COMPARING MODEL CHECKING
AND TERM REWRITING

FOR THE VERIFICATION

OF AN EMBEDDED SYSTEM

Klaus Schneider and Michaela Huhn

Institute for Computer Design and Fault Tolerance
(Prof. Dr.-Ing. D. Schmid)

University of Karlsruhe, P.O. Box 6980, 76128 Karlsruhe
Klaus.Schneider@informatik.uni-karlsruhe.de

Michaela.Huhn@informatik.uni-karlsruhe.de
http://goethe.ira.uka.de/people

Abstract: There are two main streams for the verification of digital systems. Theo-
rem proving methods such asterm rewriting are used for the verification of data oriented
systems, and model checking of temporal logicsis usually used for the verification of con-
trol dominated systems. While theorem proving is an inherently interactive verification
method, model checking is performed automatically.

In this paper, we investigate for the verification of algorithms for computing the discrete
cosine transform by means of term rewriting and model checking. We show the advan-
tages and disadvantages of both approaches at different abstraction levels of the design.

1 INTRODUCTION

The development of complex concurrent systems is, in general, an error prone task.
This holds in particular for the design of parallel embedded systems, as there are
still no design flows that are seamlessly supported by appropriate tools. Hence, the
integration of formal verification into the design of these systems has been shown
fruitful in that (i) more clearly structured designs are obtained and (ii) design errors
can be detected early. For this reason, it is on the one hand desirable to integrate
formal verification in the first phases of the design. On the other hand, some relevant
details e.g. arising from the partitioning of the system into hardware and software
components are yet unknown in these early phases. Hence, formal verification must
be used in very early design phases, but must then guide the succeeding design when
more implementation decisions are added.

129

130 COMPARING MODEL CHECKING AND TERM REWRITING ...

Adding verification to the design of embedded systems requires however another
expert in the team: Besides the details and requirements of the application under
construction, this expert has to be familiar with different verification techniques (see
[Gup92] for an overview). For control oriented systems, model checking is one of
the favorite techniques which is supported by well developed tools such as SMV
[McM93], SPIN [HP96], HSIS [ABC'94] or SVE [FSS*94]. Data oriented systems
can be handled by theorem proversas HOL [GM93] or PVS[ORR*96] and in partic-
ular by term rewrite systems such as RRL [KZ88]. Since most real world problems
contain both, a nontrivial data and a nontrivial control part, verification often needs a
combination of different techniques.

To make verification part of the industrial design process, frameworks and tools
have to be provided that allow the uniform and convenient access to different verifi-
cation techniques. In particular, we aim at integrating different verification tools such
as the SMV [McM93], SPIN [HP96], RRL [KZ88], and HOL [GM93]. Providing a
collection of different techniques, verification can be done efficiently by choosing the
technique that is suited best in the sense that the system can be verified with as little
human effort as possible.

In this paper, we study the verification of the discrete cosine transform (DCT)
which isasignificant part of the JPEG or MPEG standard [PM 93] for still image data
compression. In particular, we compare the application of two different verification
techniques, namely model checking and term rewriting. We concentrate on two as-
pects which are in our opinion crucial for awide acceptance of formal verification: (i)
the appropriateness of the formal description of the system and (ii) the interactive hu-
man creativity required for the verification. Appropriateness of the system description
is twofold: On the one hand, the formal model must contain enough details to capture
the relevant behavior of the system such that all desired properties can be checked.
On the other hand, the complexity of the formal description raises the costs of verifi-
cation in both, human effort and run time. We consider interactive human creativity
instead of pure execution runtimes consumed by the verification tools. Usually, the
latter grows exponentially with the systems size, such that the automated part is either
executed in a matter of seconds, or it isimpossible.

Our two approaches to verify the DCT differ substantially with respect to the ap-
propriateness criteria: While the term rewriting solution is based on an abstract data
typethat partially captures the axiomes the real numbers, the model checking solution
is based on bitvectors with a fixed width. For this reason, the term rewriting solu-
tion allows a concise straightforward description of the mathematical definition of the
DCT as well as different DCT algorithms at an abstract level. The human creativity
required to check the correctness of the algorithm against the definition is limited to
listing some trigonometric laws that have been used for optimizing the implementa-
tions (these can be viewed as the essential design ideas). On the other hand, effects as
for instance arithmetic overflows are not captured at this abstract level.

