intui-
tiv: Wenn in der Simulation ein Wert v auf einer PU mehrfach rotiert werden
musste, um die linke oder rechte Erwartung zu erfiillen, dann wére im realen
System eine entsprechende Anzahl an Kopien von v nétig gewesen, um diese
Rotationen ohne Anderung der Node-Order zu erméglichen. Daraus konstru-
ieren wir eine minimale Copy-Menge:

e Wir betrachten zunéchst den gelevelten DPN mit den Copy-Knoten.

e Von diesen Copy-Knoten behalten wir nur diejenigen, deren Inputvaria-
ble in der protokollierten Rotationsmenge vorkommt.

e Alle anderen Copy-Knoten werden entfernt, indem deren Output im DPN
systematisch durch ihren Input ersetzt wird, ohne die beobachtete Se-
mantik der Simulation zu verletzen.

18



3.2 Heuristische Vorgehensweise zur Minimierung von Copy- und
Swap-Knoten

Die Node-Order 7w bleibt dabei erhalten. Neu hinzukommende Copy-Knoten
werden exakt an jene Positionen eingefiigt, an denen die Rotation protokolliert
wurde. Thre PU-Allokation ist die des jeweiligen Konsumentenkonflikts (d.h.
identisch zur PU des Knotens, der die Erwartung an dieser Stelle bildet).

Critical Crossings und Swaps

Auch wenn einige Rotationsbedarfe durch Kopien eliminiert sind, kénnen auf
demselben Kanal (gleiche PU und gleiche Seite) noch critical crossings verblei-
ben: Die global produzierte Reihenfolge (...,a,b,...) auf diesem Kanal steht
dann in Widerspruch zur vom Konsumenten erwarteten Reihenfolge (..., b,a,...).
Hier setzt Phase (ii) an: Wir erkennen diese Inversionen kanalweise, indem wir
fiir jede (PU,Seite)-Kombination die produzierte Sequenz und die erwartete
Sequenz projizieren und benachbarte invertierte Paare erkennen. Fiir jedes in-
vertierte Nachbarpaar wird ein Swap-Knoten eingefiigt, der die beiden Werte
auf diesem Kanal vertauscht. Der Swap wird auf derselben PU platziert, damit
keine zusétzliche Kanal- oder PU-Kommunikation erforderlich ist.

Wahrung der Invarianten

Drei Invarianten sind zentral:

1. Feste Reihenfolge: Die urspriingliche Node-Order 7 bleibt fiir alle vor-
handenen Knoten unverdndert. Neue Knoten werden ausschliefslich an
protokollierten Konfliktpositionen eingefiigt.

2. Feste Allokation: Die PU-Allokation u bleibt fiir alle vorhandenen Kno-
ten unverdndert. Neue Knoten werden auf der PU eingefiigt, auf der der
jeweilige Konflikt sichtbar ist. Bei Kopien ist das die PU des Zielkonsu-
menten des kopierten Wertes, bei Swaps die PU des betroffenen Kanals.

3. Lokale Korrektheit der Puffersemantik: Vorausschauende Verschie-
bungen (rechts nach links) werden nur dann durchgefiihrt, wenn eine spé-
tere Riickgabe (links nach rechts) exakt zum Bedarfszeitpunkt moglich
ist. Dieser Schritt ist deterministisch geplant und ersetzt eine ansonsten
fallige Rotation. Er verdndert die semantische Reihenfolge des Konsums
nicht.

Komplexitat, Parameter und Grenzen

Komplexitdt: Pro Entscheidung ist die Laufzeit im Worst Case linear in der
,Distanz bis zum Verbrauch® des betrachteten Tokens (Anzahl der dazwischen-
liegenden Consumer auf derselben PU). Uber die gesamte Simulation ergibt
sich damit eine Laufzeit, die in der Praxis quasi-linear in der Knotenzahl bleibt,
solange typische Distanzen klein sind. Es gibt keinen globalen, einstellbaren
Lookahead-Parameter mehr. Die Vorausschau ist datengetrieben.
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Grenzen: Der Algorithmus garantiert keine globale Optimalitdt iiber alle
DPNs: Entscheidungen fiir einzelne Tokens koénnen interagieren, und die spa-
tere Einfiigung von Swap-Knoten beeinflusst ggf. nachfolgende Konfliktlagen.
Lokal ist die Strategie jedoch sparsam: Ein Token wird nur dann verschoben,
wenn dies eine reale Rotation (und damit einen zu zéhlenden Kopierbedarf)
sicher verhindert. Empirisch fiihrt dies bei fester Reihenfolge 7 und fester Al-
lokation p zu kleinen Copy-Mengen. Verbleibende Inversionen werden durch
Swaps aufgeldst.
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4 Implementation

