
COMPARING MODEL CHECKING

AND TERM REWRITING

FOR THE VERIFICATION

OF AN EMBEDDED SYSTEM
Klaus Schneider and Michaela Huhn

Institute for Computer Design and Fault Tolerance

(Prof. Dr.-Ing. D. Schmid)

University of Karlsruhe, P.O. Box 6980, 76128 Karlsruhe

Klaus.Schneider@informatik.uni-karlsruhe.de

Michaela.Huhn@informatik.uni-karlsruhe.de
http://goethe.ira.uka.de/people

Abstract: There are two main streams for the verification of digital systems: Theo-
rem proving methods such as term rewriting are used for the verification of data oriented
systems, and model checking of temporal logics is usually used for the verification of con-
trol dominated systems. While theorem proving is an inherently interactive verification
method, model checking is performed automatically.
In this paper, we investigate for the verification of algorithms for computing the discrete
cosine transform by means of term rewriting and model checking. We show the advan-
tages and disadvantages of both approaches at different abstraction levels of the design.

1 INTRODUCTION

The development of complex concurrent systems is, in general, an error prone task.
This holds in particular for the design of parallel embedded systems, as there are
still no design flows that are seamlessly supported by appropriate tools. Hence, the
integration of formal verification into the design of these systems has been shown
fruitful in that (i) more clearly structured designs are obtained and (ii) design errors
can be detected early. For this reason, it is on the one hand desirable to integrate
formal verification in the first phases of the design. On the other hand, some relevant
details e.g. arising from the partitioning of the system into hardware and software
components are yet unknown in these early phases. Hence, formal verification must
be used in very early design phases, but must then guide the succeeding design when
more implementation decisions are added.

129

130 COMPARING MODEL CHECKING AND TERM REWRITING . . .

Adding verification to the design of embedded systems requires however another
expert in the team: Besides the details and requirements of the application under
construction, this expert has to be familiar with different verification techniques (see
[Gup92] for an overview). For control oriented systems, model checking is one of
the favorite techniques which is supported by well developed tools such as SMV
[McM93], SPIN [HP96], HSIS [ABC+94] or SVE [FSS+94]. Data oriented systems
can be handled by theorem provers as HOL [GM93] or PVS [ORR+96] and in partic-
ular by term rewrite systems such as RRL [KZ88]. Since most real world problems
contain both, a nontrivial data and a nontrivial control part, verification often needs a
combination of different techniques.

To make verification part of the industrial design process, frameworks and tools
have to be provided that allow the uniform and convenient access to different verifi-
cation techniques. In particular, we aim at integrating different verification tools such
as the SMV [McM93], SPIN [HP96], RRL [KZ88], and HOL [GM93]. Providing a
collection of different techniques, verification can be done efficiently by choosing the
technique that is suited best in the sense that the system can be verified with as little
human effort as possible.

In this paper, we study the verification of the discrete cosine transform (DCT)
which is a significant part of the JPEG or MPEG standard [PM93] for still image data
compression. In particular, we compare the application of two different verification
techniques, namely model checking and term rewriting. We concentrate on two as-
pects which are in our opinion crucial for a wide acceptance of formal verification: (i)
the appropriateness of the formal description of the system and (ii) the interactive hu-
man creativity required for the verification. Appropriateness of the system description
is twofold: On the one hand, the formal model must contain enough details to capture
the relevant behavior of the system such that all desired properties can be checked.
On the other hand, the complexity of the formal description raises the costs of verifi-
cation in both, human effort and run time. We consider interactive human creativity
instead of pure execution runtimes consumed by the verification tools. Usually, the
latter grows exponentially with the systems size, such that the automated part is either
executed in a matter of seconds, or it is impossible.

Our two approaches to verify the DCT differ substantially with respect to the ap-
propriateness criteria: While the term rewriting solution is based on an abstract data
type that partially captures the axiomes the real numbers, the model checking solution
is based on bitvectors with a fixed width. For this reason, the term rewriting solu-
tion allows a concise straightforward description of the mathematical definition of the
DCT as well as different DCT algorithms at an abstract level. The human creativity
required to check the correctness of the algorithm against the definition is limited to
listing some trigonometric laws that have been used for optimizing the implementa-
tions (these can be viewed as the essential design ideas). On the other hand, effects as
for instance arithmetic overflows are not captured at this abstract level.