The model checking approach is nearer to real implementations as fixed bit widths
must be assumed and therefore problems such as arithmetic overflows or the limited
precision are considered. However, the model checking approach suffersin genera

COMPARING MODEL CHECKING AND TERM REWRITING ... 131

from a bad scalability, especialy for data oriented systems as the DCT. Moreover,
symbolic model checking based on BDDs [McM93] seems not to be well suited for
the DCT verification since it is well known that BDDs [Bry86] lead to exponentially
sized representations of the multiplication function. Multiplication is, however, heav-
ily used in DCT algorithms. For the DCT, the problem can be overcome by abstraction
techniques[Lon93] based on the Chinese Remainder Theorem. This however, requires
advanced knowledge in model checking and therefore limits the degree of automation
of this approach.

2 THE DISCRETE COSINE TRANSFORM

In this section, we briefly present the formal definition of the DCT to be ableto explain
afterwards what the verification problem is. For a more detailed presentation of the
DCT and its application in the JPEG format see [PM93].

2.1 Formal Definition

One has to distinguish between the one-dimensional and the two-dimensional DCT.
Given the input values zy, ..., z7 € IR, the one-dimensional DCT is defined as the
following linear function & : R® — RR®:

Yo apo ... Qo7 Zo

Y7 aro ... arzy X7

=2

where a;,j == 5 cos (2 + 1)ifg) fori > 0 andao,; := 5. Itisimportant that the
matrix 24 is orthonormal, which means that its inverse matrix exists and is obtained
by transposition, i.e. the coefficients b; ; of the inverse 21—! are simply defined as
bi j := aj,;. Hence, theinverse DCT can be implemented very similar to the DCT.

The two-dimensional DCT is atransformation of a8 x 8 matrix X of real nhumber
toa8 x 8 matrix Y of real number. Formally, it is defined with the above matrix 2(as
Y := AXA~L Thetwo-dimensional DCT is separable, i.e. it can be implemented by
means of one-dimensional DCTs. Using an intermediate matrix (u;), this separation
isdoneasfollowsu; := 31_, ks ajy ad i j := S 1_ u;x aix- For thisreason,
the two-dimensional DCT can be implemented by 16 one-dimensional DCTs (eight
for the rows and eight for the columns). Although this does not lead to optimal results
(see page53in [PM93)), there are very good a gorithmsfor the one-dimensional DCT
that lead to almost optimal resultsfor thetwo-dimensional case. Hence, we completely
focus on the one-dimensional DCT in the following.

2.2 Optimizations

The formal definition of the one-dimensional DCT requires 64 multiplications and
56 additions, which would be too much for practical use. However, the DCT can be

132 COMPARING MODEL CHECKING AND TERM REWRITING ...

Commonto al versions:

LOO =X + Iy
Lo1 := 21 + 76

Loz := z2 + x5
Log := 3+ 14

\ Simple Version (SIMP_DCT): [PM93] \

L1g := Loo + Los
L1y := Lo1 + Lo2
L5 := Loo — Lo3
L13 := Lo1 — Lo2

2yo
2y
2y2
2y3
2y4
2ys5
2ys

= c4(L1o + L11)
:=c1Lo7 + c3Log + c5Los + crLog
= caL12 + ceL13

:= c3Lo7 — c7Log — c1Los — csLoa
= c4(L1o — L11)
:=c5Lo7 — c1Log + crLos + c3 Loy
= cgL12 — cal13

Loy := 3 — x4 Los := 71 — T
Los := w3 — x5 Lor := 0 — X7

2y7 = cyLo7 — ¢sLos + c3Los — c1Loy

L oeffler, Ligtenberg and Moschytz (LLM _DCT) [LLM89]: ‘

L1o := Loo + Los
L1y := Lo1 + Lo2
Lis := Lo1 — Lo2
L13 := Loo — Los
L4 := Roty(Loa,
L5 := Roty(Los,
L16 = i)‘iotl (L05,
L17 = D‘iotl (L04,

Ly :=Lio+ L1 20 1= Lag

Ly :=Lig— L1 21 1= Lag + Loy
Los := Roto(Li12, L13,6) 22 := /2 Loy
Loz := Roty (L12, L13,6) 23 := /2 Los

