

Evaluating Interconnection
Networks for Exposed

Datapath Architectures

Motivation: SCAD-Machines

● Synchronous Controlflow
Asynchronous Dataflow

● Processing Units with Buffers
● Operate as soon as inputs are

avaiable

● Move instructions move data
between buffers
● Data Transport Network
● Interconnect N PUs with N PUs

Interconnection Networks

● Classic approaches:
– Buses

● Only one move at a time
● Multiple parallel buses may not scale well

– Crossbar Switches
● Matrix with N x N switches
● Allows to route N pieces of data from N source to N destinations

in parallel
● Needs global configurations for switches

● Better: Interconnection Networks

Sorting Networks
● Structure

– Compare and Swap units
● Switches with attached control logic

– Interconnected by wires

● Transport/Sort all inputs in parallel
● Routing decisions are local
● Interconnection Networks

– Transport Address-Data-Tuples
– Sort by address

Koppelmann-Oruç Network
● Computes ranks of input addresses

– Prefix sum over address MSBs
– Uses tree of adders

● Routed using Cube Network
– Switch position based on

rank LSB and address MSBs

– Rank LSBs are dropped afer each
column

– Address MSBs are dropped on
recursion

p = (au∧¬r l)∨(¬au∧ru)

Narasimha’s network

● Routing based on the address
MSBs and a „carry“

● Carry spans the entire first
column of the network

● Address MSBs are dropped
before recursion

p = c i⊕au c i+1 = (au⊕al)⊕c i

Intel HARP

● Hardware Accelerator Research Project
● Xeon CPU with FPGA based accelerator
● hardware platform and sofware framework
● Primarily aimed at Datacenter applications
● FPGA and CPU share the same Memory

– Low latency data exchange

● Programmable in VHDL OpenCL

OpenCL

● Programming language and runtime environment
● Based on the C language and C99 standard

– Removes: Recursive functions, pointer arithmetic,
dynamic memory management

– Adds: vector operations and vector datatypes
– Memory segmented in regions

● Runs Kernels on Compute Units attached to a host
system

● Multiple kernels can be run in parallel

Intel HARP and OpenCL

Network Generator

● Translates hardware circuits for networks into OpenCL
– Complete network in a single Kernel
– Using vector operations for parallelism
– Limited to 16 inputs by OpenCL vector types

● Four stages:
– Leveled circuit
– Integer circuit
– Vector operations
– OpenCL codes

Leveled Circuits

● Netlist format: gates
connected by wires

● Split into levels of gates
– No data dependencies within

levels

● Mostly bit-wise operations
● Data and addresses routed in

the same bitvector

Leveled Circuits: Gates

Integer Ciruits

● Basic datatype in OpenCL is an integer
– Bitvectors need to be translated to integers
– Single wires need to become integers as well

● Splits Switches into separate address and data switches
– Simplifies code generation later

● Introduces SubSig gates in new levels
– Needed to extract single bits from bitvectors/integers

● Replaces ranking tree with special gate
● Reschedules resulting circuit in new levels

Vector Operations

● Use vector operations to exploit parallelism in the circuit
● Main Goal:

Merge switches of one level into shufle instruction
● Secondary Goal:

Vectorise address logic if possible
● Levels of the circuit already group gates suitable for

vectorising
● Turn the circuit into a stream of vector operations

Vector Operations

Vectorisation Strategy

● Start with vectors for addresses and data
● Vectorise gates of the same type in the same level if:

– All elements of a vector are inputs of the same type of
gate

– Ignore the control input for switches
– Ranking tree gates are already vectorised

● Derive output vectors

OpenCL: Logic and Arithmetic

● Direct translation
● Problem: Diferent

values for true
then scalar
operators

● Only relevant for
arithmetic
operations

OpenCL: Extracting Bits

● Mask out the relevant bits
● Shif to right to LSB then to lef to target position
● Use bitwise or to construct new integer

OpenCL: Mux

OpenCL: RankingTree

OpenCL: Switches

● Switch vector operations
– Input vector, Control vector, Output vector
– Element pairs in the vectors are swapped

● Shufel instruction
– Input vector x, mask vector m, Output vector y
– y[i] = x[m[i]]
– Mask has to computed from control vector
– Two possible value per mask element

m⃗= p⃗0+ c⃗⋅(p⃗1− p⃗0)

OpenCL: Switches

Evaluation

● Test runs on GPU and CPU
– Networks with 2,4,8 inputs tested exhaustively
– Network with 16 inputs tested for evenly distributed

sample

● Test in Simulations
– Failed for more then 4 inputs
– Likely compiler bug in shufle

FGA Hardware Resources

FGA Hardware Resources: Switch

FPGA Hardware: Ranking Tree

Future work

● Test on actual HARP hardware
● Extension to larger input sizes
● Explore diferent vectorisation strategies

– Vectorize more aggressively
– Vectorize nothing but the switches

● Test with an actual scad-machine implementation

Conclusion

● The generated OpenCL kernels work
● Vectorisation of switches into shufle instruction is

possible
● Simulation fails, due to compiler bugs
● Hardware synthesis works, but has not been tested
● Scaleability might be an issue for larger inputs
● Vector operations are optimized eficiently
● Narashima’s network is preferable in terms of size

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

