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Motivation: SCAD-Machines

● Synchronous Controlflow 
Asynchronous Dataflow

● Processing Units with Buffers
● Operate as soon as inputs are 

avaiable

● Move instructions move data 
between buffers
● Data Transport Network
● Interconnect N PUs with N PUs



  

Interconnection Networks

● Classic approaches:
– Buses

● Only one move at a time
● Multiple parallel buses may not scale well

– Crossbar Switches
● Matrix with N x N switches
● Allows to route N pieces of data from N source to N destinations 

in parallel
● Needs global configurations for switches

● Better: Interconnection Networks



  

Sorting Networks
● Structure

– Compare and Swap units
● Switches with attached control logic

– Interconnected by wires

● Transport/Sort all inputs in parallel
● Routing decisions are local 
● Interconnection Networks

– Transport Address-Data-Tuples
– Sort by address



  

Koppelmann-Oruç Network
● Computes ranks of input addresses

– Prefix sum over address MSBs
– Uses tree of adders

● Routed using Cube Network
– Switch position based on 

rank LSB and address MSBs

– Rank LSBs are dropped afer each 
column

– Address MSBs are dropped on 
recursion

p = (au∧¬r l)∨(¬au∧ru)



  

Narasimha’s network

● Routing based on the address 
MSBs and a „carry“

● Carry spans the entire first 
column of the network

● Address MSBs are dropped 
before recursion 

p = c i⊕au c i+1 = (au⊕al)⊕c i



  

Intel HARP

● Hardware Accelerator Research Project
● Xeon CPU with FPGA based accelerator
● hardware platform and sofware framework
● Primarily aimed at Datacenter applications
● FPGA and CPU share the same Memory

– Low latency data exchange

● Programmable in VHDL OpenCL



  

OpenCL

● Programming language and runtime environment
● Based on the C language and C99 standard

– Removes: Recursive functions, pointer arithmetic, 
dynamic memory management

– Adds: vector operations and vector datatypes
– Memory segmented in regions

● Runs Kernels on Compute Units attached to a host 
system 

● Multiple kernels can be run in parallel



  

Intel HARP and OpenCL



  

Network Generator

● Translates hardware circuits for networks into OpenCL
– Complete network in a single Kernel
– Using vector operations for parallelism
– Limited to 16 inputs by OpenCL vector types

● Four stages:
– Leveled circuit
– Integer circuit
– Vector operations
– OpenCL codes



  

Leveled Circuits

● Netlist format: gates 
connected by wires

● Split into levels of  gates
– No data dependencies within 

levels

● Mostly bit-wise operations
● Data and  addresses routed in 

the same bitvector



  

Leveled Circuits: Gates 



  

Integer Ciruits

● Basic datatype in OpenCL is an integer
– Bitvectors need to be translated to integers
– Single wires need to become integers as well

● Splits Switches into separate address and data switches
– Simplifies code generation later

● Introduces SubSig gates in new levels
– Needed to extract single bits from bitvectors/integers

● Replaces ranking tree with special gate 
● Reschedules resulting circuit in new levels



  

Vector Operations

● Use vector operations to exploit parallelism in the circuit
● Main Goal: 

Merge switches of one level into shufle instruction
● Secondary Goal:

Vectorise address logic if possible
● Levels of the circuit already group gates suitable for 

vectorising
● Turn the circuit into a stream of vector operations



  

Vector Operations



  

Vectorisation Strategy

● Start with vectors for addresses and data
● Vectorise gates of the same type in the same level if:

– All elements of a vector are inputs of the same type of 
gate

– Ignore the control input for switches
– Ranking tree gates are already vectorised

● Derive output vectors



  

OpenCL: Logic and Arithmetic

● Direct translation
● Problem: Diferent 

values for true 
then scalar 
operators

● Only relevant for 
arithmetic 
operations



  

OpenCL: Extracting Bits

● Mask out the relevant bits
● Shif to right to LSB then to lef to target position
● Use bitwise or to construct new integer



  

OpenCL: Mux



  

OpenCL: RankingTree



  

OpenCL: Switches

● Switch vector operations
– Input vector, Control vector, Output vector
– Element pairs in the vectors are swapped

● Shufel instruction
– Input vector x, mask vector m, Output vector y
– y[i] = x[m[i]]
– Mask has to computed from control vector
– Two possible value per mask element

m⃗= p⃗0+ c⃗⋅( p⃗1− p⃗0)



  

OpenCL: Switches



  

Evaluation

● Test runs on GPU and CPU
– Networks with 2,4,8 inputs tested exhaustively
– Network with 16 inputs tested for evenly distributed 

sample

● Test in Simulations
– Failed for more then 4 inputs
– Likely compiler bug in shufle



  

FGA Hardware Resources



  

FGA Hardware Resources: Switch



  

FPGA Hardware: Ranking Tree



  

Future work

● Test on actual HARP hardware
● Extension to larger input sizes
● Explore diferent vectorisation strategies

– Vectorize more aggressively
– Vectorize nothing but the switches

● Test with an actual scad-machine implementation



  

Conclusion

● The generated OpenCL kernels work
● Vectorisation of switches into shufle instruction is 

possible
● Simulation fails, due to compiler bugs
● Hardware synthesis works, but has not been tested
● Scaleability might be an issue for larger inputs
● Vector operations are optimized eficiently
● Narashima’s network is preferable in terms of size



  

Thank you for your attention
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