Lo7,3) Loy :=Lis+ Ly 24 = Loy
Log,1) Los := Li7 — L1s 25 := V2 Lag
Log,1) Lgg := L14 — Lig 26 :=V/2 Lo
Lo7,3) Loy :=Lis+ L1z 27 1= Loz — Loy

Arai, Agui and Nakgjiama (AAN_DCT): [PM93] |

L1o := Loo + Los
L11 := Lo1 + Lo2
Li2 := Lo1 — Lo2
Li3:= Loo — Lo3
L1y := Los + Los
L1s := Los + Log
L6 := Los + Lo

qo ‘= C2 — Cp
q1 = C2 + Cg

Lo

Lo
La3
Loy
Los

L3
L33

= c4(L12 + L13)

= qoL14 + Los
= cq4l5

= q1L16 + Las
= C6(L14 - L16)

:= Lo7 + L3
= Lo7 — La3

ug = L1g+ L11
up = L31 + Loy
up 1= Log + L13
ug := L33 — Lo
ug = Lig — L11
us = L33 + Lo
ug := L13 — Lag
uy := L31 — Loy

Figure 1 Optimized DCT algorithms

COMPARING MODEL CHECKING AND TERM REWRITING ... 133

implemented more efficiently if occurrences of common subterms are exploited: Note
first that al trigonometric valuesthat occur in the matrix 2L can be restricted to 8 basic
values. To see this, we define the constants ¢, := cos (k%) and s := sin (k%) for
k € 7 (integer values). Clearly, the following relations hold:

(1) c—k = ¢ (2) ¢k = Ck mod 32
(3) ck =c3o—k (4) ek = —Cr6—k

The above equations allow the reduction of the domain of k& from Z to {k | £ > 0},
{0,...,31}, {0,...,16}, and {0, ..., 8}, respectively. Moreover, the special cases
co = 1,c4 = V2, cs = 0 can be used for optimizations. Clearly, also sy, is only
interesting in theinterval {0, ..., 7} and it can be reduced to ¢, by the equation s, =
cs— k. Considering al this, and computing common subterms only once, we obtain the
implementation SIMP_DCT given in figure 1. This implementation requires only 22
multiplications and 28 additions.

Numerous efficient DCT implementations have been presented. The most efficient
one, a true two-dimensional approach requires only 54 multiplications, 464 additions
and 6 arithmetic shifts [FL90]. Some of the fast DCT algorithms go back to the dis-
crete Fourier transform [CT65], others consider the DCT as a separate field [CSF77].
A survey isgivenin [DV9Q].

Figure 1 liststwo efficient DCT agorithms, namely the version of Loeffler, Ligten-
berg and Moschytz (LLM DCT) [LLM89] and Arai, Agui and Nakajiama's version
(AAN_DCT) [PM93]. The additional optimization obtained by these implementations
is based on the following trigonometric addition theorems:

cos(x) + cos(y) = 2 cos (””Qﬂ) cos (5Y)

cos(e) —cos(y) = 2sin (252 sin (51)

Using these theorems, additional common subterms can be generated that can then be
shared. The LLM_DCT makes additionally use of arotation operation that is defined
with an angle « asfollows:

yo \ _ [cos(a) sin(w) Zg

< Y1) o < —sin(a) cos(a)) (T)
As written above, the rotation operation would require four multiplications and two
additions. Rotations are however computed with an intermediate value ¢ as given
in figure 2. This requires three multiplications and three additions. Hence, we de-
crease the number of multiplications by increasing the number of additions which
is reasonable as multiplications are in genera more expensive. For figure 1, we
define Rotg(zo, x1,) = xoco + T18, and
mﬂtl(.’to,.’bl,a) = —Z0Sq + T1Cq, but we ¢.= Cos(a)(mo + _'131>
assume that the algorithm of figure 2 is used ¢, := £ + (sin(a) — cos(a))z;
for the computation. Hence, LLM_DCT re- 3, := —(sin(a) + cos(a))zo + ¢
quires only 13 multiplications and 29 additions.

AAN_DCT does even onIy require five multi- Figure 2: Rotations with 3 Multiplications

134 COMPARING MODEL CHECKING AND TERM REWRITING ...

plications and 28 additions.
Both LLM _DCT and AAN_DCT produce scaled results (these are sufficient for a
lot of applications as e.g. JPEG): For the variables defined in figure 1, the following

equations hold: z; = degy; = 2\/§yz, Ug = 4C4y0 = 2\/§y0 and Ujr1 = 4Ci+1y1‘+1.

