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Abstract

Bu�ered Exposed Datapath (BED) architectures such
as SCAD move data transport, scheduling, and
processing-unit (PU) assignment to the compiler. In
this setting, FIFO bu�er states and edge crossings in
data�ow graphs (DFGs) cause con�icts that are com-
monly addressed with copy nodes (for FIFO-conform
leveling) and swap nodes (for critical crossings), at the
cost of additional compute and memory. This thesis
asks how to minimize the number of newly inserted
copy and swap nodes under a �xed node order and �xed
PU allocation.
A two-stage heuristic is proposed: (i) a deterministic
queue simulation with dynamic lookahead and planned
give-back records exactly those rotations that are truly
required and derives a minimal set of copy nodes; (ii)
remaining per-channel con�icts are detected as adja-
cent inversions and resolved by locally inserted swap
nodes. Both stages preserve FIFO semantics, the orig-
inal node order, and the PU assignment of existing
nodes.



Zusammenfassung

Bu�ered-Exposed-Datapath-(BED)-Architekturen wie
SCAD verlagern Datentransport, Scheduling und PU-
Zuordnung in die Codegenerierung. Dabei führen
FIFO-Zustände und Kantenkreuzungen in Daten-
�ussgraphen (DFGs) zu Kon�ikten, die üblicher-
weise durch Copy-Knoten (für FIFO-konformes Lev-
eling) und Swap-Knoten (für kritische Kreuzungen)
entschärft werden � jedoch mit zusätzlichem Rechen-
und Speicheraufwand. Diese Arbeit untersucht,
wie sich die Anzahl neu einzufügender Copy- und
Swap-Knoten bei fester Ausführungsreihenfolge (Node-
Order) und fester PU-Allokation minimieren lässt.
Eine zwei-stu�ge Heuristik wird vorgeschlagen: (i) Eine
deterministische Simulation der Pu�erdynamik mit dy-
namischer Vorausschau und geplanter Rückgabe identi-
�ziert genau jene Rotationen, die tatsächlich notwendig
sind, und leitet daraus eine minimale Menge an Copy-
Knoten ab. (ii) Verbleibende Kanal-Kon�ikte wer-
den als benachbarte Inversionen erkannt und durch
lokal eingefügte Swap-Knoten aufgelöst. Beide Phasen
wahren FIFO-Semantik, die ursprüngliche Node-Order
und die PU-Allokation der vorhandenen Knoten.
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1 Einleitung

Bu�ered Exposed Datapath (BED) Architekturen wie SCAD verlagern Auf-
gaben, die klassische Prozessoren zur Laufzeit erledigen, in die Codegenerie-
rung: Der Compiler steuert Datentransport, Scheduling und die Zuordnung von
Operationen auf Verarbeitungseinheiten (Processing Units, PUs) mit FIFO-
Pu�ern. Damit rücken Daten�üsse, ihre Reihenfolgen und Pu�erzustände in
den Fokus der Korrektheit und E�zienz des erzeugten Codes. In der Praxis
werden sequentielle Programme zunächst in Daten�ussgraphen (DFGs) über-
setzt, deren Knoten Operationen und deren Kanten Transportbeziehungen
modellieren. Aus diesen DFGs entsteht anschlieÿend der Move Code für die
Zielarchitektur. Falsche Werte an den Köpfen der FIFO-Pu�er sowie Kanten-
kreuzungen führen dabei zu lokalen und strukturellen Kon�ikten, die ohne Ge-
genmaÿnahmen die Ausführbarkeit behindern oder blockieren. Copy-Knoten
(für FIFO-konformes Leveling) und Swap-Knoten (für das Au�ösen kritischer
Kreuzungen) sind etablierte Bausteine, bringen aber zusätzlichen Rechen- und
Speicheraufwand mit sich. [SBR22a; SBR22b]
Diese Thesis adressiert die Frage, wie sich die Zahl zusätzlich benötigter

Copy- und Swap-Knoten unter festen Rahmenbedingungen minimieren lässt:
Die vorgegebene Knotenausführungsreihenfolge (Node-Order) sowie eine feste
PU-Allokation bleiben für alle ursprünglichen Knoten erhalten. Neue Knoten
dürfen nur an markierten Kon�iktpositionen eingefügt werden und werden stets
auf derjenigen PU platziert, auf der der Kon�ikt sichtbar wird. Damit bleiben
sowohl Reihenfolge als auch Allokation invariant und sind für die Optimierung
als Nebenbedingungen zu respektieren.
Der vorgeschlagene Ansatz arbeitet zweistu�g. Zunächst simuliert die Heu-

ristik die Node-Order entlang mit einer dynamischen Vorausschau und geplan-
ter Rückgabe. Hierbei wird die minimale Anzahl der benötigten Copy-Knoten
ermittelt. In der zweiten Phase werden verbliebene critical crossings kanalwei-
se als benachbarte Inversionen erkannt und durch gezielte Swaps auf derselben
PU aufgelöst. Beide Phasen wahren eine feste Reihenfolge, feste Allokation und
korrekte FIFO-Semantik. .
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2 Hintergrund

2.1 Bu�ered Exposed Datapath Architekturen

Eine Bu�ered Exposed Datapath Architektur ist eine spezielle Prozessorarchi-
tektur, bei der die internen Datenpfade und Verarbeitungseinheiten (Proces-
sing Units, PUs) sichtbar gemacht werden. Das heiÿt, dem Compiler werden
sowohl die Art der PUs als auch ihre Anzahl und der Datenspeicher verfügbar
gemacht. Bei Bu�ered Exposed Datapath Architekturen (BED Architekturen)
steuert der Compiler nicht nur den Datentransport, sondern kümmert sich auch
statisch um das Scheduling der Instruktionen. Hier kümmert sich der Compi-
ler um die Kommunikation zwischen den PUs und um die Allokation jeder
Instruktion für jede PU.
Das Scheduling wird mit FIFO Pu�er umgesetzt. Davon kann es pro PU meh-
rere geben. Mit dieser Art des Schedulings und des Zwischenspeicherns der
Daten wird bei BED Architekturen auf globale Register verzichtet. [SBR22a]
Bei dieser Architektur werden die Instruktionen im Program Memory gespei-
chert und die Daten, die abgerufen werden, im Data Memory. Der Zugri�
auf die Instruktionen erfolgt über eine Control Unit (CU) und der Zugri� auf
die Daten über eine Load/Store Unit (LSU). Die PUs erhalten Werte, führen
Berechnungen mit diesen Werten aus und geben die Ergebnisse aus. Instruk-
tionen geben an, welche Berechnung eine PU durchführt und woher die Werte
kommen. Die Kommunikation zwischen PUs, CU, LSU und den Pu�ern �ndet
über Interconnection Networks statt. Wie eine BED Architektur im Allgemei-
nen aussieht, ist dargestellt in Abbildung 2.1.

Abbildung 2.1: Allgemeines Template einer BED Architekur [SBR22a]

2.2 SCAD

Die SCAD(Synchrounous Control Asynchronous Data�ow) Architektur ist ei-
ne BED Architektur, die zur Ausführung von Programmen den asynchronen
Daten�uss und die synchrone Steuerung kombiniert. [Bha21; Ker23]
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Kapitel 2: Hintergrund

SCAD ist so aufgebaut, dass es mehrere PUs gibt, die jeweils 2 Input Pu�er,
2 Output Pu�er und einen Input Pu�er für den opcode haben. Der opcode ist
eine Anweisung, die festlegt, welche Operation die PU ausführen soll. Die Puf-
fer sind mit den Interconnection Networks verbunden. Zum einen gibt es den
Move Instruction Bus (MIB), der die Werte synchron von der Control Unit zu
den PUs schickt, und zum anderen gibt es das Data Transport Network (DTN),
das Werte zwischen den PUs, der LSU und der CU hin und her sendet, sollten
diese Werte verfügbar sein.