Dieses Kapitel beschreibt die konkrete Implementierung des Algorithmus zur
Minimierung von Copy- und Swap-Knoten unter der Nebenbedingung einer
festen Node-Order 7 (Node-Order) und einer festen PU-Allokation p. Die Im-
plementierung ist in F# auf .NET realisiert und nutzt das Framework Averest.
Zunéchst werden die verwendeten Datenstrukturen und Averest-Funktionen
skizziert. Anschliefsend folgen die internen Représentationen, gefolgt von den
Kernfunktionen: (i) Konsumentenzuordnung, (ii) Simulation mit Vorausschau
und geplanter Riickgabe (L—R), (iii) Extraktion der wirklich nétigen Copy-
Knoten und stabile Projektion in Node-Order und PU-Map, sowie (iv) Erken-
nung und Behebung verbleibender Konflikte durch Swap-Knoten. Abschliefend
werden Komplexitit und Implementierungsentscheidungen diskutiert.

4.1 Verwendete Averest-Strukturen und -Funktionen

Die Implementierung verwendet folgende, von Averest bereitgestellte Struktu-
ren und Funktionen:

DataflowProcessNetwork DPN/DFG-Reprisentation eines MiniC-Programms.
MiniC2DPN Ubersetzt ein MiniC-Programm in ein DPN.
LevelizeDPN Erzeugt einen gelevelten DPN.

AllocProcUnitsByRandomMap Erzeugt eine PU-Map u als Ausgangspunkt fiir
die Simulation.

PrintDPN, WriteDPN2Dotfile Ausgabe bzw. Visualisierung von DPNs.

Der Algorithmus arbeitet auf den von Averest gelieferten Graphen und Maps.

4.2 Interne Reprasentation und Invarianten

Graph, Reihenfolge, Allokation
Als Eingabe erwartet die Implementierung
1. einen DPN G = (V, E),
2. eine feste Node-Order 7 (Permutation der Knotenindizes),

3. eine feste PU-Allokation p: V — {0,..., k—1}.
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Kapitel 4: Implementation

Die beiden Invarianten ,feste Reihenfolge* und ,feste Allokation“ werden fiir
alle vorhandenen Knoten strikt gewahrt. Neue, von der Heuristik eingefiigte
Knoten Copy/Swap werden an protokollierten Positionen in 7 ergénzt und
immer auf genau der PU eingefiigt, auf der der zugehérige Konflikt auftritt.
Bei Kopien ist dies die PU des ersten relevanten Consumers, bei Swaps die PU
des betroffenen Kanals (L oder R).

Pufferarchitektur

Fiir jede PU verwaltet die Implementierung zwei FIFO-Eingangspuffer, L und
R. Ein Knoten konsumiert im Schritt hochstens die zwei Kopfwerte (hp, hg),
sofern sie den erwarteten Eingéngen (¢, r) seiner Operation entsprechen. Neu
produzierte Werte werden {iber eine Konsumentenzuordnung (siehe unten) so-
fort in den Zielpuffer (L/R) der richtigen PU eingeordnet.

Konsumentenzuordnung (Var—(PU, Side))

Fiir jede Variable v wird bestimmt, auf welcher PU und auf welcher Seite (L/R)
sie zum ersten Mal konsumiert wird. Diese Map wird zur Laufzeit genutzt, um
produzierte Tokens in die korrekte Zielqueue einzureihen. Sie ist entscheidend,
damit neu eingefiigte Copy-Knoten automatisch die PU und Side des Knotens
erben, dessen Wert kopiert werden soll, wodurch Fehler vermieden werden.

4.3 Zentrale Bausteine der Implementierung

4.3.1 Erkennung von Copy-Knoten und Rewriting

Zur Erkennung von Kopien geniigt eine syntaktische Priifung der Knotensi-
gnatur (y) := Copy(z) (bzw. Operatorname enthélt Copy). Fiir das geziel-
te Entfernen einzelner Copy-Knoten wird ein lokales Rewriting genutzt: alle
Verwendungen von y auf der rechten Seite werden durch x ersetzt: Der Copy-
Knoten selbst wird aus dem DPN entfernt. Das Rewriting ist so implementiert,
dass Copy-Ketten iterativ von hinten sicher abgebaut werden.