3 VERIFYING DCT ALGORITHMS BY TERM REWRITING

Lawsfor R In this section, we show how the correctness
z+0:==zx of the DCT algorithms of figure 1 is proved
rxl:=zx with the term rewriting system RRL [KZ88].
xx0:=0 For this reason, we establish a canonical term
o (y+2):=(z*xy)+ (zx2z) | rewritesystemthat handlesrea numbersR and
x+—(z):=0 the trigonometric functions. Therefore, some
zx—(y) = —(x*xy) axioms on real numbers and the trigonometric
—(—(2)) =2 functions have to be added to the definition of
V2x\V2xx =z +x the DCTs. Thelawsfor IR are giveninfigure 3.

Moreover, the operators + and = are specified
Figure3: Axiomsfor IR to be associative and commutative. The above

laws essentially specify that the real numbers are mathematically speaking a field.
Note however, that we do neither need the ordering relation nor the supremum axiom
of IR and hence, have not characterized the real numbers completely.

AdditionLaws | For the verification of LLM_DCT, we also need some in-
V2% 1 :=c5 + ¢y | Stances of the trigonometric addition laws. These are given
V2% c3 = c; +c; | infigure4. Moreover, we need the relationship between V2
V2% s = ¢ — ¢, | @ndthetrigonometric functions: ¢, := IV2andey V2 =
V2% cqi=cy —c5 | 1. Using al these equations, the relationship z; = 2v2 y;
can be easily proved by means of RRL.

Figure4: AdditionLaws Thjs s done as follows: We first enter all rewrite equations
apart from the above addition theorems and establish a confluent rewrite system by
means of the Knuth-Bendix completion procedure. After that, we add the above ad-
dition theorems and do not invoke a further completion (this does not work with our
ordering). Instead the rewrite system is yet powerful enough to make the proofs with
simple rewriting (using the boolean ring method).

For the verification of AAN_DCT, we need more instances of the trigonometric ad-
dition laws, which are given below. The verification runs then in the same lines
as for LLM_DCT: We first enter all rewrite equations apart from the addition the-
orems and establish a confluent rewrite system by completion. After that, we add
the addition theorems below and obtain the proofs with simple rewriting (using the

COMPARING MODEL CHECKING AND TERM REWRITING ... 135

boolean ring method). The proof of the relationship with SIMP_DCT, i.e. the equa-
tionsug = 4eayo = 22y and w1 = 4ciq1yi41 followsthen automatically.

Addition Laws used for AAN_DCT
\/5*06:202—06 \/5*02:2024—06 06*02:2104
C1 % C3 1= %(02 +ecq) | c1 ¥y = %(06 +ecq) |1 ®er = %cs
C3 % C7 1= ¥(04 —cg) | e3xcp = 3Co Cs % C7 1= %(02 —cy)
Co % Cp 1= %(14-04) cexcg:=35(l—cq) |c1xcyi= ¥(1+02)
czxcgi=5(l+c) |csxes:=5(1—cg) |crxer:=5(1—co)

4 VERIFYING INTEGER DCT ALGORITHMS

The definition of the DCT is based on real numbers. However, all implementations,
regardless whether they are done in hardware or software, do only work on floating
point or fixpoint numbers, i.e. on approximations of the real numbers with a limited
precision. For thisreason, it might be the case that some of the above optimized DCT
algorithms do compute dlightly different outputs than others.

Often special fixpoint implementations are used for the DCT that are called integer
DCTs: These are obtained by replacing the real valued cosine constants ¢; by the
integers ¢; := [2"¢; | when n bits are available. As the inputs z; are also given as
integers, only integer operations are then needed.

The verification based on term rewriting presented in the
(1) ger =cs+¢s5|ag section did not fix the data domain. The obtained results
(2) ges = c1+¢1 o1 for any data domain with operations +, — and - that has
(3) ges = c1 —er constants 3, v/2, 0,1, ¢1, ¢2, ¢3, 4, ¢5, c6, ¢7 Such that the pre-
Waer=cs—c e equations hold. Hence, if the equations given in figure

Figure5: Equation System 5 hold for a specific data domain, then the equivalence be-

for LLM_DCT tween LLM_DCT and SIMP_DCT holdsfor this domain.

