Evaluating Interconnection
Networks for Exposed
Datapath Architectures
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Motivation: SCAD-Machines

* Synchronous Controlflow
Asynchronous Dataflow

* Processing Units with Buffers
* Operate as soon as inputs are
avaiable

 Move Instructions move data
between buffers
* Data Transport Network
 Interconnect N PUs with N PUs
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Interconnection Networks

* Classic approaches:

— Buses
* Only one move at a time

* Multiple parallel buses may not scale well

— Crossbar Switches
e Matrix with N x N switches

* Allows to route N pieces of data from N source to N destinations
in parallel

* Needs global configurations for switches

e Better: Interconnection Networks
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Sorting Networks

* Structure

— Compare and Swap units

* Switches with attached control logic

- Interconnected by wires

* Transport/Sort all inputs in parallel

* Routing decisions are local B [
* Interconnection Networks ™
——¢ *——o
— Transport Address-Data-Tuples *——¢ | +——¢
— Sort by address
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Koppelmann-Oruc¢ Network

* Computes ranks of input addresses
— Prefix sum over address MSBs

— Uses tree of adders

994 Sunjuey

Cube
Network
of size N

Koppelman-Oruc
Network
of size N/2

Koppelman-Oruc
Network
of size N/2

* Routed using Cube Network

— Switch position based on

rank LSB and address MSBs _
p = (a,A-r)V(=a,Ar,) -

Cube Network
for size n/2

— Rank LSBs are dropped after each

column

— Address MSBs are dropped on
recursion

Cube Network
for size n/2
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Narasimha’s network

Network .
of size N/2 :

* Routing based on the address
MSBs and a ,,carry®

p = c®a, c,, = (a,®a)éc,

* Carry spans the entire first o a2 |
column of the network Bt =
» Address MSBs are dropped | ii}
before recursion
@L
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Intel HARP

* Hardware Accelerator Research Project

* Xeon CPU with FPGA based accelerator

* hardware platform and software framework
* Primarily aimed at Datacenter applications

* FPGA and CPU share the same Memory

- Low latency data exchange

* Programmable in VHDL OpenCL
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OpenCL

* Programming language and runtime environment

* Based on the C language and C99 standard

— Removes: Recursive functions, pointer arithmetic,
dynamic memory management

— Adds: vector operations and vector datatypes
— Memory segmented in regions

* Runs Kernels on Compute Units attached to a host
system

* Multiple kernels can be run in parallel
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Intel HARP and OpenCL
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Network Generator

* Translates hardware circuits for networks into OpenCL
— Complete network in a single Kernel
— Using vector operations for parallelism

— Limited to 16 inputs by OpenCL vector types

* Four stages:
- Leveled circuit
- Integer circuit
— Vector operations

— OpenCL codes

Embedded Systems i
m  TECHNISCHE UNIVERSITAT
GI‘OUP I m KAISERSLAUTERN



Leveled Circuits

* Netlist format: gates

connected by wires ‘?I}

* Splitinto levels of gates

— No data dependencies within

levels \VL

* Mostly bit-wise operations @\t

e Data and addresses routed in Ej
the same bitvector
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Leveled Circuits: Gates

Type | Inputs Output Operation

NOT | = ] Boolean negation

AND | =,y EAY] Boolean conjunction
OR | z,y z Vg Boolean disjunction
XOR | z,y z Dy Exclusive disjunction
HA T,y By, © Ay Half adder

FA T, Y, 2 rByPz, cAyVzA (xdy)| | Full adder

PG g1.P2, 92, P2 p1 A p2, g2V (p2 A gl)] Propagate-generate gate

¢, [ro,x1, ... Ty,

MX c?yo:xp, cTyr:xy, ... clyn:ir,] | 2:1 multiplexer
[yﬂa Y, --. yn]
¢, |xo,x1, ... znl, | [Tyo:zo, cyr1:x1, ... cTynixp, .
SW S 5 Switch gate
[y{]ayla yn] CrYo Lo, .- (313)'?1:33:-1]
Embedded Systems i

[ |
m  TECHNISCHE UNIVERSITAT
Group I m KAISERSLAUTERN



Integer Ciruits

* Basic datatype in OpenCL is an integer
— Bitvectors need to be translated to integers

— Single wires need to become integers as well

* Splits Switches into separate address and data switches

— Simplifies code generation later

* Introduces SubSig gates in new levels

— Needed to extract single bits from bitvectors/integers
* Replaces ranking tree with special gate

* Reschedules resulting circuit in new levels
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Vector Operations

* Use vector operations to exploit parallelism in the circuit
* Main Goal:

Merge switches of one level into shuffle instruction
* Secondary Goal:

Vectorise address logic if possible

* Levels of the circuit already group gates suitable for
vectorising

* Turn the circuit into a stream of vector operations
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Vector Operations