The model checking approach is nearer to real implementations as fixed bit widths
must be assumed and therefore problems such as arithmetic overflows or the limited
precision are considered. However, the model checking approach suffers in general

COMPARING MODEL CHECKING AND TERM REWRITING . . . 131

from a bad scalability, especially for data oriented systems as the DCT. Moreover,
symbolic model checking based on BDDs [McM93] seems not to be well suited for
the DCT verification since it is well known that BDDs [Bry86] lead to exponentially
sized representations of the multiplication function. Multiplication is, however, heav-
ily used in DCT algorithms. For the DCT, the problem can be overcome by abstraction
techniques [Lon93] based on the Chinese Remainder Theorem. This however, requires
advanced knowledge in model checking and therefore limits the degree of automation
of this approach.

2 THE DISCRETE COSINE TRANSFORM

In this section, we briefly present the formal definition of the DCT to be able to explain
afterwards what the verification problem is. For a more detailed presentation of the
DCT and its application in the JPEG format see [PM93].

2.1 Formal Definition

One has to distinguish between the one-dimensional and the two-dimensional DCT.
Given the input values x0, . . . , x7 ∈ R, the one-dimensional DCT is defined as the
following linear function Φ : R8 → R

8:⎛
⎜⎝
y0
...
y7

⎞
⎟⎠ :=

⎛
⎜⎝
a0,0 . . . a0,7

... · · ·
...

a7,0 . . . a7,7

⎞
⎟⎠

︸ ︷︷ ︸
=: A

⎛
⎜⎝
x0
...
x7

⎞
⎟⎠

where ai,j := 1
2 cos

(
(2j + 1)i π16

)
for i > 0 and a0,j := 1

2
√
2
. It is important that the

matrix A is orthonormal, which means that its inverse matrix exists and is obtained
by transposition, i.e. the coefficients bi,j of the inverse A−1 are simply defined as
bi,j := aj,i. Hence, the inverse DCT can be implemented very similar to the DCT.

The two-dimensional DCT is a transformation of a 8× 8 matrixX of real number
to a 8× 8 matrix Y of real number. Formally, it is defined with the above matrix A as
Y := AXA−1. The two-dimensional DCT is separable, i.e. it can be implemented by
means of one-dimensional DCTs. Using an intermediate matrix (uj,k), this separation
is done as follows uj,k :=

∑7
l=0 xk,l aj,l and yi,j :=

∑7
k=0 uj,k ai,k. For this reason,

the two-dimensional DCT can be implemented by 16 one-dimensional DCTs (eight
for the rows and eight for the columns). Although this does not lead to optimal results
(see page 53 in [PM93]), there are very good algorithms for the one-dimensional DCT
that lead to almost optimal results for the two-dimensional case. Hence, we completely
focus on the one-dimensional DCT in the following.

2.2 Optimizations

The formal definition of the one-dimensional DCT requires 64 multiplications and
56 additions, which would be too much for practical use. However, the DCT can be

132 COMPARING MODEL CHECKING AND TERM REWRITING . . .

Common to all versions:

L00 := x0 + x7 L02 := x2 + x5 L04 := x3 − x4 L06 := x1 − x6
L01 := x1 + x6 L03 := x3 + x4 L05 := x2 − x5 L07 := x0 − x7

Simple Version (SIMP DCT): [PM93]

L10 := L00 + L03 2y0 := c4(L10 + L11)
L11 := L01 + L02 2y1 := c1L07 + c3L06 + c5L05 + c7L04
L12 := L00 − L03 2y2 := c2L12 + c6L13
L13 := L01 − L02 2y3 := c3L07 − c7L06 − c1L05 − c5L04

2y4 := c4(L10 − L11)
2y5 := c5L07 − c1L06 + c7L05 + c3L04
2y6 := c6L12 − c2L13
2y7 := c7L07 − c5L06 + c3L05 − c1L04

Loeffler, Ligtenberg and Moschytz (LLM DCT) [LLM89]:

L10 := L00 + L03 L20 := L10 + L11 z0 := L20
L11 := L01 + L02 L21 := L10 − L11 z1 := L24 + L27
L12 := L01 − L02 L22 := Rot0(L12, L13, 6) z2 :=

√
2 L22

L13 := L00 − L03 L23 := Rot1(L12, L13, 6) z3 :=
√
2 L25

L14 := Rot0(L04, L07, 3) L24 := L14 + L16 z4 := L21
L15 := Rot0(L05, L06, 1) L25 := L17 − L15 z5 :=