2.2.1 FIFO Pu�er

Jeweils 2 Input/Output Pu�er einer PU speichern Paare von Einträgen in der
Form (adr, val). Für einen Input Pu�er ist adr die Adresse des Output Pu�ers
der PU, die den Wert val produziert hat oder noch produzieren wird. Für
Output Pu�er ist adr die Adresse des Input Pu�ers der PU, die den Wert val
konsumieren wird.

Abbildung 2.2: Struktur einer PU mit dazugehörigen FIFO Pu�ern [Ker23]

Die Struktur der Input/Output Pu�er und einer PU sind in Abbildung 2.2
dargestellt. Hier sieht man den PU Core, der in Gelb dargestellt ist, und die
Input Pu�er oberhalb der PU sowie die Output Pu�er unterhalb der PU. Diese
sind jeweils grün-rot dargestellt. Die Pfeile dazwischen und das rote und grüne
Quadrat stellen die Interconnection Networks mit ihren Controllern dar. Das
rote Quadrat ist der MIB Controller und das grüne Quadrat ist der DTN Con-
troller. Auf diese wird im weiteren Verlauf der Thesis noch näher eingegangen.
Falls ein Wert val von einem Input Pu�er erwartet wird, aber nicht ankommt,
weil er von dem Output Pu�er noch nicht produziert oder noch nicht gesendet
wurde, wird im Input Pu�er ein Eintrag gespeichert der Form (adr,⊥). Das
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2.2 SCAD

Symbol ⊥ ist hierbei ein Platzhalter für val. Der Eintrag (adr,⊥) wird eben-
falls im Output Pu�er gespeichert, wenn der Wert val erst noch von der PU
produziert werden muss. adr hat jeweils einen unterschiedlichen Wert für die
Pu�er. Im Output Pu�er wird als adr das tgt gespeichert und im Input Pu�er
die src.
Der dritte Input Pu�er einer PU speichert den opcode op. Dieser enthält die
Operation, die eine PU bei einer Berechnung verwendet. Er ist in Blau darge-
stellt in der Abbildung 2.2.

2.2.2 Move Code

SCAD Programme bestehen aus einer Sequenz von Move Instructions. Diese
haben drei Formen:

� src → tgt: Hierbei ist src der Output Pu�er einer PU und tgt der Input
Pu�er einer PU. Das heiÿt, eine Move Instruction sagt aus, dass der Wert
val vom Output Pu�er src zum Input Pu�er tgt geschickt wird.

� imm → tgt: Hierbei ist imm ein immediate value und tgt der Input
Pu�er einer PU. Das heiÿt, ein immediate value wird zum Input Pu�er
tgt geschickt.

� op → tgt: Hierbei ist op der opcode und tgt der Input Pu�er einer PU.
Das bedeutet, der opcode wird zum Input Pu�er tgt geschickt.

2.2.3 Interconnection Networks, Control Unit und Load/Store
Unit

Bei Ausführung eines Programmes, also des entsprechenden Move Codes, wird
anhand des Program Counters immer die nächste Move Instruction von der
CU genommen und an die PUs über den MIB gesendet. In Abbildung 2.2 ist
der MIB Controller dargestellt als rotes Quadrat und der MIB sind die roten
Pfeile. Handelt es sich um eine Move Instruction der Form src → tgt speichert
der Input Pu�er mit der Adresse tgt den Eintrag (src,⊥) am Ende des Pu�ers.
Der Output Pu�er src speichert den Eintrag (tgt,⊥) ebenfalls am Ende des
Pu�ers. Bei einer Move Instruction der Form op → tgt speichert der Input
Pu�er tgt den opcode op im op Input Pu�er. Sollte entweder der Output oder
Input Pu�er bereits voll sein, wird keiner der Einträge, also auch nicht der
für den entsprechenden anderen Pu�er, gespeichert. Die CU enthält dann ein
Feedback und wartet mit der Ausführung und verschickt es erneut mit dem
nächsten Schritt des Programms.
Hier fällt auf, dass die Adressen adr strikt synchron nach Move Code und Pro-
gram Counter entsprechend versendet und gespeichert werden. Die eigentlichen
Daten jedoch werden asynchron versendet und zueinander geschickt, und zwar
erst dann, wenn sie bereitstehen.
Diese Daten werden über das DTN versendet. Der Transport der Daten zwi-
schen PUs wird mit Nachrichten realisiert, die von den Output Pu�ern gesen-
det werden. Diese Nachrichten haben die Form (src, tgt, val) und bestehen aus
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Kapitel 2: Hintergrund

der Adresse des Output Pu�ers src von dem aus der Wert geschickt wird, der
Adresse des Input Pu�ers zu dem der Wert gesendet wird tgt und demWert val
selbst. Die Nachricht (src, tgt, val) wird vom Output Pu�er erstellt, sollte der
Eintrag am Kopf des Pu�ers von der Form (tgt, val) sein. Die Nachricht wird
entsprechend an den Input Pu�er tgt weiter geleitet und der Eintrag (src,⊥),
der am nächsten zum Kopf des Pu�ers liegt, wird ersetzt durch den Eintrag
(src, val). Die Input Pu�er beobachten entsprechend auch die Interconnection
Networks. Die Reihenfolge, in der die Einträge im Input Pu�er bereits bereit-
stehen, ist komplett abhängig vom Move Code und Program Counter. Das
heiÿt, dass Werte, die von verschiedenen Output Pu�er an einen Input Pu�er
gesendet werden, entsprechend in der Reihenfolge angeordnet werden, die vor-
gegeben ist, durch die bisherigen Einträge im Pu�er (sprich dem Move Code
und der program order).
Die LSU liest oder schreibt Werte von oder auf den Data Memory. Diese Werte
werden dann über das DTN gesendet. In Abbildung 2.2 ist der DTN Cntroller
dargestellt als grünes Quadrat und das DTN als grüne Pfeile. Es gibt Move
Instructions der Form imm → tgt. Das bedeutet, dass immediate values zu
einem Input Pu�er tgt gesendet werden. Der speichert am Ende des Pu�ers
den Eintrag (⊤, imm), wobei ⊤ als Platzhalter dient. [Bha21]

2.2.4 Verarbeitungseinheit(PU)

Sollte eine Verarbeitungseinheit einen Eintrag der Form (adr, x) mit x ̸= ⊥ am
Kopf eines ihrer Input Pu�er �nden, dann wird dieser Eintrag konsumiert und
resultierende Werte y werden produziert. Dabei ist y = f(x1...xm), wenn es
Einträge mit x1...xm gibt. Bei Werten y1...ym wird jeder Wert im Eintrag des
Output Pu�ers i der Form (tgt,⊥) gespeichert, und zwar in diejenigen Einträ-
ge, die am nächsten am Kopf liegen. Dabei ersetzt der Wert den Platzhalter ⊥
und wird in dem Eintrag gespeichert.