SO, let us first consider the solu- c1 = \/§C5 + c7 c1 = —\/505 +cr
tions of the equation system of fig- c3 = 5+ V2er c3 = c5 —V2¢r

ure 5. Apart from the trivial solu- g=12 g=—2
tion where all constants equal to zero,
there are infi nitely may solutions: c; Figure 6: Solution of the Equations of figure 5

and c¢7 can be chosen arbitrarily and the other constants are then determined as given
infigure 6. Asin particular ¢ = ++/2 holds, there is no integer solution of the equa-
tion system. For this reason, the results given in the previous section that are based on
term rewriting do not hold for the integer variant of LLM DCT. The same holds for
AAN_DCT.

5 VERIFYING INTEGER DCTS BY MODEL CHECKING

Asthe proof from the abstract level cannot be transferred to the bitvector level wetried
to establish term rewrite systems for integer versions based on bitvector arithmetic.
However, this approach turned out to become too complicated such that we dropped
this approach.

136 COMPARING MODEL CHECKING AND TERM REWRITING ...

Instead, we proposeto use tautology checking based on BDDsfor the verification at
the integer level. Our first attempt to this was quite depressing: By adirect invocation
of the SMV model checker, we could only handle implementations up to three bits.
Even the word-level extension of SMV could not manage implementations with more
than four bits.

To circumvent the complexity, we used a reduction technique that is based on the
Chinese Remainder Theorem (CRT) that is given below. The CRT is the basis for
residue arithmetic that is roughly explained as follows: Given relatively prime num-
bers pi,..., pn, i.e. numbers with GCD (p;,p;) = 1, each integer z in the inter-
val [0, [T, pi[can be uniquely represented as the list of its residues, i.e. (z mod
p1,...,x mod p,) (residue number representation). Arithmetic operations are then
simply performed by applying the corresponding operation on the residues: Given that
x and y have the residue number representations (z1, . .., x,) and (y1, ..., yn), then
x +y, x —y, and zy, have the residue number representation (x1 + y1, ..., Tn + Yn),
(xl —Yi,-- 5 Tn — yn)! and (9513/1, cee 71'nyn)! r%pectively.

Theorem 1 (Chinese Remainder Theorem) Given integers rq,. .., r,, b and rela-
tively primeintegersps,. . ., p, With 0 < r; < p; then, thereisa uniqueinteger x with
b <z <[,p; suchthat z mod p; = .

The advantage of residue arithmeticis that it can be performed in parallel asthe arith-
metic operations on the single residues are independent of each other. This indepen-
denceis also useful for the verification as it allows to split the entire problem into a
couple of smaller ones: Instead of verifying the equivalence of two b bit implemen-
tations, we use some prime numbers p,. .., p, such that 2° < H};l p; and verify
the equivalence of the two versions modulo p;. Asthe latter implementation has only
|loga(p;)] + 1 bits, it can be checked much faster.

For example, using the prime numbers 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32,
we can prove for LLM _DCT that z; = 4cqy; holdsfori = 0,2,3,4,5,7. Also, we
can show that z; # 4csy; and zg # 4caye holds for some inputs which is due to the
limited precision of the integer approximation?.

The experimental results that we have obtained with the SMV system for proving
zo = 4eqyo are given in figure 7 (Sun UltraSparc with 128MByte Memory). The
runtime given in figure 7 is thereby the sum of the runtimes for checking the equiva-
lence modulo al p;’s. For small bit widths we used however only the necessary prime
numbers, e.g. for 8 bits, we only used the prime numbers 7, 11, 13, 17, 19, 23 as
22843 — 524288 < 7-11-13-17-19 - 23 = 7436429 (note that the DCT with b bit
wideinputsyieldsin 22:*+3 wide outputs).

6 CONCLUSIONS

We have illustrated the use of term rewriting and model checking for the verification
of real number algorithmslike the DCT. Some errorsin the presentation of algorithms
in the literature [PM 93] we found prove that the DCT as an embedded system is a
non-trivial example that requires formal verification.

COMPARING MODEL CHECKING AND TERM REWRITING ... 137

[sec]
240 e

200 -

160 -t

120 —

80 L :

40 i

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Bits (Input)

Figure 7 Experimental Results for Model Checking with CRT abstraction

Without doubt, model checkingis currently the most popul ar verification technique
for concurrent systems. However, the case study presented in this paper shows that

term rewriting is more appropriate for the DCT since it provides a higher degree of
abstraction that is often desired in early design phases.

