Evaluating Interconnection
Networks for Exposed
Datapath Architectures

Embedded Systems i
m TECHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

Motivation: SCAD-Machines

* Synchronous Controlflow
Asynchronous Dataflow

* Processing Units with Buffers
* Operate as soon as inputs are
avaiable

 Move Instructions move data
between buffers
* Data Transport Network
 Interconnect N PUs with N PUs

Embedded Systems
Group

Fr EE | EF FE
—gell gel| gel - ge
. 1. 1 . - 1. L r

THMINET Tﬂ r
L L _ﬂ @ ~F ©
.) .) .J ! K T)

it N Il ir

ol "gell g e J e
. T, 1 - - .l L

Fr i ir K
Y VoY T:y
—geof el mel|-ge

I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Interconnection Networks

* Classic approaches:

— Buses
* Only one move at a time

* Multiple parallel buses may not scale well

— Crossbar Switches
e Matrix with N x N switches

* Allows to route N pieces of data from N source to N destinations
in parallel

* Needs global configurations for switches

e Better: Interconnection Networks

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Sorting Networks

* Structure

— Compare and Swap units

* Switches with attached control logic

- Interconnected by wires

* Transport/Sort all inputs in parallel

* Routing decisions are local B [
* Interconnection Networks ™
——¢ *——o
— Transport Address-Data-Tuples *——¢ | +——¢
— Sort by address
Embedded Systems i

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Koppelmann-Oruc¢ Network

* Computes ranks of input addresses
— Prefix sum over address MSBs

— Uses tree of adders

994 Sunjuey

Cube
Network
of size N

Koppelman-Oruc
Network
of size N/2

Koppelman-Oruc
Network
of size N/2

* Routed using Cube Network

— Switch position based on

rank LSB and address MSBs _
p = (a,A-r)V(=a,Ar,) -

Cube Network
for size n/2

— Rank LSBs are dropped after each

column

— Address MSBs are dropped on
recursion

Cube Network
for size n/2

Embedded Systems
Group

[]
I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Narasimha’s network

Network .
of size N/2 :

* Routing based on the address
MSBs and a ,,carry®

p = c®a, c,, = (a,®a)éc,

* Carry spans the entire first o a2 |
column of the network Bt =
» Address MSBs are dropped | ii}
before recursion
@L
Embedded Systems WCH_I —

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Intel HARP

* Hardware Accelerator Research Project

* Xeon CPU with FPGA based accelerator

* hardware platform and software framework
* Primarily aimed at Datacenter applications

* FPGA and CPU share the same Memory

- Low latency data exchange

* Programmable in VHDL OpenCL

Embedded Systems i
m TECHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

OpenCL

* Programming language and runtime environment

* Based on the C language and C99 standard

— Removes: Recursive functions, pointer arithmetic,
dynamic memory management

— Adds: vector operations and vector datatypes
— Memory segmented in regions

* Runs Kernels on Compute Units attached to a host
system

* Multiple kernels can be run in parallel

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Embedded Systems
Group

Intel HARP and OpenCL

CPU

OpenCL Host Code

b1

OpenCL Runtime Library

N

Virtual Memory

V1 '

Memory Controller

R

FPGA

| OpenCL

| Kernel

OpenCL
Kernel

| L1

b1

| OpenCL IP Cores

.

A

Memory Controller

|

f

Sytem Memory

/:

TecHniscHE UNIVERSITAT
KAISERSLAUTERN

Network Generator

* Translates hardware circuits for networks into OpenCL
— Complete network in a single Kernel
— Using vector operations for parallelism

— Limited to 16 inputs by OpenCL vector types

* Four stages:
- Leveled circuit
- Integer circuit
— Vector operations

— OpenCL codes

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Leveled Circuits

* Netlist format: gates

connected by wires ‘?I}

* Splitinto levels of gates

— No data dependencies within

levels \VL

* Mostly bit-wise operations @\t

e Data and addresses routed in Ej
the same bitvector

Embedded Systems I

TecHniscHE UNIVERSITAT
Group D KAISERSLAUTERN

Leveled Circuits: Gates

Type | Inputs Output Operation

NOT | =] Boolean negation

AND | =,y EAY] Boolean conjunction
OR | z,y z Vg Boolean disjunction
XOR | z,y z Dy Exclusive disjunction
HA T,y By, © Ay Half adder