√
2 L26

L16 := Rot1(L05, L06, 1) L26 := L14 − L16 z6 :=
√
2 L23

L17 := Rot1(L04, L07, 3) L27 := L15 + L17 z7 := L27 − L24

Arai, Agui and Nakajiama (AAN DCT): [PM93]

L10 := L00 + L03 L20 := c4(L12 + L13) u0 := L10 + L11
L11 := L01 + L02 u1 := L31 + L24
L12 := L01 − L02 L22 := q0L14 + L25 u2 := L20 + L13
L13 := L00 − L03 L23 := c4L15 u3 := L33 − L22
L14 := L04 + L05 L24 := q1L16 + L25 u4 := L10 − L11
L15 := L05 + L06 L25 := c6(L14 − L16) u5 := L33 + L22
L16 := L06 + L07 u6 := L13 − L20

L31 := L07 + L23 u7 := L31 − L24
q0 := c2 − c6 L33 := L07 − L23
q1 := c2 + c6

Figure 1 Optimized DCT algorithms

COMPARING MODEL CHECKING AND TERM REWRITING . . . 133

implemented more efficiently if occurrences of common subterms are exploited: Note
first that all trigonometric values that occur in the matrix A can be restricted to 8 basic
values. To see this, we define the constants ck := cos

(
k π16
)

and sk := sin
(
k π16
)

for
k ∈ Z (integer values). Clearly, the following relations hold:

(1) c−k = ck (2) ck = ck mod 32
(3) ck = c32−k (4) ck = −c16−k

The above equations allow the reduction of the domain of k from Z to {k | k ≥ 0},
{0, . . . , 31}, {0, . . . , 16}, and {0, . . . , 8}, respectively. Moreover, the special cases
c0 = 1, c4 = 1

2

√
2, c8 = 0 can be used for optimizations. Clearly, also sk is only

interesting in the interval {0, . . . , 7} and it can be reduced to ck by the equation sk =
c8−k. Considering all this, and computing common subterms only once, we obtain the
implementation SIMP DCT given in figure 1. This implementation requires only 22
multiplications and 28 additions.

Numerous efficient DCT implementations have been presented. The most efficient
one, a true two-dimensional approach requires only 54 multiplications, 464 additions
and 6 arithmetic shifts [FL90]. Some of the fast DCT algorithms go back to the dis-
crete Fourier transform [CT65], others consider the DCT as a separate field [CSF77].
A survey is given in [DV90].

Figure 1 lists two efficient DCT algorithms, namely the version of Loeffler, Ligten-
berg and Moschytz (LLM DCT) [LLM89] and Arai, Agui and Nakajiama’s version
(AAN DCT) [PM93]. The additional optimization obtained by these implementations
is based on the following trigonometric addition theorems:

cos(x) + cos(y) = 2 cos
(
x+y
2

)
cos
(
x−y
2

)
cos(x)− cos(y) = 2 sin

(
x+y
2

)
sin
(
x−y
2

)
Using these theorems, additional common subterms can be generated that can then be
shared. The LLM DCT makes additionally use of a rotation operation that is defined
with an angle α as follows:(

y0
y1

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x0
x1

)

As written above, the rotation operation would require four multiplications and two
additions. Rotations are however computed with an intermediate value � as given
in figure 2. This requires three multiplications and three additions. Hence, we de-
crease the number of multiplications by increasing the number of additions which
is reasonable as multiplications are in general more expensive. For figure 1, we
define Rot0(x0, x1, α) := x0cα + x1sα and
Rot1(x0, x1, α) := −x0sα + x1cα, but we
assume that the algorithm of figure 2 is used
for the computation. Hence, LLM DCT re-
quires only 13 multiplications and 29 additions.
AAN DCT does even only require five multi-

� := cos(α)(x0 + x1)
y0 := �+ (sin(α) − cos(α))x1
y0 := −(sin(α) + cos(α))x0 + �

Figure 2: Rotations with 3 Multiplications

134 COMPARING MODEL CHECKING AND TERM REWRITING . . .

plications and 28 additions.
Both LLM DCT and AAN DCT produce scaled results (these are sufficient for a

lot of applications as e.g. JPEG): For the variables defined in figure 1, the following
equations hold: zi = 4c4yi = 2

√
2yi, u0 = 4c4y0 = 2

√
2y0 and ui+1 = 4ci+1yi+1.