4.3.2 Simulation mit dynamischer Vorausschau und geplanter
Riickgabe

Der Kern der Heuristik ist ein deterministischer Simulationslauf entlang .
der Rotationen fiir einzufiigende Kopien zihlt. Es kénnen vorausschauende
Verschiebungen notwendig sein:

e Vorausschau: Fiir die rechte Queue R einer PU wird ab der aktuel-
len Position in 7 so weit auf derselben PU K Schritte vorausgescannt.
Blockiert ein Wert einen anderen, wird der blockierende Wert nach links
verschoben.

e Geplante Verschiebung (R—L) nur im Blockadefall: Wird vor
dem (virtuellen) Verbrauch ein Blockierer b gefunden (d.h. der aktuelle
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4.3 Zentrale Bausteine der Implementierung

R-Kopf passt nicht zur néchsten rechten Erwartung auf derselben PU),
wird sofort genau dieser Token b aus R nach L verschoben und eine exakte
Riickgabe (L—R) zum Félligkeitsknotenﬂ deterministisch geplant.

e Geplante Riickgabe (L—R) exakt zum Bedarf: Wenn der Fallig-
keitsknoten erreicht ist, rotiert die Implementierung die linke Queue L
minimal bis b am Kopf steht, verschiebt b zuriick nach R und matcht
(¢,7) ohne zusétzliche Rotation auf R. Jede dabei notige Rotation auf L
wird als Copy-Bedarf gezdhlt (und vermerkt).

¢ Rotationen als Messgrofie: Klassische FIFO-Rotationen (ohne Vor-
ausschau) wiirden Copies ,erzwingen“. Die Strategie verschiebt Tokens
nur dann vorzeitig, wenn eine echte Blockade droht. Wo immer méglich
wird nicht rotiert. Wo Riickgabe (L—R) zwingend eine L-Rotation er-
fordert, wird diese gezdhlt, damit die spiter tatsichlich einzufiigenden
Copy-Kunoten exakt an den richtigen Stellen landen.

Die Simulation fiihrt zusétzlich ein EreignisLog (Wert, nach welchem Knoten
eingefligt), um die spétere Projektion in die Node-Order zu steuern.

Korrektheit des Pufferverhaltens: Die geplanten Verschiebungen und Riick-
gaben verindern nicht die Konsumtionsreihenfolge. Ein Token wird nur proak-
tiv umgehéngt, wenn seine spétere rechte Verwendung eindeutig ist und die
Riickgabe exakt dort stattfindet. Damit ersetzen wir reine FIFO-Rotationen
durch Verschiebungen, ohne die Reihenfolge der Verbrauchsereignisse zu ver-
andern.

4.3.3 Extraktion und Einfligung der minimal nétigen
Copy-Knoten

Nach der Simulation liegt die Menge Cp,in, der Tokens vor, die (durch Rotationen
auf L oder durch geplante Riickgaben) tatséchlich eine Kopie erfordern. Aus-
gehend vom gelevelten DPN werden alle Copy-Knoten geléscht, deren kopierte
Werte nicht in Cpyin liegt. Die verbleibenden Kopien werden in die urspriingliche
Node-Order m an genau den vermerkten Konfliktpositionen eingefiigt. Dabei
wird

1. die Projektionsfunktion verwendet, um die alte Reihenfolge robust auf
den modifizierten Graphen zu tibertragen (exakte Schliissel op/lhs/rhs mit
fallbacks),

2. die PU-Allokation der eingefiigten Kopien auf die PU des ersten rele-
vanten Consumers der kopierten Variable gesetzt (damit wird der zuvor
simulierte Konsumort getroffen).

Diese Schritte stellen sicher, dass die Copy-Knoten weder die urspriingliche
Allokation vorhandener Knoten &ndern noch auf einer falschen PU landen.

!Dem Knoten, an dem b spiter tatsichlich als rechter Eingang r gebraucht wird.
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Kapitel 4: Implementation

4.3.4 Erkennung und Behebung verbleibender Konflikte durch
Swaps

Nach der Einfiigung der minimalen Kopien kénnen auf einzelnen Kanélen
(PU x {L, R}) noch kritische Inversionen verbleiben: ein Paar (a,b) erscheint
in der Produktionssequenz benachbart als (a, b), wird aber in der Erwartungs-
sequenz benachbart als (b, a) konsumiert. Die Implementierung entdeckt solche
inversen Nachbarschaften kanalweise und fiigt Swap-Knoten yq, yo := Swap(x1, x2)
ein, wobei Konsumenten von a und b auf die neuen Ausginge umgeschrieben
werden (a+—yg2, b—y1 ). Jeder Swap sollte auf der PU des betroffenen Kanals
eingefiigt werden.