Type Inputs Output Operation

NOT T T Boolean negation

AND T,y AT Boolean conjunction

OR T,y T Vy Boolean disjunction

XOR T,y T Dy Exclusive disjunction

MX c, T, cly:x 2:1 Multiplexer

SW C, T,y cly:x, c?y:y | Switch gate

SUBSIG T y with y C x | Extract the bits in y from x
RANKINGTREE | zg,z1...x, | 70,71, ...Th Compute ranks of inputs

Embedded Systems .
Group I -

TecHniscHE UNIVERSITAT
KAISERSLAUTERN



Vectorisation Strategy

e Start with vectors for addresses and data

* Vectorise gates of the same type in the same level if:

— All elements of a vector are inputs of the same type of
gate

— lgnore the control input for switches

— Ranking tree gates are already vectorised

* Derive output vectors
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OpenCL: Logic and Arithmetic

* Direct translation

. 1 int4 x = (int4) (0,0,1,1);
* Problem: Different 2 intsa y = (int4) (0,1,0,1);
3
values for true 4 // z1 = NOT(x)
5 intd z1l = Ix; // (-1,-1,0,0)
then scalar 6 // 22 = AND(x.3)
Operators 7 intd z2 = x && v; // (0,0,0,-1)
8 // z3 = 0R(x,y)
9 intd =z3 = | ; // (0,-1,-1,-1)
* Only relevantfor j ;.4 xorce. v
arithmetic 11 intd z4 = x ~° Y // (0,—1,—1,0)
operations
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OpenCL: Extracting Bits

int sub_0 = (((addr_in[0] & (1 << 2)) >> 2) << 0);

intd sub 4 = (((v_4 & (1 << 1)) >> 1) << 0)
| (((v_4 & (1 << 2)) >> 2) << 1);

I

e Mask out the relevant bits

 Shift to right to LSB then to left to target position

* Use bitwise or to construct new integer
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OpenCL: Mux

// z = MUX(c,x,y)
intd z;
if (c) A
zZ = V;
}
else {

Z = X;

o0 ~1 O U = W N =
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OpenCL: RankingTree

X[0] [ X[1] [ X[2] ( X[3] [ X[4] [ X[5] | X[6] | X[7]

1 //--- start ranking tree ---
2 int8 rank0 = (int8) (sig_1, sig_3, sig 5, sig 7,
3 sig 9, sig_11, sig_13, sig_15);
O +)C O + ) C 4 rank0 = rank0 + (intS)g(—l, 0% 0, 0, %, 0, o,go);
5 int8 rankO_add_O0 = (int8) (0, rankO[0], 0, rankO[2],
6 0, rankO0[4], 0, rankO[6]);
7 1nt8 rank0 0 = rankO + rankO add 0;
C + G 8 int8 rankO_add_1 = (int8) (0, 0, 0, rankO_O[1],
9 0, 0, 0, rank0_0[5]);
10 int8 rankO0O_1 = rankO_0 + rankO_add_1;
O 11 int8 rank0O_add_2 = (int8) (0, 0, 0, O,
12 0, 0, 0, rank0O_1[3]);
13
C 14 int8 rank0_2 = rank0_1 + rankO_add_2;
15 int8 vec_24 _add_1 = (int8) (0, 0, 0, O,
16 0, rankO_2[3], 0, 0);
+ 17 int8 vec_24_1 = rank0_2 + vec_24_add_1;
18 int8 vec_24_add_0 = (int8) (0, 0, vec_24_1[1], O,
19 vec_24 1[3], 0, vec_24_1[5], 0);
A 4 20 int8 vec_24 = vec_24_1 + vec_24_add_O0;
vio] | iy | vier | v | oviar | s |oviel | Y 21 //--- end ranking tree ---
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OpenCL: Switches

* Switch vector operations
- Input vector, Control vector, Output vector

— Element pairs in the vectors are swapped

* Shuffel instruction
- Input vector x, mask vector m, Output vectory
- yli]l = x[m[7]]
— Mask has to computed from control vector
— Two possible value per mask element
m:ﬁo+6'(ﬁ1_ﬁo)
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OpenCL: Switches

//—-——- start switch ---

int8 switchCrtlVecO = (int8) (sig_22, sig_15,

sig_13, sig_0, O,
switchCrtlVecO = switchCrtlVecO & 1:
int8 shuffleInputVecO = (int8)data_input;
int8 preShuffleVecO = (int8) (0, O, 1, 1,
2, 2, 3, 3);

int8 shuffleCtrlVecO0 = shuffle(switchCrtlVecO,
convert_uint8(preShuffleVec0)) ;

int8 shuffleOffsetVecO = (int8) (6, 7, 4,
2, 3, 0, 1);

int8 shuffleCoeffVecO = (int8) (1, -1, 1,
1, -1, 1, -1);

int8 shuffleVecO = shuffleOffsetVecO +

shuffleCoeffVecO * shuffleCtrlVecO;

int8 vec_1 = shuffle(shuffleInputVecO,

convert uint8 (shuffleVecO)) ;