3 VERIFYING DCT ALGORITHMS BY TERM REWRITING

Laws forR
x+ 0 := x
x ∗ 1 := x
x ∗ 0 := 0
x ∗ (y + z) := (x ∗ y) + (x ∗ z)
x+−(x) := 0
x ∗ −(y) := −(x ∗ y)
−(−(x)) := x√
2 ∗
√
2 ∗ x := x+ x

Figure 3: Axioms forR

In this section, we show how the correctness
of the DCT algorithms of figure 1 is proved
with the term rewriting system RRL [KZ88].
For this reason, we establish a canonical term
rewrite system that handles real numbersR and
the trigonometric functions. Therefore, some
axioms on real numbers and the trigonometric
functions have to be added to the definition of
the DCTs. The laws forR are given in figure 3.
Moreover, the operators + and ∗ are specified
to be associative and commutative. The above

laws essentially specify that the real numbers are mathematically speaking a field.
Note however, that we do neither need the ordering relation nor the supremum axiom
ofR and hence, have not characterized the real numbers completely.

Addition Laws√
2 ∗ c1 := c3 + c5√
2 ∗ c3 := c1 + c7√
2 ∗ c5 := c1 − c7√
2 ∗ c7 := c3 − c5

Figure 4: Addition Laws

For the verification of LLM DCT, we also need some in-
stances of the trigonometric addition laws. These are given
in figure 4. Moreover, we need the relationship between

√
2

and the trigonometric functions: c4 := 1
2

√
2 and c4 ∗

√
2 :=

1. Using all these equations, the relationship zi = 2
√
2 yi

can be easily proved by means of RRL.
This is done as follows: We first enter all rewrite equations

apart from the above addition theorems and establish a confluent rewrite system by
means of the Knuth-Bendix completion procedure. After that, we add the above ad-
dition theorems and do not invoke a further completion (this does not work with our
ordering). Instead the rewrite system is yet powerful enough to make the proofs with
simple rewriting (using the boolean ring method).

For the verification of AAN DCT, we need more instances of the trigonometric ad-
dition laws, which are given below. The verification runs then in the same lines
as for LLM DCT: We first enter all rewrite equations apart from the addition the-
orems and establish a confluent rewrite system by completion. After that, we add
the addition theorems below and obtain the proofs with simple rewriting (using the

COMPARING MODEL CHECKING AND TERM REWRITING . . . 135

boolean ring method). The proof of the relationship with SIMP DCT, i.e. the equa-
tions u0 = 4c4y0 = 2

√
2y0 and ui+1 = 4ci+1yi+1 follows then automatically.

Addition Laws used for AAN DCT√
2 ∗ c6 := c2 − c6

√
2 ∗ c2 := c2 + c6 c6 ∗ c2 :=

1
2c4

c1 ∗ c3 :=
1
2 (c2 + c4) c1 ∗ c5 :=

1
2 (c6 + c4) c1 ∗ c7 :=

1
2c6

c3 ∗ c7 :=
1
2 (c4 − c6) c3 ∗ c5 :=

1
2c2 c5 ∗ c7 :=

1
2 (c2 − c4)

c2 ∗ c2 :=
1
2 (1 + c4) c6 ∗ c6 :=

1
2 (1− c4) c1 ∗ c1 :=

1
2 (1 + c2)

c3 ∗ c3 :=
1
2 (1 + c6) c5 ∗ c5 :=

1
2 (1− c6) c7 ∗ c7 :=

1
2 (1− c2)

4 VERIFYING INTEGER DCT ALGORITHMS

The definition of the DCT is based on real numbers. However, all implementations,
regardless whether they are done in hardware or software, do only work on floating
point or fixpoint numbers, i.e. on approximations of the real numbers with a limited
precision. For this reason, it might be the case that some of the above optimized DCT
algorithms do compute slightly different outputs than others.

Often special fixpoint implementations are used for the DCT that are called integer
DCTs: These are obtained by replacing the real valued cosine constants ci by the
integers c̃i := �2nci� when n bits are available. As the inputs xi are also given as
integers, only integer operations are then needed.