FA T, Y, 2 rByPz, cAyVzA (xdy)| | Full adder

PG g1.P2, 92, P2 p1 A p2, g2V (p2 A gl)] Propagate-generate gate

¢, [ro,x1, ... Ty,

MX c?yo:xp, cTyr:xy, ... clyn:ir,] | 2:1 multiplexer
[yﬂa Y, --. yn]
¢, |xo,x1, ... znl, | [Tyo:zo, cyr1:x1, ... cTynixp, .
SW S 5 Switch gate
[y{]ayla yn] CrYo Lo, .- (313)'?1:33:-1]
Embedded Systems i

[|
m TECHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

Integer Ciruits

* Basic datatype in OpenCL is an integer
— Bitvectors need to be translated to integers

— Single wires need to become integers as well

* Splits Switches into separate address and data switches

— Simplifies code generation later

* Introduces SubSig gates in new levels

— Needed to extract single bits from bitvectors/integers
* Replaces ranking tree with special gate

* Reschedules resulting circuit in new levels

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Vector Operations

* Use vector operations to exploit parallelism in the circuit
* Main Goal:

Merge switches of one level into shuffle instruction
* Secondary Goal:

Vectorise address logic if possible

* Levels of the circuit already group gates suitable for
vectorising

* Turn the circuit into a stream of vector operations

Embedded Systems i

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Vector Operations

Type Inputs Output Operation

NOT T T Boolean negation

AND T,y AT Boolean conjunction

OR T,y T Vy Boolean disjunction

XOR T,y T Dy Exclusive disjunction

MX c, T, cly:x 2:1 Multiplexer

SW C, T,y cly:x, c?y:y | Switch gate

SUBSIG T y with y C x | Extract the bits in y from x
RANKINGTREE | zg,z1...x, | 70,71, ...Th Compute ranks of inputs

Embedded Systems .
Group I -

TecHniscHE UNIVERSITAT
KAISERSLAUTERN

Vectorisation Strategy

e Start with vectors for addresses and data

* Vectorise gates of the same type in the same level if:

— All elements of a vector are inputs of the same type of
gate

— lgnore the control input for switches

— Ranking tree gates are already vectorised

* Derive output vectors

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

OpenCL: Logic and Arithmetic

* Direct translation

. 1 int4 x = (int4) (0,0,1,1);
* Problem: Different 2 intsa y = (int4) (0,1,0,1);
3
values for true 4 // z1 = NOT(x)
5 intd z1l = Ix; // (-1,-1,0,0)
then scalar 6 // 22 = AND(x.3)
Operators 7 intd z2 = x && v; // (0,0,0,-1)
8 // z3 = 0R(x,y)
9 intd =z3 = | ; // (0,-1,-1,-1)
* Only relevantfor j ;.4 xorce. v
arithmetic 11 intd z4 = x ~° Y // (0,—1,—1,0)
operations
Embedded Systems i

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

OpenCL: Extracting Bits

int sub_0 = (((addr_in[0] & (1 << 2)) >> 2) << 0);

intd sub 4 = (((v_4 & (1 << 1)) >> 1) << 0)
| (((v_4 & (1 << 2)) >> 2) << 1);

I

e Mask out the relevant bits

 Shift to right to LSB then to left to target position

* Use bitwise or to construct new integer

Embedded Systems

™~
Group

I m TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

OpenCL: Mux

// z = MUX(c,x,y)
intd z;
if (c) A
zZ = V;
}
else {

Z = X;

o0 ~1 O U = W N =

Embedded Systems i
m TecHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

OpenCL: RankingTree

X[0] [X[1] [X[2] (X[3] [X[4] [X[5] | X[6] | X[7]