2.2.5 Daten�ussgraphen

Die Codegenerierung eines strukturierten sequentiellen Programmes zum letzt-
endlichen Move Code hat als Zwischenschritt die Erstellung eines Daten�uss-
graphen (DFG). Dieser ist ein Data Process Networks (DPN) mit einer be-
schränkten Menge an Knoten und Kanten. Die Knoten vom DFG sind die
Prozessknoten und die Kanten stellen das Senden und Empfangen von Output
Pu�ern zu Input Pu�ern dar. Ein strukturiertes Programm heiÿt in diesem Fall
ein Programm ohne ”goto” oder ”break” Anweisung. Das strukturierte sequen-
tielle Programm wird also zunächst in ein DFG übersetzt und dann werden
die Knoten dieses DFGs auf die PUs des Prozessors gemappt. Die Edges des
DFGs werden gemappt auf die Input und Output Pu�er des Prozessors. Je
nachdem, welcher Output Pu�er Werte zu welchem Input Pu�er sendet än-
dert sich die Form und die Farbe der Pfeile im DGF. Das führe ich später
aus. [Sch21; SBR22b]
Grundsätzlich ist ein DPN ein gerichteter Graph, wobei die Knoten Prozess-

knoten sind und die Kanten das Senden und Empfangen der Werte zwischen
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2.2 SCAD

Abbildung 2.3: Syntax und Semantik der Prozessknoten von DPNs [Sch21]

PUs darstellen [SBR22b]. In Abbildung 2.3 sieht man Syntax und Semantik
aller Prozessknoten der DFGs. Die Lese und Schreiboperationen funktionieren
folgendermaÿen:

� get(x) konsumiert den Kopf des Input Pu�ers für einen nicht leeren Pu�er
x = [x0, ..., xn−1]. Der Kopfwert des Pu�ers x0 wird ausgegeben und vom
Pu�er entfernt.

� push(x, y) fügt den Wert x am Ende des Pu�ers y hinzu.

So lassen sich die Prozessknoten erklären. In Abbildung 2.3 zeigt sich die
Funktionsweise von Copy (C), Duplicate (D), Swap (S), Join (J), Kill (K), Se-
lect (SEL), Switch (SWT), Load Memoryα(LDα), Store Memoryα(STα) und
c (Const). Der Index α bezeichnet hierbei eine bestimmte Speicherinstanz.
Wie man in Abbildung 2.4 sieht, gibt es eine Graphendarstellung in der ver-
schiedene Operationen der Prozessknoten und verschiedene Arten der Knoten
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Kapitel 2: Hintergrund

und Kanten zeigen, wie Pu�er und Prozessknoten miteinander interagieren
und verbunden sind. Ein schwarzer Pfeil steht für den linken Input, ein blauer
gestrichelter Pfeil steht für den rechten Input, eine gefüllte Pfeilspitze steht für
einen linken Output und eine leere Pfeilspitze steht für einen rechten Output.
Der Token Input durch LD und ST wird in Orange dargestellt.

Abbildung 2.4: Beispiel eines Daten�ussgraphen [Sch21]

2.3 Mögliche Kon�ikte und Kreuzungen im

Datenverkehr

Im nächsten Schritt werden die Prozessknoten auf PUs und die Pu�er des
DFGs auf die Pu�er der PUs gemappt. Wie DFGs gemappt werden, wird
in [SBR22b] genauer beschrieben, lässt sich aber auch aus Abbildung 2.5
herauslesen.
Hierbei ist opc der opcode, also die Operation die von der PU ausgeführt
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2.3 Mögliche Kon�ikte und Kreuzungen im Datenverkehr

Abbildung 2.5: Code Generation Mapping von Daten�ussgraphen zu Move Co-
de [SBR22b]

wird. inL, inR sind der linke und rechte Input Pu�er einer PU und outL, outR
sind der linke und rechte Output Pu�er einer PU.
Bei einem DFG können sich Kanten kreuzen. Das heiÿt, die Kreuzungen ent-
stehen bei der Übertragung von Output Pu�ern zu Input Pu�ern. Wenn diese
Kreuzungen kritisch sind, sorgt das dafür, dass der Move Code auf dem Pro-
zessor nicht ausführbar ist, es sei denn, man verwendet Swap-Knoten. Grund-
sätzlich können vier Fälle auftreten bei 2x2 PUs wie in Abbildung 2.6 zu
sehen ist [SBR22b; SB23]. Wir gehen von 2 Output Pu�er src1, src2 und
2 Input Pu�er tgt1, tgt2 bei einem gelevelten DFG mit den Instruktionen
src1 → tgt1, src2 → tgt2 aus:

� Sollte src1 ̸= src2 und tgt1 ̸= tgt2 sein, dann entsteht keine Kreuzung
und jede Reihenfolge von src1 → tgt1 und src2 → tgt2 im Move Code
ist richtig.

� Sollte src1 ̸= src2 und tgt1 = tgt2 sein, dann muss eingehalten wer-
den, dass x1 vor x2 konsumiert wird. Die Reihenfolge, in der x1 und x2
produziert werden, ist egal.

� Sollte src1 = src2 und tgt1 ̸= tgt2 sein, dann muss eingehalten wer-
den, dass x1 vor x2 produziert wird. Die Reihenfolge, in der x1 und x2
konsumiert werden, ist egal.

� Sollte src1 = src2 und tgt1 = tgt2 sein, dann kann eine kritische Kreu-
zung, ohne die Anwendung von Swap-Knoten, entstehen. Wie in Abbil-
dung 2.6 gezeigt, entsteht die Kreuzung, wenn x1 vor x2 produziert wird,
aber x2 erst vor x1 konsumiert werden sollte.

2.3.1 Leveln des Daten�ussgraphen

Um spätere Wartezeiten und Blockierungen des Move Codes zu verhindern,
levelt man den DFG. Diese Wartezeiten und Blockierungen können entstehen,
weil die FIFO Pu�er mit dem FIFO (First In First Out) Prinzip arbeiten. Also
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Kapitel 2: Hintergrund

Abbildung 2.6: Darstellung der möglichen Kreuzungen in einem DFG [SB23]

wird bei dem Zugri� auf den Pu�er erst der Kopf des Pu�ers weggenommen
und sollte ein Wert hinzugefügt werden, wird er am Ende des Pu�ers hin-
zugefügt. Dementsprechend kann die Berechnung der PUs nur durchgeführt
werden, wenn die für die Berechnung benötigten Werte am Kopf ihrer Pu�er
gespeichert sind. Sollte das nicht der Fall sein, kann man mit Copy-Knoten
diese Werte an den Kopf des Pu�ers bringen. Das funktioniert so, dass ein to-
ken von der PU konsumiert wird und ein token mit demselben Wert von dieser
PU produziert wird. Ein gelevelter Daten�ussgraph ist ein Daten�ussgraph,
dem eine Levelstruktur ℓ : V → N zugeordnet ist, so dass für jede Kante
(u, v) ∈ E gilt ℓ(u) < ℓ(v) und zwischen zwei abhängigen Knoten keine Levels
übersprungen werden. Copy-Knoten werden genutzt, um ungelevelte DFGs zu
leveln. [SBR22b]
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2.3 Mögliche Kon�ikte und Kreuzungen im Datenverkehr

2.3.2 Planarisierung des Daten�ussgraphen

Wie schon in Kapitel 2.3 erwähnt gibt es in einem gelevelten DFG kritische
Kreuzungen, die auftreten können. Auch Erwähnung fand, dass diese durch
Swap-Knoten aufgelöst werden können. Bezogen auf Abbildung 2.6 kann man
die Werte mit Swap-Knoten vertauschen bis x1 nach x2 produziert und auch
erst danach konsumiert wird. Mit Hilfe dieser Swap-Knoten lassen sich die kri-
tischen Kreuzungen eines DFGs au�ösen und er wird planar.