(1) qc1 = c3 + c5
(2) qc3 = c1 + c7
(3) qc5 = c1 − c7
(4) qc7 = c3 − c5

Figure 5: Equation System
for LLM DCT

The verification based on term rewriting presented in the
last section did not fix the data domain. The obtained results
hold for any data domain with operations +,− and · that has
constants 12 ,

√
2, 0, 1, c1, c2, c3, c4, c5, c6, c7 such that the pre-

sented equations hold. Hence, if the equations given in figure
5 hold for a specific data domain, then the equivalence be-
tween LLM DCT and SIMP DCT holds for this domain.

So, let us first consider the solu-
tions of the equation system of fig-
ure 5. Apart from the trivial solu-
tion where all constants equal to zero,
there are infinitely may solutions: c5

c1 =
√
2c5 + c7

c3 = c5 +
√
2c7

q =
√
2

c1 = −
√
2c5 + c7

c3 = c5 −
√
2c7

q = −
√
2

Figure 6: Solution of the Equations of figure 5

and c7 can be chosen arbitrarily and the other constants are then determined as given
in figure 6. As in particular q = ±

√
2 holds, there is no integer solution of the equa-

tion system. For this reason, the results given in the previous section that are based on
term rewriting do not hold for the integer variant of LLM DCT. The same holds for
AAN DCT.

5 VERIFYING INTEGER DCTS BY MODEL CHECKING

As the proof from the abstract level cannot be transferred to the bitvector level we tried
to establish term rewrite systems for integer versions based on bitvector arithmetic.
However, this approach turned out to become too complicated such that we dropped
this approach.

136 COMPARING MODEL CHECKING AND TERM REWRITING . . .

Instead, we propose to use tautology checking based on BDDs for the verification at
the integer level. Our first attempt to this was quite depressing: By a direct invocation
of the SMV model checker, we could only handle implementations up to three bits.
Even the word-level extension of SMV could not manage implementations with more
than four bits.

To circumvent the complexity, we used a reduction technique that is based on the
Chinese Remainder Theorem (CRT) that is given below. The CRT is the basis for
residue arithmetic that is roughly explained as follows: Given relatively prime num-
bers p1,. . . , pn, i.e. numbers with GCD (pi, pj) = 1, each integer x in the inter-
val [0,

∏n
i=1 pi[can be uniquely represented as the list of its residues, i.e. (x mod

p1, . . . , x mod pn) (residue number representation). Arithmetic operations are then
simply performed by applying the corresponding operation on the residues: Given that
x and y have the residue number representations (x1, . . . , xn) and (y1, . . . , yn), then
x+ y, x− y, and xy, have the residue number representation (x1+ y1, . . . , xn+ yn),
(x1 − y1, . . . , xn − yn), and (x1y1, . . . , xnyn), respectively.

Theorem 1 (Chinese Remainder Theorem) Given integers r1,. . . , rn, b and rela-
tively prime integers p1,. . . , pn with 0 ≤ ri < pi then, there is a unique integer x with
b ≤ x <

∏n
i=1 pi such that x mod pi = ri.

The advantage of residue arithmetic is that it can be performed in parallel as the arith-
metic operations on the single residues are independent of each other. This indepen-
dence is also useful for the verification as it allows to split the entire problem into a
couple of smaller ones: Instead of verifying the equivalence of two b bit implemen-
tations, we use some prime numbers p1,. . . , pn such that 2b <

∏n
i=1 pi and verify

the equivalence of the two versions modulo pi. As the latter implementation has only
�log2(pi)�+ 1 bits, it can be checked much faster.

For example, using the prime numbers 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32,
we can prove for LLM DCT that zi = 4c4yi holds for i = 0, 2, 3, 4, 5, 7. Also, we
can show that z1 	= 4c4y1 and z6 	= 4c4y6 holds for some inputs which is due to the
limited precision of the integer approximation1.

The experimental results that we have obtained with the SMV system for proving
z0 = 4c4y0 are given in figure 7 (Sun UltraSparc with 128MByte Memory). The
runtime given in figure 7 is thereby the sum of the runtimes for checking the equiva-
lence modulo all pi’s. For small bit widths we used however only the necessary prime
numbers, e.g. for 8 bits, we only used the prime numbers 7, 11, 13, 17, 19, 23 as
22·8+3 = 524288 < 7 · 11 · 13 · 17 · 19 · 23 = 7436429 (note that the DCT with b bit
wide inputs yields in 22·b+3 wide outputs).