1 //--- start ranking tree ---
2 int8 rank0 = (int8) (sig_1, sig_3, sig 5, sig 7,
3 sig 9, sig_11, sig_13, sig_15);
O +)C O +) C 4 rank0 = rank0 + (intS)g(—l, 0% 0, 0, %, 0, o,go);
5 int8 rankO_add_O0 = (int8) (0, rankO[0], 0, rankO[2],
6 0, rankO0[4], 0, rankO[6]);
7 1nt8 rank0 0 = rankO + rankO add 0;
C + G 8 int8 rankO_add_1 = (int8) (0, 0, 0, rankO_O[1],
9 0, 0, 0, rank0_0[5]);
10 int8 rankO0O_1 = rankO_0 + rankO_add_1;
O 11 int8 rank0O_add_2 = (int8) (0, 0, 0, O,
12 0, 0, 0, rank0O_1[3]);
13
C 14 int8 rank0_2 = rank0_1 + rankO_add_2;
15 int8 vec_24 _add_1 = (int8) (0, 0, 0, O,
16 0, rankO_2[3], 0, 0);
+ 17 int8 vec_24_1 = rank0_2 + vec_24_add_1;
18 int8 vec_24_add_0 = (int8) (0, 0, vec_24_1[1], O,
19 vec_24 1[3], 0, vec_24_1[5], 0);
A 4 20 int8 vec_24 = vec_24_1 + vec_24_add_O0;
vio] | iy | vier | v | oviar | s |oviel | Y 21 //--- end ranking tree ---

Embedded Systems .
m TecHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

OpenCL: Switches

* Switch vector operations
- Input vector, Control vector, Output vector

— Element pairs in the vectors are swapped

* Shuffel instruction
- Input vector x, mask vector m, Output vectory
- yli]l = x[m[7]]
— Mask has to computed from control vector
— Two possible value per mask element
m:ﬁo+6'(ﬁ1_ﬁo)

Embedded Systems i

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Embedded Systems

Group

S R e R

R0 ST i e

10
11
12
13
14
15
16
17
18

OpenCL: Switches

//—-——- start switch ---

int8 switchCrtlVecO = (int8) (sig_22, sig_15,

sig_13, sig_0, O,
switchCrtlVecO = switchCrtlVecO & 1:
int8 shuffleInputVecO = (int8)data_input;
int8 preShuffleVecO = (int8) (0, O, 1, 1,
2, 2, 3, 3);

int8 shuffleCtrlVecO0 = shuffle(switchCrtlVecO,
convert_uint8(preShuffleVec0)) ;

int8 shuffleOffsetVecO = (int8) (6, 7, 4,
2, 3, 0, 1);

int8 shuffleCoeffVecO = (int8) (1, -1, 1,
1, -1, 1, -1);

int8 shuffleVecO = shuffleOffsetVecO +

shuffleCoeffVecO * shuffleCtrlVecO;

int8 vec_1 = shuffle(shuffleInputVecO,

convert uint8 (shuffleVecO)) ;

//—-——— end switch —---

/:

TecHniscHE UNIVERSITAT
KAISERSLAUTERN

Evaluation

* Test runs on GPU and CPU

— Networks with 2,4,8 inputs tested exhaustively

— Network with 16 inputs tested for evenly distributed
sample

* Testin Simulations
— Failed for more then 4 inputs

— Likely compiler bug in shuffle

Embedded Systems i
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

FGA Hardware Resources

Number of RAMs

Number of FFs

Number of ALUTS

G e e i 40,000 | T4 Joor90 SN0 Mameeeey
- / 35,000 | | —=— Nara94 60,000 | | = Naragd
30,000 - 50,000 |
| | 25,000 40,000 |
30 | 20,000 |- 30’000 7
20 | 15,000 20’000 B
10,000 | ’
"]| I
% 2 4 6 8 10 12 14 16 005 4 6 3 10 12 14 16 i e T T
Number of inputs Number of inputs Number of inputs
houts ALUTs Flip Flops RAM Cells
P KoOr90 | Nara94 | KoOr90 | Nara94 | KoOr90 | Nara94
2 3396 3304 6211 6210 44 44
4 7390 5729 8873 7147 46 46
8 21686 15020 16925 12849 50 50
16 67887 45519 38593 29119 58 58
Embedded Systems i
Group I = KAISERSLAUTERN