Abbildung 2.7: Daten�ussgraph eines MiniC Programm das eine kritische Kreu-
zung enthält, bei Ausführung auf einer PU

In Abbildung 2.7 ist ein Graph mit einer solchen kritischen Kreuzung darge-
stellt, unter der Annahme, dass der sequenzielle Code auf einer PU des SCAD-
Prozessors ausgeführt wird. Zusätzlich entsteht die kritische Kreuzung nur un-
ter einer bestimmten Reihenfolge, in der die Knoten ausgeführt werden, der
sogenannten Node-Order. Der sequenzielle Code, auf dem der Graph basiert,
ist in MiniC geschrieben und wird in dem Code 2.1 dargestellt.
Mit diesem Code entsteht die kritische Kreuzung unter der Voraussetzung,

dass er auf einer PU ausgeführt wird. Die Node-Order ist: n4, n1, n2, n0, n3. In
Abbildung 2.7sind zu den Knoten die jeweiligen Benennungen zu sehen. Diese
stehen immer links oben zu den Knoten. n4 ist zum Beispiel der Dup Knoten
D. Als Erstes wird n4 ausgeführt und a wird dupliziert, womit 2 tokens entste-
hen. Die tokens bf0 und bf3 haben denselben Wert wie a. bf0 be�ndet sich jetzt
im linken Output Pu�er der PU. Durch die Ausführung des Knotens n2 wird
bf3 mit dem token das durch den Knoten n1 entsteht addiert und ergibt das
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Kapitel 2: Hintergrund

Code 2.1 MiniC Programm das eine Kreuzung verursacht, vorausgesetzt, das
Programm läuft auf einer PU
nat a, b;

nat r;

thread crossingSwap {

nat x1, x2;

x1 = a + b;

x2 = a + 1;

r = x2 + x1;

}

token bf5. bf5 ist jetzt ebenfalls im linken Output Pu�er. Als nächstes müsste
n0 ausgeführt werden. Hierfür wird bf0 im linken Input Pu�er der PU benötigt
und b im rechten. Das geht aber nicht weil bf5 nach wie vor im Output Pu�er
ist und aufgrund des FIFO Prinzips zuerst zum Linken Input Pu�er bewegt
werden müsste. Das ist eine kritische Kreuzung. In der Abbildung 2.8 ist eine
Lösung dieser kritischen Kreuzung mit Swap-Knoten dargestellt.
Hier wird ein Swap-Knoten nach dem Knoten n4 eingefügt und dementspre-
chend die tokens bf3 und bf0 vertauscht wodurch die Kreuzung verhindert
wird. bf0 wird nämlich jetzt zuerst gebraucht und mit dem Knoten n0 verar-
beitet und danach entsteht mit der Addition bf3 und Const(1) der token bf5
der dann ohne das bf0 erwartet wird und für die letztendliche Addition durch
den Knoten n3 hergenommen werden kann.

2.3.3 Notwendigkeit der Copy und Swap-Knoten

Gelevelte Graphen durch Copy-Knoten haben den Vorteil des FIFO konformes
Verhalten ohne Risiko von Deadlocks. Der Nachteil ist jedoch, dass mehr Re-
chenaufwand und Speicheraufwand vorhanden sind. Bei der Berechnung durch
die PUs wird mehr Rechenleistung benötigt für Operationen, die eigentlich
irrelevant für die Berechnung der Werte sind. Durch das Weglassen ausgewähl-
ter Copy-Knoten ist der DFG zwar nicht mehr gelevelt, aber Ressourcen und
Speicher können eingespart werden. Man muss nur darauf achten, dass man
nur Copy-Knoten entfernt, die keine Deadlocks au�ösen.
Ähnlich ist es bei den Swap-Knoten. Auf manche dieser kann verzichtet wer-
den, was dieselben Vorteile bringt. Planarität heiÿt in diesem Fall, dass die
kritischen Kreuzungen durch Swap-Knoten verhindert werden [SBR22b]. Das
heiÿt, auf Swap-Knoten zu verzichten, kommt immer mit dem Nachteil daher,
dass man bestimmte Constraints einhalten muss oder zusätzliche PUs benö-
tigt, was wiederum auch mehr Ressourcen verbraucht.
Constraints bedeutet in diesem Fall, dass man das Auftreten kritischer Kreu-
zungen gar nicht erst erlaubt. Das hat den entscheidenden Nachteil, dass viele
PUs notwendig sein können. Also können hier auch viele PUs und Ressourcen
notwendig sein, nur um Crossings zu umgehen. Wie und wie viel Copy und
Swap-Knoten man einspart, ist ein Abwägen der genannten Vor- und Nachtei-
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2.3 Mögliche Kon�ikte und Kreuzungen im Datenverkehr

Abbildung 2.8: Daten�ussgraph eines MiniC Programm das eine kritische Kreu-
zung, die durch einen Swap-Knoten gelöst wurde, enthält, bei Aus-
führung auf einer PU

le.
Auf jeden Fall benötigt es, um aus einem DFG generisch einen level-planaren
DFG zu machen, viel Speicher und Ressourcen. Das kann mit Weglassen be-
sagter Knoten optimiert werden.

13





3 Heuristik zur Minimierung von

Copy- und Swap-Knoten

3.1 Voraussetzungen und Rahmenbedingungen

3.1.1 Ausgangslage

Es gibt eine feste Node-Order π und eine feste PU-Allokation µ, die vom Al-
gorithmus vorausgesetzt werden. Der Algorithmus erwartet als Eingabe einen
DPN und liefert als Ausgabe einen DPN mit minimaler Knotenzahl sowie die
entsprechend angepasste Node-Order und die angepasste PU-Allokation.

3.1.2 Node-Order

Die Ausführungsreihenfolge der Knoten wird festgelegt und bleibt während und
nach Anwendung des Algorithmus unverändert, abgesehen von neu eingefügten
Knoten. Das wird realisiert, indem der Algorithmus die Positionen markiert,
an denen ein Copy- oder Swap-Knoten erforderlich ist, und diese Knoten später
genau an diesen Stellen in die Node-Order einfügt.

3.1.3 PU-Allokation

Jedem existierenden Knoten wird eine PU zugeordnet. Wie viele PUs es gibt
und welcher Knoten welcher PU zugeordnet wird, hängt von der PU-Allokation
ab. Formal wird eine PU-Allokation als Abbildung µ : V → {0, . . . , k − 1} be-
trachtet, die jedem DPN-Knoten v ∈ V eine PU zuweist, wobei k die verfügbare
PU-Kapazität ist.
Auch die PU-Allokation bleibt, abgesehen von neu eingefügten Knoten, unver-
ändert. Die Allokation der eingefügten Knoten erfolgt stets so, dass die Tokens,
die zuvor vom betro�enen Knoten konsumiert wurden, auch vom neu einge-
fügten Knoten konsumiert werden. Das heiÿt: Neue Knoten werden immer auf
derselben PU eingefügt, auf der der Kon�ikt entstanden ist.

3.1.4 Zu minimierende Knotentypen

Copy-Knoten

Copy-Knoten haben folgendes Verhalten: (y) := Copy(x). Beim Leveln des
DPN entstehen Copy-Knoten (falls der DPN nicht bereits gelevelt ist). Diese
sind aber nicht alle notwendig, um kon�iktfrei zu bleiben. Der Algorithmus
behält nur einen Teil der Copy-Knoten des gelevelten DPN und fügt sie in die
Node-Order ein, um mit weniger Copy-Knoten dennoch kon�iktfrei zu bleiben.
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Kapitel 3: Heuristik zur Minimierung von Copy- und Swap-Knoten

Swap-Knoten

Swap-Knoten haben folgendes Verhalten: y1, y2 := Swap(x1, x2) und können
notwendig sein, falls nach dem Einfügen minimaler Copy-Knoten weiterhin
Kon�ikte bestehen. Dies betri�t critical crossings, wie in 2.3 beschrieben.