//—-——— end switch —---

/:
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Evaluation

* Test runs on GPU and CPU

— Networks with 2,4,8 inputs tested exhaustively

— Network with 16 inputs tested for evenly distributed
sample

* Testin Simulations
— Failed for more then 4 inputs

— Likely compiler bug in shuffle
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FGA Hardware Resources

Number of RAMs

Number of FFs

Number of ALUTS

G e e i 40,000 | T4 Joor90 SN0 Mameeeey
- / 35,000 | | —=— Nara94 60,000 | | = Naragd
30,000 - 50,000 |
| | 25,000 40,000 |
30 | 20,000 |- 30’000 7
20 | 15,000 20’000 B
10,000 | ’
" ]| I
% 2 4 6 8 10 12 14 16 005 4 6 3 10 12 14 16 i e T T
Number of inputs Number of inputs Number of inputs
houts ALUTs Flip Flops RAM Cells
P KoOr90 | Nara94 | KoOr90 | Nara94 | KoOr90 | Nara94
2 3396 3304 6211 6210 44 44
4 7390 5729 8873 7147 46 46
8 21686 15020 16925 12849 50 50
16 67887 45519 38593 29119 58 58
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FGA Hardware Resources: Switch

1 //--- start switch ---

2 int4 switchCrtlVecl = (int4)(sig_addr_13, sig_addr_15,

3 0, 0);

4 // ALUTs: 0 FFs: 0O RAMs: O

b int4 shufflelInputVecl = (inté4)data_input;

6 // ALUTs: 0 FFs: 0 RAMs: O

7 int4 preShuffleVecl = (int4) (0, 0, 1, 1);

8 // ALUTs: 0 FFs: O RAMs: O

9 int4 shuffleCtrlVecl = shuffle(switchCrtlVecl,

convert_uint4 (preShuffleVecl));

10 // ALUTs: 0 FFs: 0O RAMs: O

11 int4 shuffleOffsetVecl = (int4) (0, 1, 2, 3);

12 // ALUTs: 0 FFs: O RAMs: O

13 int4 shuffleCoeffVecl = (int4) (1, -1, 1, -1);

14 // ALUTs: 0 FFs: 0 RAMs: O

15 int4 shuffleVecl = shuffleOffsetVecl

16 + shuffleCoeffVecl *x shuffleCtrlVecl;

17 // 32-bit Int Subtract(x2) ALUTs: 66 FFs: 0 RAMs:
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FPGA Hardware: Ranking Tree

1 //--- start ranking tree ---

2 int4 rankInputVecO = (int4) (sig_addr_1, sig_addr_3,

3 sig_addr_5, sig_addr_7);

4 // ALUTs: 0O FFs: O RAMs: O

5 rankInputVecO = rankInputVecO + (int4) (-1, 0, 0, 0);

6 // ALUTs: 0 FFs: O RAMs: O

7 int4 rankInputVecO_add_O0 = (int4) (0, rankInputVecO[O0],
8 0, rankInputVecOI[2]);

9 // ALUTs: 0 FFs: O RAMs: O

10 int4 rankInputVecO_O = rankInputVecO + rankInputVecO_addO;

11 // 32-bit Integer Add (x2) ALUTs: 66 FFs: 0 RAMs: O

12 int4 rankInputVecO_addl = (int4) (0, O,

13 0, rankInputVecO_O0[1]);

14 // ALUTs: 0O FFs: O RAMs: O

15 int4 rankInputVecO_1 = rankInputVecO_O0 +
rankInputVecO_addl;

16 // 32-bit Integer Add (x1) ALUTs: 33 FFs: 0 RAMs: O

17 int4 vec_8_add0 = (int4) (0, 0, rankInputVecO_1[1], 0);

18 // ALUTs: O FFs: O RAMs: O

19 int4 vec_8 = rankInputVecO_1 + vec_8_addO;

20 // 32-bit Integer Add ALUTs: 33 FFs: O RAMs: O

21 //--- end ranking tree ---
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Future work

* Test on actual HARP hardware
* Extension to larger input sizes

* Explore different vectorisation strategies
— Vectorize more aggressively

— Vectorize nothing but the switches

* Test with an actual scad-machine implementation
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Conclusion

* The generated OpenCL kernels work

* Vectorisation of switches into shuffle instruction is
possible

* Simulation fails, due to compiler bugs

* Hardware synthesis works, but has not been tested
* Scaleability might be an issue for larger inputs

* Vector operations are optimized efficiently

* Narashima’s network is preferable in terms of size
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Thank you for your attention
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