Hierbei traten in der Implementierung jedoch Probleme auf, wodurch nicht
alle Swaps erkannt wurden und die Z&hlungen von Konflikten und Rotationen
verfilscht waren. Vermutlich lag dies an der fehlenden bzw. unzureichenden
Simulation der Swap-Knoten und der zugrunde liegenden Swap-Dynamik.

4.4 Wesentliche Funktionen

Im Folgenden werden die wichtigsten implementierten Funktionen nach Auf-
gabe geordnet beschrieben:

BuildConsumerMap Bestimmt fiir jede Variable v das Paar (PU, Seite) des
ersten relevanten Consumers.

SimulationWithRotationl & SimulationWithRotation2 Simulation entlang
7 mit zwei FIFO-Queues (L/R) je PU. Z&hlt Konflikte, Rotationen und Cros-
sings. Kern ist die dynamische Vorausschau auf R : Virtueller R-Head wird
iiber die Kette kommender rechter Erwartungen derselben PU vorwarts kon-
sumiert, bis entweder der aktuelle Head verbraucht ist (kein Eingriff notig)
oder ein Blockierer entdeckt wird. Im Blockadefall: vorzeitige Verschiebung
des Blockierers R—L und geplante Riickgabe L—R zum Filligkeitsknoten.
Die Riickgabe dreht ggf. L minimal vor (zéhlt als Copy-Bedarf) und stellt da-
nach den rechten Match ohne zusétzliche Rotation her. Alle bewegten Werte
werden ereignisbasiert protokolliert ((value, node_after)).

remove_copies_func FErzeugt aus dem Ereignis- und Rotationsprotokoll die
Menge Cpyin der tatsichlich bendtigten Kopien (Tokens, die mindestens einmal
fiir Korrektheit rotiert bzw. zuriickgegeben werden mussten). Auf Basis eines
gelevelten DPN werden alle anderen Copy-Knoten entfernt.

transferPUMapPreserveBase_LHSFirst & reassignCopyPUsToValueOrigin
Ubertrigt die alte PU-Map auf den modifizierten DPN, ohne existierende Zu-
ordnungen zu verdndern. Fiir Copy-Knoten wird die PU explizit auf die des
ersten relevanten Konsumentenknotens gesetzt (damit wird die Konsumstelle
aus der Simulation respektiert).
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4.5 Idee des Algorithmus

DetectCriticalCrossings DBaut kanalweise Produzenten- und Erwartungs-
sequenzen auf und findet invertierte benachbarte Paare. Fiigt pro Befund einen
Swap auf der betroffenen PU ein und rewired die Konsumenten auf die durch
den Swap erzeugten Ausginge. Hier gab es bei der Implementierung Probleme.

4.5 ldee des Algorithmus

1. Vorbereitung: MiniC—DPN, optional Levelisierung; PU-Map p initia-
lisieren (Averest). Node-Order 7 ist gegeben.

2. Konsumentenzuordnung: BuildCongsumerMap.

3. Simulation: Simulation mit dynamischer Vorausschau auf allen PUs.
Zahlen/Loggen von Rotationen und Riickgaben.

4. Copy-Extraktion: ExtractMinimalCopies und Entfernen iiberfliissi-
ger Kopien aus dem gelevelten DPN; Einfiigen der verbliebenen Kopien
in m an den protokollierten Stellen; PU der Kopien = PU des ersten
relevanten Consumers der kopierten Variable.

5. Swap-Phase: DetectCriticalCrossings

4.6 Probleme bei der Implementierung

Wie bereits erwihnt funktioniert die Erkennung und Anwendung der minimal
erforderlichen Swap-Knoten derzeit nicht zuverldssig. Dadurch ldsst sich in
den Experimenten wie auch im Algorithmus nur bestimmen, ob Swap-Knoten
grundsétzlich erforderlich sind, nicht jedoch, wie viele davon minimal bend6tigt
werden. Entsprechend berichten die Experimente lediglich die Notwendigkeit
von Swap-Knoten, nicht deren Anzahl.
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5 Experimente

5.1 Zielsetzung

Dieser Abschnitt untersucht, wie die implementierte Konflikterkennung und -
behebung auf unterschiedlichen MiniC-Programmen wirkt. Dokumentiert wer-
den ausschlieflich strukturelle Effekte (benotigte Kopien, bendtigte Swaps)
unter Variation der PU-Anzahl und der Node-Order. Die Ergebnisse basieren
auf dem Algorithmus.