3.1.5 Allgemeiner Ansatz

Der Algorithmus funktioniert so, dass zunächst nach einer möglichst minimalen
Anzahl an Copy-Knoten gesucht wird. Sollten dennoch k Kon�ikte vorhanden
sein, wird weiterhin nach der kleinsten möglichen Anzahl an Copy-Knoten
gesucht, bei gleichbleibendem k. Anschlieÿend werden die verbleibenden critical
crossings mit einer minimalen Anzahl an Swap-Knoten gelöst.

3.1.6 DPN-Modell und Pu�erarchitektur

Ein DPN ist ein gerichteter Graph G = (V,E). Jeder Knoten v ∈ V besitzt
eine Operation op mit Signatur y1, . . . , ym := op(x1, . . . , xn). Kanten führen
Werte von yi zu xj .
Jede PU hat zwei Eingabepu�er, die als zwei FIFO-Queues modelliert wer-
den: L und R. Ein Knoten kann in einem Schritt nur zwei Kopfwerte h1, h2
konsumieren und nur dann, wenn sie den erwarteten Werten entsprechen: ls
(links erwarteter Wert) und rs (rechts erwarteter Wert) des nächsten Knotens
in π. Die Werte der Ausgabepu�er werden für den Algorithmus sofort über
eine Konsumenten-Abbildung in die Ziel-Queue eingeordnet (Konsumenten-
Abbildung: V ar → (PU, Side), wobei Side ∈ {L,R}).
Jeder Wert lv (linker Ausgabewert) und rv (rechter Ausgabewert) wird un-
mittelbar in einen Eingabepu�er geschrieben. Die Ziel-PU und die Wahl des
Pu�ers erfolgen wie folgt:

� PU: Der Wert v wird auf die PU des ersten Konsumenten von v verscho-
ben.

� Pu�er: Falls v = ls, wird v nach L verschoben; falls v = rs, nach R.
Es kann vorkommen, dass zwei Werte nach L und R verschoben werden,
dass kein Wert verschoben wird, oder, falls es nur einen Wert gibt, dieser
je nach Übereinstimmung mit ls bzw. rs nach L oder R.

3.1.7 Kon�iktarten

Seien v1 und v2 zwei Werte. Falls v1 bzw. v2 ungleich ls oder rs sind, ent-
spricht der erwartete Wert nicht dem am Kopf des jeweiligen Eingabepu�ers.
Es entsteht ein Kon�ikt, der mit einem Copy-Knoten gelöst werden muss. Der
Copy-Knoten erzeugt ein neues Token. Im Fall von diesem Algorithmus wird
jedoch derselbe Wert an das Ende des Pu�ers angehängt, dieses Verhalten ist
eine Rotation. Wird derselbe Wert zweimal rotiert, wären zwei Copy-Knoten
notwendig. In diesem Fall würde der zweite Copy-Knoten den durch den ersten
entstandenen Token kopieren. Da jedoch kein neuer Token durch dieses Ver-
fahren entsteht, wird die zweite Rotation desselben Werts registriert und als
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3.2 Heuristische Vorgehensweise zur Minimierung von Copy- und

Swap-Knoten

zweiter Copy-Knoten gewertet, der den ersten Copy-Knoten des ursprüngli-
chen Werts kopiert. Das wird so analog weitergeführt sollte ein Wert mehrfach
kopiert werden müssen. Für jeden blockierenden Wert v wird geprüft, ob im ge-
levelten DPN ein Copy-Knoten existiert, der v kopiert, d. h. ein Copy-Knoten
vr := Copy(v).

3.2 Heuristische Vorgehensweise zur Minimierung

von Copy- und Swap-Knoten

In diesem Abschnitt wird die Heuristik beschrieben. Sie arbeitet unter den in
Abschnitt 3.1 umrissenen Rahmenbedingungen: Eine feste Node-Order π und
eine feste PU-Allokation µ sind vorgegeben und bleiben für alle ursprünglichen
Knoten erhalten, nur neu eingefügte Knoten (Copy, Swap) werden an genau
markierten Positionen in π ergänzt. Neue Knoten werden stets so allokiert, dass
sie auf derselben PU liegen wie der Konsument, dessen Erwartung sie erfüllen,
d. h. ein eingefügter Knoten erscheint auf derjenigen PU, auf der der Kon�ikt
sichtbar wird. Auf jeder PU modellieren wir zwei FIFO-Eingabepu�er L und
R, und pro Schritt darf der nächste Knoten in π höchstens zwei Kopfwerte
konsumieren, die exakt den links bzw. rechts erwarteten Werten entsprechen.
Produzierte Werte werden sofort gemäÿ einer Konsumenten-Abbildung in die
Zielpu�er einsortiert.

Ziel und Grundidee: Ziel ist es, bei �xer Ausführungsreihenfolge und �xer
PU-Zuordnung die Anzahl zusätzlich benötigter Knoten zu minimieren. Dazu
zerlegt die Heuristik die Aufgabe in zwei Phasen:

� (i) Zunächst werden nur Copy-Knoten betrachtet. Wir simulieren die
Pu�erdynamik, protokollieren dabei, wann eine Rotation statt�ndet, und
leiten aus diesen Rotationen die kleinste notwendige Menge an Copy-
Knoten ab.

� (ii) In einem zweiten, nachgelagerten Schritt werden verbleibende Kon-
�ikte auf demselben Kanal, die critical crossings, durch gezielte Swap-
Knoten aufgelöst.

Pu�erdynamik, Erwartung und Simulation

Ausgangspunkt ist die gegebene Node-Order π. Wir durchlaufen π in Produzent-
Konsument-Schritten. Während jedem Schritt, werden die Ausgabewerte so-
fort dem Eingabepu�er derjenigen PU und Seite zugeführt, auf der der erste
Konsument den Wert erwartet. Damit ist zu jedem Zeitpunkt die �nächste Er-
wartung� des kommenden Konsumentenknotens eindeutig: (ls, rs) für die linke
bzw. rechte Seite. Stimmen die Köpfe der beiden Pu�er (hL, hR) mit (ls, rs)
überein, kann kon�iktfrei konsumiert werden.
Tre�en Erwartung und Kopfwerte nicht zusammen, bietet der Algorithmus

zwei Mechanismen:
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1. Rotation zum erwarteten Kopf: Das erwartete Token wird innerhalb
des entsprechenden Pu�ers nach vorne rotiert. Jede Rotation hängt das
vordere Token an, an das Pu�erende. Wichtig ist, dass dieses Ereignis
protokolliert wird: Für jeden rotierten Wert v wird vermerkt, dass v
an dieser Stelle an das Pu�erende angehängt wurde. Im Endergebnis
wird jede dieser beobachteten Rotationen als Copy-Bedarf für den Wert
v gezählt, vorausgesetzt, dass v einem Input eines vorhandenen Copy-
Knotens des gelevelten DPN entspricht.

2. Vorausschauende Verschiebung (rechts nach links) mit Rück-

gabe: Da der Einsatz von Copy-Knoten dazu führen kann, dass Werte
nicht im rechten, sondern im linken Pu�er erwartet werden, verwendet
der Algorithmus einen kleinen Lookahead K. Wenn auf derselben PU
innerhalb der nächsten K Konsumentenschritte klar ist, dass ein aktu-
ell rechts anstehender Wert dort als rechter Kopf benötigt werden wird,
jedoch durch davorliegende rechte Tokens blockiert wäre, wird dieses blo-
ckierende rechte Token vorzeitig nach links umgehängt (ans Ende von L)
und als �später wieder zurückzugeben� markiert. Genau in dem Schritt,
in dem es rechts tatsächlich benötigt wird, wird das Token von L am Kopf
genommen und zurück nach R gelegt (die �Rückgabe�). Diese Rückgabe
ist deterministisch geplant.