Nevertheless, at the bitvector level where the limited preciseness of the implemen-
tation of the real numbers has to be taken into account, model checking seems to be
more adequate. But already for small bit widths the systems are far too big to be
checked by a direct attempt. To overcome these limits we applied the Chinese Re-
mainder Technique as an appropriate abstraction technique to verify greater bit widths
by model checking. The Chinese Remainder Techniqueis easily applicable by using
predefined parameterized modules for residue arithmetic. However, none of the cur-
rently available model checkers offers such a feature. Thus, it would be desirable to
extend these tools by such abstraction methods.

The Chinese Remainder Abstraction as applied here is only suited for proving or
disproving equivalence of two implementations. In particular, it is not possibleto ver-
ify that certain error bounds hold, since thiswould requireto compare numbersin their
residue number representation which is not possible. Our future work will therefore
aim at extending the Chinese Remainder Abstraction by an efficient conversion back
to the usual radix number representation.

Notes
1. Note that we can only prove that the equations z = 4c4y1 and 2z = 4c4ye do not hold. It is not

possible to prove error bounds |21 — 4cay1| < €1 and |z6 — 4cays| < €6 by the CRT abstraction since it
is not possible to compare the size of numbers given in residue number representation.

138 COMPARING MODEL CHECKING AND TERM REWRITING ...

References

[ABCT94]

[Bry86]

[CSF77]

[CT65]
[DV90]

[FL9O]

[FSST94]
[GM93]
[Gup92]

[HP96]

[KZ88]

[LLM89]

[Lon93]
[McM93]

[ORR™96]

[PMO3]

A. Aziz, F. Baarin, S.-T. Cheng, R. Hojati, T. Kam, S.C. Krishnan, R.K. Ran-
jan, T.R. Shiple, V. Singhal, S. Tasiran, H.-Y. Wang, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. HSIS: A BDD-Based Environment for Formal Verifi-
cation. In ACM/IEEE Design Automation Conference (DAC), San Diego, CA,
June 1994. San Diego Convention Center.

R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. |EEE
Transactions on Computers, C-35(8):677—691, August 1986.

W. Chen, C.H. Smith, and S.C. Fralick. A fast computational algorithm for the
discrete cosine transform. |EEE Transactions on Communication, 25(9):1004—
1009, 1977.

JW. Cooley and JW. Tukey. An agorithm for the machine calculations of com-
plex Fourier series. Mathemtical Computation, 19:297-301, 1965.

P. Duhamel and M. Vetterli. Fast fourier transforms: A tutoria review and a state
of theart. Sgnal Processing, 19:259-299, 1990.

E. Feig and E. Linzer. Discrete cosine transform algorithms for image data com-
pression. In Proceedings Electronic Imaging’' 90 East, pages 84-87, Boston, MA,
1990.

T. Filkorn, H. A. Schneider, A. Scholz, A. Strasser, and P. Warkentin. SVE User’s
Guide. Semens AG, TR ZFE BT SE 1-SVE-1, Munich, 1994,

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

A. Gupta. Formal Hardware Verification Methods: A Survey. Journal of Formal
Methods in System Design, 1:151-238, 1992.

G. J. Holzmann and D. Peled. The state of SPIN. In Rajeev Alur and Thomas A.
Henzinger, editors, Conference on Computer Aided \erification (CAV), volume
1102 of Lecture Notesin Computer Science, pages 385-389, New Brunswick, NJ,
USA, July/August 1996. Springer Verlag.

D. Kapur and H. Zhang. RRL: arewrite rule laboratory. In Lusk and Overbeek,
editors, Conference on Automated Deduction (CADE), pages 768-769. Springer-
Verlag, 1988.

C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical fast 1-D DCT algorithms
with 11 multiplications. In International Conference on Acoustics, Speech, and
Sgnal Processing 1989 (ICASSP ' 89), pages 988-99, 19809.

D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

S. Owre, S. Rgjan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Conference on Computer Aided \erification (CAV), volume
1102 of Lecture Notesin Computer Science, pages 411414, New Brunswick, NJ,
USA, July/August 1996. Springer Verlag.

W.B. Pennebaker and J.L. Mitchell. JPEG Sill Image Data Compression San-
dard. Van Nostrand Reinhold, ISBN 0-442-01272-1, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