FGA Hardware Resources: Switch

1 //--- start switch ---

2 int4 switchCrtlVecl = (int4)(sig_addr_13, sig_addr_15,

3 0, 0);

4 // ALUTs: 0 FFs: 0O RAMs: O

b int4 shufflelInputVecl = (inté4)data_input;

6 // ALUTs: 0 FFs: 0 RAMs: O

7 int4 preShuffleVecl = (int4) (0, 0, 1, 1);

8 // ALUTs: 0 FFs: O RAMs: O

9 int4 shuffleCtrlVecl = shuffle(switchCrtlVecl,

convert_uint4 (preShuffleVecl));

10 // ALUTs: 0 FFs: 0O RAMs: O

11 int4 shuffleOffsetVecl = (int4) (0, 1, 2, 3);

12 // ALUTs: 0 FFs: O RAMs: O

13 int4 shuffleCoeffVecl = (int4) (1, -1, 1, -1);

14 // ALUTs: 0 FFs: 0 RAMs: O

15 int4 shuffleVecl = shuffleOffsetVecl

16 + shuffleCoeffVecl *x shuffleCtrlVecl;

17 // 32-bit Int Subtract(x2) ALUTs: 66 FFs: 0 RAMs:
Embedded Systems i

Group l::

0

CHNISCHE UNIVERSITAT
AISERSLAUTERN

FPGA Hardware: Ranking Tree

1 //--- start ranking tree ---

2 int4 rankInputVecO = (int4) (sig_addr_1, sig_addr_3,

3 sig_addr_5, sig_addr_7);

4 // ALUTs: 0O FFs: O RAMs: O

5 rankInputVecO = rankInputVecO + (int4) (-1, 0, 0, 0);

6 // ALUTs: 0 FFs: O RAMs: O

7 int4 rankInputVecO_add_O0 = (int4) (0, rankInputVecO[O0],
8 0, rankInputVecOI[2]);

9 // ALUTs: 0 FFs: O RAMs: O

10 int4 rankInputVecO_O = rankInputVecO + rankInputVecO_addO;

11 // 32-bit Integer Add (x2) ALUTs: 66 FFs: 0 RAMs: O

12 int4 rankInputVecO_addl = (int4) (0, O,

13 0, rankInputVecO_O0[1]);

14 // ALUTs: 0O FFs: O RAMs: O

15 int4 rankInputVecO_1 = rankInputVecO_O0 +
rankInputVecO_addl;

16 // 32-bit Integer Add (x1) ALUTs: 33 FFs: 0 RAMs: O

17 int4 vec_8_add0 = (int4) (0, 0, rankInputVecO_1[1], 0);

18 // ALUTs: O FFs: O RAMs: O

19 int4 vec_8 = rankInputVecO_1 + vec_8_addO;

20 // 32-bit Integer Add ALUTs: 33 FFs: O RAMs: O

21 //--- end ranking tree ---

Embedded Systems .
TecHniscHE UNIVERSITAT
Group I m KAISERSLAUTERN

Future work

* Test on actual HARP hardware
* Extension to larger input sizes

* Explore different vectorisation strategies
— Vectorize more aggressively

— Vectorize nothing but the switches

* Test with an actual scad-machine implementation

Embedded Systems i

m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Conclusion

* The generated OpenCL kernels work

* Vectorisation of switches into shuffle instruction is
possible

* Simulation fails, due to compiler bugs

* Hardware synthesis works, but has not been tested
* Scaleability might be an issue for larger inputs

* Vector operations are optimized efficiently

* Narashima’s network is preferable in terms of size

Embedded Systems

[]
m TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN

Thank you for your attention

Embedded Systems i
m TECHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