Beide Maÿnahmen sind vorläu�ge Pu�er-Operationen in der Simulation: Da-
bei werden noch keine realen Copy- oder Swap-Knoten in den DFG eingefügt.
Stattdessen sammeln wir ausschlieÿlich Evidenz dafür, wo Rotationen auftre-
ten. In beiden Fällen sind Copy-Knoten erforderlich, die jeweils den zu ro-
tierenden oder zu verschiebenden Wert kopieren. Dabei werden ausschlieÿlich
Copy-Knoten verwendet, die im gelevelten DPN vorhanden sind.

Ableitung der minimalen Copy-Menge

Nach dem vollständigen Simulationslauf über π liegt eine Menge von Rotati-
onsereignissen vor, die wir auf Inputnamen von Copy-Knoten abbilden. Intui-
tiv: Wenn in der Simulation ein Wert v auf einer PU mehrfach rotiert werden
musste, um die linke oder rechte Erwartung zu erfüllen, dann wäre im realen
System eine entsprechende Anzahl an Kopien von v nötig gewesen, um diese
Rotationen ohne Änderung der Node-Order zu ermöglichen. Daraus konstru-
ieren wir eine minimale Copy-Menge:

� Wir betrachten zunächst den gelevelten DPN mit den Copy-Knoten.

� Von diesen Copy-Knoten behalten wir nur diejenigen, deren Inputvaria-
ble in der protokollierten Rotationsmenge vorkommt.

� Alle anderen Copy-Knoten werden entfernt, indem deren Output im DPN
systematisch durch ihren Input ersetzt wird, ohne die beobachtete Se-
mantik der Simulation zu verletzen.
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3.2 Heuristische Vorgehensweise zur Minimierung von Copy- und

Swap-Knoten

Die Node-Order π bleibt dabei erhalten. Neu hinzukommende Copy-Knoten
werden exakt an jene Positionen eingefügt, an denen die Rotation protokolliert
wurde. Ihre PU-Allokation ist die des jeweiligen Konsumentenkon�ikts (d.h.
identisch zur PU des Knotens, der die Erwartung an dieser Stelle bildet).

Critical Crossings und Swaps

Auch wenn einige Rotationsbedarfe durch Kopien eliminiert sind, können auf
demselben Kanal (gleiche PU und gleiche Seite) noch critical crossings verblei-
ben: Die global produzierte Reihenfolge (. . . , a, b, . . .) auf diesem Kanal steht
dann inWiderspruch zur vom Konsumenten erwarteten Reihenfolge (. . . , b, a, . . .).
Hier setzt Phase (ii) an: Wir erkennen diese Inversionen kanalweise, indem wir
für jede (PU,Seite)-Kombination die produzierte Sequenz und die erwartete
Sequenz projizieren und benachbarte invertierte Paare erkennen. Für jedes in-
vertierte Nachbarpaar wird ein Swap-Knoten eingefügt, der die beiden Werte
auf diesem Kanal vertauscht. Der Swap wird auf derselben PU platziert, damit
keine zusätzliche Kanal- oder PU-Kommunikation erforderlich ist.

Wahrung der Invarianten

Drei Invarianten sind zentral:

1. Feste Reihenfolge: Die ursprüngliche Node-Order π bleibt für alle vor-
handenen Knoten unverändert. Neue Knoten werden ausschlieÿlich an
protokollierten Kon�iktpositionen eingefügt.

2. Feste Allokation:Die PU-Allokation µ bleibt für alle vorhandenen Kno-
ten unverändert. Neue Knoten werden auf der PU eingefügt, auf der der
jeweilige Kon�ikt sichtbar ist. Bei Kopien ist das die PU des Zielkonsu-
menten des kopierten Wertes, bei Swaps die PU des betro�enen Kanals.

3. Lokale Korrektheit der Pu�ersemantik: Vorausschauende Verschie-
bungen (rechts nach links) werden nur dann durchgeführt, wenn eine spä-
tere Rückgabe (links nach rechts) exakt zum Bedarfszeitpunkt möglich
ist. Dieser Schritt ist deterministisch geplant und ersetzt eine ansonsten
fällige Rotation. Er verändert die semantische Reihenfolge des Konsums
nicht.

Komplexität, Parameter und Grenzen

Komplexität: Pro Entscheidung ist die Laufzeit im Worst Case linear in der
�Distanz bis zum Verbrauch� des betrachteten Tokens (Anzahl der dazwischen-
liegenden Consumer auf derselben PU). Über die gesamte Simulation ergibt
sich damit eine Laufzeit, die in der Praxis quasi-linear in der Knotenzahl bleibt,
solange typische Distanzen klein sind. Es gibt keinen globalen, einstellbaren
Lookahead-Parameter mehr. Die Vorausschau ist datengetrieben.
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Grenzen: Der Algorithmus garantiert keine globale Optimalität über alle
DPNs: Entscheidungen für einzelne Tokens können interagieren, und die spä-
tere Einfügung von Swap-Knoten beein�usst ggf. nachfolgende Kon�iktlagen.
Lokal ist die Strategie jedoch sparsam: Ein Token wird nur dann verschoben,
wenn dies eine reale Rotation (und damit einen zu zählenden Kopierbedarf)
sicher verhindert. Empirisch führt dies bei fester Reihenfolge π und fester Al-
lokation µ zu kleinen Copy-Mengen. Verbleibende Inversionen werden durch
Swaps aufgelöst.
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4 Implementation

Dieses Kapitel beschreibt die konkrete Implementierung des Algorithmus zur
Minimierung von Copy- und Swap-Knoten unter der Nebenbedingung einer
festen Node-Order π (Node-Order) und einer festen PU-Allokation µ. Die Im-
plementierung ist in F# auf .NET realisiert und nutzt das Framework Averest.
Zunächst werden die verwendeten Datenstrukturen und Averest-Funktionen
skizziert. Anschlieÿend folgen die internen Repräsentationen, gefolgt von den
Kernfunktionen: (i) Konsumentenzuordnung, (ii) Simulation mit Vorausschau
und geplanter Rückgabe (L→R), (iii) Extraktion der wirklich nötigen Copy-
Knoten und stabile Projektion in Node-Order und PU-Map, sowie (iv) Erken-
nung und Behebung verbleibender Kon�ikte durch Swap-Knoten. Abschlieÿend
werden Komplexität und Implementierungsentscheidungen diskutiert.

4.1 Verwendete Averest-Strukturen und -Funktionen

Die Implementierung verwendet folgende, von Averest bereitgestellte Struktu-
ren und Funktionen:

DataflowProcessNetwork DPN/DFG-Repräsentation eines MiniC-Programms.

MiniC2DPN Übersetzt ein MiniC-Programm in ein DPN.

LevelizeDPN Erzeugt einen gelevelten DPN.

AllocProcUnitsByRandomMap Erzeugt eine PU-Map µ als Ausgangspunkt für
die Simulation.

PrintDPN, WriteDPN2Dotfile Ausgabe bzw. Visualisierung von DPNs.

Der Algorithmus arbeitet auf den von Averest gelieferten Graphen und Maps.

4.2 Interne Repräsentation und Invarianten

Graph, Reihenfolge, Allokation

Als Eingabe erwartet die Implementierung

1. einen DPN G = (V,E),

2. eine feste Node-Order π (Permutation der Knotenindizes),

3. eine feste PU-Allokation µ : V → {0, . . . , k−1}.
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Die beiden Invarianten �feste Reihenfolge� und �feste Allokation� werden für
alle vorhandenen Knoten strikt gewahrt. Neue, von der Heuristik eingefügte
Knoten Copy/Swap werden an protokollierten Positionen in π ergänzt und
immer auf genau der PU eingefügt, auf der der zugehörige Kon�ikt auftritt.
Bei Kopien ist dies die PU des ersten relevanten Consumers, bei Swaps die PU
des betro�enen Kanals (L oder R).