6 CONCLUSIONS

We have illustrated the use of term rewriting and model checking for the verification
of real number algorithms like the DCT. Some errors in the presentation of algorithms
in the literature [PM93] we found prove that the DCT as an embedded system is a
non-trivial example that requires formal verification.

COMPARING MODEL CHECKING AND TERM REWRITING . . . 137

Bits (Input)

[sec.]

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

40

80

120

160

200

240

Figure 7 Experimental Results for Model Checking with CRT abstraction

Without doubt, model checking is currently the most popular verification technique
for concurrent systems. However, the case study presented in this paper shows that
term rewriting is more appropriate for the DCT since it provides a higher degree of
abstraction that is often desired in early design phases.

Nevertheless, at the bitvector level where the limited preciseness of the implemen-
tation of the real numbers has to be taken into account, model checking seems to be
more adequate. But already for small bit widths the systems are far too big to be
checked by a direct attempt. To overcome these limits we applied the Chinese Re-
mainder Technique as an appropriate abstraction technique to verify greater bit widths
by model checking. The Chinese Remainder Technique is easily applicable by using
predefined parameterized modules for residue arithmetic. However, none of the cur-
rently available model checkers offers such a feature. Thus, it would be desirable to
extend these tools by such abstraction methods.

The Chinese Remainder Abstraction as applied here is only suited for proving or
disproving equivalence of two implementations. In particular, it is not possible to ver-
ify that certain error bounds hold, since this would require to compare numbers in their
residue number representation which is not possible. Our future work will therefore
aim at extending the Chinese Remainder Abstraction by an efficient conversion back
to the usual radix number representation.

Notes

1. Note that we can only prove that the equations z1 = 4c4y1 and z6 = 4c4y6 do not hold. It is not
possible to prove error bounds |z1 − 4c4y1| ≤ ε1 and |z6 − 4c4y6| ≤ ε6 by the CRT abstraction since it
is not possible to compare the size of numbers given in residue number representation.

138 COMPARING MODEL CHECKING AND TERM REWRITING . . .

References

[ABC+94] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S.C. Krishnan, R.K. Ran-
jan, T.R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. HSIS: A BDD-Based Environment for Formal Verifi-
cation. In ACM/IEEE Design Automation Conference (DAC), San Diego, CA,
June 1994. San Diego Convention Center.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[CSF77] W. Chen, C.H. Smith, and S.C. Fralick. A fast computational algorithm for the
discrete cosine transform. IEEE Transactions on Communication, 25(9):1004–
1009, 1977.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculations of com-
plex Fourier series. Mathemtical Computation, 19:297–301, 1965.

[DV90] P. Duhamel and M. Vetterli. Fast fourier transforms: A tutorial review and a state
of the art. Signal Processing, 19:259–299, 1990.

[FL90] E. Feig and E. Linzer. Discrete cosine transform algorithms for image data com-
pression. In Proceedings Electronic Imaging’90 East, pages 84–87, Boston, MA,
1990.

[FSS+94] T. Filkorn, H. A. Schneider, A. Scholz, A. Strasser, and P. Warkentin. SVE User’s
Guide. Siemens AG, TR ZFE BT SE 1-SVE-1, Munich, 1994.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

[Gup92] A. Gupta. Formal Hardware Verification Methods: A Survey. Journal of Formal
Methods in System Design, 1:151–238, 1992.

[HP96] G. J. Holzmann and D. Peled. The state of SPIN. In Rajeev Alur and Thomas A.
Henzinger, editors, Conference on Computer Aided Verification (CAV), volume
1102 of Lecture Notes in Computer Science, pages 385–389, New Brunswick, NJ,
USA, July/August 1996. Springer Verlag.

[KZ88] D. Kapur and H. Zhang. RRL: a rewrite rule laboratory. In Lusk and Overbeek,
editors, Conference on Automated Deduction (CADE), pages 768–769. Springer-
Verlag, 1988.

[LLM89] C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical fast 1-D DCT algorithms
with 11 multiplications. In International Conference on Acoustics, Speech, and
Signal Processing 1989 (ICASSP ’89), pages 988–99, 1989.

[Lon93] D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

[ORR+96] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Conference on Computer Aided Verification (CAV), volume
1102 of Lecture Notes in Computer Science, pages 411–414, New Brunswick, NJ,
USA, July/August 1996. Springer Verlag.

[PM93] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression Stan-
dard. Van Nostrand Reinhold, ISBN 0-442-01272-1, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