5.2 Versuchsaufbau

Beispiele Fiinf exemplarische MiniC-Programme mit unterschiedlicher Struk-

tur und Grofe: BinaryTreeScl32, FastFourierTransform, HornerPoly8, min_copy_needed,
first_example. Die ersten beiden Beispielprogramme stammen aus dem Ord-

ner UnrolledRAM der Averest-Website. Die drei weiteren Beispielprogramme

wurden im Rahmen dieser Arbeit eigens erstellt.

Erlaubte Korrekturen.

¢ Rotation nur, wenn der blockierende Kopfwert durch einen Copy-Knoten
im gelevelten DPN gedeckt ist und dessen einmaliges Budget noch nicht
verbraucht wurde.

e Swap, wenn (a) keine Rotation moglich ist, dann werden die 2 Werte
am Kopf des Puffers vertauscht und als Swap gezéhlt.

Variationen. PU-Anzahl (1-3), Knotenordnung (fix/spezifisch vs. “klug” ge-
wihlt).

Metriken. Anzahl bendtigter Copy-Knoten und Anzahl benétigter Swaps in
der Simulation.

5.3 Zusammenfassung der Ergebnisse

Die Tabelle fasst die Resultate zusammen. Fiir Swaps bedeutet ,Ja“, dass
sie bendtigt werden. # PU bezeichnet stets die Anzahl der PUs.
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Kapitel 5: Experimente

Programm # PU | Copies | Swaps | Bemerkungen

BinaryTreeScl32 0 nein | Referenzfall ohne Mafnahmen.

FastFourierTransform 1 ja Mit kluger Order ungelevelt auf 1
ausfithrbar.

FastFourierTransform 2 0 ja Copies entfallen, Swaps weiterhin
notig.

HornerPoly8 1 12 ja Kopien nehmen mit # PU ab (un-
ten).

HornerPoly8 2 9 ja

HornerPoly8 3 5] ja

min_copy_needed 1 3 nein | Untere Schranke fiir Copy-Bedarf.

min_copy_needed 2 2 nein

min_copy_needed 3 2 nein

first_example 1 0 nein

Tabelle 5.1: Uberblick: benétigte Kopien/Swaps je Benchmark und Konfiguration.

Erkenntnisse

e Ohne Interferenz (z.,B. BinaryTreeScl32, first example) sind weder Ko-
pien noch Swaps notig.

o FastFourierTransform: Auf 1 PU werden 1 Copy und Swaps bendtigt.
Auf 2 PUs entfallen Kopien, Swaps bleiben. Eine kluge Node-Order kann
den 1 PU-Fall zusétzlich entschérfen.

e HornerPoly8: Mehr PUs reduzieren Copies stark (12—9—5).

e min_copy_needed: zeigt eine Konstellation mit mindestens 2 Kopien (bei
>2 s) und 3 Kopien (bei 1 PU).
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6 Fazit

Diese Arbeit hat eine zweistufige Heuristik vorgestellt, die unter fixierter Node-
Order und PU-Allokation die Anzahl zusétzlich benotigter Knoten minimiert:
(i) eine simulationsbasierte Ableitung einer minimalen Copy-Menge iiber Ro-
tationsereignisse mit dynamischer Vorausschau und geplanter Riickgabe so-
wie (ii) eine anschliekende, kanalweise Erkennung und Behebung verbleibender
Paarinversionen mittels Swap-Knoten. Die Invarianten feste Reihenfolge, feste
Allokation und FIFO-Korrektheit werden durchgingig gewahrt.

Es zeigt sich: Mehr PUs reduzieren vor allem den Copy-Bedarf (z. B. HornerPoly8:
12—9—5 Kopien bei #PU 1—2—3).

Grenzen und Ausblick: Die Heuristik ist bewusst lokal und garantiert kei-
ne globale Optimalitdt. Entscheidungen fiir einzelne Tokens kénnen intera-
gieren. Die Laufzeit bleibt in der Praxis quasi-linear in der Knotenzahl, da
die Vorausschau datengetrieben und auf die Konsumentenfolge pro PU be-
schrénkt ist. Kiinftige Arbeiten konnten (a) die gemeinsame Optimierung von
Node-Order und PU-Allokation untersuchen, (b) kostenbewusste Varianten
(Zeit /Energie/Belegung) integrieren, (c) formale Optimalitdtsaussagen fiir Teil-
klassen von DPNs ableiten und (d) die Methodik auf breitere Benchmarks und
komplexere Speicherhierarchien iibertragen. Auch das systematische Abwégen
zwischen Constraints zur Kreuzungsvermeidung und zusétzlicher Ressourcen
(PUs, Puffer) verspricht neue Einsichten.
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