Pu�erarchitektur

Für jede PU verwaltet die Implementierung zwei FIFO-Eingangspu�er, L und
R. Ein Knoten konsumiert im Schritt höchstens die zwei Kopfwerte (hL, hR),
sofern sie den erwarteten Eingängen (ℓ, r) seiner Operation entsprechen. Neu
produzierte Werte werden über eine Konsumentenzuordnung (siehe unten) so-
fort in den Zielpu�er (L/R) der richtigen PU eingeordnet.

Konsumentenzuordnung (Var→(PU, Side))

Für jede Variable v wird bestimmt, auf welcher PU und auf welcher Seite (L/R)
sie zum ersten Mal konsumiert wird. Diese Map wird zur Laufzeit genutzt, um
produzierte Tokens in die korrekte Zielqueue einzureihen. Sie ist entscheidend,
damit neu eingefügte Copy-Knoten automatisch die PU und Side des Knotens
erben, dessen Wert kopiert werden soll, wodurch Fehler vermieden werden.

4.3 Zentrale Bausteine der Implementierung

4.3.1 Erkennung von Copy-Knoten und Rewriting

Zur Erkennung von Kopien genügt eine syntaktische Prüfung der Knotensi-
gnatur (y) := Copy(x) (bzw. Operatorname enthält Copy). Für das geziel-
te Entfernen einzelner Copy-Knoten wird ein lokales Rewriting genutzt: alle
Verwendungen von y auf der rechten Seite werden durch x ersetzt: Der Copy-
Knoten selbst wird aus dem DPN entfernt. Das Rewriting ist so implementiert,
dass Copy-Ketten iterativ von hinten sicher abgebaut werden.

4.3.2 Simulation mit dynamischer Vorausschau und geplanter
Rückgabe

Der Kern der Heuristik ist ein deterministischer Simulationslauf entlang π,
der Rotationen für einzufügende Kopien zählt. Es können vorausschauende
Verschiebungen notwendig sein:

� Vorausschau: Für die rechte Queue R einer PU wird ab der aktuel-
len Position in π so weit auf derselben PU K Schritte vorausgescannt.
Blockiert ein Wert einen anderen, wird der blockierende Wert nach links
verschoben.

� Geplante Verschiebung (R→L) nur im Blockadefall: Wird vor
dem (virtuellen) Verbrauch ein Blockierer b gefunden (d. h. der aktuelle
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4.3 Zentrale Bausteine der Implementierung

R-Kopf passt nicht zur nächsten rechten Erwartung auf derselben PU),
wird sofort genau dieser Token b ausR nach L verschoben und eine exakte
Rückgabe (L→R) zum Fälligkeitsknoten1 deterministisch geplant.

� Geplante Rückgabe (L→R) exakt zum Bedarf: Wenn der Fällig-
keitsknoten erreicht ist, rotiert die Implementierung die linke Queue L
minimal bis b am Kopf steht, verschiebt b zurück nach R und matcht
(ℓ, r) ohne zusätzliche Rotation auf R. Jede dabei nötige Rotation auf L
wird als Copy-Bedarf gezählt (und vermerkt).

� Rotationen als Messgröÿe: Klassische FIFO-Rotationen (ohne Vor-
ausschau) würden Copies �erzwingen�. Die Strategie verschiebt Tokens
nur dann vorzeitig, wenn eine echte Blockade droht. Wo immer möglich
wird nicht rotiert. Wo Rückgabe (L→R) zwingend eine L-Rotation er-
fordert, wird diese gezählt, damit die später tatsächlich einzufügenden
Copy-Knoten exakt an den richtigen Stellen landen.

Die Simulation führt zusätzlich ein EreignisLog (Wert, nach welchem Knoten
eingefügt), um die spätere Projektion in die Node-Order zu steuern.

Korrektheit des Pu�erverhaltens: Die geplanten Verschiebungen und Rück-
gaben verändern nicht die Konsumtionsreihenfolge. Ein Token wird nur proak-
tiv umgehängt, wenn seine spätere rechte Verwendung eindeutig ist und die
Rückgabe exakt dort statt�ndet. Damit ersetzen wir reine FIFO-Rotationen
durch Verschiebungen, ohne die Reihenfolge der Verbrauchsereignisse zu ver-
ändern.

4.3.3 Extraktion und Einfügung der minimal nötigen
Copy-Knoten

Nach der Simulation liegt die Menge Cmin der Tokens vor, die (durch Rotationen
auf L oder durch geplante Rückgaben) tatsächlich eine Kopie erfordern. Aus-
gehend vom gelevelten DPN werden alle Copy-Knoten gelöscht, deren kopierte
Werte nicht in Cmin liegt. Die verbleibenden Kopien werden in die ursprüngliche
Node-Order π an genau den vermerkten Kon�iktpositionen eingefügt. Dabei
wird

1. die Projektionsfunktion verwendet, um die alte Reihenfolge robust auf
den modi�zierten Graphen zu übertragen (exakte Schlüssel op|lhs|rhs mit
fallbacks),

2. die PU-Allokation der eingefügten Kopien auf die PU des ersten rele-
vanten Consumers der kopierten Variable gesetzt (damit wird der zuvor
simulierte Konsumort getro�en).

Diese Schritte stellen sicher, dass die Copy-Knoten weder die ursprüngliche
Allokation vorhandener Knoten ändern noch auf einer falschen PU landen.
1Dem Knoten, an dem b später tatsächlich als rechter Eingang r gebraucht wird.
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Kapitel 4: Implementation

4.3.4 Erkennung und Behebung verbleibender Kon�ikte durch
Swaps

Nach der Einfügung der minimalen Kopien können auf einzelnen Kanälen
(PU × {L,R}) noch kritische Inversionen verbleiben: ein Paar (a, b) erscheint
in der Produktionssequenz benachbart als (a, b), wird aber in der Erwartungs-
sequenz benachbart als (b, a) konsumiert. Die Implementierung entdeckt solche
inversen Nachbarschaften kanalweise und fügt Swap-Knoten y1, y2 := Swap(x1, x2)
ein, wobei Konsumenten von a und b auf die neuen Ausgänge umgeschrieben
werden ( a 7→y2, b 7→y1 ). Jeder Swap sollte auf der PU des betro�enen Kanals
eingefügt werden.
Hierbei traten in der Implementierung jedoch Probleme auf, wodurch nicht
alle Swaps erkannt wurden und die Zählungen von Kon�ikten und Rotationen
verfälscht waren. Vermutlich lag dies an der fehlenden bzw. unzureichenden
Simulation der Swap-Knoten und der zugrunde liegenden Swap-Dynamik.

4.4 Wesentliche Funktionen

Im Folgenden werden die wichtigsten implementierten Funktionen nach Auf-
gabe geordnet beschrieben:

BuildConsumerMap Bestimmt für jede Variable v das Paar (PU,Seite) des
ersten relevanten Consumers.

SimulationWithRotation1 & SimulationWithRotation2 Simulation entlang
π mit zwei FIFO-Queues (L/R) je PU. Zählt Kon�ikte, Rotationen und Cros-
sings. Kern ist die dynamische Vorausschau auf R : Virtueller R-Head wird
über die Kette kommender rechter Erwartungen derselben PU vorwärts kon-
sumiert, bis entweder der aktuelle Head verbraucht ist (kein Eingri� nötig)
oder ein Blockierer entdeckt wird. Im Blockadefall: vorzeitige Verschiebung
des Blockierers R→L und geplante Rückgabe L→R zum Fälligkeitsknoten.
Die Rückgabe dreht ggf. L minimal vor (zählt als Copy-Bedarf) und stellt da-
nach den rechten Match ohne zusätzliche Rotation her. Alle bewegten Werte
werden ereignisbasiert protokolliert ((value, node_after)).

remove_copies_func Erzeugt aus dem Ereignis- und Rotationsprotokoll die
Menge Cmin der tatsächlich benötigten Kopien (Tokens, die mindestens einmal
für Korrektheit rotiert bzw. zurückgegeben werden mussten). Auf Basis eines
gelevelten DPN werden alle anderen Copy-Knoten entfernt.

transferPUMapPreserveBase_LHSFirst & reassignCopyPUsToValueOrigin

Überträgt die alte PU-Map auf den modi�zierten DPN, ohne existierende Zu-
ordnungen zu verändern. Für Copy-Knoten wird die PU explizit auf die des
ersten relevanten Konsumentenknotens gesetzt (damit wird die Konsumstelle
aus der Simulation respektiert).
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4.5 Idee des Algorithmus

DetectCriticalCrossings Baut kanalweise Produzenten- und Erwartungs-
sequenzen auf und �ndet invertierte benachbarte Paare. Fügt pro Befund einen
Swap auf der betro�enen PU ein und rewired die Konsumenten auf die durch
den Swap erzeugten Ausgänge. Hier gab es bei der Implementierung Probleme.

4.5 Idee des Algorithmus

1. Vorbereitung: MiniC→DPN, optional Levelisierung; PU-Map µ initia-
lisieren (Averest). Node-Order π ist gegeben.

2. Konsumentenzuordnung: BuildConsumerMap.

3. Simulation: Simulation mit dynamischer Vorausschau auf allen PUs.
Zählen/Loggen von Rotationen und Rückgaben.

4. Copy-Extraktion: ExtractMinimalCopies und Entfernen über�üssi-
ger Kopien aus dem gelevelten DPN; Einfügen der verbliebenen Kopien
in π an den protokollierten Stellen; PU der Kopien = PU des ersten
relevanten Consumers der kopierten Variable.

5. Swap-Phase: DetectCriticalCrossings

4.6 Probleme bei der Implementierung

Wie bereits erwähnt funktioniert die Erkennung und Anwendung der minimal
erforderlichen Swap-Knoten derzeit nicht zuverlässig. Dadurch lässt sich in
den Experimenten wie auch im Algorithmus nur bestimmen, ob Swap-Knoten
grundsätzlich erforderlich sind, nicht jedoch, wie viele davon minimal benötigt
werden. Entsprechend berichten die Experimente lediglich die Notwendigkeit
von Swap-Knoten, nicht deren Anzahl.
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5 Experimente

5.1 Zielsetzung

Dieser Abschnitt untersucht, wie die implementierte Kon�ikterkennung und -
behebung auf unterschiedlichen MiniC-Programmen wirkt. Dokumentiert wer-
den ausschlieÿlich strukturelle E�ekte (benötigte Kopien, benötigte Swaps)
unter Variation der PU-Anzahl und der Node-Order. Die Ergebnisse basieren
auf dem Algorithmus.

5.2 Versuchsaufbau

Beispiele Fünf exemplarische MiniC-Programme mit unterschiedlicher Struk-
tur und Gröÿe: BinaryTreeScl32, FastFourierTransform, HornerPoly8, min_copy_needed,
first_example. Die ersten beiden Beispielprogramme stammen aus dem Ord-
ner UnrolledRAM der Averest-Website. Die drei weiteren Beispielprogramme
wurden im Rahmen dieser Arbeit eigens erstellt.

Erlaubte Korrekturen.

� Rotation nur, wenn der blockierende Kopfwert durch einen Copy-Knoten
im gelevelten DPN gedeckt ist und dessen einmaliges Budget noch nicht
verbraucht wurde.

� Swap, wenn (a) keine Rotation möglich ist, dann werden die 2 Werte
am Kopf des Pu�ers vertauscht und als Swap gezählt.

Variationen. PU-Anzahl (1�3), Knotenordnung (�x/spezi�sch vs. �klug� ge-
wählt).

Metriken. Anzahl benötigter Copy-Knoten und Anzahl benötigter Swaps in
der Simulation.

5.3 Zusammenfassung der Ergebnisse

Die Tabelle 5.1 fasst die Resultate zusammen. Für Swaps bedeutet �Ja�, dass
sie benötigt werden. # PU bezeichnet stets die Anzahl der PUs.
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Kapitel 5: Experimente

Programm # PU Copies Swaps Bemerkungen

BinaryTreeScl32 1 0 nein Referenzfall ohne Maÿnahmen.
FastFourierTransform 1 1 ja Mit kluger Order ungelevelt auf 1

ausführbar.
FastFourierTransform 2 0 ja Copies entfallen, Swaps weiterhin

nötig.
HornerPoly8 1 12 ja Kopien nehmen mit # PU ab (un-

ten).
HornerPoly8 2 9 ja
HornerPoly8 3 5 ja
min_copy_needed 1 3 nein Untere Schranke für Copy-Bedarf.
min_copy_needed 2 2 nein
min_copy_needed 3 2 nein
first_example 1 0 nein

Tabelle 5.1: Überblick: benötigte Kopien/Swaps je Benchmark und Kon�guration.

Erkenntnisse

� Ohne Interferenz (z.,B. BinaryTreeScl32, �rst_example) sind weder Ko-
pien noch Swaps nötig.

� FastFourierTransform: Auf 1 PU werden 1 Copy und Swaps benötigt.
Auf 2 PUs entfallen Kopien, Swaps bleiben. Eine kluge Node-Order kann
den 1 PU-Fall zusätzlich entschärfen.

� HornerPoly8: Mehr PUs reduzieren Copies stark (12→9→5).

� min_copy_needed: zeigt eine Konstellation mit mindestens 2 Kopien (bei
≥2 s) und 3 Kopien (bei 1 PU).
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6 Fazit

Diese Arbeit hat eine zweistu�ge Heuristik vorgestellt, die unter �xierter Node-
Order und PU-Allokation die Anzahl zusätzlich benötigter Knoten minimiert:
(i) eine simulationsbasierte Ableitung einer minimalen Copy-Menge über Ro-
tationsereignisse mit dynamischer Vorausschau und geplanter Rückgabe so-
wie (ii) eine anschlieÿende, kanalweise Erkennung und Behebung verbleibender
Paarinversionen mittels Swap-Knoten. Die Invarianten feste Reihenfolge, feste
Allokation und FIFO-Korrektheit werden durchgängig gewahrt.
Es zeigt sich: Mehr PUs reduzieren vor allem den Copy-Bedarf (z. B. HornerPoly8:

12→9→5 Kopien bei #PU 1→2→3).
Grenzen und Ausblick: Die Heuristik ist bewusst lokal und garantiert kei-

ne globale Optimalität. Entscheidungen für einzelne Tokens können intera-
gieren. Die Laufzeit bleibt in der Praxis quasi-linear in der Knotenzahl, da
die Vorausschau datengetrieben und auf die Konsumentenfolge pro PU be-
schränkt ist. Künftige Arbeiten könnten (a) die gemeinsame Optimierung von
Node-Order und PU-Allokation untersuchen, (b) kostenbewusste Varianten
(Zeit/Energie/Belegung) integrieren, (c) formale Optimalitätsaussagen für Teil-
klassen von DPNs ableiten und (d) die Methodik auf breitere Benchmarks und
komplexere Speicherhierarchien übertragen. Auch das systematische Abwägen
zwischen Constraints zur Kreuzungsvermeidung und zusätzlicher Ressourcen
(PUs, Pu�er) verspricht neue Einsichten.
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